High-Efficiency Thin-Film Silicon-on-GaP Solar Cell for Improved Radiation Resistance.
1987-09-01
UNCLASSIFIED MyUM 21 LIX E / 82H M D 132 11111_Lt5l1. t FILE UPI" AD-A190 268 AFWAL-TR-87-2070 HIGH-EFFICIENCY THIN- FILM SILICON-ON-GaP SOLAR CELL...EFFICIENCY THIN- FILM SILICON-ON-GaP SOLAR CELL FOR IMPROVED RADIATION RESISTANCE 12. PERSONAL AUTHOR(S) JEROME S. CULIK 13a. TYPE OF REPORT 13b. TIME...C tinue on reverse if necessary and identify by block number) 10 01 SILICONs THIN* FILM , . HETEROEPITAXIAL, RADIATION, 10 01 i GALLIUM PHOSPHIDE 19
Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency
NASA Astrophysics Data System (ADS)
Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.
2017-10-01
An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.
Sinusoidal nanotextures for light management in silicon thin-film solar cells.
Köppel, G; Rech, B; Becker, C
2016-04-28
Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.
Investigations of Si Thin Films as Anode of Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qingliu; Shi, Bing; Bareño, Javier
Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitablemore » in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.« less
Potential of thin-film solar cell module technology
NASA Technical Reports Server (NTRS)
Shimada, K.; Ferber, R. R.; Costogue, E. N.
1985-01-01
During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.
Membrane transfer of crystalline silicon thin film solar cells
NASA Astrophysics Data System (ADS)
Vempati, Venkata Kesari Nandan
Silicon has been dominating the solar industry for many years and has been touted as the gold standard of the photovoltaic world. The factors for its dominance: government subsidies and ease of processing. Silicon holds close to 90% of the market share in the material being used for solar cell production. Of which 14% belongs to single-crystalline Silicon. Although 24% efficient bulk crystalline solar cells have been reported, the industry has been looking for thin film alternatives to reduce the cost of production. Moreover with the new avenues like flexible consumer electronics opening up, there is a need to introduce the flexibility into the solar cells. Thin film films make up for their inefficiency keeping their mechanical properties intact by incorporating Anti-reflective schemes such as surface texturing, textured back reflectors and low reflective surfaces. This thesis investigates the possibility of using thin film crystalline Silicon for fabricating solar cells and has demonstrated a low cost and energy efficient way for fabricating 2microm thick single crystalline Silicon solar cells with an efficiency of 0.8% and fill factor of 35%.
Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.
Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min
2014-05-13
The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.
Paper-Thin Plastic Film Soaks Up Sun to Create Solar Energy
NASA Technical Reports Server (NTRS)
2006-01-01
A non-crystallized silicon known as amorphous silicon is the semiconductor material most frequently chosen for deposition, because it is a strong absorber of light. According to the U.S. Department of Energy, amorphous silicon absorbs solar radiation 40 times more efficiently than single-crystal silicon, and a thin film only about 1-micrometer (one one-millionth of a meter) thick containing amorphous silicon can absorb 90 percent of the usable light energy shining on it. Peak efficiency and significant reduction in the use of semiconductor and thin film materials translate directly into time and money savings for manufacturers. Thanks in part to NASA, thin film solar cells derived from amorphous silicon are gaining more and more attention in a market that has otherwise been dominated by mono- and poly-crystalline silicon cells for years. At Glenn Research Center, the Photovoltaic & Space Environments Branch conducts research focused on developing this type of thin film solar cell for space applications. Placing solar cells on thin film materials provides NASA with an attractively priced solution to fabricating other types of solar cells, given that thin film solar cells require significantly less semiconductor material to generate power. Using the super-lightweight solar materials also affords NASA the opportunity to cut down on payload weight during vehicle launches, as well as the weight of spacecraft being sent into orbit.
Development of an improved high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1978-01-01
Efforts were concerned with optimizing techniques for thinning silicon slices in NaOH etches, initial investigations of surface texturing, variation of furnace treatments to improve cell efficiency, initial efforts on optimization of gridline and cell sizes and Pilot Line fabrication of quantities of 2 cm x 2 cm 50 micron thick cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangold, Claudia; Neogi, Sanghamitra; Max Planck Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz
2016-08-01
Silicon nanostructures with reduced dimensionality, such as nanowires, membranes, and thin films, are promising thermoelectric materials, as they exhibit considerably reduced thermal conductivity. Here, we utilize density functional theory and Boltzmann transport equation to compute the electronic properties of ultra-thin crystalline silicon membranes with thickness between 1 and 12 nm. We predict that an optimal thickness of ∼7 nm maximizes the thermoelectric figure of merit of membranes with native oxide surface layers. Further thinning of the membranes, although attainable in experiments, reduces the electrical conductivity and worsens the thermoelectric efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniadis, H.
Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink highmore » efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.« less
Deposition of hydrogenated silicon clusters for efficient epitaxial growth.
Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger
2018-06-13
Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.
Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Storti, G.; Culik, J.; Wrigley, C.
1980-01-01
Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.
Ultra-thin, light-trapping silicon solar cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1989-01-01
Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.
1979-01-01
Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.
Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Lindmayer, J.; Wrigley, C. Y.
1977-01-01
A key to the success of this program was the breakthrough development of a technology for producing ultra-thin silicon slices which are very flexible, resilient, and tolerant of moderate handling abuse. Experimental topics investigated were thinning technology, gaseous junction diffusion, aluminum back alloying, internal reflectance, tantalum oxide anti-reflective coating optimization, slice flexibility, handling techniques, production rate limiting steps, low temperature behavior, and radiation tolerance.
Nanocrystalline silicon thin films and grating structures for solar cells
NASA Astrophysics Data System (ADS)
Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil
2016-03-01
Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.
Advantages of thin silicon solar cells for use in space
NASA Technical Reports Server (NTRS)
Denman, O. S.
1978-01-01
A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.
Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter
2017-06-01
Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.
NASA Astrophysics Data System (ADS)
Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.
2016-12-01
Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.
Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martini, R., E-mail: roberto.martini@imec.be; imec, Kapeldreef 75, 3001 Leuven; Kepa, J.
2014-10-27
We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process.more » A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.« less
HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, James
This project is the first investigation of the use of thin titanium dioxide layers on silicon as a hole-blocking / electron-transparent selective contact to silicon. The work was motivated by the goal of a high-efficiency low-cost silicon-based solar cells that could be processed entirely at low temperature (300 Degree Celsius) or less, without requiring plasma-processing.
Monolithically interconnected silicon-film™ module technology
NASA Astrophysics Data System (ADS)
DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.
1999-03-01
AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.
NASA Astrophysics Data System (ADS)
Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao
2015-05-01
We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.
Chen, Bo; Bai, Yang; Yu, Zhengshan; ...
2016-07-19
Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Bai, Yang; Yu, Zhengshan
Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less
Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong
2011-12-07
Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society
Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.
Kiaee, Zohreh; Joo, Seung Ki
2018-03-01
The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.
Silicon wafer-based tandem cells: The ultimate photovoltaic solution?
NASA Astrophysics Data System (ADS)
Green, Martin A.
2014-03-01
Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.
NASA Astrophysics Data System (ADS)
Feng, Bo; Deng, Biao; Fu, Yi; Liu, Le Gong; Li, Zeng Cheng; Feng, Mei Xin; Zhao, Han Min; Sun, Qian
2017-07-01
This work reports a significant improvement in efficiency by optimizing the via-like n-electrode architecture design of a GaN-based thin-film LED grown on a 6-inch silicon substrate. The external quantum efficiency of the as-fabricated 1.1 mm × 1.1 mm via-thin-film LED chip at 350 mA was increased by 11.3% compared to that of a vertical thin-film LED chip with a conventional finger-like n-electrode. Detailed analysis of encapsulation gain and false color emission patterns illustrated that the significantly improved LED performance was due to enhanced light extraction efficiency and more uniform current spreading, both of which can be attributed to the optimized via-thin-film chip structure. Minimizing the light loss at the periphery of the Ag mirror was demonstrated to be a critical factor for improving light extraction, rather than simply replacing the finger-like n-electrodes with via-like ones. After encapsulation, the median blue lamp power and the wall-plug efficiency of the via-thin-film LED at 350 mA reached 659 mW and 63.7%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Branham, Matthew S.; Hsu, Wei-Chun
2014-09-02
This report summarizes the research activities of the Chen group at MIT over the last two years pertaining to our research effort developing and proving light-trapping designs for ultrathin crystalline silicon solar cells. We present a new world record efficiency for a sub-20-micron crystalline silicon device, as well as details on the combined photonic/electronic transport simulation we developed for photovoltaic applications.
Silicon solar cells: Past, present and the future
NASA Astrophysics Data System (ADS)
Lee, Youn-Jung; Kim, Byung-Sung; Ifitiquar, S. M.; Park, Cheolmin; Yi, Junsin
2014-08-01
There has been a great demand for renewable energy for the last few years. However, the solar cell industry is currently experiencing a temporary plateau due to a sluggish economy and an oversupply of low-quality cells. The current situation can be overcome by reducing the production cost and by improving the cell is conversion efficiency. New materials such as compound semiconductor thin films have been explored to reduce the fabrication cost, and structural changes have been explored to improve the cell's efficiency. Although a record efficiency of 24.7% is held by a PERL — structured silicon solar cell and 13.44% has been realized using a thin silicon film, the mass production of these cells is still too expensive. Crystalline and amorphous silicon — based solar cells have led the solar industry and have occupied more than half of the market so far. They will remain so in the future photovoltaic (PV) market by playing a pivotal role in the solar industry. In this paper, we discuss two primary approaches that may boost the silicon — based solar cell market; one is a high efficiency approach and the other is a low cost approach. We also discuss the future prospects of various solar cells.
Progress in thin-film silicon solar cells based on photonic-crystal structures
NASA Astrophysics Data System (ADS)
Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu
2018-06-01
We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
Photovoltaic-cell technologies joust for position
NASA Astrophysics Data System (ADS)
Fischetti, M. A.
1984-03-01
The three most promising photovoltaic cell technologies, single-crystal-silicon cells, polycrystalline thin films, and amorphous silicon thin films, are reviewed and discussed in terms of present levels of applicability and the prospects for domination of PV markets in the future. A U.S. DOE research plan running from 1984 to 1988 which aims to produce PV modules that will generate electricity at $.20/kWh by 1988 is outlined, and R & D efforts in Japan and Europe are considered. Although GaAs cells have reached efficiencies to 20 percent in the laboratory, the most successful commercial products have been single-crystal-silicon cells with efficiencies between 11 and 12 percent. It is suggested that the immiment rise of amorphous silicon in the late 1980s may thwart polycrystalline-cell development before it has a chance to flourish.
Profilometry of thin films on rough substrates by Raman spectroscopy
Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín
2016-01-01
Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033
Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca
2014-12-29
This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparentmore » passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.« less
The Status and Outlook for the Photovoltaics Industry
NASA Astrophysics Data System (ADS)
Carlson, David
2006-03-01
The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.
Improvement of silicon solar cell efficiency by ion beam sputtered deposition of AlOxNy thin films.
Chen, Sheng-Hui; Hsu, Chun-Che; Wang, Hsuan-Wen; Yeh, Chi-Li; Tseng, Shao-Ze; Lin, Hung-Ju; Lee, Cheng-Chung; Peng, Cheng-Yu
2011-03-20
Negative charge material, AlOxNy, has been fabricated to passivate the surface of p-type silicon. The fabrication of AlOxNy was possible by using ion beam sputtering deposition to deposit AlN thin film on the surface of a p-type silicon wafer and following annealing in oxygen ambient. Capacitance-voltage analysis shows the fixed charge density has increased from 10(11) cm(-2) to 2.26×10(12) cm(-2) after annealing. The solar cell efficiency increased from 15.9% to 17.3%, which is also equivalent to the reduction of surface recombination velocity from 1×10(5) to 32 cm/s.
Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.
Wu, Marcelo; Han, Zhanghua; Van, Vien
2010-05-24
Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40 microm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.
Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-01
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851
Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-13
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less
Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathi, Prathap; Peer, Akshit; Biswas, Rana
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less
Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-13
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.
Bian, Jian-Tao; Yu, Jian; Duan, Wei-Yuan; Qiu, Yu
2015-04-01
Single side heterojunction silicon solar cells were designed and fabricated using Silicon-On-Insulator (SOI) substrate. The TCAD software was used to simulate the effect of silicon layer thickness, doping concentration and the series resistance. A 10.5 µm thick monocrystalline silicon layer was epitaxially grown on the SOI with boron doping concentration of 2 x 10(16) cm(-3) by thermal CVD. Very high Voc of 678 mV was achieved by applying amorphous silicon heterojunction emitter on the front surface. The single cell efficiency of 12.2% was achieved without any light trapping structures. The rear surface recombination and the series resistance are the main limiting factors for the cell efficiency in addition to the c-Si thickness. By integrating an efficient light trapping scheme and further optimizing fabrication process, higher efficiency of 14.0% is expected for this type of cells. It can be applied to integrated circuits on a monolithic chip to meet the requirements of energy autonomous systems.
Kaya, Mine; Hajimirza, Shima
2018-05-25
This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.
Solar cells with gallium phosphide/silicon heterojunction
NASA Astrophysics Data System (ADS)
Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina
2015-09-01
One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.
Method for fabricating pixelated silicon device cells
Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John
2015-08-18
A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.
Low cost silicon-on-ceramic photovoltaic solar cells
NASA Technical Reports Server (NTRS)
Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.
1980-01-01
A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.
Stacked silicide/silicon mid- to long-wavelength infrared detector
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.
Stacked silicide/silicon mid- to long-wavelength infrared detector
Maserjian, Joseph
1990-03-13
The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.
Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition
NASA Astrophysics Data System (ADS)
Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.
2018-03-01
The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.
Silicon-sheet and thin-film cell and module technology potential: Issue study
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E. N.; Ferber, R. R.
1984-01-01
The development of high-efficiency low-cost crystalline silicon ribbon and thih-film solar cells for the energy national photovoltaics program was examined. The findings of an issue study conducted are presented. The collected data identified the status of the technology, future research needs, and problems experienced. The potentials of present research activities to meet the Federal/industry long-term technical goal of achieving 15 cents per kilowatt-hour levelized PV energy cost are assessed. Recommendations for future research needs related to crystalline silicon ribbon and thin-film technologies for flat-plate collectors are also included.
Supersonic plasma outflow in a plasmochemical method of amorphous silicon thin films formation
NASA Astrophysics Data System (ADS)
Baranova, L. V.; Strunin, V. I.; Khudaibergenov, G. Zh
2018-01-01
As a result of the numerical modeling of gasdynamic functions of a nozzle of Laval there obtained its parameters which form supersonic plasma jet outflow in a process of amorphous silicon thin films deposition. According to the nozzle design parameters, there obtained amorphous silicon thin films and studied uniformity of the thickness of the synthesized coatings. It was also performed that due to a low translational temperature at the nozzle exit the relaxation losses reduce significantly, “freezing” the vibrational degrees of freedom and the degrees of freedom of the transverse motion of the particles, and increasing the energy efficiency of the film formation process. All this is caused by the fact that on the surface of a growing film only the products of primary interaction of electrons with molecules of a silicon-containing gas in the plasmatron do interact.
NASA Astrophysics Data System (ADS)
He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong
2011-12-01
The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.
Black silicon solar cell: analysis optimization and evolution towards a thinner and flexible future.
Roy, Arijit Bardhan; Dhar, Arup; Choudhuri, Mrinmoyee; Das, Sonali; Hossain, S Minhaz; Kundu, Avra
2016-07-29
Analysis and optimization of silicon nano-structured geometry (black silicon) for photovoltaic applications has been reported. It is seen that a unique class of geometry: micro-nanostructure has the potential to find a balance between the conflicting interests of reduced reflection for wide angles of incidence, reduced surface area enhancement due to the nano-structuring of the substrate and reduced material wastage due to the etching of the silicon substrate to realize the geometry itself. It is established that even optimally designed micro-nanostructures would not be useful for conventional wafer based approaches. The work presents computational studies on how such micro-nanostructures are more potent for future ultra-thin monocrystalline silicon absorbers. For such ultra-thin absorbers, the optimally designed micro-nanostructures provide additional advantages of advanced light management capabilities as it behaves as a lossy 2D photonic crystal making the physically thin absorber optically thick along with the ability to collect photo-generated carriers orthogonal to the direction of light (radial junction) for unified photon-electron harvesting. Most significantly, the work answers the key question on how thin the monocrystalline solar absorber should be so that optimum micro-nanostructure would be able to harness the incident photons ensuring proper collection so as to reach the well-known Shockley-Queisser limit of solar cells. Flexible ultra-thin monocrystalline silicon solar cells have been fabricated using nanosphere lithography and MacEtch technique along with a synergistic association of crystalline and amorphous silicon technologies to demonstrate its physical and technological flexibilities. The outcomes are relevant so that nanotechnology may be seamlessly integrated into the technology roadmap of monocrystalline silicon solar cells as the silicon thickness should be significantly reduced without compromising the efficiency within the next decade.
Origins of conductivity improvement in fluoride-enhanced silicon doping of ZnO films.
Rashidi, Nazanin; Vai, Alex T; Kuznetsov, Vladimir L; Dilworth, Jonathan R; Edwards, Peter P
2015-06-07
Fluoride in spray pyrolysis precursor solutions for silicon-doped zinc oxide (SiZO) transparent conductor thin films significantly improves their electrical conductivity by enhancing silicon doping efficiency and not, as previously assumed, by fluoride doping. Containing only earth-abundant elements, SiZO thus prepared rivals the best solution-processed indium-doped ZnO in performance.
Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Xiao, Sanshui; Mortensen, Niels A.
2012-10-01
Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.
Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.
1981-01-01
The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.
Density Functional Theory Calculations of the Role of Defects in Amorphous Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Johlin, Eric; Wagner, Lucas; Buonassisi, Tonio; Grossman, Jeffrey C.
2010-03-01
Amorphous silicon holds promise as a cheap and efficient material for thin-film photovoltaic devices. However, current device efficiencies are severely limited by the low mobility of holes in the bulk amorphous silicon material, the cause of which is not yet fully understood. This work employs a statistical analysis of density functional theory calculations to uncover the implications of a range of defects (including internal strain and substitution impurities) on the trapping and mobility of holes, and thereby also on the total conversion efficiency. We investigate the root causes of this low mobility and attempt to provide suggestions for simple methods of improving this property.
Sunlight-thin nanophotonic monocrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef
2017-09-01
Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.
Novel concepts for low-cost and high-efficient thin film solar cells
NASA Astrophysics Data System (ADS)
Gómez, D.; Menéndez, A.; Sánchez, P.; Martínez, A.; Andrés, L. J.; Menéndez, M. F.; Campos, N.; García, A.; Sánchez, B.
2011-09-01
This work presents the activities carried out at ITMA Materials Technology related to the building integration of thin film (TF) photovoltaics (PV). Three different approaches have been developed in order to achieve high efficient solar cells at low manufacturing costs: (i) a new route for manufacturing monolithical silicon based thin film solar cells on building materials, (ii) the use of metallic nanoparticles for light trapping (plasmonic effects and light scattering) and (iii) the luminescent sol-gel coating on glass for solar concentration. In the first case, amorphous silicon modules (single junction) have been successfully manufactured at lab scale on steel and commercial ceramic substrates with efficiencies of 5.4% and 4.0%, respectively. Promising initial attempts have been also made in ethylene tetrafluoroethylene (ETFE), a polymer with high potential in textile architecture. In a similar way, the development of nanotechnology based coatings (metallic nanoparticles and luminescent materials) represent the most innovative part of the work and some preliminary results are showed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Adam
For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10more » billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).« less
Fabrication & characterization of thin film Perovskite solar cells under ambient conditions
NASA Astrophysics Data System (ADS)
Shah, Vivek T.
High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.
Advances in thin-film solar cells for lightweight space photovoltaic power
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.
1989-01-01
The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.
NASA Astrophysics Data System (ADS)
Liu, Daiming; Wang, Qingkang
2018-08-01
Light trapping is particularly important because of the desire to produce low-cost solar cells with the thinnest possible photoactive layers. Herein, along the research line of "optimization →fabrication →characterization →application", concave arrays were incorporated into amorphous silicon thin-film solar cell for lifting its photoelectric conversion efficiency. In advance, based on rigorous coupled wave analysis method, optics simulations were performed to obtain the optimal period of 10 μm for concave arrays. Microfabrication processes were used to etch concave arrays on glass, and nanoimprint was devoted to transfer the pattern onto polymer coatings with a high fidelity. Spectral characterizations prove that the concave-arrays coating enjoys excellent the light-trapping behaviors, by reducing the reflectance to 7.4% from 8.6% of bare glass and simultaneously allowing a high haze ratio of ∼ 70% in 350-800 nm. Compared with bare cell, the concave-arrays coating based amorphous silicon thin-film solar cell possesses the improving photovoltaic performances. Relative enhancements are 3.46% and 3.57% in short circuit current and photoelectric conversion efficiency, respectively. By the way, this light-trapping coating is facile, low-cost and large-scale, and can be straightforward introduced in other ready-made solar devices.
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu
1992-01-01
Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu; Kramer, Dominik, E-mail: dominik.kramer@kit.edu
2016-08-15
The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cyclemore » behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.« less
NASA Astrophysics Data System (ADS)
Zianni, Xanthippi
2018-03-01
Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.
Optimization of the antireflection coating of thin epitaxial crystalline silicon solar cells
Selj, Josefine K.; Young, David; Grover, Sachit
2015-08-28
In this study we use an effective weighting function to include the internal quantum efficiency (IQE) and the effective thickness, Te, of the active cell layer in the optical modeling of the antireflection coating (ARC) of very thin crystalline silicon solar cells. The spectrum transmitted through the ARC is hence optimized for efficient use in the given cell structure and the solar cell performance can be improved. For a 2-μm thick crystalline silicon heterojunction solar cell the optimal thickness of the Indium Tin Oxide (ITO) ARC is reduced by ~8 nm when IQE data and effective thickness are taken intomore » account compared to the standard ARC optimization, using the AM1.5 spectrum only. The reduced ARC thickness will shift the reflectance minima towards shorter wavelengths and hence better match the absorption of very thin cells, where the short wavelength range of the spectrum is relatively more important than the long, weakly absorbed wavelengths. For this cell, we find that the optimal thickness of the ITO starts at 63 nm for very thin (1 μm) active Si layer and then increase with increasing T e until it saturates at 71 nm for T e > 30 μm.« less
Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin
2015-03-01
We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.
NASA Astrophysics Data System (ADS)
Jana, Sukhendu; Das, Sayan; De, Debasish; Mondal, Anup; Gangopadhyay, Utpal
2018-02-01
Presently, silicon nitride (SiN x ) is widely used as antireflection coating (ARC) on p-type silicon solar cell. But, two highly toxic gasses ammonia and silane are used. In the present study, the ARC and passivation properties of diamond-like nanocomposite (DLN) thin film on silicon solar cell have been investigated. The DLN thin film has been deposited by rf-PACVD process using liquid precursor HMDSO in argon plasma. The film has been characterized by FESEM, HRTEM, FTIR, and Raman spectroscopy. The optical properties have been estimated by UV-vis-NIR spectroscopy. The minimum reflection has been achieved to 0.75% at 630 nm. Both the short circuit current density and open circuit voltage has been increased significantly from 28.6 mA cm-2 to 35.5 mA cm-2 and 0.551 V to 0.613 V respectively. The field effect passivation has been confirmed by dark IV characterization of c-Si /DLN heterojunction structure. All these lead to enhancement of efficiency by almost 4% absolute, which is comparable to SiN x . The ammonia and silane free deposited DLN thin film has a great potential to use as ARC for silicon based solar cell.
NASA Astrophysics Data System (ADS)
Koynov, Svetoslav; Brandt, Martin S.; Stutzmann, Martin
2011-08-01
"Black etching" has been proposed previously as a method for the nanoscale texturing of silicon surfaces, which results in an almost complete suppression of reflectivity in the spectral range of absorption relevant for photovoltaics. The method modifies the topmost 150 to 300 nm of the material and thus also is applicable for thin films of silicon. The present work is focused on the optical effects induced by the black-etching treatment on hydrogenated amorphous and microcrystalline silicon thin films, in particular with respect to their application in solar cells. In addition to a strong reduction of the reflectivity, efficient light trapping within the modified thin films is found. The enhancement of the optical absorption due to the light trapping is investigated via photometric measurements and photothermal deflection spectroscopy. The correlation of the texture morphology (characterized via atomic force microscopy) with the optical effects is discussed in terms of an effective medium with gradually varying optical density and in the framework of the theory of statistical light trapping. Photoconductivity spectra directly show that the light trapping causes a significant prolongation of the light path within the black silicon films by up to 15 μm for ˜1 μm thick films, leading to a significant increase of the absorption in the red.
Electroless epitaxial etching for semiconductor applications
McCarthy, Anthony M.
2002-01-01
A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.
Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers
NASA Astrophysics Data System (ADS)
Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.
Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.
NASA Astrophysics Data System (ADS)
Jagannathan, Basanth
Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (<400sp°C). The double dilution was achieved by using a Ar (He) carrier for silane and its subsequent dilution by Hsb2. Structural and electrical properties of the films have been investigated over a wide growth space (temperature, power, pressure and dilution). Amorphous Si films deposited by silane diluted in He showed a compact nature and a hydrogen content of ˜8 at.% with a photo/dark conductivity ratio of 10sp4. Thin film transistors (W/L = 500/25) fabricated on these films, showed an on/off ratio of ˜10sp6 and a low threshold voltage of 2.92 volts. Microcrystalline Si films with a high crystalline content (˜80%) were also prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron trapping sites while hole traps were seen when a thin oxide was present at the interface. Under optimized conditions, a 10.6% efficient cell (11.5% with SiOsb2 A/R) with an open circuit voltage of 0.55 volts and a short circuit current density of 30 mA/cmsp2 was fabricated.
NASA Astrophysics Data System (ADS)
Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen
2011-02-01
In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.
Toet, Daniel; Sigmon, Thomas W.
2004-12-07
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2005-08-23
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2003-01-01
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications
Zhou, Keya; Guo, Zhongyi; Liu, Shutian; Lee, Jung-Ho
2015-01-01
Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the material costs. In this article, we review current approaches on different kinds of solar cells, such as crystalline silicon (c-Si) and amorphous silicon (a-Si) thin film solar cells, organic solar cells, nanowire array solar cells, and single nanowire solar cells. PMID:28793457
Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe
2012-03-14
The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society
A strong electro-optically active lead-free ferroelectric integrated on silicon
NASA Astrophysics Data System (ADS)
Abel, Stefan; Stöferle, Thilo; Marchiori, Chiara; Rossel, Christophe; Rossell, Marta D.; Erni, Rolf; Caimi, Daniele; Sousa, Marilyne; Chelnokov, Alexei; Offrein, Bert J.; Fompeyrine, Jean
2013-04-01
The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V-1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.
A theoretical analysis of the current-voltage characteristics of solar cells
NASA Technical Reports Server (NTRS)
Fang, R. C. Y.; Hauser, J. R.
1979-01-01
The following topics are discussed: (1) dark current-voltage characteristics of solar cells; (2) high efficiency silicon solar cells; (3) short circuit current density as a function of temperature and the radiation intensity; (4) Keldysh-Franz effects and silicon solar cells; (5) thin silicon solar cells; (6) optimum solar cell designs for concentrated sunlight; (7) nonuniform illumination effects of a solar cell; and (8) high-low junction emitter solar cells.
Present Status and Future Prospects of Silicon Thin-Film Solar Cells
NASA Astrophysics Data System (ADS)
Konagai, Makoto
2011-03-01
In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.
Defects and device performance
NASA Technical Reports Server (NTRS)
Storti, G.; Armstrong, R.; Johnson, S.; Lin, H. C.; Regnault, W.; Yoo, K. C.
1985-01-01
The necessity for a low-cost crystalline silicon sheet material for photovoltaics has generated a number of alternative crystal growth techniques that would replace Czochralski (Cz) and float-zone (FZ) technologies. Efficiencies of devices fabricated from low resistivity FZ silicon are approaching 20%, and it is highly likely that this value will be superseded in the near future. However, FZ silicon is expensive, and is unlikely ever to be used for photovoltaics. Cz silicon has many of the desirable qualities of FZ except that minority-carrier lifetimes at lower resistivities are significantly less than those of FZ silicon. Even with Cz silicon, it is unlikely that cost goals can be met because of the poor-material yield that results from sawing and other aspects of the crystal rowth. Although other silicon sheet technologies have been investigated, almost all have characteristics that limit efficiency to approx. 16%. In summary, 20% efficient solar cells can likely be fabricated from both FZ and Cz silicon, but costs are likely to be ultimately unacceptable. Alternate silicon technologies are not likely to achieve this goal, but cost per watt figures may be eventually better than either of the single crystal technologies and may rival any thin-film technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, C.; Angelini, J.; Armstrong, B.
The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication ofmore » high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and thin film solar cells, to explore non-vacuum ink-based approaches to solar cell production, as well as large-scale and low-cost deposition and processing of thin film CdTe material.« less
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.
1978-01-01
Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.
Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert
2018-01-09
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.
Rajanna, Pramod M; Gilshteyn, Evgenia P; Yagafarov, Timur; Aleekseeva, Alena K; Anisimov, Anton S; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G
2018-01-31
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
NASA Astrophysics Data System (ADS)
Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.
2018-03-01
We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.
The U.S. and Japanese amorphous silicon technology programs A comparison
NASA Technical Reports Server (NTRS)
Shimada, K.
1984-01-01
The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.
Tamang, Asman; Hongsingthong, Aswin; Jovanov, Vladislav; Sichanugrist, Porponth; Khan, Bakhtiar A.; Dewan, Rahul; Konagai, Makoto; Knipp, Dietmar
2016-01-01
Light trapping and photon management of silicon thin film solar cells can be improved by a separate optimization of the front and back contact textures. A separate optimization of the front and back contact textures is investigated by optical simulations taking realistic device geometries into consideration. The optical simulations are confirmed by experimentally realized 1 μm thick microcrystalline silicon solar cells. The different front and back contact textures lead to an enhancement of the short circuit current by 1.2 mA/cm2 resulting in a total short circuit current of 23.65 mA/cm2 and an energy conversion efficiency of 8.35%. PMID:27481226
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.
Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.
1995-10-05
improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop
Photon-counting CT with silicon detectors: feasibility for pediatric imaging
NASA Astrophysics Data System (ADS)
Yveborg, Moa; Xu, Cheng; Fredenberg, Erik; Danielsson, Mats
2009-02-01
X-ray detectors made of crystalline silicon have several advantages including low dark currents, fast charge collection and high energy resolution. For high-energy x-rays, however, silicon suffers from its low atomic number, which might result in low detection efficiency, as well as low energy and spatial resolution due to Compton scattering. We have used a monte-carlo model to investigate the feasibility of a detector for pediatric CT with 30 to 40 mm of silicon using x-ray spectra ranging from 80 to 140 kVp. A detection efficiency of 0.74 was found at 80 kVp, provided the noise threshold could be set low. Scattered photons were efficiently blocked by a thin metal shielding between the detector units, and Compton scattering in the detector could be well separated from photo absorption at 80 kVp. Hence, the detector is feasible at low acceleration voltages, which is also suitable for pediatric imaging. We conclude that silicon detectors may be an alternative to other designs for this special case.
Angle-resolved diffraction grating biosensor based on porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn
2016-03-07
In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less
Lasers in energy device manufacturing
NASA Astrophysics Data System (ADS)
Ostendorf, A.; Schoonderbeek, A.
2008-02-01
Global warming is a current topic all over the world. CO II emissions must be lowered to stop the already started climate change. Developing regenerative energy sources, like photovoltaics and fuel cells contributes to the solution of this problem. Innovative technologies and strategies need to be competitive with conventional energy sources. During the last years, the photovoltaic solar cell industry has experienced enormous growth. However, for solar cells to be competitive on the longer term, both an increase in efficiency as well as reduction in costs is necessary. An effective method to reduce costs of silicon solar cells is reducing the wafer thickness, because silicon makes up a large part of production costs. Consequently, contact free laser processing has a large advantage, because of the decrease in waste materials due to broken wafers as caused by other manufacturing processes. Additionally, many novel high efficiency solar cell concepts are only economically feasible with laser technology, e.g. for scribing silicon thin-film solar cells. This paper describes laser hole drilling, structuring and texturing of silicon wafer based solar cells and describes thin film solar cell scribing. Furthermore, different types of lasers are discussed with respect to processing quality and time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe
The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less
A review of recent progress in heterogeneous silicon tandem solar cells
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki
2018-04-01
Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.
Printable CIGS thin film solar cells
NASA Astrophysics Data System (ADS)
Fan, Xiaojuan
2014-03-01
Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.
Light trapping and electrical transport in thin-film solar cells with randomly rough textures
NASA Astrophysics Data System (ADS)
Kowalczewski, Piotr; Bozzola, Angelo; Liscidini, Marco; Claudio Andreani, Lucio
2014-05-01
Using rigorous electro-optical calculations, we predict a significant efficiency enhancement in thin-film crystalline silicon (c-Si) solar cells with rough interfaces. We show that an optimized rough texture allows one to reach the Lambertian limit of absorption in a wide absorber thickness range from 1 to 100 μm. The improvement of efficiency due to the roughness is particularly substantial for thin cells, for which light trapping is crucial. We consider Auger, Shockley-Read-Hall (SRH), and surface recombination, quantifying the importance of specific loss mechanisms. When the cell performance is limited by intrinsic Auger recombination, the efficiency of 24.4% corresponding to the wafer-based PERL cell can be achieved even if the absorber thickness is reduced from 260 to 10 μm. For cells with material imperfections, defect-based SRH recombination contributes to the opposite trends of short-circuit current and open-circuit voltage as a function of the absorber thickness. By investigating a wide range of SRH parameters, we determine an optimal absorber thickness as a function of material quality. Finally, we show that the efficiency enhancement in textured cells persists also in the presence of surface recombination. Indeed, in our design the efficiency is limited by recombination at the rear (silicon absorber/back reflector) interface, and therefore it is possible to engineer the front surface to a large extent without compromising on efficiency.
Review of status developments of high-efficiency crystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng
2018-03-01
In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.
Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.
Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih
2013-11-22
Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.
NASA Astrophysics Data System (ADS)
Ehsan, Md Amimul
Thin-film solar cells are emerging from the research laboratory to become commercially available devices for low cost electrical power generation applications. Silicon which is a cheap, abundant and non-toxic elemental semiconductor is an attractive candidate for these solar cells. Advanced modeling and simulation of Si thin-film solar cells has been performed to make this technology more cost effective without compromising the performance and efficiency. In this study, we focus on the design and optimization of Si/Si1-xGex heterostructures, and microcrystalline and nanocrystalline Si thin-film solar cells. Layer by layer optimization of these structures was performed by using advanced bandgap engineering followed by numerical analysis for their structural, electrical and optical characterizations. Special care has been introduced for the selection of material layers which can help to improve the light absorption properties of these structures for harvesting the solar spectrum. Various strategies such as the optimization of the doping concentrations, Ge contents in Si1-xGex buffer layer, incorporation of the absorber layers and surface texturing have been in used to improve overall conversion efficiencies of the solar cells. To be more specific, the observed improvement in the conversion efficiency of these solar cells has been calculated by tailoring the thickness of the buffer, absorber, and emitter layers. In brief, an approach relying on the phenomena of improved absorption of the buffer and absorber layer which leads to a corresponding gain in the open circuit voltage and short circuit current is explored. For numerical analysis, a PC1D simulator is employed that uses finite element analysis technique for solving semiconductor transport equations. A comparative study of the Si/Si1-xGex and Ge/Si1-xGex is also performed. We found that due to the higher lattice mismatch of Ge to Si, thin-film solar cells based on Si/Si1-xGex heterostructures performed much better. It has been found that microc-Si and nc-Si pin structures have strong dependence on their grain sizes and crystallinity to enhance the light absorption capability of these solar cells. Our results show that silicon based thin-film solar cells exhibit high level of performance making them very competitive for the next generation of low cost photovoltaic technology.
Development of high efficiency thin film polycrystalline silicon solar cells using VEST process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T.; Arimoto, S.; Morikawa, H.
1998-12-31
Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films (VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1) quality of Si films, (2) back surface emitter (BSE), (3) front surface emitter etch-back process, (4) back surface field (BSF) layer thickness and its resistivity, and (5) defect passivation by hydrogen implantation. As a result of experiments, the authors have achieved 16% efficiency (V{sub oc}:0.589V, J{sub sc}:35.6mA/cm{sup 2}, F,F:0.763)more » with a cell size of 95.8cm{sup 2} and the thickness of 77 {micro}m. It is the highest efficiency ever reported for large area thin film Si solar cells.« less
Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors
NASA Technical Reports Server (NTRS)
Viehmann, W.; Cowens, M. W.; Butner, C. L.
1981-01-01
The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.
Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-17
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
2012-01-01
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341
NASA Astrophysics Data System (ADS)
Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.
2010-11-01
In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
Plasmonic Ag nanostructures on thin substrates for enhanced energy harvesting
NASA Astrophysics Data System (ADS)
Osgood, R. M.; Giardini, S. A.; Carlson, J. B.; Gear, C.; Diest, K.; Rothschild, M.; Fernandes, G. E.; Xu, J.; Kooi, S.; Periasamy, P.; O'Hayre, R.; Parilla, P.; Berry, J.; Ginley, D.
2013-09-01
Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. Such Ag stripes are combined with 200 nm long and 60 nm wide "teeth", which act as nanoantennas, and form vertical rectifying metal-insulator-metal (MIM) nanostructures on metallic substrates coated with thin oxides, such as Nb/NbOx films. We characterize experimentally and theoretically the visible and near-infrared spectra of these "stripeteeth" arrays, which act as microantenna arrays for energy harvesting and detection, on silicon substrates. Modeling the stripe-teeth arrays predicts a substantial net a.c. voltage across the MIM diode, even when the stripe-teeth microrectenna arrays are illuminated at normal incidence.
Japanese photovoltaic power generation for space application
NASA Technical Reports Server (NTRS)
Saga, T.; Kiyota, Y.; Matsutani, T.; Suzuki, A.; Kawasaki, O.; Hisamatsu, T.; Matsuda, S.
1996-01-01
This paper describes Japanese activities on mainly silicon solar cell research development and applications. The high efficiency thin silicon solar cells and the same kinds of solar cells with integrated bypass function (IBF cells) were developed and qualified for space applications. The most efficient cells (NRS/LBSF cells) showed average 18% at AMO and 28 C conditions. After electron irradiation, NRS/BSF cells showed higher efficiency than NRS/LBSF cells. The IBF cells do not suffer high reverse voltage and can survive from shadowing. The designs and characteristics of these solar cells are presented. In the last section, our future plan for the solar cell calibration is presented.
Second-harmonic generation in substoichiometric silicon nitride layers
NASA Astrophysics Data System (ADS)
Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca
2013-03-01
Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.
Laser deposition of resonant silicon nanoparticles on perovskite for photoluminescence enhancement
NASA Astrophysics Data System (ADS)
Tiguntseva, E. Y.; Zalogina, A. S.; Milichko, V. A.; Zuev, D. A.; Omelyanovich, M. M.; Ishteev, A.; Cerdan Pasaran, A.; Haroldson, R.; Makarov, S. V.; Zakhidov, A. A.
2017-11-01
Hybrid lead halide perovskite based optoelectronics is a promising area of modern technologies yielding excellent characteristics of light emitting diodes and lasers as well as high efficiencies of photovoltaic devices. However, the efficiency of perovskite based devices hold a potential of further improvement. Here we demonstrate high photoluminescence efficiency of perovskites thin films via deposition of resonant silicon nanoparticles on their surface. The deposited nanoparticles have a number of advances over their plasmonic counterparts, which were applied in previous studies. We show experimentally the increase of photoluminescence of perovskite film with the silicon nanoparticles by 150 % as compared to the film without the nanoparticles. The results are supported by numerical calculations. Our results pave the way to high throughput implementation of low loss resonant nanoparticles in order to create highly effective perovskite based optoelectronic devices.
Development of thin wraparound junction silicon solar cells
NASA Technical Reports Server (NTRS)
Ho, F.; Iles, P. A.
1981-01-01
The state of the art technologies was applied to fabricate 50 micro thick 2x4 cm, coplanar back contact (CBC) solar cells with AMO efficiency above 12%. A requirement was that the cells have low solar absorptance. A wraparound junction (WAJ) with wraparound metallization was chosen. This WAJ approach avoided the need for very complex fixturing, especially during rotation of the cells for providing adequate contacts over dielectric edge layers. The contact adhesion to silicon was considered better than to an insulator. It is indicated that shunt resistance caused by poor WAJ diode quality, and series resistance from the WAJ contact, give good cell performance. The cells developed reached 14 percent AMO efficiency (at 25 C), with solar absorptance values of 0.73. Space/cell environmental tests were performed on these cells and the thin CSC cells performed well. The optimized design configuration and process sequence were used to make 50 deliverable CBC cells. These cells were all above 12 percent efficiency and had an average efficiency of -13 percent. Results of environmental tests (humidity-temperature, thermal shock, and contact adherence) are also given.
Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals
NASA Astrophysics Data System (ADS)
Bhattacharya, Sayak; John, Sajeev
2018-04-01
We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.
Efficient solar cells by space processing
NASA Technical Reports Server (NTRS)
Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.
1979-01-01
Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.
Preventing light-induced degradation in multicrystalline silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindroos, J., E-mail: jeanette.lindroos@aalto.fi; Boulfrad, Y.; Yli-Koski, M.
2014-04-21
Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.
Preventing light-induced degradation in multicrystalline silicon
NASA Astrophysics Data System (ADS)
Lindroos, J.; Boulfrad, Y.; Yli-Koski, M.; Savin, H.
2014-04-01
Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.
Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah
2017-10-06
Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.
Development of a high efficiency thin silicon solar cell. [fabrication and stability tests
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1976-01-01
One hundred thin (120 microns to 260 microns) silicon-aluminum solar cells were fabricated and tested. Silicon slices were prepared, into which an aluminum alloy was evaporated over a range of temperatures and times. Antireflection coatings of tantalum oxide were applied to the cells. Reflectance of the silicon-aluminum interfaces was correlated to alloy temperature (graphs are shown). Optical measurements of the rear surface-internal reflectance of the cells were performed using a Beckman spectrophotometer. An improved gridline pattern was evaluated and stability tests (thermal cycling tests) were performed. Results show that: (1) a high-index, high-transmittance antireflection coating was obtained; (2) the improved metallization of the cells gave a 60 percent rear surface-internal reflectance, and the cells displayed excellent fill factors and blue response of the spectrum; (3) an improved gridline pattern (5 micron linewidths compared to 13 micron linewidths) resulted in a 1.3 percent improvement in short circuit currents; and (4) the stability tests showed no change in cell properties.
Design and Fabrication of High-Efficiency CMOS/CCD Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2007-01-01
An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.
Yang, Zhenhai; Shang, Aixue; Qin, Linling; Zhan, Yaohui; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng
2016-04-01
We propose a design of crystalline silicon thin-film solar cells (c-Si TFSCs, 2 μm-thick) configured with partially embedded dielectric spheres on the light-injecting side. The intrinsic light trapping and photoconversion are simulated by the complete optoelectronic simulation. It shows that the embedding depth of the spheres provides an effective way to modulate and significantly enhance the optical absorption. Compared to the conventional planar and front sphere systems, the optimized partially embedded sphere design enables a broadband, wide-angle, and strong optical absorption and efficient carrier transportation. Optoelectronic simulation predicts that a 2 μm-thick c-Si TFSC with half-embedded spheres shows an increment of more than 10 mA/cm2 in short-circuit current density and an enhancement ratio of more than 56% in light-conversion efficiency, compared to the conventional planar counterparts.
Modeling of thin, back-wall silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.
1979-01-01
The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.
Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo
2016-02-05
We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.
A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias
2017-05-23
The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.
Novel Drift Structures for Silicon and Compound Semiconductor X-Ray and Gamma-Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley E. Patt; Jan S. Iwanczyk
Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that we discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current (both bulk silicon dark current and surface dark current) and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector.
Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates
NASA Astrophysics Data System (ADS)
de Jong, M. M.
2013-01-01
In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the nanocrystalline silicon (nc-Si) regime. In the nc-Si regime, the crystalline fraction can be further controlled by changing the power input into the plasma. With these layers, a-Si thin film solar cells were fabricated, on glass and PC substrates. The adverse effect of the low temperature growth on the photoactive material is further mitigated by using thinner silicon layers, which can deliver a good current only with an adequate light trapping technique. We have simulated and experimentally tested three light trapping techniques, using embossed structures in PC substrates and random structures on glass: regular pyramid structures larger than the wavelength of light (micropyramids), regular pyramid structures comparable to the wavelength of light (nanopyramids) and random nano-textures (Asahi U-type). The use of nanostructured polycarbonate substrates results in initial conversion efficiencies of 7.4%, compared to 7.6% for cells deposited under identical conditions on Asahi U-type glass. The potential of manufacturing thin film solar cells at processing temperatures lower than 130oC is further illustrated by obtained results on texture-etched aluminium doped zinc-oxide (ZnO:Al) on glass: we achieved 6.9% for nc-Si cells using a very thin absorber layer of only 750 nm, and by combining a-Si and nc-Si cells in tandem solar cells we reached an initial conversion efficiency of 9.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, S.C.
1976-12-27
The stability of tensioned blades used in multiblade sawing does not seem to be the limitation in cutting with thin blades. So far, 0.010 cm thick blades have been totally unsuccessful. Recently, 0.015 cm blades have proven successful in wafering, offering an 0.005 cm reduction in the silicon used per slice. The failure of thin blades is characterized as a possible result of blade misalignment or from the inherent uncontrollability of the loose abrasive multiblade process. Corrective procedures will be employed in the assembly of packages to eliminate one type of blade misalignment. Two ingots were sliced with the samemore » batch of standard silicon carbide abrasive slurry to determine the useful lifetime of this expendable material. After 250 slices, the cutting efficiency had not degraded. Further tests will be continued to establish the maximum lifetime of both silicon carbide and boron carbide abrasive. Electron microscopy will be employed to evaluate the wear of abrasive particles in the failure of abrasive slurry. The surface damage of silicon wafers has been characterized as predominantly subsurface fracture. Damage with No. 600 SiC is between 10 and 15 microns into the wafer surface. This agrees well with previous investigations of damage from silicon carbide abrasive papers.« less
Decorative power generating panels creating angle insensitive transmissive colors
Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay
2014-01-01
We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ±70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications. PMID:24577075
Decorative power generating panels creating angle insensitive transmissive colors
NASA Astrophysics Data System (ADS)
Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay
2014-02-01
We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to +/-70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.
Decorative power generating panels creating angle insensitive transmissive colors.
Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L Jay
2014-02-28
We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ± 70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.
Thin-Film Photovoltaic Solar Array Parametric Assessment
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva
2000-01-01
This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.
NASA Astrophysics Data System (ADS)
Chatterjee, P.; Roca i Cabarrocas, P.
2018-01-01
Amorphous silicon (a-Si:H) / micro-crystalline silicon (μc-Si:H), "micromorph" tandem solar cells have been investigated using a detailed electrical - optical model. Although such a tandem has good light absorption over the entire visible spectrum, the a-Si:H top cell suffers from strong light-induced degradation (LID). To improve matters, we have replaced a-Si:H by hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film with lower LID than a-Si:H. But the latter's low current carrying capacity necessitates a thicker top cell for current-matching, again leading to LID problems. The solution is to introduce a suitable intermediate reflector (IR) at the junction between the sub-cells, to concentrate light of the shorter visible wavelengths into the top cell. Here we assess the suitability of N-type micro-crystalline silicon oxide (μc-SiOx:H) as an IR. The sensitivity of the solar cell performance to the complex refractive index, thickness and texture of such a reflector is studied. We conclude that N-μc-SiOx:H does concentrate light into the top sub-cell, thus reducing its required thickness for current-matching. However the IR also reflects light right out of the device; so that the initial efficiency suffers. The advantage of such an IR is ultimately seen in the stabilized state since the LID of a thin top cell is low. We also find that for high stabilized efficiencies, the IR should be flat (having no texture of its own). Our study indicates that we may expect to reach 15% stable tandem micromorph efficiency.
High-efficiency silicon heterojunction solar cells: Status and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Wolf, S.
Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups aremore » reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.« less
High-efficiency silicon heterojunction solar cells: Status and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Wolf, S.; Geissbuehler, J.; Loper, P.
Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups aremore » reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.« less
NASA Astrophysics Data System (ADS)
Tomasi, Andrea; Paviet-Salomon, Bertrand; Jeangros, Quentin; Haschke, Jan; Christmann, Gabriel; Barraud, Loris; Descoeudres, Antoine; Seif, Johannes Peter; Nicolay, Sylvain; Despeisse, Matthieu; de Wolf, Stefaan; Ballif, Christophe
2017-04-01
For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
Morrison, A. D.; Ravi, K. V.; Rao, C. V. H.; Surek, T.; Bliss, D. F.; Garone, L. C.; Hogencamp, R. W.
1976-01-01
Progress in a program to produce high speed, thin, wide silicon sheets for fabricating 10% efficient solar cells is reported. An EFG ribbon growth system was used to perform growth rate and ribbon thickness experiments. A new, wide ribbon growth system was developed. A theoretical study of stresses in ribbons was also conducted. The EFG ribbons were observed to exhibit a characteristic defect structure which is orientation dependent in the early stages of growth.
High performance broadband photodetector based on MoS2/porous silicon heterojunction
NASA Astrophysics Data System (ADS)
Dhyani, Veerendra; Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2017-11-01
A high speed efficient broadband photodetector based on a vertical n-MoS2/p-porous silicon heterostructure has been demonstrated. Large area MoS2 on electrochemical etched porous silicon was grown by sulphurization of a sputtered MoO3 thin film. A maximum responsivity of 9 A/W (550-850 nm) with a very high detectivity of ˜1014 Jones is observed. Transient measurements show a fast response time of ˜9 μs and is competent to work at high frequencies (˜50 kHz). The enhanced photodetection performance of the heterojunction made on porous silicon over that made on planar silicon is explained in terms of higher interfacial barrier height, superior light trapping property, and larger junction area in the MoS2/porous silicon junction.
Ultra-thin silicon solar cells for high performance panel applications
NASA Technical Reports Server (NTRS)
Gay, C. F.
1978-01-01
Solar cells have been fabricated which achieved the highest power to mass ratios and radiation stability yet reported for silicon devices. The thinnest cells (.04 mm) had initial efficiencies in excess of 2 watts per gram (AMO) and 1.7 watts per gram after an irradiation of 1 x 10 to the 15th equivalent 1 MeV electrons per square centimeter. The cells have been successfully interconnected by welding and filtered using a FEP bonded, ceria-doped microsheet of six mil thickness. Handling losses during cell manufacture and panel assembly may be minimized through the use of an integral reinforcing perimeter or ribs which remove almost all restrictions on cell thickness and area. Such a cell is typically composed of a main section which can be as thin as 0.015 mm and is supported at the edge by a thicker border (0.20 mm) of silicon.
Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells
Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...
2014-11-01
We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less
Perfect absorption in nanotextured thin films via Anderson-localized photon modes
NASA Astrophysics Data System (ADS)
Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip
2015-10-01
The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.
Zhang, Doudou; Shi, Jingying; Zi, Wei; Wang, Pengpeng; Liu, Shengzhong Frank
2017-11-23
Photoelectrochemical (PEC) technology for the conversion of solar energy into chemicals requires cost-effective photoelectrodes to efficiently and stably drive anodic and/or cathodic half-reactions to complete the overall reactions for storing solar energy in chemical bonds. The shared properties among semiconducting photoelectrodes and photovoltaic (PV) materials are light absorption, charge separation, and charge transfer. Earth-abundant silicon materials have been widely applied in the PV industry, and have demonstrated their efficiency as alternative photoabsorbers for photoelectrodes. Many efforts have been made to fabricate silicon photoelectrodes with enhanced performance, and significant progress has been achieved in recent years. Herein, recent developments in crystalline and thin-film silicon-based photoelectrodes (including amorphous, microcrystalline, and nanocrystalline silicon) immersed in aqueous solution for PEC hydrogen production from water splitting are summarized, as well as applications in PEC CO 2 reduction and PEC regeneration of discharged species in redox flow batteries. Silicon is an ideal material for the cost-effective production of solar chemicals through PEC methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of a fully depleted CCD on high-resistivity silicon
NASA Astrophysics Data System (ADS)
Stover, Richard J.; Wei, Mingzhi; Lee, Y.; Gilmore, David K.; Holland, S. E.; Groom, D. E.; Moses, William W.; Perlmutter, Saul; Goldhaber, G.; Pennypacker, C.; Wang, N. W.; Palaio, N.
1997-04-01
Most scientific CCD imagers are fabricated on 30-50 (Omega) - cm epitaxial silicon. When illuminated form the front side of the device they generally have low quantum efficiency in the blue region of the visible spectrum because of strong absorption in the polycrystalline silicon gates as well as poor quantum efficiency in the far red and near infrared region of the spectrum because of the shallow depletion depth of the low-resistivity silicon. To enhance the blue response of scientific CCDs they are often thinned and illuminated from the back side. While blue response is greatly enhanced by this process, it is expensive and it introduces additional problems for the red end of the spectrum. A typical thinned CCD is 15 to 25 micrometers thick, and at wavelengths beyond about 800 nm the absorption depth becomes comparable to the thickness of the device, leading to interference fringes from reflected light. Because these interference fringes are of high order, the spatial pattern of the fringes is extremely sensitive to small changes in the optical illumination of the detector. Calibration and removal of the effects of the fringes is one of the primary limitations on the performance of astronomical images taken at wavelengths of 800 nm or more. In this paper we present results from the characterization of a CCD which promises to address many of the problems of typical thinned CCDs. The CCD reported on here was fabricated at Lawrence Berkeley National Laboratory (LBNL) on a 10-12 K$OMega-cm n-type silicon substrate.THe CCD is a 200 by 200 15-micrometers square pixel array, and due to the very high resistivity of the starting material, the entire 300 micrometers substrate is depleted. Full depletion works because of the gettering technology developed at LBNL which keeps leakage current down. Both front-side illuminated and backside illuminated devices have been tested. We have measured quantum efficiency, read-noise, full-well, charge-transfer efficiency, and leakage current. We have also observed the effects of clocking waveform shapes on spurious charge generation. While these new CCDs promise to be a major advance in CD technology, they too have limitations such as charge spreading and cosmic-ray effects. These limitations have been characterized and are presented. Examples of astronomical observations obtained with the backside CCD on the 1-meter reflector at Lick Observatory are presented.
Recent advances in small molecule OLED-on-silicon microdisplays
NASA Astrophysics Data System (ADS)
Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor
2009-08-01
High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.
Templated Solid-State Dewetting of Thin Silicon Films.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco
2016-11-01
Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel fabrication method of microlens arrays with High OLED outcoupling efficiency
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo; Moon, Seong Il; Hwang, Dong Eui; Jeong, Ki Won; Kim, Chang Kyo; Moon, Dae-Gyu; Hong, Chinsoo
2016-03-01
We presented a novel fabrication method of pyramidal and hemispherical polymethylmethacrylate (PMMA) microlens arrays to improve the outcoupling efficiency. Pyramidal microlens arrays were fabricated by replica molding processes using concave-pyramidal silicon molds prepared by the wet etching method. Concave-hemispherical PMMA thin film was used as a template for fabrication of the hemispherical microlens array. The concave-hemispherical PMMA template was prepared by blowing a N2 gas stream onto the thin PMMA film suspended on a silicon pedestal. A PMMA microlens arrays with hemispherical structure were fabricated by a replica molding process. The outcoupling efficiency of the hemispherical microlens array was greater than that of the pyramidal microlens array. The outcoupling efficiency of hemispherical microlens arrays with a higher contact angle was larger than that of those with lower contact angle. This indicates that, for the hemispherical microlens with larger contact angle, more light can be extracted from the OLEDs due to the decrease in the incident angle of the light at the interface between an air and a hemispherical microlens arrays. After attaching a hemispherical microlens array with contact angle of 50.4° onto the OLEDs, the luminance was enhanced by approximately 117%.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes
NASA Astrophysics Data System (ADS)
Gao, Yang; Cansizoglu, Hilal; Polat, Kazim G.; Ghandiparsi, Soroush; Kaya, Ahmet; Mamtaz, Hasina H.; Mayet, Ahmed S.; Wang, Yinan; Zhang, Xinzhi; Yamada, Toshishige; Devine, Ekaterina Ponizovskaya; Elrefaie, Aly F.; Wang, Shih-Yuan; Islam, M. Saif
2017-04-01
High-speed, high-efficiency photodetectors play an important role in optical communication links that are increasingly being used in data centres to handle higher volumes of data traffic and higher bandwidths, as big data and cloud computing continue to grow exponentially. Monolithic integration of optical components with signal-processing electronics on a single silicon chip is of paramount importance in the drive to reduce cost and improve performance. We report the first demonstration of micro- and nanoscale holes enabling light trapping in a silicon photodiode, which exhibits an ultrafast impulse response (full-width at half-maximum) of 30 ps and a high efficiency of more than 50%, for use in data-centre optical communications. The photodiode uses micro- and nanostructured holes to enhance, by an order of magnitude, the absorption efficiency of a thin intrinsic layer of less than 2 µm thickness and is designed for a data rate of 20 gigabits per second or higher at a wavelength of 850 nm. Further optimization can improve the efficiency to more than 70%.
A fluid collection system for dermal wounds in clinical investigations
Klopfer, Michael; Li, G.-P.; Widgerow, Alan; Bachman, Mark
2016-01-01
In this work, we demonstrate the use of a thin, self adherent, and clinically durable patch device that can collect fluid from a wound site for analysis. This device is manufactured from laminated silicone layers using a novel all-silicone double-molding process. In vitro studies for flow and delivery were followed by a clinical demonstration for exudate collection efficiency from a clinically presented partial thickness burn. The demonstrated utility of this device lends itself for use as a research implement used to clinically sample wound exudate for analysis. This device can serve as a platform for future integration of wearable technology into wound monitoring and care. The demonstrated fabrication method can be used for devices requiring thin membrane construction. PMID:27051470
Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films.
Rath, Patrik; Khasminskaya, Svetlana; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram Hp
2013-01-01
Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD) on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using efficient grating coupling devices prepared from partially etched diamond thin films, we investigate millimetre-sized optical circuits and achieve single-mode waveguiding at telecoms wavelengths. Our results pave the way towards broadband optical applications for sensing in harsh environments and visible photonic devices.
"Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step
NASA Astrophysics Data System (ADS)
Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon
2013-04-01
During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.
Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.
Zou, Xingli; Ji, Li; Yang, Xiao; Lim, Taeho; Yu, Edward T; Bard, Allen J
2017-11-15
Herein we report the demonstration of electrochemical deposition of silicon p-n junctions all in molten salt. The results show that a dense robust silicon thin film with embedded junction formation can be produced directly from inexpensive silicates/silicon oxide precursors by a two-step electrodeposition process. The fabricated silicon p-n junction exhibits clear diode rectification behavior and photovoltaic effects, indicating promise for application in low-cost silicon thin film solar cells.
NASA Astrophysics Data System (ADS)
Berrian, Djaber; Fathi, Mohamed; Kechouane, Mohamed
2018-02-01
Bifacial solar cells that maximize the energy output per a square meter have become a new fashion in the field of photovoltaic cells. However, the application of thin-film material on bifacial solar cells, viz., thin-film amorphous hydrogenated silicon ( a- Si:H), is extremely rare. Therefore, this paper presents the optimization and influence of the band gap, thickness and doping on the performance of a glass/glass thin-film a- Si:H ( n- i- p) bifacial solar cell, using a computer-aided simulation tool, Automat for simulation of hetero-structures (AFORS-HET). It is worth mentioning that the thickness and the band gap of the i-layer are the key parameters in achieving higher efficiency and hence it has to be handled carefully during the fabrication process. Furthermore, an efficient thin-film a- Si:H bifacial solar cell requires thinner and heavily doped n and p emitter layers. On the other hand, the band gap of the p-layer showed a dramatic reduction of the efficiency at 2.3 eV. Moreover, a high bifaciality factor of more than 92% is attained, and top efficiency of 10.9% is revealed under p side illumination. These optimizations demonstrate significant enhancements of the recent experimental work on thin-film a- Si:H bifacial solar cells and would also be useful for future experimental investigations on an efficient a- Si:H thin-film bifacial solar cell.
NASA Astrophysics Data System (ADS)
Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui
2013-01-01
P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.
Chemical vapor deposition of silicon, silicon dioxide, titanium and ferroelectric thin films
NASA Astrophysics Data System (ADS)
Chen, Feng
Various silicon-based thin films (such as epitaxial, polycrystalline and amorphous silicon thin films, silicon dioxide thin films and silicon nitride thin films), titanium thin film and various ferroelectric thin films (such as BaTiO3 and PbTiO3 thin films) play critical roles in the manufacture of microelectronics circuits. For the past few years, there have been tremendous interests to search for cheap, safe and easy-to-use methods to develop those thin films with high quality and good step coverage. Silane is a critical chemical reagent widely used to deposit silicon-based thin films. Despite its wide use, silane is a dangerous material. It is pyrophoric, extremely flammable and may explode from heat, shock and/or friction. Because of the nature of silane, serious safety issues have been raised concerning the use, transportation, and storage of compressed gas cylinders of silane. Therefore it is desired to develop safer ways to deposit silicon-based films. In chapter III, I present the results of our research in the following fields: (1) Silane generator, (2) Substitutes of silane for deposition of silicon and silicon dioxide thin films, (3) Substitutes of silane for silicon dioxide thin film deposition. In chapter IV, hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachement of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine ligands. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and non-metals such as phosphorus and arsenic. In this study, hydropyridine-containing titanium compounds were synthesized and used as chemical vapor deposition precursors for deposition of titanium containing thin films. Some other titanium compounds were also studied for comparison. In chapter V, Chemical Vapor Depositions (CVD) of many oxide thin films including ferroelectric and high dielectric constant BaTiO3, SrTiO 3 and PbTiO3 films had been carried out under reduced pressure (30 torr--80 torr) using liquid precursors containing beta-diketone ligands. The relative reactivities of Ba(beta-diketonate)2, Sr(beta-diketonate) 2, Pb(beta-diketonate)2, Ti(beta-diketonate)3, TiO(beta-diketonate)2 and Ti(OiPr)2(beta-diketonate) 2 had been studied individually prior to the deposition of BaTiO 3, SrTiO3 and PbTiO3 thin films from the mixtures of corresponding precursors. By using multi-step deposition method, carbon free stoichiometric BaTiO3 thin films uniform in large area have been achieved.
Thin Film Transistors On Plastic Substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
2004-01-20
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
Thinning and mounting a Texas Instruments 3-phase CCD
NASA Technical Reports Server (NTRS)
Lesser, M. P.; Leach, R. W.; Angel, J. R. P.
1986-01-01
Thin CCDs with precise control of thickness and surface quality allow astronomers to optimize chips for specific applications. A means of mechanically thinning a TI 800 x 800 CCD with an abrasive slurry of aluminum oxide is presented. Using the same techniques, the abrasives can be replaced with a chemical solution to eliminate subsurface damage. A technique of mounting the CCD which retains the high quality surface generated during thinning is also demonstrated. This requires the backside of the chip to be bonded to a glass window which closely matches silicon's thermal expansion properties. Thinned CCDs require backside treatment to enhance blue and UV quantum efficiency. Two methods are discussed which may be effective with this mounting system.
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells
Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; ...
2017-11-10
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less
Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil
2016-05-01
HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generatemore » and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Thus, findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells.« less
Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Kasick, Michael P.
2004-01-01
Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between them, to determine the cause of the poor yields. As a student of electrical engineering with some material science background, my role in this research is to develop techniques for analyzing the electrical characteristics of the CuInS2 cells. My first task was to design a shadow mask to be used to place molybdenum contacts under a layer of CuInS;! in order to analyze the contact resistance between the materials. In addition, I have also analyzed evaporated aluminum top contacts and have tested various methods of increasing their thicknesses in order to decrease series resistance. More recently I have worked with other members of the research group in reviving a vertical cold-wall reactor for experimentation with CuInS2 quantum dots. As part of that project, I have improved the design for a variable frequency and pulse width square wave generator to be used in driving the precursor injection process. My task throughout the remainder of my tenure is to continue to analyze and develop tools for the analysis of electrical properties of the CuInS2 cells with the ultimate goal of discovering ways to improve the efficiency of our photovoltaic cells. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While The research group lead by Dr. Hepp has spent several years researching copper indium
NASA Technical Reports Server (NTRS)
Grung, B. L.; Heaps, J. D.; Schmit, F. M.; Schuldt, S. B.; Zook, J. D.
1981-01-01
The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC.
Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient
NASA Technical Reports Server (NTRS)
Cohen, R. A.; Wheeler, R. K. (Inventor)
1974-01-01
A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.
Carlson, David E.
1980-01-01
Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.
A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals
2010-01-01
Solution-processed semiconductors are seen as a promising route to reducing the cost of the photovoltaic device manufacture. We are reporting a single-layer Schottky photovoltaic device that was fabricated by spin-coating intrinsic silicon nanocrystals (Si NCs) from colloidal suspension. The thin-film formation process was based on Si NCs without any ligand attachment, exchange, or removal reactions. The Schottky junction device showed a photovoltaic response with a power conversion efficiency of 0.02%, a fill factor of 0.26, short circuit-current density of 0.148 mA/cm2, and open-circuit voltage of 0.51 V. PMID:20676200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pala, Ragip A.; Butun, Serkan; Aydin, Koray
2016-09-19
Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelength scale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays ofmore » silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm 2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. As a result, it is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers.« less
Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu
2014-01-01
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouro, J.; Gualdino, A.; Chu, V.
2013-11-14
Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less
Aperture efficiency of integrated-circuit horn antennas
NASA Technical Reports Server (NTRS)
Guo, Yong; Lee, Karen; Stimson, Philip; Potter, Kent; Rutledge, David
1991-01-01
The aperture efficiency of silicon integrated-circuit horn antennas has been improved by optimizing the length of the dipole probes and by coating the entire horn walls with gold. To make these measurements, a new thin-film power-density meter was developed for measuring power density with accuracies better than 5 percent. The measured aperture efficiency improved from 44 percent to 72 percent at 93 GHz. This is sufficient for use in many applications which now use machined waveguide horns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Arvind, E-mail: anita@barc.gov.in; Topkar, Anita
In order to improve the gamma discrimination capability for thermal neutron measurements using silicon PIN detectors, a novel approach of use of thin epitaxial silicon PIN detectors was investigated. Thin epitaxial silicon detectors with thickness of 15 µm were developed and their performance was tested with thermal neutrons using {sup 10}B converter. The performance of this detector was compared with the performance of a 300 µm silicon detector. The results of experiments presented in this paper indicate that thin epitaxial silicon detectors can significantly improve γ discrimination for thermal neutron measurements.
PZT thin film actuated elastic fin micromotor.
Dubois, M A; Muralt, P
1998-01-01
A piezoelectric elastic fin micromotor based on a PbZr(0.53 )Ti(0.47)O(3) thin film driving a micromachined silicon membrane was fabricated and studied. The stator was characterized by interferometry, and a laser set-up was used to measure the angular velocity and acceleration of the motor. The torque, the output power, and the efficiency of the device were extracted from these measurements. Values up to 1020 rpm and 0.94 microNm were observed for the velocity and the torque, respectively, which would be sufficient for a wristwatch application. The present version exhibited an efficiency of 0.17%, which could theoretically be increased to 4.8%
NASA Astrophysics Data System (ADS)
Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram
2010-02-01
Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.
Design and operation of grid-interactive thin-film silicon PV systems
NASA Astrophysics Data System (ADS)
Marion, Bill; Atmaram, Gobind; Lashway, Clin; Strachan, John W.
Results are described from the operation of 11 thin-film amorphous silicon photovoltaic systems at three test facilities: the Florida Solar Energy Center, the New Mexico Solar Energy Institute, and Sandia National Laboratories. Commercially available modules from four US manufacturers are used in these systems, with array sizes from 133 to 750 W peak. Measured array efficiencies are from 3.1 to 4.8 percent. Except for one manufacturer, array peak power is in agreement with the calculated design ratings. For certain grid-connected systems, nonoptimal operation exists because the array peak power voltage is below the lower voltage limit of the power conditioning system. Reliability problems are found in two manufacturers' modules when shorts to ground and terminal corrosion occur. Array leakage current data are presented.
Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon
NASA Technical Reports Server (NTRS)
Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.
1991-01-01
SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.
Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal
2011-01-01
A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.
NASA Astrophysics Data System (ADS)
Chhetri, Nikita; Chatterjee, Somenath
2018-01-01
Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.
Simulation of silicon thin-film solar cells for oblique incident waves
NASA Astrophysics Data System (ADS)
Jandl, Christine; Hertel, Kai; Pflaum, Christoph; Stiebig, Helmut
2011-05-01
To optimize the quantum efficiency (QE) and short-circuit current density (JSC) of silicon thin-film solar cells, one has to study the behavior of sunlight in these solar cells. Simulations are an adequate and economic method to analyze the optical properties of light caused by absorption and reflection. To this end a simulation tool is developed to take several demands into account. These include the analysis of perpendicular and oblique incident waves under E-, H- and circularly polarized light. Furthermore, the topology of the nanotextured interfaces influences the efficiency and therefore also the short-circuit current density. It is well known that a rough transparent conductive oxide (TCO) layer increases the efficiency of solar cells. Therefore, it is indispensable that various roughness profiles at the interfaces of the solar cell layers can be modeled in such a way that atomic force microscope (AFM) scan data can be integrated. Numerical calculations of Maxwell's equations based on the finite integration technique (FIT) and Finite Difference Time Domain (FDTD) method are necessary to incorporate all these requirements. The simulations are performed in parallel on high performance computers (HPC) to meet the large computational requirements.
NASA Astrophysics Data System (ADS)
Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing
2015-03-01
A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.
Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing
2015-01-01
A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing. PMID:25819285
The Current State of Silicone-Based Dielectric Elastomer Transducers.
Madsen, Frederikke B; Daugaard, Anders E; Hvilsted, Søren; Skov, Anne L
2016-03-01
Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muñoz-Rosas, Ana Luz; Alonso-Huitrón, Juan Carlos
2018-01-01
Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer. PMID:29565267
High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.
Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli
2015-03-14
A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells.
Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics
NASA Astrophysics Data System (ADS)
Shastry, Tejas Attreya
Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown to result in record breaking performance in a carbon nanotube solar cell, and subsequent chapters study the mechanisms behind charge transfer in the polychiral carbon nanotube / fullerene solar cell. Further processing advances, chiral distribution tailoring, and solvent additives are shown to enable more uniform and larger area carbon nanotube solar cells while maintaining record-breaking performance. In order to increase overall photovoltaic performance of a carbon nanotube active layer solar cell, this dissertation also demonstrates a ternary polymer-carbon nanotube-small molecule photovoltaic with high efficiency and stability enabled by the nanomaterial. Finally, the use of the two-dimensional metal dichalcogenide molybdenum disulfide as a photovoltaic material is explored in an ultrathin solar cell with higher efficiency per thickness than leading organic and inorganic thin-film photovoltaics. Overall, this work demonstrates breakthroughs in utilizing low-dimensional nanomaterials as active layer components in photovoltaics and will inform ongoing research in making ultrathin, stable, efficient solar cells.
Guo, Xiaoying; Li, Huan; Yeop Ahn, Bok; Duoss, Eric B.; Hsia, K. Jimmy; Lewis, Jennifer A.; Nuzzo, Ralph G.
2009-01-01
Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems. PMID:19934059
Guo, Xiaoying; Li, Huan; Ahn, Bok Yeop; Duoss, Eric B; Hsia, K Jimmy; Lewis, Jennifer A; Nuzzo, Ralph G
2009-12-01
Fabrication of 3D electronic structures in the micrometer-to-millimeter range is extremely challenging due to the inherently 2D nature of most conventional wafer-based fabrication methods. Self-assembly, and the related method of self-folding of planar patterned membranes, provide a promising means to solve this problem. Here, we investigate self-assembly processes driven by wetting interactions to shape the contour of a functional, nonplanar photovoltaic (PV) device. A mechanics model based on the theory of thin plates is developed to identify the critical conditions for self-folding of different 2D geometrical shapes. This strategy is demonstrated for specifically designed millimeter-scale silicon objects, which are self-assembled into spherical, and other 3D shapes and integrated into fully functional light-trapping PV devices. The resulting 3D devices offer a promising way to efficiently harvest solar energy in thin cells using concentrator microarrays that function without active light tracking systems.
NASA Astrophysics Data System (ADS)
Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan
2016-06-01
Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.
Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2015-10-01
Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality. Copyright © 2015 Elsevier B.V. All rights reserved.
Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal
2011-01-01
A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light. PMID:22319353
Full-color OLED on silicon microdisplay
NASA Astrophysics Data System (ADS)
Ghosh, Amalkumar P.
2002-02-01
eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.
Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
Carlson, David E.; Wronski, Christopher R.
1979-01-01
A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.
Core-shell silicon nanowire solar cells
Adachi, M. M.; Anantram, M. P.; Karim, K. S.
2013-01-01
Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. PMID:23529071
Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Bo; Lu, Fei, E-mail: lufei@sdu.edu.cn; Fan, Ranran
2016-08-15
We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak atmore » 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.« less
ZnO transparent conductive oxide for thin film silicon solar cells
NASA Astrophysics Data System (ADS)
Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.
2010-03-01
There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.
NASA Astrophysics Data System (ADS)
Jalali, Tahmineh
2018-05-01
In this work, the effect of one-dimensional photonic crystal on optical absorption, which is implemented at the back side of thin-film crystalline silicon (c-Si) solar cells, is extensively discussed. The proposed structure acts as a Bragg reflector which reflects back light to the active layer as well as nanograting which couples the incident light to enhance optical absorption. To understand the optical mechanisms responsible for the enhancement of optical absorption, quantum efficiency and current density for all structures are calculated and the effect of influential parameters, such as grating period is investigated. The results confirm that our proposed structure have a great deal for substantial efficiency enhancement in a broad range from 400 to 1100 nm.
Inorganic Photovoltaics Materials and Devices: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.
2005-01-01
This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.
Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm
2014-05-05
The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.
Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Zhang, Jinqiannan; Yu, Zhongyuan; Liu, Yumin; Chai, Hongyu; Hao, Jing; Ye, Han
2017-09-01
We numerically study and analyze the light absorption enhancement in thin crystalline silicon solar cell with dual interface gratings. The structure combines the front dielectric nanowalls and the sinusoidal plasmonic grating at back reflector. We show that having specific interfaces with well-chosen period, fill factor and height can allow more efficient dielectric and plasmonic modes coupling into active layer and can improve the solar cell performance. For 1 μm active layer case, the optimal result for the proposed structure achieves short-circuit current of 23.6 mA/cm2, which performs over 50% better than flat solar cell structure, the short-circuit current of which is 15.5 mA/cm2. In addition, the active layer thickness and angular analysis show that the proposed structure maintains its advantage over flat structure.
Coatings Boost Solar-Cell Outputs
NASA Technical Reports Server (NTRS)
Rohatgi, Ajeet; Campbell, Robert B.; O'Keefe, T. W.; Rai-Choudbury, Posenjit; Hoffman, Richard A.
1988-01-01
Efficiencies increased by more-complete utilization of incident light. Electrical outputs of thin solar photovoltaic cells made of dendritic-web silicon increased by combination of front-surface, antireflective coatings and back-surface, reflective coatings. Improvements achieved recently through theoretical and experimental studies of ways to optimize coatings for particular wavelengths of incident light, cell thicknesses, and cell materials.
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells.
Li, Xiaokai; Mariano, Marina; McMillon-Brown, Lyndsey; Huang, Jing-Shun; Sfeir, Matthew Y; Reed, Mark A; Jung, Yeonwoong; Taylor, André D
2017-12-01
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si-based solar cells. Flexible hybrid single-walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room-temperature processes for the fabrication of solar-cell components (e.g., preparation of SWNT thin films and SWNT/Si p-n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light-trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high-performance ultrathin hybrid SWNT/Si solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications.
Scarangella, Adriana; Fabbri, Filippo; Reitano, Riccardo; Rossi, Francesca; Priolo, Francesco; Miritello, Maria
2017-12-11
Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.
Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating
NASA Technical Reports Server (NTRS)
Call, R. L.
1976-01-01
Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.
Liquid-phase deposition of thin Si films by ballistic electro-reduction
NASA Astrophysics Data System (ADS)
Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.
2013-01-01
It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.
Facet-embedded thin-film III-V edge-emitting lasers integrated with SU-8 waveguides on silicon.
Palit, Sabarni; Kirch, Jeremy; Huang, Mengyuan; Mawst, Luke; Jokerst, Nan Marie
2010-10-15
A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.
In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.
Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S
2009-01-01
This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.
Electrochemical thinning of silicon
Medernach, John W.
1994-01-01
Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).
Young, David L.; Nemeth, William; Grover, Sachit; ...
2014-01-01
We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO 2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0, contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0, contact)more » and the specific contact resistivity (ρ contact) using a TLM pattern. The best ITO/SiO 2 passivated contact in this study has J 0,contact = 92.5 fA/cm 2 and ρ contact = 11.5 mOhm-cm 2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0, contact, ρ contact) values. The ITO/SiO 2 contacts are found to have a higher J0, contact, but a similar ρ contact compared to the best reported passivated contacts.« less
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias
2017-11-01
Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.
Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh
2009-01-01
In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.
IBIC characterisation of novel detectors for single atom doping of quantum computer devices
NASA Astrophysics Data System (ADS)
Yang, Changyi; Jamieson, David N.; Pakes, Chris I.; George, Damien P.; Hearne, Sean M.; Dzurak, Andrew S.; Gauja, Eric; Stanley, F.; Clark, R. G.
2003-09-01
Single ion implantation and online detection is highly desirable for the emerging application, in which single 31P ions need to be inserted in prefabricated silicon cells to construct solid-state quantum bits (qubits). In order to fabricate qubit arrays, we have developed novel detectors that employ detector electrodes adjacent to the prefabricated cells that can detect single keV ion strikes appropriate for the fabrication of shallow phosphorus arrays. The method utilises a high purity silicon substrate with very high resistivity, a thin SiO 2 surface layer, nanometer masks for the lateral positioning single phosphorus implantation, biased electrodes applied to the surface of the silicon and sensitive electronics that can detect the charge transient from single keV ion strikes. A TCAD (Technology Computer Aided Design) software package was applied in the optimisation of the device design and simulation of the detector performance. Here we show the characterisation of these detectors using ion beam induced charge (IBIC) with a focused 2 MeV He ions in a nuclear microprobe. The IBIC imaging method in a nuclear microprobe allowed us to measure the dead-layer thickness of the detector structure (required to be very thin for successful detection of keV ions), and the spatial distribution of the charge collection efficiency around the entire region of the detector. We show that our detectors have near 100% charge collection efficiency for MeV ions, extremely thin dead-layer thickness (about 7 nm) and a wide active region extending laterally from the electrodes (10-20 μm) where qubit arrays can be constructed. We demonstrate that the device can be successfully applied in the detection of keV ionisation energy from single events of keV X-rays and keV 31P ions.
Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells
NASA Astrophysics Data System (ADS)
Hossain, Mohammad I.; Qarony, Wayesh; Hossain, M. Khalid; Debnath, M. K.; Uddin, M. Jalal; Tsang, Yuen Hong
2017-10-01
In thin-film solar cells, the photocurrent conversion productivity can be distinctly boosted-up utilizing a proper back reflector. Herein, the impact of different smooth and textured back reflectors was explored and effectuated to study the optical phenomena with interface engineering strategies and characteristics of transparent contacts. A unique type of wet-chemically textured glass-substrate 3D etching mask used in superstrate (p-i-n) amorphous silicon-based solar cell along with legitimated back reflector permits joining the standard light-trapping methodologies, which are utilized to upgrade the energy conversion efficiency (ECE). To investigate the optical and electrical properties of solar cell structure, the optical simulations in three-dimensional measurements (3D) were performed utilizing finite-difference time-domain (FDTD) technique. This design methodology allows to determine the power losses, quantum efficiencies, and short-circuit current densities of various layers in such solar cell. The short-circuit current densities for different reflectors were varied from 11.50 to 13.27 and 13.81 to 16.36 mA/cm2 for the smooth and pyramidal textured solar cells, individually. Contrasted with the comparable flat reference cell, the short-circuit current density of textured solar cell was increased by around 24%, and most extreme outer quantum efficiencies rose from 79 to 86.5%. The photon absorption was fundamentally improved in the spectral region from 600 to 800 nm with no decrease of photocurrent shorter than 600-nm wavelength. Therefore, these optimized designs will help to build the effective plans next-generation amorphous silicon-based solar cells.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.
Thin Carbon Layers on Nanostructured Silicon-Properties and Applications
NASA Astrophysics Data System (ADS)
Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia
Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.
Advanced high efficiency wraparound contact solar cell
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.
1977-01-01
A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.
Advanced high efficiency wraparound contact solar cell
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.
1977-01-01
A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area
Fabrication of Robust, Flat, Thinned, UV-Imaging CCDs
NASA Technical Reports Server (NTRS)
Grunthaner, Paula; Elliott, Stythe; Jones, Todd; Nikzad, Shouleh
2004-01-01
An improved process that includes a high-temperature bonding subprocess has been developed to enable the fabrication of robust, flat, silicon-based charge-coupled devices (CCDs) for imaging in ultraviolet (UV) light and/or for detecting low-energy charged particles. The CCDs in question are devices on which CCD circuitry has already been formed and have been thinned for backsurface illumination. These CCDs may be delta doped, and aspects of this type of CCD have been described in several prior articles in NASA Tech Briefs. Unlike prior low-temperature bonding subprocesses based on the use of epoxies or waxes, the high-temperature bonding subprocess is compatible with the deltadoping process as well as with other CCD-fabrication processes. The present improved process and its bonding, thinning, and delta-doping subprocesses, are characterized as postfabrication processes because they are undertaken after the fabrication of CCD circuitry on the front side of a full-thickness silicon substrate. In a typical case, it is necessary to reduce the thickness of the CCD to between 10 and 20 m in order to take advantage of back-side illumination and in order to perform delta doping and/or other back-side treatment to enhance the quantum efficiency. In the prior approach to the fabrication of back-side-illuminated CCDs, the thinning subprocess turned each CCD into a free-standing membrane that was fragile and tended to become wrinkled. In the present improved process, prior to thinning and delta doping, a CCD is bonded on its front side to a silicon substrate that has been prefabricated to include cutouts to accommodate subsequent electrical connections to bonding pads on the CCD circuitry. The substrate provides structural support to increase ruggedness and maintain flatness. At the beginning of this process, the back side of a CCD as fabricated on a full-thickness substrate is polished. Silicon nitride is deposited on the back side, opposite the bonding pads on the front side, in order to define a relatively thick frame. The portion of the CCD not covered by the frame is the portion to be thinned by etching.
He, Jian; Gao, Pingqi; Liao, Mingdun; Yang, Xi; Ying, Zhiqin; Zhou, Suqiong; Ye, Jichun; Cui, Yi
2015-06-23
Hybrid silicon/polymer solar cells promise to be an economically feasible alternative energy solution for various applications if ultrathin flexible crystalline silicon (c-Si) substrates are used. However, utilization of ultrathin c-Si encounters problems in light harvesting and electronic losses at surfaces, which severely degrade the performance of solar cells. Here, we developed a metal-assisted chemical etching method to deliver front-side surface texturing of hierarchically bowl-like nanopores on 20 μm c-Si, enabling an omnidirectional light harvesting over the entire solar spectrum as well as an enlarged contact area with the polymer. In addition, a back surface field was introduced on the back side of the thin c-Si to minimize the series resistance losses as well as to suppress the surface recombination by the built high-low junction. Through these improvements, a power conversion efficiency (PCE) up to 13.6% was achieved under an air mass 1.5 G irradiation for silicon/organic hybrid solar cells with the c-Si thickness of only about 20 μm. This PCE is as high as the record currently reported in hybrid solar cells constructed from bulk c-Si, suggesting a design rule for efficient silicon/organic solar cells with thinner absorbers.
Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan
2014-08-22
Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.
Detector Development for the abBA Experiment.
Seo, P-N; Bowman, J D; Mitchell, G S; Penttila, S I; Wilburn, W S
2005-01-01
We have developed a new type of field-expansion spectrometer to measure the neutron beta decay correlations (a, b, B, and A). A precision measurement of these correlations places stringent requirements on charged particle detectors. The design employs large area segmented silicon detectors to detect both protons and electrons in coincidence. Other requirements include good energy resolution (< 5 keV), a thin dead layer to allow observation of 30-keV protons, fast timing resolution (~1 ns) to reconstruct electron-backscattering events, and nearly unity efficiency. We report results of testing commercially available surface-barrier silicon detectors for energy resolution and timing performance, and measurement of the dead-layer thickness of ion-implanted silicon detectors with a 3.2 MeV alpha source.
Silicon Materials and Devices R&D | Photovoltaic Research | NREL
" and "Si-based Tandem Solar Cells"), Next Generation Photovoltaics (NextGen PV III), and devices, especially for photovoltaic (PV) cell applications. PV Research Other Materials & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV
Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guojian; Lou, Chaogang; Kang, Jian
2015-12-21
Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluatemore » roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.« less
Electrochemical thinning of silicon
Medernach, J.W.
1994-01-11
Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.
Liu, Xianzhe; Xu, Hua; Ning, Honglong; Lu, Kuankuan; Zhang, Hongke; Zhang, Xiaochen; Yao, Rihui; Fang, Zhiqiang; Lu, Xubing; Peng, Junbiao
2018-03-07
Amorphous Silicon-Tin-Oxide thin film transistors (a-STO TFTs) with Mo source/drain electrodes were fabricated. The introduction of a ~8 nm MoO x interlayer between Mo electrodes and a-STO improved the electron injection in a-STO TFT. Mo adjacent to the a-STO semiconductor mainly gets oxygen atoms from the oxygen-rich surface of a-STO film to form MoO x interlayer. The self-formed MoO x interlayer acting as an efficient interface modification layer could conduce to the stepwise internal transport barrier formation while blocking Mo atoms diffuse into a-STO layer, which would contribute to the formation of ohmic contact between Mo and a-STO film. It can effectively improve device performance, reduce cost and save energy for the realization of large-area display with high resolution in future.
NASA Astrophysics Data System (ADS)
Wright, Jason T.; Carbaugh, Daniel J.; Haggerty, Morgan E.; Richard, Andrea L.; Ingram, David C.; Kaya, Savas; Jadwisienczak, Wojciech M.; Rahman, Faiz
2016-10-01
We describe in detail the growth procedures and properties of thermal silicon dioxide grown in a limited and dilute oxygen atmosphere. Thin thermal oxide films have become increasingly important in recent years due to the continuing down-scaling of ultra large scale integration metal oxide silicon field effect transistors. Such films are also of importance for organic transistors where back-gating is needed. The technique described here is novel and allows self-limited formation of high quality thin oxide films on silicon surfaces. This technique is easy to implement in both research laboratory and industrial settings. Growth conditions and their effects on film growth have been described. Properties of the resulting oxide films, relevant for microelectronic device applications, have also been investigated and reported here. Overall, our findings are that thin, high quality, dense silicon dioxide films of thicknesses up to 100 nm can be easily grown in a depleted oxygen environment at temperatures similar to that used for usual silicon dioxide thermal growth in flowing dry oxygen.
Le, Khai Q; John, Sajeev
2014-01-13
We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.
Mechanics analysis of the multi-point-load process for the thin film solar cell
NASA Astrophysics Data System (ADS)
Wang, Zhiming; Wei, Guangpu; Gong, Zhengbang
2008-02-01
The main element of thin film solar cell is silicon. Because of the special mechanical characteristic of silicon, the method of loading pressure on the thin film solar cell and the value of pressure is the key problem which must be solved during the manufacturing of thin film solar cell. This paper describes the special mechanical characteristic of silicon, discussed the test method overall; value of pressure on thin film solar cell; the elements and the method of load by ANSYS finite element, according to these theory analysis, we obtained the key conclusion in the actual operation, these result have a great meaning in industry.
Javed, Muhammad Rizwan; Buthe, Andreas; Rashid, Muhammad Hamid; Wang, Ping
2016-01-01
β-Glucosidase is an ubiquitous enzyme which has enormous biotechnological applications. Its deficiency in natural enzyme preparations is often overcome by exogenous supplementation, which further increases the enzyme utilization cost. Enzyme immobilization offers a potential solution through enzyme recycling and easy recovery. In the present work Aspergillus niger β-glucosidase is immobilized within nanoscale polymeric materials (polyurethane, latex and silicone), through entrapment, and subsequently coated onto a fibrous support. Highest apparent activity (90 U g(-1) polymer) was observed with latex, while highest entrapment efficiency (93%) was observed for the silicone matrix. Immobilization resulted in the thermo-stabilization of the β-glucosidase with an increase in optimum temperature and activation energy for cellobiose hydrolysis. Supplementation to cellulases also resulted in an increased cellulose hydrolysis, while retaining more than 70% functional stability. Hence, the current study describes novel preparations of immobilized β-glucosidase as highly stable and active catalysts for industrial food- and bio-processing applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of transient thermal dissipation in thinned LSI for advanced packaging
NASA Astrophysics Data System (ADS)
Araga, Yuuki; Shimamoto, Haruo; Melamed, Samson; Kikuchi, Katsuya; Aoyagi, Masahiro
2018-04-01
Thinning of LSI is necessary for superior form factor and performance in dense cutting-edge packaging technologies. At the same time, degradation of thermal characteristics caused by the steep thermal gradient on LSIs with thinned base silicon is a concern. To manage a thermal environment in advanced packages, thermal characteristics of the thinned LSIs must be clarified. In this study, static and dynamic thermal dissipations were analyzed before and after thinning silicon to determine variations of thermal characteristics in thinned LSI. Measurement results revealed that silicon thinning affects dynamic thermal characteristics as well as static one. The transient variations of thermal characteristics of thinned LSI are precisely verified by analysis using an equivalent model based on the thermal network method. The results of analysis suggest that transient thermal characteristics can be easily estimated by employing the equivalent model.
NASA Astrophysics Data System (ADS)
Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.
2018-03-01
N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.
Thin-film module circuit design: Practical and reliability aspects
NASA Technical Reports Server (NTRS)
Daiello, R. V.; Twesme, E. N.
1985-01-01
This paper will address several aspects of the design and construction of submodules based on thin film amorphous silicon (a-Si) p i n solar cells. Starting from presently attainable single cell characteristics, and a realistic set of specifications, practical module designs are discussed from the viewpoints of efficient designs, the fabrication requirements, and reliability concerns. The examples center mostly on series interconnected modules of the superstrate type with detailed discussions of each portion of the structure in relation to its influence on module efficiency. Emphasis is placed on engineering topics such as: area coverage, optimal geometries, and cost and reliability. Practical constraints on achieving optimal designs, along with some examples of potential pitfalls in the manufacture and subsequent performance of a-Si modules are discussed.
Low work function, stable thin films
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2000-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
Lin, Chenxi; Povinelli, Michelle L
2009-10-26
In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.
NASA Astrophysics Data System (ADS)
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert
2013-07-01
A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.
NASA Technical Reports Server (NTRS)
Sah, C. T.
1983-01-01
The performance improvements obtainable from extending the traditionally thin back-surface-field (BSF) layer deep into the base of silicon solar cells under terrestrial solar illumination (AM1) are analyzed. This extended BSF cell is also known as the back-drift-field cell. About 100 silicon cells were analyzed, each with a different emitter or base dopant impurity distribution whose selection was based on physically anticipated improvements. The four principal performance parameters (the open-circuit voltage, the short-circuit current, the fill factor, and the maximum efficiency) are computed using a FORTRAN program, called Circuit Technique for Semiconductor-device Analysis, CTSA, which numerically solves the six Shockley Equations under AM1 solar illumination at 88.92 mW/cm, at an optimum cell thickness of 50 um. The results show that very significant performance improvements can be realized by extending the BSF layer thickness from 2 um (18% efficiency) to 40 um (20% efficiency).
2013-01-01
photons of energy hn > 1.1 eV, which is the same spectral range captured by a silicon solar cell . The thermodynamic limit for the efficiency of a solar ...Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube photovoltaic photophysics solar cell perspective Michael S. Arnold, Jeffrey L. Blackburn...increasing the efficiency and functionality of next-generation solar cells . Widely tunable properties open up possibilities for using nanotubes in many
Development of large-area monolithically integrated silicon-film photovoltaic modules
NASA Astrophysics Data System (ADS)
Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Ruffins, T. R.; Shreve, K. P.; Hall, R. B.; Barnett, A. M.
1993-06-01
This report describes work to develop Silicon-Film (trademark) Product 3 into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200 sq cm, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 sq cm monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R(sub s) effects. Test data for a nine-cell device (16 sq cm) indicated a V(sub oc) of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (less than 0.1 mA/sq cm) due to limited conduction through the ceramic and no process-related metallization shunts.
Thin Film Solar Cells: Organic, Inorganic and Hybrid
NASA Technical Reports Server (NTRS)
Dankovich, John
2004-01-01
Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive especially for space applications. Thin film photovoltaics have the potential to alleviate these problems and create a cheap and efficient way to harness the power of the sun.
Guided ultrasonic wave beam skew in silicon wafers
NASA Astrophysics Data System (ADS)
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2018-04-01
In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.
Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X
2016-01-21
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.
Integrated amorphous silicon-aluminum long-range surface plasmon polariton (LR-SPP) waveguides
NASA Astrophysics Data System (ADS)
Sturlesi, Boaz; Grajower, Meir; Mazurski, Noa; Levy, Uriel
2018-03-01
We demonstrate the design, fabrication, and experimental characterization of a long range surface plasmon polariton waveguide that is compatible with complementary metal-oxide semiconductor backend technology. The structure consists of a thin aluminum strip embedded in amorphous silicon. This configuration offers a symmetric environment in which surface plasmon polariton modes undergo minimal loss. Furthermore, the plasmonic mode profile matches the modes of the dielectric (amorphous silicon) waveguide, thus allowing efficient coupling between silicon photonics and plasmonic platforms. The propagation length of the plasmonic waveguide was measured to be about 27 μm at the telecom wavelength around 1550 nm, in good agreement with numerical simulations. As such, the waveguide features both tight mode confinement and decent propagation length. On top of its photonic properties, placing a metal within the structure may also allow for additional functionalities such as photo-detection, thermo-optic tuning, and electro-optic control to be implemented.
Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A
2009-01-01
This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.
Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells
NASA Astrophysics Data System (ADS)
Winans, Joshua David
As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.
Silicon-integrated thin-film structure for electro-optic applications
McKee, Rodney A.; Walker, Frederick Joseph
2000-01-01
A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.
Optimization of the Surface Structure on Black Silicon for Surface Passivation
NASA Astrophysics Data System (ADS)
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-03-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al2O3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH4OH/H2O2/H2O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Optimization of the Surface Structure on Black Silicon for Surface Passivation.
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-12-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Application of porous silicon in solar cell
NASA Astrophysics Data System (ADS)
Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.
2018-05-01
Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.
2015-03-14
In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less
Khalifa, Marouan; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-08
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C.
2012-01-01
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C. PMID:22873706
Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz
2011-01-01
The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B2H6 and SiH4 fluxes (B2H6 from 12 sccm to 20 sccm and SiH4 from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples. PMID:21731436
NASA Astrophysics Data System (ADS)
Iftiquar, S. M.; Jung, Junhee; Yi, Junsin
2017-10-01
Current matching in a tandem solar cell is significant, because in a mismatched device the lowest current generating subcell becomes the current limiting component, and overall device efficiency remains lower than that could be obtained in the current matched device. Recent reports on methyl ammonium lead iodide (MAPbI3) based thin film solar cell has drawn interest to a perovskite-silicon tandem solar cell. Therefore, we investigated such a tandem solar cell theoretically. We used a MAPbI3 based top and heterojunction with intrinsic thin layer silicon (HIT) bottom subcell. Optimization of the device structure was carried out by varying thickness of perovskite layer of top-cell from 50 to 1000 nm, while thickness of active layer of the HIT cell was kept constant, to 500 µm. Single-junction solar cell, formed with the bottom subcell had open circuit voltage (V oc) of 705.1 mV, short circuit current density (J sc) of 28.22 mA cm-2, fill factor (FF) of 0.82 and efficiency of 16.4% under AM1.5G insolation. A relatively low thickness (150 nm) of the perovskite absorber layer was found optimum for the top-subcell to achieve best efficiency of the tandem cell, partly because of intermediate reflection at the interface between the two cells. We obtained a maximum of 20.92% efficiency of the tandem solar cell, which is higher by a factor of 1.27 from the starting HIT cell and a factor 1.47 higher from the perovskite cell efficiency. J sc of the optimized tandem cell was 13.06 mA cm-2. This was achieved near the matching optical absorption or current-density of the component subcells. For a practical application, the device used in our investigation was without textured front surface. An ordinary HIT bottom-cell was used with lower J sc. Therefore, with an improved HIT subcell, efficiency of the tandem cell, higher than 21% will be achievable.
System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer
NASA Technical Reports Server (NTRS)
Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)
2017-01-01
A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.
Hybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells
Chung, H.; Zhou, C.; Tee, X. T.; ...
2016-05-20
Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystallinemore » silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the Cd xZn 1-xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm.« less
Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik
2015-07-30
Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.
Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter
NASA Astrophysics Data System (ADS)
Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi
2006-01-01
As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.
NASA Astrophysics Data System (ADS)
Sheoran, Manav
The focus of this research is to investigate the potential of lower quality cast multicrystalline Si (mc-Si) as well as thin single and mc-Si cells. The overall goal of this research is to improve fundamental understanding of the hydrogen passivation of defects in low-cost Si and the fabrication of high-efficiency solar cells on thin crystalline silicon through low-cost technology development. This is addressed by a combination of five research tasks. The key results of these tasks are summarized below. A novel method was developed to determine the concentration and flux of H diffusing into the Si. The understanding of defect passivation acquired in task 1 was used to fabricate high-efficiency solar cells on cast mc-Si wafers. An optimized co-firing process was developed, which resulted in ˜17% efficient 4 cm2 screen-printed solar cells with single-layer AR coating, and no surface texturing or selective emitter. The HEM mc-Si wafer gave an average efficiency of 16.5%, with a maximum of 16.9%. The identical process applied to the un-textured Float zone (FZ) wafers gave an efficiency of 17.2%. These cells were fabricated using the same simple, manufacturable process involving POCl3 diffusion for a 45 O/sq emitter, PECVD SiNx:H deposition for single-layer antireflection coating and rapid co-firing of a Ag grid, an Al back contact, and Al-BSF formation in a belt furnace. A high-efficiency of 17.1% was achieved on high sheet-resistance HEM mc-Si with good quality contacts. The effects of changing several device parameters on the efficiency of the solar cells was modeled with PC1D and guidelines were established to improve the efficiency from ˜17% to over 20% cells on low lifetime (100 mus), thin (140 mum) silicon wafers. The understanding of enhanced defect hydrogenation and the optimized fabrication sequence was applied to fabricate high-efficiency solar cells on top, middle, and bottom regions of several mc-Si ingots. Screen-printed solar cells were fabricated on different regions of four boron doped ingots and one gallium doped ingot. High post-diffusion and post-hydrogenation lifetime values were obtained, which resulted in high-screen printed cell efficiencies of . 15.9% for wafers from all the regions and ingots, except for the bottom region of the lower-resistivity boron-doped ingot and the gallium-doped ingot. Using a lower-resistivity boron-doped mc-Si ingot did not improve the efficiency. Solar cells fabricated on the first two ingots grown by a novel process, which produced single-crystal Si wafers by HEM casting method, achieved efficiencies of 16% and 17.2% on planar and textured surfaces, respectively. Lifetime in the middle region of both the ingots exceeded 100 mus after cell processing; however top and bottom regions had lower lifetimes due to the impurities that could not be gettered or passivated. Due to the single-crystal nature of the mono-cast ingots, the wafers were textured easily, which decreased the front surface reflectance from 11.8 to 5.3% and resulted in an enhanced Jsc by ˜3mA/cm2. Large area (100 cm2) solar cells fabricated from the middle regions of this novel mono-cast material achieved an efficiency of 16.5%. The mono-cast grown by the HEM process is still under optimization, however, these results show that the material has a great potential for achieving high-efficiencies at a lower cost. Since the cost of Si material alone is ˜50% in a PV module, attempts were made to fabricate thin Si cells with full area Al-BSF and to identify the key factors responsible for efficiency loss in thin cells with conventional Al-BSF. It was found that the high BSRV (300-400 cm/s) and low back surface reflectance (BSR) (63-70%) associated with the full area Al-BSF were the major reasons for the reduced performance of thin cells. Model calculations showed that a BSRV of . 100 cm/s and BSR of ≤ 95% can virtually eliminate the efficiency gap between 300 mum and 115 mum thick cells for these ≥ 200 mus bulk lifetime wafers. Manufacturing cost modeling showed that reducing the mc-Si wafer thickness from 300 mum to 115-150 mum reduces the module manufacturing cost in spite of ˜1% lower cell efficiency. Full area Al-BSF cells suffered efficiency loss upon thinning due to a relatively higher BSRV and poor BSR of Al-BSF. Therefore, in attempts were made to fabricate, characterize and model, a device structure with local back-surface field. Thin solar cells, without any bowing, were fabricated using the dielectric passivated structure and screen-printed contacts. (Abstract shortened by UMI.)
Edge-defined film-fed growth of thin silicon sheets
NASA Technical Reports Server (NTRS)
Ettouney, H. M.; Kalejs, J. P.
1984-01-01
Finite element analysis was used on two length scales to understand crystal growth of thin silicon sheets. Thermal-capillary models of entire ribbon growth systems were developed. Microscopic modeling of morphological structure of melt/solid interfaces beyond the point of linear instability was carried out. The application to silicon system is discussed.
Additives to silane for thin film silicon photovoltaic devices
Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles
2013-09-17
Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.
2009-11-25
34Nanoindentation Stress-Strain Curves of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films," Thin Solid Films, 516 (8) (2008) 1941-1951. 9. S...1604. 5. Z. Cao* and X. Zhang, "Measurement of Stress-Strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation," in Processing...Microsystems (Transducers ), Lyon, France, June 10-14, 2007. 9. Z. Cao* and X. Zhang, “Measurement of Stress-strain Curves of PECVD Silicon Oxide
Plasmonic properties of gold nanoparticles covered by silicon suboxide thin film
NASA Astrophysics Data System (ADS)
Baranov, Evgeniy; Zamchiy, Alexandr; Safonov, Aleksey; Starinskiy, Sergey; Khmel, Sergey
2017-10-01
The optical properties of nanocomposite material consisting of gold nanoparticles without/with silicon suboxide thin film were obtained. The gold film was deposited by thermal vacuum evaporation and then it was annealed in a vacuum chamber to form gold nanoparticles. The silicon suboxide thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method. The intensity of the localized surface plasmon resonance increased and the plasmon maximum peak shifted from 520 nm to 537 nm.
NASA Technical Reports Server (NTRS)
Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.
1976-01-01
The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.
Self-organized broadband light trapping in thin film amorphous silicon solar cells.
Martella, C; Chiappe, D; Delli Veneri, P; Mercaldo, L V; Usatii, I; Buatier de Mongeot, F
2013-06-07
Nanostructured glass substrates endowed with high aspect ratio one-dimensional corrugations are prepared by defocused ion beam erosion through a self-organized gold (Au) stencil mask. The shielding action of the stencil mask is amplified by co-deposition of gold atoms during ion bombardment. The resulting glass nanostructures enable broadband anti-reflection functionality and at the same time ensure a high efficiency for diffuse light scattering (Haze). It is demonstrated that the patterned glass substrates exhibit a better photon harvesting than the flat glass substrate in p-i-n type thin film a-Si:H solar cells.
Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.
Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong
2013-01-01
We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.
Fission-fragment detector for DANCE based on thin scintillating films
NASA Astrophysics Data System (ADS)
Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.
2015-12-01
A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.
Epitaxial growth of silicon for layer transfer
Teplin, Charles; Branz, Howard M
2015-03-24
Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.
NASA Astrophysics Data System (ADS)
Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen
2015-05-01
In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.
Generation of low work function, stable compound thin films by laser ablation
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2001-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
Processing technology for high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Spitzer, M. B.; Keavney, C. J.
1985-01-01
Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.
George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J
2015-06-24
The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.
Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC
Bubna, M.; Bolla, G.; Bortoletto, D.; ...
2015-08-03
The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 10 34 cm –2s –1 and collect ~ 3000fb –1 of data. The innermost layer of the pixel detector will be exposed to doses of about 10 16 n eq/ cm 2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have beenmore » fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.« less
Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing
NASA Astrophysics Data System (ADS)
Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu
2010-03-01
Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).
NASA Astrophysics Data System (ADS)
Covey, John; Chen, Ray T.
2014-03-01
Grating couplers are ideal for coupling into the tightly confined propagation modes of semiconductor waveguides. In addition, nonlinear optics has benefited from the sub-diffraction limit confinement of horizontal slot waveguides. By combining these two advancements, slot-based nonlinear optics with mode areas less than 0.02 μm2 can become as routine as twisting fiber connectors together. Surface normal fiber alignment to a chip is also highly desirable from time, cost, and manufacturing considerations. To meet these considerable design challenges, a custom genetic algorithm is created which, starting from purely random designs, creates a unique four stage grating coupler for two novel horizontal slot waveguide platforms. For horizontal multiple-slot waveguides filled with silicon nanocrystal, a theoretical fiber-towaveguide coupling efficiency of 68% is obtained. For thin silicon waveguides clad with optically active silicon nanocrystal, known as cover-slot waveguides, a theoretical fiber-to-waveguide coupling efficiency of 47% is obtained, and 1 dB and 3 dB theoretical bandwidths of 70 nm and 150 nm are obtained, respectively. Both waveguide platforms are fabricated from scratch, and their respective on-chip grating couplers are experimentally measured from a standard single mode fiber array that is mounted surface normally. The horizontal multiple-slot grating coupler achieved an experimental 60% coupling efficiency, and the horizontal cover-slot grating coupler achieved an experimental 38.7% coupling efficiency, with an extrapolated 1 dB bandwidth of 66 nm. This report demonstrates the promise of genetic algorithm-based design by reducing to practice the first large bandwidth vertical grating coupler to a novel silicon nanocrystal horizontal cover-slot waveguide.
NASA Technical Reports Server (NTRS)
Mandelkorn, J.; Lamneck, J. H.
1975-01-01
The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shir, Daniel J.; Yoon, Jongseung; Chanda, Debashis
2010-08-11
Recently developed classes of monocrystalline silicon solar microcells can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. This paper presents experimental and computational studies of the optics of light absorption in ultrathin microcells that include nanoscale features of relief on their surfaces, formed by soft imprint lithography. Measurements on working devices with designs optimized for broad band trapping of incident light indicate good efficiencies in energy production even at thicknesses of just a few micrometers. These outcomes are relevant not only tomore » the microcell technology described here but also to other photovoltaic systems that benefit from thin construction and efficient materials utilization.« less
Metal Induced Growth of Si Thin Films and NiSi Nanowires
2010-02-25
Zinc Oxide Over MIG Silicon- We have been studying the formation of ZnO films by RF sputtering. Part of this study deals with...about 50 nm. 15. SUBJECT TERMS Thin film silicon, solar cells, thin film transistors , nanowires, metal induced growth 16. SECURITY CLASSIFICATION...to achieve, µc-Si is more desirable than a-Si due to its increased mobility. Thin film µc-Si is also a popular material for thin film transistors
Patton, Ryan J; Wood, Michael G; Reano, Ronald M
2017-11-01
We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.
Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.
Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P
2015-04-24
Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.
Method for forming silicon on a glass substrate
McCarthy, Anthony M.
1995-01-01
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.
Method for forming silicon on a glass substrate
McCarthy, A.M.
1995-03-07
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.
A transistor based on 2D material and silicon junction
NASA Astrophysics Data System (ADS)
Kim, Sanghoek; Lee, Seunghyun
2017-07-01
A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.
Plasmonic and silicon spherical nanoparticle antireflective coatings
NASA Astrophysics Data System (ADS)
Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.
2016-03-01
Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.
Plasmonic and silicon spherical nanoparticle antireflective coatings
Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.
2016-01-01
Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602
NASA Astrophysics Data System (ADS)
Mulder, Watson
Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.
Laser marking on microcrystalline silicon film.
Park, Min Gyu; Choi, Se-Bum; Ruh, Hyun; Hwang, Hae-Sook; Yu, Hyunung
2012-07-01
We present a compact dot marker using a CW laser on a microcrystalline silicon (Si) thin film. A laser annealing shows a continuous crystallization transformation from nano to a large domain (> 200 nm) of Si nanocrystals. This microscale patterning is quite useful since we can manipulate a two-dimentional (2-D) process of Si structural forms for better and efficient thin-film transistor (TFT) devices as well as for photovoltaic application with uniform electron mobility. A Raman scattering microscope is adopted to draw a 2-D mapping of crystal Si film with the intensity of optical-phonon mode at 520 cm(-1). At a 300-nm spatial resolution, the position resolved the Raman scattering spectra measurements carried out to observe distribution of various Si species (e.g., large crystalline, polycrystalline and amorphous phase). The population of polycrystalline (poly-Si) species in the thin film can be analyzed with the frequency shift (delta omega) from the optical-phonon line since poly-Si distribution varies widely with conditions, such as an irradiated-laser power. Solid-phase crystallization with CW laser irradiation improves conductivity of poly-Si with micropatterning to develop the potential of the device application.
NASA Astrophysics Data System (ADS)
Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.
2009-10-01
Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.
Solid state laser applications in photovoltaics manufacturing
NASA Astrophysics Data System (ADS)
Dunsky, Corey; Colville, Finlay
2008-02-01
Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.
Optimization of imprintable nanostructured a-Si solar cells: FDTD study.
Fisker, Christian; Pedersen, Thomas Garm
2013-03-11
We present a finite-difference time-domain (FDTD) study of an amorphous silicon (a-Si) thin film solar cell, with nano scale patterns on the substrate surface. The patterns, based on the geometry of anisotropically etched silicon gratings, are optimized with respect to the period and anti-reflection (AR) coating thickness for maximal absorption in the range of the solar spectrum. The structure is shown to increase the cell efficiency by 10.2% compared to a similar flat solar cell with an optimized AR coating thickness. An increased back reflection can be obtained with a 50 nm zinc oxide layer on the back reflector, which gives an additional efficiency increase, leading to a total of 14.9%. In addition, the patterned cells are shown to be up to 3.8% more efficient than an optimized textured reference cell based on the Asahi U-type glass surface. The effects of variations of the optimized solar cell structure due to the manufacturing process are investigated, and shown to be negligible for variations below ±10%.
Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan
2018-05-11
Most photoanodes commonly applied in solar fuel research (e.g., of Fe 2 O 3 , BiVO 4 , TiO 2 , or WO 3 ) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%.
IR CMOS: near infrared enhanced digital imaging (Presentation Recording)
NASA Astrophysics Data System (ADS)
Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani
2015-08-01
SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km
NASA Technical Reports Server (NTRS)
Dharmadhikari, V. S.; Grannemann, W. W.
1983-01-01
AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.
Specific features of doping with antimony during the ion-beam crystallization of silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashchenko, A. S., E-mail: as.pashchenko@gmail.com; Chebotarev, S. N.; Lunin, L. S.
2016-04-15
A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 10{sup 18} cm{sup –3} are grown. It is shown that, as the evaporator temperaturemore » is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~10{sup 0} to ~10{sup –3}.« less
One-step preparation of multiwall carbon nanotube/silicon hybrids for solar energy conversion
NASA Astrophysics Data System (ADS)
Lobiak, Egor V.; Bychanok, Dzmitry S.; Shlyakhova, Elena V.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Bulusheva, Lyubov G.; Okotrub, Alexander V.
2016-03-01
The hybrid material consisting of a thin layer of multiwall carbon nanotubes (MWCNTs) on an n-doped silicon wafer was obtained in one step using an aerosol-assisted catalytic chemical vapor deposition. The MWCNTs were grown from a mixture of acetone and ethanol with ˜0.2 wt.% of iron polyoxomolybdate nanocluster of the keplerate-type structure. The samples produced at 800°C and 1050°C were tested as a solar energy converter. It was shown that photoresponse of the hybrid material significantly depends on the presence of structural defects in MWCNTs, being much higher in the case of more defective nanotubes. This is because defects lead to p-doping of nanotubes, whereas the p-n heterojunction between MWCNTs and silicon provides a high efficiency of the solar cell.
Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection
Nazirzadeh, Mohammad Amin; Atar, Fatih Bilge; Turgut, Berk Berkan; Okyay, Ali Kemal
2014-01-01
In this work, we propose Silicon based broad-band near infrared Schottky barrier photodetectors. The devices operate beyond 1200 nm wavelength and exhibit photoresponsivity values as high as 3.5 mA/W with a low dark current density of about 50 pA/µm2. We make use of Au nanoislands on Silicon surface formed by rapid thermal annealing of a thin Au layer. Surface plasmons are excited on Au nanoislands and this field localization results in efficient absorption of sub-bandgap photons. Absorbed photons excite the electrons of the metal to higher energy levels (hot electron generation) and the collection of these hot electrons to the semiconductor results in photocurrent (internal photoemission). Simple and scalable fabrication makes these devices suitable for ultra-low-cost NIR detection applications. PMID:25407509
NASA Astrophysics Data System (ADS)
Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit
2018-04-01
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.
Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.
Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh
2008-12-01
This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.
NASA Astrophysics Data System (ADS)
Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo
2007-12-01
The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-12-16
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-01-01
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction. PMID:26694407
Hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2016-04-12
An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.
Process for making silicon from halosilanes and halosilicons
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1988-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1987-01-01
A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer
Cardinale, Gregory F.
2002-01-01
A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.
Silica substrate or portion formed from oxidation of monocrystalline silicon
Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.
2003-07-15
A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monna, R.; Angermeier, D.; Slaoui, A.
1996-12-01
The homoepitaxy of thin film silicon layers in a horizontal, atmospheric pressure RTCVD reactor is reported. The experiments were conducted in a temperature range from 900 C to 1,300 C employing the precursor trichlorosilane (TCS) and the dopant trichloroborine (TCB) diluted in hydrogen. The epilayers were evaluated by Nomarski microscopy, Rutherford backscattering spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the thin film were analyzed by sheet resistance and four point probe characterization methods. The authors propose that the responsible mechanisms for the observed growth decline at higher precursor concentration in hydrogen are due to the reaction ofmore » the gaseous HCl with the silicon surface and the supersaturation of silicon.« less
NASA Astrophysics Data System (ADS)
Li, Shuai; Gao, Wenxiu; Li, Zhen; Cheng, Haoran; Lin, Jinxia; Cheng, Qijin
2017-05-01
N-type compensated silicon shows unusual distribution of resistivity as crystal grows compared to the n-type uncompensated silicon. In this paper, evolutions of resistivities with varied concentrations of boron and varied starting resistivities of the n-type silicon are intensively calculated. Moreover, reduction of carrier mobility is taken into account by Schindler’s modified model of carrier mobility for the calculation of resistivity of the compensated silicon. As for substrates of solar cells, optimized starting resistivity and corresponding concentration of boron are suggested for better uniformity of resistivity and higher yield (fraction with ρ >0.5 ~ Ω \\centerdot \\text{cm} ) of the n-type compensated Cz crystal rod. A two-step growth method is investigated to obtain better uniformity of resistivity of crystal rod, and this method is very practical especially for the n-type compensated silicon. Regarding the carrier lifetime, the recombination by shallow energy-level dopants is taken into account for the compensated silicon, and evolution of carrier lifetime is simulated by considering all main recombination centers which agrees well with our measured carrier lifetimes as crystal grows. The n-type compensated silicon shows a larger reduction of carrier lifetime compared to the uncompensated silicon at the beginning of crystal growth, and recombination with a oxygen-related deep defect is sufficient to describe the reduction of degraded lifetime. Finally, standard heterojunction with intrinsic thin-layer (HIT) solar cells are made with substrates from the n-type compensated silicon rod, and a high efficiency of 22.1% is obtained with a high concentration (0.8× {{10}16}~\\text{c}{{\\text{m}}-3} ) of boron in the n-type compensated silicon feedstock. However, experimental efficiencies of HIT solar cells based on the n-type compensated silicon show an average reduction of 4% along with the crystal length compared to the uncompensated silicon. The obtained results enrich our knowledge on the n-type compensated silicon and contribute to the development of n-type compensated silicon-based solar cells for commercial application.
Oriented conductive oxide electrodes on SiO2/Si and glass
Jia, Quanxi; Arendt, Paul N.
2001-01-01
A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.
Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films
Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally
2014-01-01
Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...
Alzahly, Shaykha; Yu, LePing; Shearer, Cameron J; Gibson, Christopher T; Shapter, Joseph G
2018-04-21
Molybdenum disulphide (MoS₂) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS₂ has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS₂ with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS₂ flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS₂ flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm². This insertion of MoS₂ improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2.
A simple quantum mechanical treatment of scattering in nanoscale transistors
NASA Astrophysics Data System (ADS)
Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.
2003-05-01
We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.
Highly stable, protein resistant thin films on SiC-modified silicon substrates.
Qin, Guoting; Zhang, Rui; Makarenko, Boris; Kumar, Amit; Rabalais, Wayne; López Romero, J Manuel; Rico, Rodrigo; Cai, Chengzhi
2010-05-21
Thin films terminated with oligo(ethylene glycol) (OEG) could be photochemically grafted onto ultrathin silicon carbide layers that were generated on silicon substrates via carbonization with acetylene at 820 degrees C. The OEG coating reduced the non-specific adsorption of fibrinogen on the substrates by 99.5% and remained resistant after storage in PBS for 4 weeks at 37 degrees C.
Monolithic microcircuit techniques and processes
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1972-01-01
Brief discussions of the techniques used to make dielectric and metal thin film depositions for monolithic circuits are presented. Silicon nitride deposition and the properties of silicon nitride films are discussed. Deposition of dichlorosilane and thermally grown silicon dioxide are reported. The deposition and thermal densification of borosilicate, aluminosilicate, and phosphosilicate glasses are discussed. Metallization for monolithic circuits and the characteristics of thin films are also included.
In-depth analysis of chloride treatments for thin-film CdTe solar cells
Major, J. D.; Al Turkestani, M.; Bowen, L.; Brossard, M.; Li, C.; Lagoudakis, P.; Pennycook, S. J.; Phillips, L. J.; Treharne, R. E.; Durose, K.
2016-01-01
CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies. PMID:27775037
Further study of inversion layer MIS solar cells
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1992-01-01
Many inversion layer metal-insulator-semiconductor (IL/MIS) solar cells have been fabricated. As of today, the best cell fabricated by us has a 9.138 percent AMO efficiency, with FF = 0.641, V(sub OC) = 0.557 V, and I(sub SC) = 26.9 micro A. Efforts made for fabricating an IL/MOS solar cell with reasonable efficiencies are reported. The more accurate control of the thickness of the thin layer of oxide between aluminum and silicon of the MIS contacts has been achieved by using two different process methods. Comparison of these two different thin oxide processings is reported. The effects of annealing time of the sample are discussed. The range of the resistivity of the substrates used in the IL cell fabrication is experimentally estimated. Theoretical study of the MIS contacts under dark conditions is addressed.
Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern
2014-01-01
To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101
NASA Technical Reports Server (NTRS)
Egelkrout, D. W.
1981-01-01
Electrostatic bonding of thin cover glass to thin solar cells was researched. Silicon solar cells, wafers, and Corning 7070 glass of from about 0.002" to about 0.003" in thickness were used in the investigation to establish optimum parameters for producing mechanically acceptable bonds while minimizing thermal stresses and resultant solar cell electrical parameter degradation.
Polycrystalline silicon thin-film transistors on quartz fiber
NASA Astrophysics Data System (ADS)
Sugawara, Yuta; Uraoka, Yukiharu; Yano, Hiroshi; Hatayama, Tomoaki; Fuyuki, Takashi; Nakamura, Toshihiro; Toda, Sadayuki; Koaizawa, Hisashi; Mimura, Akio; Suzuki, Kenkichi
2007-11-01
We demonstrate the fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on a thin quartz fiber for the first time. The poly-Si used in the active layer of the TFTs was prepared by excimer laser annealing of an amorphous Si thin film deposited on the fiber. Top-gated TFTs were fabricated on the fiber, and a field effect mobility of 10cm2/Vs was obtained. The proposed TFTs on a thin quartz fiber, named fiber TFTs, have potential application in microelectronic devices using TFTs fabricated on one-dimensional substrates.
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip
Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.
2016-01-01
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424
Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells
NASA Astrophysics Data System (ADS)
Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan
2018-04-01
A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.
Light-induced V{sub oc} increase and decrease in high-efficiency amorphous silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuckelberger, M., E-mail: michael.stuckelberger@epfl.ch; Riesen, Y.; Despeisse, M.
High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (V{sub oc}) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the V{sub oc} increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both themore » p-layer—causing a V{sub oc} increase—and in the intrinsic absorber layer, causing a V{sub oc} decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed V{sub oc} enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.« less
FDTD modeling of solar energy absorption in silicon branched nanowires.
Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen
2013-05-06
Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.
Method of preparing high-temperature-stable thin-film resistors
Raymond, L.S.
1980-11-12
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
Method of preparing high-temperature-stable thin-film resistors
Raymond, Leonard S.
1983-01-01
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping
NASA Astrophysics Data System (ADS)
Kwon, Youngim; Yang, Changyol; Yoon, Sang-Hwa; Um, Han-Don; Lee, Jung-Ho; Yoo, Bongyoung
2013-11-01
A major goal in solar cell research is to reduce the cost of the final module. Reducing the thickness of the crystalline silicon substrate to several tens of micrometers can reduce material costs. In this work, we describe the electrodeposition of a Ni-P alloy, which induces high stress in the silicon substrate at room temperature. The induced stress enables lift-off of the thin-film silicon substrate. After lift-off of the thin Si film, the mother substrate can be reused, reducing material costs. Moreover, the low-temperature process expected to be improved Si substrate quality.
NASA Astrophysics Data System (ADS)
Franken, R. H.-J.
2006-09-01
With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes at this surface. Additionally, we show that we can control the lateral feature sizes and obtain an optimized roughness for light scattering. With this new knowledge we were able to indicate the influence of the surface plasmon absorption of the textured Ag layers on the current enhancement and recognize this effect as one of the limiting factors to the current increase in thin film solar cells. Finally we present the dark and light current voltage (J-V) parameters of muc-Si:H solar cells as a function of the rms roughness of the substrate. We show that increased roughness can result in an increased defect density of the absorbing silicon layer (i layer), which limits the current collection in the solar cell. The presented research gives better understanding of the effect of TCOs and textured interfaces on light trapping and current enhancement in thin film silicon solar cells. The thesis explains some fundamental insights in light scattering and reveals some material and morphology features that are dominantly limiting the current generation in muc-Si:H solar cells deposited on light scattering back reflectors. Furthermore, it presents a method to obtain optimized back scattering contacts at deposition temperatures below 300 oC, which opens the possibility for the use of heat resistant plastic substrates. We improved the muc-Si:H solar cell efficiency with flat back reflectors from 4.5 % and 14.6 mA/cm2 to 8.5 % and 23.4 mA/cm2 with the use of optimized back reflectors.
Proust, Julien; Fehrembach, Anne-Laure; Bedu, Frédéric; Ozerov, Igor; Bonod, Nicolas
2016-01-01
Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence. PMID:27109643
BIMOS transistor solutions for ESD protection in FD-SOI UTBB CMOS technology
NASA Astrophysics Data System (ADS)
Galy, Philippe; Athanasiou, S.; Cristoloveanu, S.
2016-01-01
We evaluate the Electro-Static Discharge (ESD) protection capability of BIpolar MOS (BIMOS) transistors integrated in ultrathin silicon film for 28 nm Fully Depleted SOI (FD-SOI) Ultra Thin Body and BOX (UTBB) high-k metal gate technology. Using as a reference our measurements in hybrid bulk-SOI structures, we extend the BIMOS design towards the ultrathin silicon film. Detailed study and pragmatic evaluations are done based on 3D TCAD simulation with standard physical models using Average Current Slope (ACS) method and quasi-static DC stress (Average Voltage Slope AVS method). These preliminary 3D TACD results are very encouraging in terms of ESD protection efficiency in advanced FD-SOI CMOS.
Simulation, design and fabrication of a planar micro thermoelectric generator
NASA Astrophysics Data System (ADS)
Pelegrini, S.; Adami, A.; Collini, C.; Conci, P.; Lorenzelli, L.; Pasa, A. A.
2013-05-01
This study describes the design, simulation, and micro fabrication of a micro thermoelectric generator (μTEG) based on planar technology using constantan (CuNi) and copper (Cu) thermocouples deposited electrochemically (ECD) on silicon substrate. The present thin film technology can be manufactured into large area and also on flexible substrate with low cost of production and can be used to exploit waste heat from equipments or hot surfaces in general. In the current implementation, the silicon structure has been designed and optimized with analytical models and FE simulations in order to exploit the different thermal conductivity of silicon and air gaps to produce the maximum temperature difference on a planar surface. The results showed that a temperature difference of 10K across the structure creates a temperature difference of 5.3K on the thermocouples, thus providing an efficiency of thermal distribution up to 55%, depending on the heat convection at the surface. Efficiency of module has been experimentally tested under different working condition, showing the dependence of module output on the external heat exchange (natural and forced convection). Maximum generated potential at 6m/s airflow is 5.7V/m2 K and thermoelectric efficiency is 1.9μW K-2 m-2.
Direct band gap silicon crystals predicted by an inverse design method
NASA Astrophysics Data System (ADS)
Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo
2015-03-01
Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).
Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.
1992-01-01
In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.
NASA Astrophysics Data System (ADS)
Oulachgar, El Hassane
As the semiconductors industry is moving toward nanodevices, there is growing need to develop new materials and thin films deposition processes which could enable strict control of the atomic composition and structure of thin film materials in order to achieve precise control on their electrical and optical properties. The accurate control of thin film characteristics will become increasingly important as the miniaturization of semiconductor devices continue. There is no doubt that chemical synthesis of new materials and their self assembly will play a major role in the design and fabrication of next generation semiconductor devices. The objective of this work is to investigate the chemical vapor deposition (CVD) process of thin film using a polymeric precursor as a source material. This process offers many advantages including low deposition cost, hazard free working environment, and most importantly the ability to customize the polymer source material through polymer synthesis and polymer functionalization. The combination between polymer synthesis and CVD process will enable the design of new generation of complex thin film materials with a wide range of improved chemical, mechanical, electrical and optical properties which cannot be easily achieved through conventional CVD processes based on gases and small molecule precursors. In this thesis we mainly focused on polysilanes polymers and more specifically poly(dimethylsilanes). The interest in these polymers is motivated by their distinctive electronic and photonic properties which are attributed to the delocalization of the sigma-electron along the Si-Si backbone chain. These characteristics make polysilane polymers very promising in a broad range of applications as a dielectric, a semiconductor and a conductor. The polymer-based CVD process could be eventually extended to other polymer source materials such as polygermanes, as well as and a variety of other inorganic and hybrid organic-inorganic polymers. This work has demonstrated that a polysilane polymeric source can be used to deposit a wide range of thin film materials exhibiting similar properties with conventional ceramic materials such as silicon carbide (SiC), silicon oxynitride (SiON), silicon oxycarbide (SiOC) silicon dioxide (SiO2) and silicon nitride (Si3N4). The strict control of the deposition process allows precise control of the electrical, optical and chemical properties of polymer-based thin films within a broad range. This work has also demonstrated for the first time that poly(dimethylsilmaes) polymers deposited by CVD can be used to effectively passivate both silicon and gallium arsenide MOS devices. This finding makes polymer-based thin films obtained by CVD very promising for the development of high-kappa dielectric materials for next generation high-mobility CMOS technology. Keywords. Thin films, Polymers, Vapor Phase Deposition, CVD, Nanodielectrics, Organosilanes, Polysilanes, GaAs Passivation, MOSFET, Silicon Oxynitride, Integrated Waveguide, Silicon Carbide, Compound Semiconductors.
Light Trapping for Silicon Solar Cells: Theory and Experiment
NASA Astrophysics Data System (ADS)
Zhao, Hui
Crystalline silicon solar cells have been the mainstream technology for photovoltaic energy conversion since their invention in 1954. Since silicon is an indirect band gap material, its absorption coefficient is low for much of the solar spectrum, and the highest conversion efficiencies are achieved only in cells that are thicker than about 0.1 mm. Light trapping by total internal reflection is important to increase the optical absorption in silicon layers, and becomes increasingly important as the layers are thinned. Light trapping is typically characterized by the enhancement of the absorptance of a solar cell beyond the value for a single pass of the incident beam through an absorbing semiconductor layer. Using an equipartition argument, in 1982 Yablonovitch calculated an enhancement of 4n2 , where n is the refractive index. We have extracted effective light-trapping enhancements from published external quantum efficiency spectra in several dozen silicon solar cells. These results show that this "thermodynamic" enhancement has never been achieved experimentally. The reasons for incomplete light trapping could be poor anti-reflection coating, inefficient light scattering, and parasitic absorption. We report the light-trapping properties of nanocrystalline silicon nip solar cells deposited onto two types of Ag/ZnO backreflectors at United Solar Ovonic, LLC. We prepared the first type by first making silver nanparticles onto a stainless steel substrate, and then overcoating the nanoparticles with a second silver layer. The second type was prepared at United Solar using a continuous silver film. Both types were then overcoated with a ZnO film. The root mean square roughness varied from 27 to 61 nm, and diffuse reflectance at 1000 nm wavelength varied from 0.4 to 0.8. The finished cells have a thin, indium-tin oxide layer on the top that acts as an antireflection coating. For both backreflector types, the short-circuit photocurrent densities J SC for solar illumination were about 25 mA/cm2 for 1.5 micron cells. We also measured external quantum efficiency spectra and optical reflectance spectra, which were only slightly affected by the back reflector morphology. We performed a thermodynamic calculation for the optical absorptance in the silicon layer and the top oxide layer to explain the experimental results; the calculation is an extension of previous work by Stuart and Hall that incorporates the antireflection properties and absorption in the top oxide film. From our calculations and experimental measurements, we concluded that parasitic absorption in this film is the prominent reason for incomplete light trapping in these cells. To reduce the optical parasitic loss in the top oxide layer, we propose a bilayer design, and show the possible benefits to the photocurrent density.
Development of a thin scintillation films fission-fragment detector and a novel neutron source
NASA Astrophysics Data System (ADS)
Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.
2015-08-01
Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruby, Douglas Scott; Murphy, Brian; Meakin, David
2008-08-01
Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistancemore » power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.« less
Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation
NASA Astrophysics Data System (ADS)
Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere
2016-12-01
Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.
NASA Astrophysics Data System (ADS)
Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.
2016-08-01
Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.
NASA Astrophysics Data System (ADS)
Guo, L. Jay
2015-10-01
This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015
Floating substrate process: Large-area silicon sheet task low-cost solar array project
NASA Technical Reports Server (NTRS)
Garfinkel, M.; Hall, R. N.
1978-01-01
Supercooling of silicon-tin alloy melts was studied. Values as high as 78 C at 1100 C and 39 C at 1200 C were observed, corresponding to supersaturation parameter values 0.025 and 0.053 at 1050 C and 1150 C, respectively. The interaction of tin with silane gas streams was investigated over the temperature range 1000 to 1200 C. Single-pass conversion efficiencies exceeding 30% were obtained. The growth habit of spontaneously-nucleated surface growth was determined to be consistent with dendritic and web growth from singly-twinned triangular nucleii. Surface growth of interlocking silicon crystals, thin enough to follow the surface of the liquid and with growth velocity as high as 5 mm/min, was obtained. Large area single-crystal growth along the melt surface was not achieved. Small single-crystal surface growth was obtained which did not propagate beyond a few millimeters.
Kanda, Hiroyuki; Uzum, Abdullah; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2016-12-14
Engineering of photonics for antireflection and electronics for extraction of the hole using 2.5 nm of a thin Au layer have been performed for two- and four-terminal tandem solar cells using CH 3 NH 3 PbI 3 perovskite (top cell) and p-type single crystal silicon (c-Si) (bottom cell) by mechanically stacking. Highly transparent connection multilayers of evaporated-Au and sputtered-ITO films were fabricated at the interface to be a point-contact tunneling junction between the rough perovskite and flat silicon solar cells. The mechanically stacked tandem solar cell with an optimized tunneling junction structure was ⟨perovskite for the top cell/Au (2.5 nm)/ITO (154 nm) stacked-on ITO (108 nm)/c-Si for the bottom cell⟩. It was confirmed the best efficiency of 13.7% and 14.4% as two- and four-terminal devices, respectively.
Linear integrated optics in 3C silicon carbide.
Martini, Francesco; Politi, Alberto
2017-05-15
The development of new photonic materials that combine diverse optical capabilities is needed to boost the integration of different quantum and classical components within the same chip. Amongst all candidates, the superior optical properties of cubic silicon carbide (3C SiC) could be merged with its crystalline point defects, enabling single photon generation, manipulation and light-matter interaction on a single device. The development of photonics devices in SiC has been limited by the presence of the silicon substrate, over which thin crystalline films are heteroepitaxially grown. By employing a novel approach in the material fabrication, we demonstrate grating couplers with coupling efficiency reaching -6 dB, sub-µm waveguides and high intrinsic quality factor (up to 24,000) ring resonators. These components are the basis for linear optical networks and essential for developing a wide range of photonics component for non-linear and quantum optics.
Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun
2016-12-01
Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.
CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.
Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A
2016-09-01
A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kunii, Masafumi
2009-11-01
An analysis is presented of the hot-carrier degradation in a polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon oxynitride gate dielectric formed with plasma-enhanced chemical vapor deposition. An introduction of silicon oxynitride into a gate dielectric significantly improves hot-carrier immunity even under the severe stressing mode of drain avalanche hot carriers. To compensate the initial negative shift of threshold voltage for TFTs with a silicon oxynitride gate dielectric, high-pressure water vapor annealing (HWA) is applied. A comparison of TFTs with and without HWA reveals that the improvement in hot-carrier immunity is mainly attributed to the introduction of Si≡N bonds into a gate dielectric.
Optical designs for improved solar cell performance
NASA Astrophysics Data System (ADS)
Kosten, Emily Dell
The solar resource is the most abundant renewable resource on earth, yet it is currently exploited with relatively low efficiencies. To make solar energy more affordable, we can either reduce the cost of the cell or increase the efficiency with a similar cost cell. In this thesis, we consider several different optical approaches to achieve these goals. First, we consider a ray optical model for light trapping in silicon microwires. With this approach, much less material can be used, allowing for a cost savings. We next focus on reducing the escape of radiatively emitted and scattered light from the solar cell. With this angle restriction approach, light can only enter and escape the cell near normal incidence, allowing for thinner cells and higher efficiencies. In Auger-limited GaAs, we find that efficiencies greater than 38% may be achievable, a significant improvement over the current world record. To experimentally validate these results, we use a Bragg stack to restrict the angles of emitted light. Our measurements show an increase in voltage and a decrease in dark current, as less radiatively emitted light escapes. While the results in GaAs are interesting as a proof of concept, GaAs solar cells are not currently made on the production scale for terrestrial photovoltaic applications. We therefore explore the application of angle restriction to silicon solar cells. While our calculations show that Auger-limited cells give efficiency increases of up to 3% absolute, we also find that current amorphous silicion-crystalline silicon heterojunction with intrinsic thin layer (HIT) cells give significant efficiency gains with angle restriction of up to 1% absolute. Thus, angle restriction has the potential for unprecedented one sun efficiencies in GaAs, but also may be applicable to current silicon solar cell technology. Finally, we consider spectrum splitting, where optics direct light in different wavelength bands to solar cells with band gaps tuned to those wavelengths. This approach has the potential for very high efficiencies, and excellent annual power production. Using a light-trapping filtered concentrator approach, we design filter elements and find an optimal design. Thus, this thesis explores silicon microwires, angle restriction, and spectral splitting as different optical approaches for improving the cost and efficiency of solar cells.
Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Beheim, Glenn
1997-01-01
A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.
Thin-film reliability and engineering overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Thin-film reliability and engineering overview
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1984-10-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Active pixel sensor array as a detector for electron microscopy.
Milazzo, Anna-Clare; Leblanc, Philippe; Duttweiler, Fred; Jin, Liang; Bouwer, James C; Peltier, Steve; Ellisman, Mark; Bieser, Fred; Matis, Howard S; Wieman, Howard; Denes, Peter; Kleinfelder, Stuart; Xuong, Nguyen-Huu
2005-09-01
A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.
High efficiency epitaxial GaAs/GaAs and GaAs/Ge solar cell technology using OM/CVD
NASA Technical Reports Server (NTRS)
Wang, K. L.; Yeh, Y. C. M.; Stirn, R. J.; Swerdling, S.
1980-01-01
A technology for fabricating high efficiency, thin film GaAs solar cells on substrates appropriate for space and/or terrestrial applications was developed. The approach adopted utilizes organometallic chemical vapor deposition (OM-CVD) to form a GaAs layer epitaxially on a suitably prepared Ge epi-interlayer deposited on a substrate, especially a light weight silicon substrate which can lead to a 300 watt per kilogram array technology for space. The proposed cell structure is described. The GaAs epilayer growth on single crystal GaAs and Ge wafer substrates were investigated.
Process for coating an object with silicon carbide
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1989-01-01
A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Piper, Daniela M.; Gu, Meng
Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, whichmore » essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.« less
Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion
NASA Astrophysics Data System (ADS)
Kim, Jong Cheol; Kim, Jongsik; Xin, Yan; Lee, Jinhyung; Kim, Young-Gyun; Subhash, Ghatu; Singh, Rajiv K.; Arjunan, Arul C.; Lee, Haigun
2018-05-01
The continuous demand on miniaturized electronic circuits bearing high power density illuminates the need to modify the silicon-on-insulator-based chip architecture. This is because of the low thermal conductivity of the few hundred nanometer-thick insulator present between the silicon substrate and active layers. The thick insulator is notorious for releasing the heat generated from the active layers during the operation of devices, leading to degradation in their performance and thus reducing their lifetime. To avoid the heat accumulation, we propose a method to fabricate the silicon-on-diamond (SOD) microstructure featured by an exceptionally thin silicon oxycarbide interlayer (˜3 nm). While exploiting the diamond as an insulator, we employ spark plasma sintering to render the silicon directly fused to the diamond. Notably, this process can manufacture the SOD microarchitecture via a simple/rapid way and incorporates the ultra-thin interlayer for minute thermal resistance. The method invented herein expects to minimize the thermal interfacial resistance of the devices and is thus deemed as a breakthrough appealing to the current chip industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.
In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate withoutmore » treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.« less
Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices
Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F.; Ross, Caroline A.
2013-01-01
Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates. PMID:28788379
In-depth analysis of chloride treatments for thin-film CdTe solar cells
Major, J. D.; Al Turkestani, M.; Bowen, L.; ...
2016-10-24
CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directlymore » to chlorine incorporation at the grain boundaries. Lastly, this suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies.« less
Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-12-01
Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".
Low emissivity high-temperature tantalum thin film coatings for silicon devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinnerbauer, Veronika; Senkevich, Jay J.; Joannopoulos, John D.
The authors study the use of thin ( ~230 nm ) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation loss, which is one of the dominant loss mechanisms at high temperatures (above 700 °C ). The key factors to achieve such a coating are low emissivity in the near infrared and superior thermal stability at high operating temperatures. The authors investigated the emissivity of Ta coatings deposited on Si with respect to deposition parameters, and annealing conditions, and temperature. The authors found thatmore » after annealing at temperatures ≥900 °C the emissivity in the near infrared ( 1–3 μm ) was reduced by a factor of 2 as compared to bare Si. In addition, the authors measured thermal emission at temperatures from 700 to 1000 °C , which is stable up to a heater temperature equal to the annealing temperature. Furthermore, Auger electron spectroscopy profiles of the coatings before and after annealing were taken to evaluate thermal stability. A thin (about 70 nm) Ta₂O₅ layer was found to act as an efficient diffusion barrier between the Si substrate and the Ta layer to prevent Si diffusion.« less
Cho, Heesook; Yoo, Hana; Park, Soojin
2010-05-18
Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.
Nanostructure iron-silicon thin film deposition using plasma focus device
NASA Astrophysics Data System (ADS)
Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.
2013-03-01
The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample
Method of manufacturing a hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2017-02-07
A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.
Experimental evidence of trap level modulation in silicon nitride thin films by hydrogen annealing
NASA Astrophysics Data System (ADS)
Seki, Harumi; Kamimuta, Yuuichi; Mitani, Yuichiro
2018-06-01
The energy level of electron traps in silicon nitride (SiN x ) thin films was investigated by discharging current transient spectroscopy (DCTS). Results indicate that the trap level of the SiN x thin films becomes deeper with decreasing composition (N/Si) and shallower after hydrogen annealing. The dependence of the trap level on the SiN x composition and the modulation of the trap level by hydrogen annealing are possibly related to the change in the number of Si–H bonds in the SiN x thin films.
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.
1990-01-01
Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.
Three-dimensional photonic crystals as intermediate filter for thin-film tandem solar cells
NASA Astrophysics Data System (ADS)
Bielawny, Andreas; Miclea, Paul T.; Wehrspohn, Ralf B.; Lee, Seung-Mo; Knez, Mato; Rockstuhl, Carsten; Lisca, Marian; Lederer, Falk L.; Carius, Reinhard
2008-04-01
The concept of a 3D photonic crystal structure as diffractive and spectrally selective intermediate filter within 'micromorphous' (a-Si/μc-Si) tandem solar cells has been investigated numerically and experimentally. Our device aims for the enhancement of the optical pathway of incident light within the amorphous silicon top cell in its spectral region of low absorption. From our previous simulations, we expect a significant improvement of the tandem cell efficiency of about absolutely 1.3%. This increases the efficiency for a typical a-Si / μc-Si tandem cell from 11.1% to 12.4%, as a result of the optical current-matching of the two junctions. We suggest as wavelength-selective optical element a 3D-structured optical thin-film, prepared by self-organized artificial opal templates and replicated with atomic layer deposition. The resulting samples are highly periodic thin-film inverted opals made of conducting and transparent zinc-oxide. We describe the fabrication processes and compare experimental data on the optical properties in reflection and transmission with our simulations and photonic band structure calculations.
NASA Astrophysics Data System (ADS)
Duggirala, Rajesh; Li, Hui; Lal, Amit
2008-04-01
We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.
Characterization of TimepixCam, a fast imager for the time-stamping of optical photons
NASA Astrophysics Data System (ADS)
Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.; Janoska, Z.; Takacs, P.; Tsang, T.
2017-01-01
We describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430-900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. Sensors with the thinnest window, 50 nm, had the best performance.
Lamb wave propagation in monocrystalline silicon wafers.
Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard
2018-01-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.
FISCHER, GUILLAUME; DRAHI, ETIENNE; FOLDYNA, MARTIN; GERMER, THOMAS A.; JOHNSON, ERIK V.
2018-01-01
Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping. PMID:29220984
Magneto-optical Kerr rotation and color in ultrathin lossy dielectric
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na
2017-05-01
Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.
Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye
2016-01-01
In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974
NASA Technical Reports Server (NTRS)
Singh, M.
1998-01-01
A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.
Study of the Staebler-Wronski degradation effect in a-Si:H based p-i-n solar cell
NASA Technical Reports Server (NTRS)
Naseem, H. A.; Brown, W. D.; Ang, S. S.
1993-01-01
Conversion of solar energy into electricity using environmentally safe and clean photovoltaic methods to supplement the ever increasing energy needs has been a cherished goal of many scientists and engineers around the world. Photovoltaic solar cells on the other hand, have been the power source for satellites ever since their introduction in the early sixties. For widespread terrestrial applications, however, the cost of photovoltaic systems must be reduced considerably. Much progress has been made in the recent past towards developing economically viable terrestrial systems, and the future looks highly promising. Thin film solar cells offer cost reductions mainly from their low processing cost, low material cost, and choice of low cost substrates. These are also very attractive for space applications because of their high power densities (power produced per kilogram of solar cell pay load) and high radiation resistance. Amorphous silicon based solar cells are amongst the top candidates for economically viable terrestrial and space based power generation. Despite very low federal funding during the eighties, amorphous silicon solar cell efficiencies have continually been improved - from a low 3 percent to over 13 percent now. Further improvements have been made by the use of multi-junction tandem solar cells. Efficiencies close to 15 percent have been achieved in several labs. In order to be competitive with fossil fuel generated electricity, it is believed that module efficiency of 15 percent or cell efficiency of 20 percent is required. Thus, further improvements in cell performance is imperative. One major problem that was discovered almost 15 years ago in amorphous silicon devices is the well known Staebler-Wronski Effect. Efficiency of amorphous silicon solar cells was found to degrade upon exposure to sunlight. Until now their is no consensus among the scientists on the mechanism for this degradation. Efficiency may degrade anywhere from 10 percent to almost 50 percent within the first few months of operation. In order to improve solar cell efficiencies, it is clear that the cause or causes of such degradation must be found and the processing conditions altered to minimize the loss in efficiency. This project was initiated in 1987 to investigate a possible link between metallic impurities, in particular, Ag, and this degradation. Such a link was established by one of the NASA scientists for the light induced degradation of n+/p crystalline silicon solar cells.
2018-01-01
Most photoanodes commonly applied in solar fuel research (e.g., of Fe2O3, BiVO4, TiO2, or WO3) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%. PMID:29780886
Converting a carbon preform object to a silicon carbide object
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1990-01-01
A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.
Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade
NASA Astrophysics Data System (ADS)
Centis Vignali, M.
2015-02-01
The high-luminosity upgrade of the Large Hadron Collider foreseen for 2023 resulted on the decision to replace the tracker system of the CMS experiment. The innermost layer of the new pixel detector will experience fluences in the order of phieq ≈ 1016 cm-2 and a dose of ≈ 5 MGy after an integrated luminosity of 3000 fb-1. Several materials and designs are under investigation in order to build a detector that can withstand such high fluences. Thin planar silicon sensors are good candidates to achieve this goal since the degradation of the signal produced by traversing particles is less severe than for thicker devices. A study has been carried out in order to characterize highly irradiated planar epitaxial silicon sensors with an active thickness of 100 μm. The investigation includes pad diodes and strip detectors irradiated up to a fluence of phieq = 1.3 × 1016 cm-2, and 3 × 1015 cm-2, respectively. The electrical properties of diodes have been characterized using laboratory measurements, while measurements have been carried out at the DESY II test beam facility to characterize the charge collection of the strip detectors. A beam telescope has been used to determine precisely the impact position of beam particles on the sensor. This allows the unbiased extraction of the charge deposited in the strip sensor and good identification of the noise. In this paper, the results obtained for p-bulk sensors are shown. The charge collection efficiency of the strip sensors is 90% at 1000 V after a fluence of phieq = 3 × 1015 cm-2. The irradiated diodes show charge multiplication effects. The impact of the threshold applied to a detector on its efficiency is also discussed.
Nanoporous membrane device for ultra high heat flux thermal management
NASA Astrophysics Data System (ADS)
Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.
2018-02-01
High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.
Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K.; Shelke, Manjusha V.
2014-01-01
One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm2 at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%. PMID:24810865
Light trapping in thin-film solar cells measured by Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledinský, M., E-mail: ledinsky@fzu.cz; Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering; Moulin, E.
2014-09-15
In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (μc-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442 nm, 514 nm, 633 nm, and 785 nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the μc-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infraredmore » wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the μc-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.« less
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833
Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.
Kayes, Md Imrul; Leu, Paul W
2014-01-01
Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).
NASA Astrophysics Data System (ADS)
Li, Hongbo
2007-09-01
With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the change in layer crystallinity during the growth of the c-Si:H i-layer. For PECVD deposited cells, it is often found that the layer crystallinity is enhanced with increasing film thickness. We found for Hot-wire deposited cells, however, the opposite development in material structure: the material becomes amorphous near the end of the deposition. This results in a deterioration of cell performance. We therefore introduce a so-called H2 reverse profiling technique, in which H2 is increased during the c-Si:H i-layer deposition. With this technique, a cell with an efficiency of 8.5% has been reached, which is in line with the best reported PECVD cells deposited on the same type of substrate. In the literature, carrier transport in c-Si:H cells has been a topic for debate. In this thesis, we present our finding of photogating effect on the spectral response of c-Si:H solar cells. When measured under coloured bias light, the apparent quantum efficiency value of a c-Si:H cell can be largely enhanced. This phenomenon is a typical result of trapping induced field modification in the bulk of a drift type solar cell. The discovery of this phenomenon has experimentally proved that field-driven transport to a large extend exist in a c-Si:H solar cell.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
Tiguntseva, E; Chebykin, A; Ishteev, A; Haroldson, R; Balachandran, B; Ushakova, E; Komissarenko, F; Wang, H; Milichko, V; Tsypkin, A; Zuev, D; Hu, W; Makarov, S; Zakhidov, A
2017-08-31
Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites. Here we use low-loss high-refractive-index dielectric (silicon) nanoparticles for improving the optical properties of organo-metallic perovskite (MAPbI 3 ) films and metasurfaces to achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally a 50% enhancement of photoluminescence intensity from a perovskite layer with silicon nanoparticles and 200% enhancement for a nanoimprinted metasurface with silicon nanoparticles on top. Strong increase in light absorption is also demonstrated and described by theoretical calculations. Since both silicon nanoparticle fabrication/deposition and metasurface nanoimprinting techniques are low-cost, we believe that the developed all-dielectric approach paves the way to novel scalable and highly effective designs of perovskite based metadevices.
Graphene synthesized on porous silicon for active electrode material of supercapacitors
NASA Astrophysics Data System (ADS)
Su, B. B.; Chen, X. Y.; Halvorsen, E.
2016-11-01
We present graphene synthesized by chemical vapour deposition under atmospheric pressure on both porous nanostructures and flat wafers as electrode scaffolds for supercapacitors. A 3nm thin gold layer was deposited on samples of both porous and flat silicon for exploring the catalytic influence during graphene synthesis. Micro-four-point probe resistivity measurements revealed that the resistivity of porous silicon samples was nearly 53 times smaller than of the flat silicon ones when all the samples were covered by a thin gold layer after the graphene growth. From cyclic voltammetry, the average specific capacitance of porous silicon coated with gold was estimated to 267 μF/cm2 while that without catalyst layer was 145μF/cm2. We demonstrated that porous silicon based on nanorods can play an important role in graphene synthesis and enable silicon as promising electrodes for supercapacitors.
Optimization of hybrid organic/inorganic poly(3-hexylthiophene-2,5-diyl)/silicon solar cells
NASA Astrophysics Data System (ADS)
Weingarten, Martin; Sanders, Simon; Stümmler, Dominik; Pfeiffer, Pascal; Vescan, Andrei; Kalisch, Holger
2016-04-01
In the last years, hybrid organic/silicon solar cells have attracted great interest in photovoltaic research due to their potential to become a low-cost alternative for the conventionally used silicon pn-junction solar cells. This work is focused on hybrid solar cells based on the polymer poly(3-hexylthiophene-2,5-diyl), which was deposited on n-doped crystalline silicon via spin-coating under ambient conditions. By employing an anisotropic etching step with potassium hydroxide (KOH), the reflection losses at the silicon surface were reduced. Hereby, the short-circuit current density of the hybrid devices was increased by 31%, leading to a maximum power conversion efficiency (PCE) of 13.1% compared to a PCE of 10.7% for the devices without KOH etching. In addition, the contacts were improved by replacing gold with the more conductive silver as top grid material to reduce the contact resistance and by introducing a thin (˜0.5 nm) lithium fluoride layer between the silicon and the aluminum backside contact to improve electron collection and hole blocking. Hereby, the open-circuit voltage and the fill factor of the hybrid solar cells were further improved and devices with very high PCE up to 14.2% have been realized.
Simulation optimizing of n-type HIT solar cells with AFORS-HET
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Shaoqing; Zhang, Xiumei; Gu, Xiaofeng
2017-07-01
This paper presents a study of heterojunction with intrinsic thin layer (HIT) solar cells based on n-type silicon substrates by a simulation software AFORS-HET. We have studied the influence of thickness, band gap of intrinsic layer and defect densities of every interface. Details in mechanisms are elaborated as well. The results show that the optimized efficiency reaches more than 23% which may give proper suggestions to practical preparation for HIT solar cells industry.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.
Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Choong, G.; Vallat-Sauvain, E.; Multone, X.; Fesquet, L.; Kroll, U.; Meier, J.
2013-06-01
Wedge-polished thin film microcrystalline silicon solar cells are prepared and used for micro-Raman measurements. Thereby, the variations of the Raman crystallinity with depth are accessed easily. Depth resolution limits of the measurement set-up are established and calculations evidencing the role of optical limits are presented. Due to this new technique, Raman crystallinity profiles of two microcrystalline silicon cells give first hints for the optimization of the profile leading to improved electrical performance of such devices.
Silicon superlattices. 2: Si-Ge heterostructures and MOS systems
NASA Technical Reports Server (NTRS)
Moriarty, J. A.
1983-01-01
Five main areas were examined: (1) the valence-and conduction-band-edge electronic structure of the thin layer ( 11 A) silicon-superlattice systems; (2) extension of thin-layer calculations to layers of thickness 11 A, where most potential experimental interest lies; (3) the electronic structure of thicker-layer (11 to 110 A) silicon superlattices; (4) preliminary calculations of impurity-scattering-limited electron mobility in the thicker-layer superlattices; and (5) production of the fine metal lines that would be required to produce on MOS superlattice.
Method of fabrication of display pixels driven by silicon thin film transistors
Carey, Paul G.; Smith, Patrick M.
1999-01-01
Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Feng; Spring, Andrew M.; Sato, Hiromu
2015-09-21
Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that ofmore » the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.« less
Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films
Ashok, Akarapu; Pal, Prem
2014-01-01
Silicon dioxide (SiO2) thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs) and microelectromechanical systems (MEMS). Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics. PMID:24672287
Direct glass bonded high specific power silicon solar cells for space applications
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Rand, J. A.; Cummings, J. R.; Lampo, S. M.; Shreve, K. P.; Barnett, Allen M.
1991-01-01
A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications.
Solar Cells for Lunar Application
NASA Technical Reports Server (NTRS)
Freundlich, Alex; Ignatiev, Alex
1997-01-01
In this work a preliminary study of the vacuum evaporation of silicon extracted from the lunar regolith has been undertaken. An electron gun vacuum evaporation system has been adapted for this purpose. Following the calibration of the system using ultra high purity silicon deposited on Al coated glass substrates, thin films of lunar Si were evaporated on a variety of crystalline substrates as well as on glass and lightweight 1 mil (25 microns) Al foil. Extremely smooth and featureless films with essentially semiconducting properties were obtained. Optical absorption analysis sets the bandgap (about 1.1 eV) and the refractive index (n=3.5) of the deposited thin films close to that of crystalline silicon. Secondary ion mass spectroscopy and energy dispersive spectroscopy analysis indicated that these films are essentially comparable to high purity silicon and that the evaporation process resulted in a substantial reduction of impurity levels. All layers exhibited a p-type conductivity suggesting the presence of a p-type dopant in the fabricated layers. While the purity of the 'lunar waste material' is below that of the 'microelectronic-grade silicon', the vacuum evaporated material properties seems to be adequate for the fabrication of average performance Si-based devices such as thin film solar cells. Taking into account solar cell thickness requirements (greater than 10 microns) and the small quantities of lunar material available for this study, solar cell fabrication was not possible. However, the high quality of the optical and electronic properties of evaporated thin films was found to be similar to those obtained using ultra-high purity silicon suggest that thin film solar cell production on the lunar surface with in situ resource utilization may be a viable approach for electric power generation on the moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, Jascha; Potsdam Institute for Climate Impact Research; Lehmann, Sebastian, E-mail: sebastian.lehmann@ftf.lth.se
2014-12-21
Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfacesmore » of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.« less
Thin-film silicon for flexible metal-air batteries.
Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H
2014-12-01
Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semiconductor meta-surface based perfect light absorber
NASA Astrophysics Data System (ADS)
Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi
2017-04-01
We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.
Initial results for the silicon monolithically interconnected solar cell product
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.
1995-01-01
This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.
Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...
2015-08-03
Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less
NASA Technical Reports Server (NTRS)
Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.
1977-01-01
The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.
Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces
NASA Astrophysics Data System (ADS)
Bouabdellaoui, Mohammed; Checcucci, Simona; Wood, Thomas; Naffouti, Meher; Sena, Robert Paria; Liu, Kailang; Ruiz, Carmen M.; Duche, David; le Rouzo, Judikael; Escoubas, Ludovic; Berginc, Gerard; Bonod, Nicolas; Zazoui, Mimoun; Favre, Luc; Metayer, Leo; Ronda, Antoine; Berbezier, Isabelle; Grosso, David; Gurioli, Massimo; Abbarchi, Marco
2018-03-01
We demonstrate a simple self-assembly method based on solid state dewetting of ultrathin silicon films and germanium deposition for the fabrication of efficient antireflection coatings on silicon for light trapping. We fabricate SiGe islands with a high surface density, randomly positioned and broadly varied in size. This allows one to reduce the reflectance to low values in a broad spectral range (from 500 nm to 2500 nm) and a broad angle (up to 55°) and to trap within the wafer a large portion of the impinging light (˜40 % ) also below the band gap, where the Si substrate is nonabsorbing. Theoretical simulations agree with the experimental results, showing that the efficient light coupling into the substrate is mediated by Mie resonances formed within the SiGe islands. This lithography-free method can be implemented on arbitrarily thick or thin SiO2 layers and its duration only depends on the sample thickness and on the annealing temperature.
Alzahly, Shaykha; Yu, LePing; Gibson, Christopher T.
2018-01-01
Molybdenum disulphide (MoS2) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS2 has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS2 with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS2 flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS2 flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm2. This insertion of MoS2 improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2. PMID:29690503
Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh
2017-03-08
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.
Development of a thin scintillation films fission-fragment detector and a novel neutron source
Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...
2015-08-26
Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less
Do photovoltaics have a future
NASA Technical Reports Server (NTRS)
Williams, B. F.
1979-01-01
There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.
Performance study of double SOI image sensors
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Hara, K.; Ikegami, Y.; Kurachi, I.; Nishimura, R.; Ono, S.; Tauchi, K.; Tsuboyama, T.; Yamada, M.
2018-02-01
Double silicon-on-insulator (DSOI) sensors composed of two thin silicon layers and one thick silicon layer have been developed since 2011. The thick substrate consists of high resistivity silicon with p-n junctions while the thin layers are used as SOI-CMOS circuitry and as shielding to reduce the back-gate effect and crosstalk between the sensor and the circuitry. In 2014, a high-resolution integration-type pixel sensor, INTPIX8, was developed based on the DSOI concept. This device is fabricated using a Czochralski p-type (Cz-p) substrate in contrast to a single SOI (SSOI) device having a single thin silicon layer and a Float Zone p-type (FZ-p) substrate. In the present work, X-ray spectra of both DSOI and SSOI sensors were obtained using an Am-241 radiation source at four gain settings. The gain of the DSOI sensor was found to be approximately three times that of the SSOI device because the coupling capacitance is reduced by the DSOI structure. An X-ray imaging demonstration was also performed and high spatial resolution X-ray images were obtained.
Proximity effect assisted absorption enhancement in thin film with locally clustered nanoholes.
Wu, Shaolong; Zhang, Cheng; Li, Xiaofeng; Zhan, Yaohui
2015-03-01
We focus on the light-trapping characteristics of a thin film with locally clustered nanoholes (NHs), considering that the clustering effect is usually encountered in preparing the nanostructures. Our full-wave finite-element simulation indicates that an intentionally introduced clustering effect could be employed for improving the light-trapping performance of the nanostructured thin film. For a 100 nm thick amorphous silicon film, an optimal clustering design with NH diameter of 100 nm is able to double the integrated optical absorption over the solar spectrum, compared to the planar counterpart, as well as show much improved optical performance over that of the nonclustered setup. A further insight into the underlying physics explains the outstanding light-trapping capability in terms of the increased available modes, a stronger power coupling efficiency, a higher fraction of electric field concentrated in absorbable material, and a higher density of photon states.
Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Rayl, G.
1978-01-01
A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.
Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Kuegelgen, T.
In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we believe this furnace will enable us to do so,' says A. Rangappan, founder and CEO of Applied Optical Systems. Rangappan also says it will take only a few minutes for the optical furnace to process a thin-film solar cell, which reduces manufacturing costs. Overall, he estimates the company's solar cell will cost around 80 cents per watt. For manufacturing these thin-film silicon cells, Applied Optical Systems and NREL have developed a partnership through a cooperative research and development agreement (CRADA) to construct an optical furnace system prototype. DOE is providing $500,000 from its Technology Commercialization Development Fund to help offset the prototype's development costs because of the technology's significant market potential. The program has provided the NREL technology transfer office with a total of $4 million to expand such collaborative efforts between NREL researchers and companies. Applied Optical will construct a small version of the optical furnace based on the prototype design in NREL's process development and integration laboratory through a separate CRADA. This small furnace will only develop one solar cell wafer at a time. Then, the company will construct a large, commercial-scale optical furnace at its own facilities, which will turn out around 1,000 solar cell wafers per hour. 'We hope to start using the optical furnace for manufacturing within four to five years,' Rangappan says. Meanwhile, another partnership using the optical furnace has evolved between NREL and SiXtron Advanced Materials, another startup. Together they'll use the optical furnace to optimize the metallization process for novel antireflective solar cell coatings. The process is not only expected to yield higher efficiencies for silicon-based solar cells, but also lowers processing costs and eliminates safety concerns for manufacturers. Most solar cell manufacturers currently use a plasma-enhanced chemical vapor deposition (PECVD) system with compressed and extremely pyrophoric silane gas (SiH4) for applying passivation antireflective coatings (ARC). If silane is exposed to air, the SiH4 will explode - a serious safety issue for high-volume manufacturers. SiXtron's process uses a solid, silicon-based polymer that's converted into noncompressed, nonexplosive gas, which then flows to a standard PECVD system. 'The solid source is so safe to handle that it can be shipped by FedEx,' says Zbigniew Barwicz, president and CEO of SiXtron. Barwicz says manufacturers can use the same PECVD processing equipment for the SiXtron process that they already use for SiH4, a plug-and-play solution. For this novel passivation ARC process, NREL is helping to optimize the metallization parameters. NREL has developed a new technology called optical processing. One of the applications of this process is fire-through contact formation of silicon solar cells.« less
Earth abundant thin film technology for next generation photovoltaic modules
NASA Astrophysics Data System (ADS)
Alapatt, Githin Francis
With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to create a complete MJMT structure to improve the terrestrial commercial PV efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed A. Naseem, Husam H. Abu-Safe
2007-02-09
The purpose of this project was to investigate metal-induced crystallization of amorphous silicon at low temperatures using excitation sources such as laser and rapid thermal annealing, as well as, electric field. Deposition of high quality crystalline silicon at low temperatures allows the use of low cost soda-lime glass and polymeric films for economically viable photovoltaic solar cells and low cost large area flat panel displays. In light of current and expected demands on Si supply due to expanding use of consumer electronic products throughout the world and the incessant demand for electric power the need for developing high grade Simore » thin films on low cost substrate becomes even more important. We used hydrogenated and un-hydrogenated amorphous silicon deposited by plasma enhanced chemical vapor deposition and sputtering techniques (both of which are extensively used in electronic and solar cell industries) to fabricate nano-crystalline, poly-crystalline (small as well as large grain), and single-crystalline (epitaxial) films at low temperatures. We demonstrated Si nanowires on flat surfaces that can be used for fabricating nanometer scale transistors. We also demonstrated lateral crystallization using Al with and without an applied electric field. These results are critical for high mobility thin film transistors (TFT) for large area display applications. Large grain silicon (~30-50 µm grain size for < 0.5 µm thick films) was demonstrated on glass substrates at low temperatures. We also demonstrated epitaxial growth of silicon on (100) Si substrates at temperatures as low as 450°C. Thin film Si solar cells are being projected as the material of choice for low cost high efficiency solar cells when properly coupled with excellent light-trapping schemes. Ar ion laser (CW) was shown to produce dendritic nanowire structures at low power whereas at higher powers yielded continuous polycrystalline films. The power density required for films in contact with Al was demonstrated to be at least two orders of magnitude lower that that reported in the literature before. Polysilicon was successfully achieved on polyimide (Kapton©) films. Thin film Si solar cells on lightweight stoable polymer offer great advantage for terrestrial and space power applications. In summary we have demonstrated through this research the viability of producing low cost nano-, poly-, and epitaxial Si material on substrates of choice for applications in economically viable environmentally friendly sustainable solar power systems. This truly enabling technology has widespread applications in multibillion dollar electronic industry and consumer products.« less
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
2016-03-04
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.
Gan, Qiaoqiang; Bartoli, Filbert J; Kafafi, Zakya H
2013-05-07
Recent advances in molecular organic photovoltaics (OPVs) have shown 10% power conversion efficiency (PCE) for single-junction cells, which put them in direct competition with PVs based on amorphous silicon. Incorporation of plasmonic nanostructures for light trapping in these thin-film devices offers an attractive solution to realize higher-efficiency OPVs with PCE>10%. This article reviews recent progress on plasmonic-enhanced OPV devices using metallic nanoparticles, and one-dimensional (1D) and two-dimensional (2D) patterned periodic nanostructures. We discuss the benefits of using various plasmonic nanostructures for broad-band, polarization-insensitive and angle-independent absorption enhancement, and their integration with one or two electrode(s) of an OPV device. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of TimepixCam, a fast imager for the time-stamping of optical photons
Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.; ...
2017-01-04
Here we describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430–900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. We found sensors with the thinnestmore » window, 50 nm, had the best performance.« less
Characterization of TimepixCam, a fast imager for the time-stamping of optical photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.
Here we describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430–900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. We found sensors with the thinnestmore » window, 50 nm, had the best performance.« less
Silicon-on-Insulator Pin Diodes.
1987-12-01
Thin (0.5 Micron) Silicon-on-Oxidized Silicon Fig. 2.8 SEM Photographs of CVD Silicon Dioxide on Aluminum 28 After 1500 0 C Anneal in Oxygen...silicon nitride over the silicon dioxide encapsu- -9- lation layer and by depositing the silicon dioxide with a plasma CVD process which uses N20 as...relief via thermal expansion matching varies lin- -27- A B Figure 2.8: SEM Photographs of CVD Silicon Dioxide on Aluminum after 15000 C Anneal in Oxygen
1989-01-01
size, weight , power consumption, and radiation hardness, and on software algorithm validity and efficiency. 3. (U) Collection of radar, ctical, and...which have potential to achieve cooling requirements for LWIR sensors with far smaller weight and power penalties. (U) FY1989 Planned Program: o (U...two dollars for every SDI dollar. o (U) Inverted gaili--n arsenide by growing a razor-thin layer of silicon on GaAs and thus cut power loss by two
Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.
1976-01-01
A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.
NASA Astrophysics Data System (ADS)
AL-Zoubi, Omar H.
Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we found that the optical properties of SiNW arrays are strongly affected by the radial diversity, the arrangement of SiNW in a lattice, and the configuration of such lattice. The proper selection of these parameters leads to broaden and enhance the light absorption of the SiNW arrays. Inspired by natural configurations, fractal geometry and diamond lattice structures, we introduced two lattice configurations: fractal-like array (FLA) that is inspired by fractal geometry, and diamond-like array (DLA) that is inspired by diamond crystal lattice structure. Optimization, using parametric analysis, of the introduced arrays parameters for the light absorption level and the amount of used material has been performed. Both of the introduced SiNW arrays show broadband, strong light absorption coupled with reduction of the amount of the used material. DLA in specific showed significantly enhanced absorption covering the entire solar spectrum of interest, where near-unity absorption spectrum could be achieved. We studied the optical properties of complete PVSC devices that are based on SiNW array. Moreover, the performance of PVSC device that is based on SiNW has been investigated by using numerical modeling. SILVACO software package is used for performing the numerical simulation of the PVSC device performance, which can simultaneously handle the different coupled physical mechanisms contributing to the photovoltaic effect. The effect of the geometry of PVSC device that is based on SiNW is investigated, which shows that the geometry of such PVSC has a role in enhancing its electrical properties. The outcome of this study introduces new SiNW array configurations that have enhanced optical properties using a low amount of material that can be utilized for producing higher efficiency thin film PVCS. The overall conclusion of this work is that a weak absorption indirect band gap material, silicon, in the form of properly designed SiNW and SiNC arrays has the potentials to achieve near-unity ideal absorption spectrum using reduced amount of material, which can lead to produce new generation of lower cost and enhanced efficiency thin film PVSC.
Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications
NASA Astrophysics Data System (ADS)
Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha
2018-01-01
Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.
Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules
NASA Astrophysics Data System (ADS)
Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.
2010-09-01
In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Quan, E-mail: wangq@mail.ujs.edu.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Zhang, Yanmin
2013-11-14
Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructuremore » after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.« less
Pilot line report: Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
1978-01-01
Experimental technology advances were implemented to increase the conversion efficiency of ultrathin 2cm x 2cm cells, to demonstrate a capability for fabricating such cells at a rate of 10,000 per month, and to fabricate 200 large-area ultrathin cells to determine their feasibility of manufacture. A production rate of 10,000 50 micron m cells per month with lot average AM0 efficiencies of 11.5% was demonstrated, with peak efficiencies of 13.5% obtained. Losses in most stages of the processing were minimized, the remaining exceptions being in the photolithography and metallization steps for front contact generation and breakage handling. The 5cm x 5cm cells were fabricated with a peak yield in excess of 40% for over 10% AM0 efficiency. Greater fabrication volume is needed to fully evaluate the expected yield and efficiency levels for large cells.
Copper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology
Yeh, Min-Yen; Lei, Po-Hsun; Lin, Shao-Hsein; Yang, Chyi-Da
2016-01-01
Cu2ZnSnS4 (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride (CuCl2), zinc chloride (ZnCl2), tin chloride (SnCl2), and thiourea (SC(NH2)2), whereas the electrical properties of CZTS thin films depend on the annealing temperature and the atomic content ratios of Cu/(Zn + Sn) and Zn/Sn. All of the CZTS films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, and Hall measurements. Furthermore, CZTS thin film was deposited on an n-type silicon substrate by using spin-coating to form an Mo/p-CZTS/n-Si/Al heterostructured solar cell. The p-CZTS/n-Si heterostructured solar cell showed a conversion efficiency of 1.13% with Voc = 520 mV, Jsc = 3.28 mA/cm2, and fill-factor (FF) = 66%. PMID:28773647
Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.
Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J
2009-01-01
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.
NASA Astrophysics Data System (ADS)
Stoldt, Conrad R.; Bright, Victor M.
2006-05-01
A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.
NASA Astrophysics Data System (ADS)
Wang, Chenlei
The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to control the solidification interface of Cz system by adjusting heater powers. For the EFG system, parametric studies are performed to discuss the effect of several growth parameters including window opening size, argon gas flow rate and growth thermal environment on the temperature distribution, silicon tube thickness and pulling rate. Two local models are developed and integrated with the global model to investigate the detailed transport phenomena in a small region around the solidification interface including silicon crystal, silicon melt, free surface, liquid-solid interface and graphite die design. Different convection forms are taken into consideration.
Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules
NASA Technical Reports Server (NTRS)
Mesch, H. G.
1984-01-01
The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).
Sano, Yasuhisa; Yamamura, Kazuya; Mimura, Hidekazu; Yamauchi, Kazuto; Mori, Yuzo
2007-08-01
Metal-oxide semiconductor field-effect transistors fabricated on a silicon-on-insulator (SOI) wafer operate faster and at a lower power than those fabricated on a bulk silicon wafer. Scaling down, which improves their performances, demands thinner SOI wafers. In this article, improvement on the thinning of SOI wafers by numerically controlled plasma chemical vaporization machining (PCVM) is described. PCVM is a gas-phase chemical etching method in which reactive species generated in atmospheric-pressure plasma are used. Some factors affecting uniformity are investigated and methods for improvements are presented. As a result of thinning a commercial 8 in. SOI wafer, the initial SOI layer thickness of 97.5+/-4.7 nm was successfully thinned and made uniform at 7.5+/-1.5 nm.
Silicone substrate with in situ strain relief for stretchable thin-film transistors
NASA Astrophysics Data System (ADS)
Graz, Ingrid M.; Cotton, Darryl P. J.; Robinson, Adam; Lacour, Stéphanie P.
2011-03-01
We have manufactured stretchable thin-film transistors and interconnects directly onto an engineered silicone matrix with localized and graded mechanical compliance. The fabrication only involves planar and standard processing. Brittle active device materials are patterned on non deformable elastomer regions (strain <1% at all times) while interconnects run smoothly from "stiff" to "soft" elastomer. Pentacene thin-film transistors sustain applied strain up to 13% without electrical degradation and mechanical fracture. This integrated approach opens promising options for the manufacture of physically adaptable and transformable circuitry.
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.
2018-06-01
Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.
Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying
2014-10-07
In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.
Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere; Pareige, Philippe
Hydrogenated polymorphous silicon (pm-Si:H) is a nanostructured material consisting of silicon nanocrystals embedded in an amorphous silicon matrix. Its use as the intrinsic layer in thin film p-i-n solar cells has led to good cell properties in terms of stability and efficiency. Here, we have been able to assess directly the concentration and distribution of nanocrystals and impurities (dopants) in p-i-n solar cells, by using femtosecond laser-assisted atom probe tomography (APT). An effective sample preparation method for APT characterization is developed. Based on the difference in atomic density between hydrogenated amorphous and crystalline silicon, we are able to distinguish themore » nanocrystals from the amorphous matrix by using APT. Moreover, thanks to the three-dimensional reconstruction, we demonstrate that Si nanocrystals are homogeneously distributed in the entire intrinsic layer of the solar cell. The influence of the process pressure on the incorporation of nanocrystals and their distribution is also investigated. Thanks to APT we could determine crystalline fractions as low as 4.2% in the pm-Si:H films, which is very difficult to determine by standard techniques, such as X-ray diffraction, Raman spectroscopy, and spectroscopic ellipsometry. Moreover, we also demonstrate a sharp p/i interface in our solar cells.« less
Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B
2014-04-18
We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.
Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells
Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis
2016-01-01
A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446
NASA Astrophysics Data System (ADS)
Furquan, Mohammad; Raj Khatribail, Anish; Vijayalakshmi, Savithri; Mitra, Sagar
2018-04-01
Silicon is an attractive anode material for Li-ion cells, which can provide energy density 30% higher than any of the today's commercial Li-ion cells. In the current study, environmentally benign, high abundant, and low cost sand (SiO2) source has been used to prepare nano-silicon via scalable metallothermic reduction method using micro wave heating. In this research, we have developed and optimized a method to synthesis high purity nano silicon powder that takes only 5 min microwave heating of sand and magnesium mixture at 800 °C. Carbon coated nano-silicon electrode material is prepared by a unique method of coating, polymerization and finally in-situ carbonization of furfuryl alcohol on to the high purity nano-silicon. The electrochemical performance of a half cell using the carbon coated high purity Si is showed a stable capacity of 1500 mAh g-1 at 6 A g-1 for over 200 cycles. A full cell is fabricated using lithium cobalt oxide having thickness ≈56 μm as cathode and carbon coated silicon thin anode of thickness ≈9 μm. The fabricated full cell of compact size exhibits excellent volumetric capacity retention of 1649 mAh cm-3 at 0.5 C rate (C = 4200 mAh g-1) and extended cycle life (600 cycles). The full cell is demonstrated on an LED lantern and LED display board.
High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.
Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming
2016-11-01
The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.
Silicon microelectronic field-emissive devices for advanced display technology
NASA Astrophysics Data System (ADS)
Morse, J. D.
1993-03-01
Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.
Solar cells for lunar applications by vacuum evaporation of lunar regolith materials
NASA Technical Reports Server (NTRS)
Ignatiev, Alex
1991-01-01
The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.
NASA Astrophysics Data System (ADS)
Han, Xiao-Yan; Hou, Guo-Fu; Zhang, Xiao-Dan; Wei, Chang-Chun; Li, Gui-Jun; Zhang, De-Kun; Chen, Xin-Liang; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying; Geng, Xin-Hua
2009-08-01
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of ~ 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J-V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 Å/s (1 Å = 0.1 nm).
Effect of nanoconfinement on the sputter yield in ultrathin polymeric films: Experiments and model
NASA Astrophysics Data System (ADS)
Cristaudo, Vanina; Poleunis, Claude; Delcorte, Arnaud
2018-06-01
This fundamental contribution on secondary ion mass spectrometry (SIMS) polymer depth-profiling by large argon clusters investigates the dependence of the sputter yield volume (Y) on the thickness (d) of ultrathin films as a function of the substrate nature, i.e. hard vs soft. For this purpose, thin films of polystyrene (PS) oligomers (∼4,000 amu) are spin-coated, respectively, onto silicon and poly (methyl methacrylate) supports and, then, bombarded by 10 keV Ar3000+ ions. The investigated thickness ranges from 15 to 230 nm. Additionally, the influence of the polymer molecular weight on Y(d) for PS thin films on Si is explored. The sputtering efficiency is found to be strongly dependent on the overlayer thickness, only in the case of the silicon substrate. A simple phenomenological model is proposed for the description of the thickness influence on the sputtering yield. Molecular dynamics (MD) simulations conducted on amorphous films of polyethylene-like oligomers of increasing thickness (from 2 to 20 nm), under comparable cluster bombardment conditions, predict a significant increase of the sputtering yield for ultrathin layers on hard substrates, induced by energy confinement in the polymer, and support our phenomenological model.
Characterization of zinc oxide thin film for pH detector
NASA Astrophysics Data System (ADS)
Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.
2017-03-01
This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.
Radiation resistance of thin-film solar cells for space photovoltaic power
NASA Technical Reports Server (NTRS)
Woodyard, James R.; Landis, Geoffrey A.
1991-01-01
Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.
Transmissive metallic contact for amorphous silicon solar cells
Madan, A.
1984-11-29
A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.
NASA Astrophysics Data System (ADS)
Gray, Zachary R.
This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.
Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger
2015-09-02
In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.
NASA Astrophysics Data System (ADS)
Tan, Miao; Zhong, Sihua; Wang, Wenjie; Shen, Wenzhong
2017-08-01
We have investigated the influences of diverse physical parameters on the performances of a silicon homo-heterojunction (H-H) solar cell, which encompasses both homojunction and heterojunction, together with their underlying mechanisms by the aid of AFORS-HET simulation. It is found that the performances of H-H solar cell are less sensitive to (i) the work function of the transparent conductive oxide layer, (ii) the interfacial density of states at the front hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) interface, (iii) the peak dangling bond defect densities within the p-type a-Si:H (p-a-Si:H) layer, and (iv) the doping concentration of the p-a-Si:H layer, when compared to that of the conventional heterojunction with intrinsic thin layer (HIT) counterparts. These advantages are due to the fact that the interfacial recombination and the recombination within the a-Si:H region are less affected by all the above parameters, which fundamentally benefit from the field-effect passivation of the homojunction. Therefore, the design of H-H structure can provide an opportunity to produce high-efficiency solar cells more stably.
Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Iwanczyk, J.S.
Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less
NASA Astrophysics Data System (ADS)
Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias
2017-08-01
Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.
High frequency guided wave propagation in monocrystalline silicon wafers
NASA Astrophysics Data System (ADS)
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2017-04-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.
NASA Technical Reports Server (NTRS)
Egelkrout, D. W.; Horne, W. E.
1980-01-01
Electrostatic bonding (ESB) of thin (3 mil) Corning 7070 cover glasses to Ta2O5 AR-coated thin (2 mil) silicon wafers and solar cells is investigated. An experimental program was conducted to establish the effects of variations in pressure, voltage, temperature, time, Ta2O5 thickness, and various prebond glass treatments. Flat wafers without contact grids were used to study the basic effects for bonding to semiconductor surfaces typical of solar cells. Solar cells with three different grid patterns were used to determine additional requirements caused by the raised metallic contacts.
Dielectric and transport properties of thin films precipitated from sols with silicon nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononov, N. N., E-mail: nnk@kapella.gpi.ru; Dorofeev, S. G.; Ishchenko, A. A.
2011-08-15
Dielectric properties of thin films precipitated on solid substrates from colloidal solutions containing silicon nanoparticles (average diameter is 10 nm) are studied by optical ellipsometry and impedance-spectroscopy. In the optical region, the values of real {epsilon} Prime and imaginary {epsilon} Double-Prime components of the complex permittivity {epsilon} vary within 2.1-1.1 and 0.25-0.75, respectively. These values are significantly lower than those of crystalline silicon. Using numerical simulation within the Bruggeman effective medium approximation, we show that the experimental {epsilon} Prime and {epsilon} Double-Prime spectra can be explained with good accuracy, assuming that the silicon film is a porous medium consisting ofmore » silicon monoxide (SiO) and air voids at a void ratio of 0.5. Such behavior of films is mainly caused by the effect of outer shells of silicon nanoparticles interacting with atmospheric oxygen on their dielectric properties. In the frequency range of 10-10{sup 6} Hz, the experimentally measured {epsilon} Prime and {epsilon} Double-Prime spectra of thin nanoscale silicon films are well approximated by the semi-empirical Cole-Cole dielectric dispersion law with the term related to free electric charges. The experimentally determined power-law frequency dependence of the ac conductivity means that the electrical transport in films is controlled by electric charge hopping through localized states in the unordered medium of outer shells of silicon nanoparticles composing films. It is found that the film conductivity at frequencies of {<=}2 Multiplication-Sign 10{sup 2} Hz is controlled by proton transport through Si-OH groups on the silicon nanoparticle surface.« less
Size dependence of nanoscale wear of silicon carbide
Chaiyapat Tangpatjaroen; David Grierson; Steve Shannon; Joseph E. Jakes; Izabela Szlufarska
2017-01-01
Nanoscale, single-asperity wear of single-crystal silicon carbide (sc- SiC) and nanocrystalline silicon carbide (nc-SiC) is investigated using single-crystal diamond nanoindenter tips and nanocrystalline diamond atomic force microscopy (AFM) tips under dry conditions, and the wear behavior is compared to that of single-crystal silicon with both thin and thick native...
Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo; ...
2017-02-06
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo
The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less
Bhatnagar, Ankur; Verma, Vinay Kumar; Purohit, Vishal
2013-01-01
Primary cheek teratomas are rare with < 5 reported cases. None had associated temporo mandibular joint ankylosis (TMJA). The fundamental aim in the treatment of TMJA is the successful surgical resection of ankylotic bone, prevention of recurrence, and aesthetic improvement by ensuring functional occlusion. Early treatment is necessary to promote proper growth and function of mandible and to facilitate the positive psychological development of child. Inter-positional arthroplasty with ultra-thin silicone sheet was performed. Advantages include short operative time, less foreign material in the joint space leading to negligible foreign body reactions and least chances of implant extrusion. Instead of excising a large bony segment, a thin silicone sheet was interposed and then sutured ensuring preservation of mandibular height. Aggressive post-operative physiotherapy with custom made dynamic jaw exerciser was used to prevent recurrence.
NASA Technical Reports Server (NTRS)
Stella, P. M.
1984-01-01
The availability of data regarding the radiation behavior of GaAs and silicon solar cells is discussed as well as efforts to provide sufficient information. Other materials are considered too immature for reasonable radiation evaluation. The lack of concern over the possible catastrophic radiation degradation in cascade cells is a potentially serious problem. Lithium counterdoping shows potential for removing damage in irradiated P-type material, although initial efficiencies are not comparable to current state of the art. The possibility of refining the lithium doping method to maintain high initial efficiencies and combining it with radiation tolerant structures such as thin BSF cells or vertical junction cells could provide a substantial improvement in EOL efficiencies. Laser annealing of junctions, either those formed ion implantation or diffusion, may not only improve initial cell performance but might also reduce the radiation degradation rate.
2013-01-01
We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325
Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.
Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S
2016-02-02
Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.
Photovoltaic options for solar electric propulsion
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Flood, Dennis J.
1990-01-01
During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.
Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells
NASA Astrophysics Data System (ADS)
Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David
2018-05-01
Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.
NASA Astrophysics Data System (ADS)
You, Hsin-Chiang; Wang, Yu-Chih
2016-06-01
In this paper, we describe the use of a simple and efficient sol-gel solution method for synthesizing indium zinc oxide (IZO) films for use as semiconductor channel layers in thin-film transistors (TFTs) on p-type silicon substrates. The performance of IZO-based TFTs was investigated, and the effect of oxygen plasma treatment on the surface of dielectric SiN x was observed. Oxygen plasma treatment effectively enhanced the electron mobility in IZO-based TFT devices from 0.005 to 1.56 cm2 V-1 s-1, an increase of more than 312 times, and effectively enhanced device performance. X-ray photoelectron spectroscopy analysis of the IZO film was performed to clarify element bonding.
Pulsed energy synthesis and doping of silicon carbide
Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.
1995-06-20
A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.
Pulsed energy synthesis and doping of silicon carbide
Truher, Joel B.; Kaschmitter, James L.; Thompson, Jesse B.; Sigmon, Thomas W.
1995-01-01
A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.
Thin film transistors on plastic substrates with reflective coatings for radiation protection
Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul
2003-11-04
Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.
Thin film transistors on plastic substrates with reflective coatings for radiation protection
Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA
2006-09-26
Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.
NASA Technical Reports Server (NTRS)
Lindmayer, J.; Wrigley, C.
1976-01-01
Highly reproducible, very thin (40-80 microns thick) silicon solar cells are examined. These cells are the product of silicon thinning techniques that produce very flexible, resilient slices as compared to other techniques. Measurements on solar cells 2 cm by 2 cm by 50 microns thick producing 60 mW or more at AM0 are described. These cells have fine-line metallizations, tantalum oxide antireflection coatings and back-surface aluminum alloy.
Formation of thin-film resistors on silicon substrates
Schnable, George L.; Wu, Chung P.
1988-11-01
The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.
Adhesion, friction, and wear of plasma-deposited thin silicon nitride films at temperatures to 700 C
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Pouch, J. J.; Alterovitz, S. A.; Pantic, D. M.; Johnson, G. A.
1988-01-01
The adhesion, friction, and wear behavior of silicon nitride films deposited by low- and high-frequency plasmas (30 kHz and 13.56 MHz) at various temperatures to 700 C in vacuum were examined. The results of the investigation indicated that the Si/N ratios were much greater for the films deposited at 13.56 MHz than for those deposited at 30 kHz. Amorphous silicon was present in both low- and high-frequency plasma-deposited silicon nitride films. However, more amorphous silicon occurred in the films deposited at 13.56 MHz than in those deposited at 30 kHz. Temperature significantly influenced adhesion, friction, and wear of the silicon nitride films. Wear occurred in the contact area at high temperature. The wear correlated with the increase in adhesion and friction for the low- and high-frequency plasma-deposited films above 600 and 500 C, respectively. The low- and high-frequency plasma-deposited thin silicon nitride films exhibited a capability for lubrication (low adhesion and friction) in vacuum at temperatures to 500 and 400 C, respectively.
Turning the Moon into a Solar Photovoltaic Paradise
NASA Technical Reports Server (NTRS)
Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter
2006-01-01
Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.
Canadian Semiconductor Technology Conference, 6th, Ottawa, Canada, Aug. 11-13, 1992, Proceedings
NASA Astrophysics Data System (ADS)
Baribeau, Jean-Marc
1992-11-01
This volume contains papers on the growth efficiency and distribution coefficient of GaInP-InP epilayers and heterostructures, X-ray photoelectron spectroscopy studies of Ge epilayers on Si(100), and mechanical properties of silicon carbide films for X-ray lithography application. Attention is also given to fine structure in Raman spectroscopy and X-ray reflectometry and its uses for the characterization of superlattices, phase formation in Fe-Si thin-film diffusion couples, process optimization for a micromachined silicon nonreverse valve, and a numerical study of heat transport in thermally isolated flow-rate microsensors. Particular consideration is given to a versatile 2D model for InGaAsP quantum-well semiconductor lasers, gallium arsenide electronics in the marketplace, and optical channel grading in p-type Si/SiGe MOSFETs. Other papers are on ultrafast electron tunneling in a reverse-biased high-efficiency quantum well laser structure, excess currents as a result of trap-assisted tunneling in double-barrier resonant tunneling diodes, and carrier lifetimes in strained InGaAsP multiple quantum-well laser structures.
Amorphous silicon ionizing particle detectors
Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.
1988-01-01
Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.
Electrochemical method for defect delineation in silicon-on-insulator wafers
Guilinger, Terry R.; Jones, Howland D. T.; Kelly, Michael J.; Medernach, John W.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.
Li, Jian; Kirkwood, Robert A; Baker, Luke J; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M; Natarajan, Chandra M; Barber, Zoe H; Sorel, Marc; Hadfield, Robert H
2016-06-27
We present low temperature nano-optical characterization of a silicon-on-insulator (SOI) waveguide integrated SNSPD. The SNSPD is fabricated from an amorphous Mo83Si17 thin film chosen to give excellent substrate conformity. At 350 mK, the SNSPD exhibits a uniform photoresponse under perpendicular illumination, corresponding to a maximum system detection efficiency of approximately 5% at 1550 nm wavelength. Under these conditions 10 Hz dark count rate and 51 ps full width at half maximum (FWHM) timing jitter is observed.
Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics
NASA Astrophysics Data System (ADS)
Chao, Tsu-An
A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.
Single crystal functional oxides on silicon
Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef
2016-01-01
Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112
Molecular tailoring of interfaces for thin film on substrate systems
NASA Astrophysics Data System (ADS)
Grady, Martha Elizabeth
Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult to use more conventional interfacial fracture testing techniques. Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface in an on-demand fashion. The SAM end-group functionality is systematically varied and the corresponding effect on interfacial adhesion between a transfer printed gold (Au) film and a fused silica substrate is measured. SAMs with four different end groups are investigated: methyl, amine, bromine and thiol. In addition to these four end groups, mixed monolayers of increasing molar ratio of thiol to methyl SAMs in solution are investigated. There is a strong dependence of interfacial chemistry on the adhesion strength of Au films. In addition to the chemical functionality of the SAM, surface roughness of the underlying substrate also has a significant impact on the interfacial strength. Thin films of mechanochemically active polymer are subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produces large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain-rates (ca. 107-108 s -1). The polymer system, spiropyran (SP)- linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP is evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions. In addition to SP-linked polymer films, the activation of spiropyran interfacial molecules with different side groups is characterized as they adsorb onto a SAM platform with preferential amine terminating chemistry. The reactivity of SP monolayers due to UV irradiation is evaluated by water contact angle goniometry and fluorescence spectroscopy. Side groups on the interfacial spiropyran molecule affect the reactivity and the proximity of neighboring spiropyrans can prevent efficient mobility.
Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapour deposition
NASA Astrophysics Data System (ADS)
Behrens, Ingo; Peiner, Erwin; Bakin, Andrey S.; Schlachetzki, Andreas
2002-07-01
We describe the fabrication of silicon carbide layers for micromechanical applications using low-pressure metal-organic chemical vapour deposition at temperatures below 1000 °C. The layers can be structured by lift-off using silicon dioxide as a sacrificial layer. A large selectivity with respect to silicon can be exploited for bulk micromachining. Thin membranes are fabricated which exhibit high mechanical quality, as necessary for applications in harsh environments.
Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics
2016-08-01
APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator
Design and fabrication of a novel self-powered solid-state neutron detector
NASA Astrophysics Data System (ADS)
LiCausi, Nicholas
There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three key advantages of the novel devices are theoretical neutron detection efficiency of ˜48%, a self-passivating structure that reduces leakage current and detector operation with no bias resulting in extremely low device noise. Processes required to fabricate the 3D type detector were explored and developed in this thesis. The detector capacitance and processing steps have been simulated with MEDICI and TSuprem-4, respectively. Lithography masks were then designed using Cadence. The fabrication process development was conducted in line with standard CMOS grade integrated circuit processing to allow for simple integration with existing fabrication facilities. A number of new processes were developed including the low pressure chemical vapor deposition of conformal boron films using diborane on very high aspect-ratio trenches and holes. Development also included methods for "wet" chemical etching and "dry" reactive ion etching of the deposited boron films. Fabricated detectors were characterized with the transmission line method, 4-point probe, I-V measurements and C-V measurements. Finally the detector response to thermal neutrons was studied. Characterization has shown significant reduction in reverse leakage current density to ˜8x10-8 A/cm2 (nearly 4 orders of magnitude over the previously published data). Results show that the fabrication process developed is capable of producing efficient (˜22.5%) solid-state thermal neutron detectors.
Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique
NASA Astrophysics Data System (ADS)
Chowdhury, Sisir; Das, Anish; Banerji, Pallab
2018-05-01
Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Amorphous silicon ionizing particle detectors
Street, R.A.; Mendez, V.P.; Kaplan, S.N.
1988-11-15
Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.
Studies of Large-Area Inversion-Layer Metal-Insulator-Semiconductor (IL/MIS) Solar Cells and Arrays
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1996-01-01
Many inversion-layer metal-insulator-semiconductor (IL/MIS) solar cells have been fabricated. There are around eighteen 1 cm(exp 2) IL/MIS solar cells which have efficiencies greater than 7%. There are only about three 19 cm(exp 2) IL/MIS cells which have efficiencies greater than 4%. The more accurate control of the thickness of the thin layer of oxide between aluminum and silicon of the MIS contacts has been achieved. A lot of effort and progress have been made in this area. A comprehensive model for MIS contacts under dark conditions has been developed that covers a wide range of parameters. It has been applied to MIS solar cells. One of the main advantages of these models is the prediction of the range of the thin oxide thickness versus the maximum efficiencies of the MIS solar cells. This is particularly important when the thickness is increased to 25 A. This study is very useful for our investigation of the IL/MIS solar cells. The two-dimensional numerical model for the IL/MIS solar cells has been tried to develop and the results are presented in this report.
Fundamental Studies of the Mechanical Behavior of Microelectronic Thin Film Materials
1991-01-01
scanning, wafer curvature technique to study the kinetics of crystallization of amorphous silicon. When a thin film of amorphous silicon crystallizes...the film and the kinetics of the crystallization process. We find the tensile stress in the film to increase by about 500 MPa when crystallization...occurs. This is a very large stress that could have significance for device processing and applications. By measuring the kinetics of this stress change
NASA Astrophysics Data System (ADS)
Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.
2018-03-01
In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.
NASA Astrophysics Data System (ADS)
Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike
2017-02-01
Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.
High performance sandwich structured Si thin film anodes with LiPON coating
NASA Astrophysics Data System (ADS)
Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao
2018-06-01
The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.
High performance sandwich structured Si thin film anodes with LiPON coating
NASA Astrophysics Data System (ADS)
Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao
2018-04-01
The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.
Optical properties of diamond like carbon nanocomposite thin films
NASA Astrophysics Data System (ADS)
Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque
2018-05-01
The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.
NASA Astrophysics Data System (ADS)
Withanage, Wenura K.; Penmatsa, Sashank V.; Acharya, Narendra; Melbourne, Thomas; Cunnane, D.; Karasik, B. S.; Xi, X. X.
2018-07-01
We report on the growth of high quality MgB2 thin films on silicon and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. A boron buffer layer was deposited on all sides of the Si substrate to prevent the reaction of Mg vapor and Si. Ar ion milling at a low angle of 1° was used to reduce the roughness of the boron buffer layer before the MgB2 growth. An Ar ion milling at low angle of 1° was also applied to the MgB2 surface to reduce its roughness. The resultant MgB2 films showed excellent superconducting properties and a smooth surface. The process produces thin MgB2 films suitable for waveguide-based superconducting hot electron bolometers and other MgB2-based electronic devices.
Bhatnagar, Ankur; Verma, Vinay Kumar; Purohit, Vishal
2013-01-01
Primary cheek teratomas are rare with < 5 reported cases. None had associated temporo mandibular joint ankylosis (TMJA). The fundamental aim in the treatment of TMJA is the successful surgical resection of ankylotic bone, prevention of recurrence, and aesthetic improvement by ensuring functional occlusion. Early treatment is necessary to promote proper growth and function of mandible and to facilitate the positive psychological development of child. Inter-positional arthroplasty with ultra-thin silicone sheet was performed. Advantages include short operative time, less foreign material in the joint space leading to negligible foreign body reactions and least chances of implant extrusion. Instead of excising a large bony segment, a thin silicone sheet was interposed and then sutured ensuring preservation of mandibular height. Aggressive post-operative physiotherapy with custom made dynamic jaw exerciser was used to prevent recurrence. PMID:24163567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume
2013-12-13
We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr 2+- or Ba 2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartzmore » thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.« less
NASA Astrophysics Data System (ADS)
Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki
2017-06-01
Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.
Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates
Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin
2012-01-01
Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well. PMID:23277871
Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Dong Rip; Cho, In Sun; William, Nemeth; Wang, Qi; Zheng, Xiaolin
2012-12-01
Fabrication of thin-film solar cells (TFSCs) on substrates other than Si and glass has been challenging because these nonconventional substrates are not suitable for the current TFSC fabrication processes due to poor surface flatness and low tolerance to high temperature and chemical processing. Here, we report a new peel-and-stick process that circumvents these fabrication challenges by peeling off the fully fabricated TFSCs from the original Si wafer and attaching TFSCs to virtually any substrates regardless of materials, flatness and rigidness. With the peel-and-stick process, we integrated hydrogenated amorphous silicon (a-Si:H) TFSCs on paper, plastics, cell phone and building windows while maintaining the original 7.5% efficiency. The new peel-and-stick process enables further reduction of the cost and weight for TFSCs and endows TFSCs with flexibility and attachability for broader application areas. We believe that the peel-and-stick process can be applied to thin film electronics as well.