Sample records for efficient brittle plates

  1. Stress Distribution Around a Circular Hole in Square Plates, Loaded Uniformly in the Plane, on Two Opposite Sides of the Square. Optimum Shapes of Central Holes in Square Plates Subjected to Uniaxial Uniform Load. Optimization of Hole Shapes in Circular Cylindrical Shells Under Axial Tension,

    DTIC Science & Technology

    1981-09-01

    brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t

  2. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  3. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  4. The brittle-ductile transition in porous sedimentary rocks: geological implications for accretionary wedge aseismicity

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxiang; Davis, Dan M.; Wong, Teng-Fong

    1993-07-01

    Thrusting earthquakes in subduction zones generally occur along only part of the plate boundary, with motion along the shallowest part of the plate boundary occurring ascismically. The maximum size of subduction boundary thrust earthquakes depends strongly upon the down-dip width of the seismogenic zone. The single most uncertain factor in determining that width is the location of the up-dip limit of the zone (the seismic front), which depends upon the mechanical state of the sedimentary rocks in the plate boundary zone. In order to come to a better understanding of the seismic potential of sediments in a subduction zone, we carried out a series of triaxial experiments on Berea and Kayenta sandstones. Based on our experimental data, a brittle-ductile transition map was constructed showing that both porosity and effective pressure are important factors controlling the transition from brittle to macroscopically ductile behavior in porous rocks. In the brittle field, a sample fails by shear localization on one slip plane accompanied by strain softening and dilatancy, whereas in the ductile field, a sample deforms homogeneously with a constant yield stress or slight hardening. By comparing such a map with the estimated porosity profile of an accretionary wedge, the likely nature and rough location of the boundary between brittle and ductile behavior can be inferred. If the sediments along a plate boundary are too young and undercompacted to be capable of brittle shear localization, then their deformation is likely to be aseismic. In this way, it may be possible for even a very broad fore-arcs to produce no great earthquakes. However, great earthquakes are to be expected at margins that have large zones of plate contact along which many sediments are compacted and well lithified. Such rocks are expected to be capable of shear localization and brittle failure with the potential for stick-slip behavior.

  5. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests.

    PubMed

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-28

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the 'wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, 'wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  6. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  7. Earthquakes Below the Brittle-Ductile Transition: The Role of Grain Size Assisted Thermal Runaway

    NASA Astrophysics Data System (ADS)

    Thielmann, M.; Duretz, T.

    2017-12-01

    Great earthquakes with magnitudes larger than 8.0 commonly occur in the vicinity of plate boundaries. Most of those earthquakes occur in subduction zones in compressive settings, but others have also been observed to occur on strike slip faults. Fault slip in those earthquakes is on the order of tens of meters, while fault length ranges from 100-1000 km. This implies that a significant slip may have occurred at temperatures and pressures where brittle failure is unlikely and alternative failure mechanisms may have to operate to allow for localized slip. Previous studies have shown that grain size assisted runaway (GSATR) is a viable mechanism to create localized shear zones and possibly also earthquake-like rupture. Here we investigate the potential of this mechanism to extend earthquake rupture to depth below the brittle-ductile transition. To this end, we employ 2D numerical models that couple the evolution of stress, temperature and grain size evolution and systematically explore the parameter space to determine the efficiency of the GSATR mechanism.

  8. Lithosperic rheology controls on oceanic spreading patterns

    NASA Astrophysics Data System (ADS)

    Gerya, T.

    2012-04-01

    Mid-ocean ridges sectioned by transform faults represent one of the most prominent surface expressions of terrestrial plate tectonics. A fundamental long standing problem of plate tectonics is how and why ridge-transform spreading patterns are formed and maintained. On the one hand, geometrical correspondence between mid-ocean ridges and respective rifted margins apparently suggests that many oceanic transform faults are inherited structures that persisted throughout the entire history of oceanic spreading. On the other hand, data from incipient oceanic spreading regions show that transform faults are not directly inherited from transverse rift structures and start to develop as or after oceanic spreading nucleate. Based on self-consistent 3D thermomechanical numerical model of oceanic spreading we demonstrate that only limited range of oceanic lithosphere rheologies can reproduce natural spreading patterns. In particular, spontaneous formation and long-term stability of orthogonal ridge-transform spreading pattern requires visco-brittle/plastic rheology of plates with strong dynamic weakening of spontaneously forming faults. Our, numerical models of incipient oceanic spreading demonstrate that one or several oceanic transform faults can form gradually within broad non-transform accommodation zones connecting initially offset spreading centers. Orientation of transform faults and spreading centers changes exponentially with time as the result of new oceanic crust growth. The resulting orthogonal ridge-transform system is established within few millions of years after the beginning of oceanic spreading. By its fundamental physical origin, this system is a crustal growth pattern governed by space accommodation and not a plate breakup pattern governed by stress distribution. It is demonstrated that the characteristic extension-parallel orientation of oceanic transform faults can be obtained from space accommodation criteria as a steady state orientation of a strike-slip fault sustaining in between simultaneously growing offset crustal segments. Numerical models also suggest that transform faults can develop at single straight ridge as the result of dynamical instability of constructive plate boundaries caused by weakening of forming brittle/plastic fractures. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. Degree of asymmetric plate accretion increases with increasing degree of brittle/plastic weakening. It is also strongly dependent on the brittle/plastic yielding criterion and is notably reduced in models with pressure-dependent brittle/plastic plate strength compared to models with pressure-independent strength.

  9. Star-Shaped Crack Pattern of Broken Windows

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Nicolas; Vermorel, Romain; Villermaux, Emmanuel

    2013-04-01

    Broken thin brittle plates like windows and windshields are ubiquitous in our environment. When impacted locally, they typically present a pattern of cracks extending radially outward from the impact point. We study the variation of the pattern of cracks by performing controlled transverse impacts on brittle plates over a broad range of impact speed, plate thickness, and material properties, and we establish from experiments a global scaling law for the number of radial cracks incorporating all these parameters. A model based on Griffith’s theory of fracture combining bending elastic energy and fracture energy accounts for our observations. These findings indicate how the postmortem shape of broken samples are related to material properties and impact parameters, a procedure relevant to forensic science, archaeology, or astrophysics.

  10. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  11. Brittle crack arrestability of thick steel plate welds in large structure

    NASA Astrophysics Data System (ADS)

    An, Gyu Baek; Park, Joon Sik

    2011-10-01

    Recently, there has been such a critical issue in shipbuilding industry that much larger and stronger ships are required to develop oil and gas in the Arctic region. Attention has been paid to obtaining high strength, good toughness at low temperature, and good weldability. An experimental study was performed to evaluate the brittle crack arrest toughness value (Kca) and brittle crack arrest method of welded joints using EH40 grade steel with a thickness of 80 mm. The test specimens were made by both flux cored arc welding (FCAW) and combined welding (EGW+FCAW) processes. Temperature gradient ESSO test was performed to measure the Kca of the base metal. Also, a constant temperature (-10 °C) ESSO test was performed to establish a brittle crack arrest method using high toughness welding consumable with real structural specimens. The research aims in this study were to investigate the effect of joint design and welding consumable for the crack arrestability of thick steel plates using EH40 grade shipbuilding steel of straight block joint weld line with two kinds of welding processes.

  12. Impact of slab pull and incipient mantle delamination on active tectonics and crustal thickening in the Betic-Alboran-Rif system

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stephane; Baratin, Laura-May; Chéry, Jean; Vernant, Philippe; Gueydan, Frédéric; Tahayt, Abdelilah; Mourabit, Taoufik

    2017-04-01

    In Western Mediterranean, the Betic-Alboran-Rif orocline accommodates the WNW-ESE convergence between the Nubia and Eurasia plates. Recent geodetic data show that present-day tectonics in northern Morocco and southernmost Spain are not compatible with this simple two-plate-convergence model: GPS observations indicate significant (2-4 mm/a) deviations from the expected plate motion, and gravity data define two major negative Bouguer anomalies beneath the Betic and south of the Rif, interpreted as a thickened crust in a state of non-isostatic equilibrium. These anomalous geodetic patterns are likely related to the recent impact of the sub-vertical Alboran slab on crustal tectonics. Using 2-D finite-element models, we study the first-order behavior of a lithosphere affected by a downward normal traction, representing the pull of a high-density body in the upper mantle (slab pull or mantle delamination). We show that a specific range of lower crust and upper mantle viscosities allow a strong coupling between the mantle and the base of the brittle crust, thus enabling (1) the efficient conversion of vertical movement (resulting from the downward traction) to horizontal movement and (2) shortening and thickening on the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to the Alboran slab pull, can explain the present-day abnormal tectonics and non-isostatic equilibrium in northern Morocco. Similar processes may be at play in the whole Betic-Alboran-Rif region, although the fast temporal evolution of the slab - upper plate interactions needs to be taken into account to better understand this complex system.

  13. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  14. Rheology of the lithosphere and the folding caused by horizontal compression

    NASA Astrophysics Data System (ADS)

    Birger, B. I.

    2015-05-01

    The laboratory tests of rock specimens show that transient creep, at which deformations increase with time whereas strain rate decreases occurs when creep strains are sufficiently small. Since plate tectonics only permits small deformations in the lithospheric plates, the creep of the lithosphere is transient (non-steady-state). In this work, we study how the rheology of the lithosphere that possesses elasticity, brittleness (pseudo-plasticity), and creep affects the folding in the Earth's crust. Folding is caused by horizontal compression that results from the collision between the lithospheric plates. The effective viscosity characterizing the transient creep is lower than in the case of a steady-state creep and depends on the characteristic time of the considered process. The allowance for transient creep gives the distribution of the rheological properties of the horizontally compressed lithosphere in which the upper crust is brittle, whereas the lower crust and mantle lithosphere are dominated by transient creep. It is shown that the flows that arise in the lithosphere due to the instability under horizontal compression and cause folding are small-scale. These flows are concentrated in the upper brittle crust, they determine the short-wave Earth's surface topography, penetrate into the lower, creep-dominated crust to a shallow depth, and do not penetrate into the mantle. Therefore, these flows do not deform the Moho.

  15. Seismic cycle feedbacks in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  16. Kinematic analysis of melange fabrics: Examples and applications from the McHugh Complex, Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Kusky, T.M.; Bradley, D.C.

    1999-01-01

    Permian to Cretaceous melange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and melange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the melange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to ??1 are contracted in both the brittle and ductile regimes, layers at 30-45??to ??1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45??to ??1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within melange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics.Permian to Cretaceous melange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and melange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the melange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to ??1 are contracted in both the brittle and ductile regimes, layers at 30-45?? to ??1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45?? to ??1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within melange of the McHugh Complex are asymmetric and record

  17. Anatomy of a Plate Boundary at Shallow Crustal Levels: a Composite Section from the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Barth, N. C.; Toy, V. G.; Boulton, C. J.; Carpenter, B. M.

    2010-12-01

    New Zealand's Alpine Fault is mostly a moderately SE-dipping dextral reverse plate boundary structure, but at its southern end, strike-slip-normal motion is indicated by offset of recent surfaces, juxtaposition of sediments, and both brittle and ductile shear sense indicators. At the location of uplift polarity reversal fault rocks exhumed from both the hangingwall Pacific and footwall Australian Plates are juxtaposed, offering a remarkably complete cross section of the plate boundary at shallow crustal levels. We describe Alpine Fault damage zone and fault core structures overprinted on Pacific and Australian plate mylonites of a variety of compositions, in a fault-strike perpendicular composite section spanning the reversal in dip-slip polarity. The damage zone is asymmetric; on the Australian Plate 160m of quartzose paragneiss-derived mylonites are overprinted by brittle faults and fractures that increase in density towards the principal slip surface (PSS). This damage zone fabric consists of 1-10m-spaced, moderately to steeply-dipping, 1-20cm-thick gouge-filled faults, overprinted on and sub-parallel to a mylonitic foliation sub-parallel to the PSS. On the Pacific Plate, only 40m of the 330m section of volcaniclastic-derived mylonites have brittle damage in the form of unhealed fractures and faults, as well as a pervasive greenschist facies hydrothermal alteration absent in the footwall. These damage-related structures comprise a network of small-offset faults and fractures with increasing density and intensity towards the PSS. The active Pacific Plate fault core is composed of ~1m of cataclasite grading into folded protocataclasite that is less folded and fractured with increasing distance from the PSS. The active Australian Plate fault core is <1.5m wide and consists of 3 distinct foliated clay gouges, as well as a 4cm thick brittle ultracataclasite immediately adjacent to the active PSS. The Australian Plate foliated clay gouge contains stringers of quartz that become less continuous and more sigmoidal toward the PSS, indicating a strain gradient across the gouge zone. Gouge textures are consistent with deformation by pressure solution. Intact wafers from one of the gouges, experimentally -sheared in a biaxial configuration under true-triaxial loading at σn’= 31MPa and Pf = 10MPa, yielded a friction coefficient, μss = 0.32 and displayed velocity strengthening behavior. No significant re-strengthening was observed during hold periods of slide-hold tests. Well-cemented glacial till (~8000 years old), which caps many outcrops, is a marker that shows that the damage zone is not active in the near-surface, but most of the fault core is. The active near-surface damage zone here is <40m wide and the active fault core is <2.5m wide. Both overprint a much wider, inactive damage zone. The combination of rheologically-weak Australian Plate fault rocks with surface rupture traces indicates distinctly different coseismic and interseismic behaviors along the southern strike-slip-normal segment of the Alpine Fault.

  18. Large-scale 3D modeling of projectile impact damage in brittle plates

    NASA Astrophysics Data System (ADS)

    Seagraves, A.; Radovitzky, R.

    2015-10-01

    The damage and failure of brittle plates subjected to projectile impact is investigated through large-scale three-dimensional simulation using the DG/CZM approach introduced by Radovitzky et al. [Comput. Methods Appl. Mech. Eng. 2011; 200(1-4), 326-344]. Two standard experimental setups are considered: first, we simulate edge-on impact experiments on Al2O3 tiles by Strassburger and Senf [Technical Report ARL-CR-214, Army Research Laboratory, 1995]. Qualitative and quantitative validation of the simulation results is pursued by direct comparison of simulations with experiments at different loading rates and good agreement is obtained. In the second example considered, we investigate the fracture patterns in normal impact of spheres on thin, unconfined ceramic plates over a wide range of loading rates. For both the edge-on and normal impact configurations, the full field description provided by the simulations is used to interpret the mechanisms underlying the crack propagation patterns and their strong dependence on loading rate.

  19. Timing of mid-crustal ductile extension in the northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon ages

    NASA Astrophysics Data System (ADS)

    Lee, J.; Blackburn, T.; Johnston, S. M.

    2016-12-01

    Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling hinge/isostatic rebound style; the western part of the lower plate was exhumed first and the eastern part extended ductilely either continuously or episodically until the early Miocene when the post-tectonic SDS was emplaced. Major brittle slip along the eastern part of the NSR detachment and along high angle normal faults exhumed the lower plate during middle Miocene.

  20. Brittle deformation along the Gulf of Alaska margin in response to Paleocene-Eocene triple junction migration: in Sisson

    USGS Publications Warehouse

    Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.

    2003-01-01

    A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation above slab windows may be a common occurrence.

  1. Long-Term Stability of Plate-Like Behavior Caused by Hydrous Mantle Convection and Water Absorption in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Iwamori, Hikaru

    2017-10-01

    We investigate the cycling of water (regassing, dehydration, and degassing) in mantle convection simulations as a function of the strength of the oceanic lithosphere and its influence on the evolution of mantle water content. We also consider pseudo-plastic yielding with a friction coefficient for simulating brittle behavior of the plates and the water-weakening effect of mantle materials. This model can generate long-term plate-like behavior as a consequence of the water-weakening effect of mantle minerals. This finding indicates that water cycling plays an essential role in generating tectonic plates. In vigorous plate motion, the mantle water content rapidly increases by up to approximately 4-5 ocean masses, which we define as the "burst" effect. A burst is related to the mantle temperature and water solubility in the mantle transition zone. When the mantle is efficiently cooled down, the mantle transition zone can store water transported by the subducted slabs that can pass through the "choke point" of water solubility. The onset of the burst effect is strongly dependent on the friction coefficient. The burst effect of the mantle water content could have significantly influenced the evolution of the surface water if the burst started early, in which case the Earth's surface cannot preserve the surface water over the age of the Earth.

  2. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  3. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower crust relative to the brittle crust above. Our study suggests that kinematics of crustal blocks in the ER is controlled by Africa and Somalia plates interaction at different scale and layers.

  4. Hypervelocity impact and dynamic fragmentation of brittle materials

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Ortega, Alejandro; Meiron, Daniel

    2017-06-01

    The process of hypervelocity impact and dynamic fragmentation finds application in planetary formation, satellite design for micrometeorite impact damage mitigation, armor design and crater formations. In this work, we study high velocity impact induced dynamic fragmentation processes of brittle materials. We implement ideas of Continuum Damage Mechanics (CDM) to perform fragmentation simulations on brittle materials in various geometries. The damage formulation was implemented on an existing computational framework capable of adaptive mesh refinement that operates on an Eulerian grid, thereby avoiding problems associated with grid entanglement in large deformation processes. A damage sensitive equation of state is developed for hyperelastic materials that depends on a damage variable D, the volume fraction of micro-cracks in the brittle material. The evolution of D is governed by a modified, thermodynamically consistent Grady-Kipp model that evolves damage at points of tensile eigenvalue stresses. We simulate sphere-on-sphere and sphere-on-plate impact events with ductile and brittle materials and study the resulting damage propagation. We validate our calculations with existing literature and comment on energy dissipation and optimal design. Caltech - JPL President's and Director's Fund.

  5. Impact face influence on low velocity impact performance of interply laminated plates

    NASA Astrophysics Data System (ADS)

    Manikandan, Periyasamy; Chai, Gin Boay

    2015-03-01

    Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.

  6. Metallurgical effects on titanium by laser welding on dental stone.

    PubMed

    Fujioka, Sonosuke; Kakimoto, Kazutoshi; Inoue, Taro; Okazaki, Joji; Komasa, Yutaka

    2003-12-01

    It is not known for certain that dental stone components influence titanium welding. In this study, we investigated metallurgical problems caused by laser welding on dental stones using wrought commercial pure (CP) titanium. A pulsed Nd:YAG laser irradiated a number of specimens' surfaces which were fixed on either a dental hard stone or a titanium plate. The metallurgical properties of the weld were evaluated using the Vickers hardness test, microstructure observation, fractured surface observation and quantitative analysis of oxygen and hydrogen. In the weld formed on the dental stone there was an increase in hardness, the existence of an acicular structure and a brittle fractured surface, and an increase in the oxygen and hydrogen concentrations compared with base metal. In the weld formed on the titanium plate, these changes were not observed. Therefore, it was demonstrated that laser welding on dental stones made the welds brittle.

  7. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Rapid Grain Size Reduction in the Upper Mantle at a Plate Boundary

    NASA Astrophysics Data System (ADS)

    Kidder, S. B.; Scott, J.; Prior, D. J.; Lubicich, E. J.

    2017-12-01

    A few spinel peridotite xenoliths found near the Alpine Fault, New Zealand, exhibit a mylonitic texture and, locally, an extremely fine 30 micron grain size. The harzburgite xenoliths were emplaced in a 200 km-long elongate dike zone interpreted as a gigantic tension fracture or Reidel shear associated with Alpine Fault initiation 25 Ma. The presence of thin ( 1 mm) ultramylonite zones with px-ol phase mixing and fine grain sizes, minimal crustal-scale strain associated with the dike swarm, and the absence of mylonites at four of the five xenolith localities associated with the dike swarm indicate that upper mantle deformation was highly localized. Strings of small, recrystallized grains (planes in 3D) are found in the interiors of olivine porphyroclasts. In some cases, bands 1-2 grains thick are traced from the edges of olivine grains and terminate in their interiors. Thicker zones of recrystallized grains are also observed crossing olivine porphyroclasts without apparent offset of the unrecrystallized remnants of the porphyroclasts. We suggest a brittle-plastic origin for these features since the traditional recrystallization mechanisms associated with dislocation creep require much more strain than occurred within these porphyroclasts. Analogous microstructures in quartz and feldspar in mid-crust deformation zones are attributed to brittle-plastic processes. We hypothesize that such fine-grained zones were the precursors of the observed, higher-strain ultramylonite zones. Given the size of the new grains preserved in the porphyroclasts ( 100 micron) and a moho temperature > 650°C, grain growth calculations indicate that the observed brittle-plastic deformation occurred <10,000 yrs. prior to eruption. It is likely then that either brittle-plastic deformation was coeval with the ductile shearing occurring in the ultramylonite bands, or possibly, if deformation can be separated into brittle-plastic (early) and ductile (later) phases, that the entire localization process was very rapid (<10,000 yrs). In either case we interpret that semi-brittle deformation was a key process responsible for rapid localization in this initiating plate-scale mantle shear zone.

  9. Brittle materials at high-loading rates: an open area of research

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  10. Brittle materials at high-loading rates: an open area of research

    PubMed Central

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  11. Brittle materials at high-loading rates: an open area of research.

    PubMed

    Forquin, Pascal

    2017-01-28

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  12. Shallow-water brittle stars (Echinodermata: Ophiuroidea) from Araçá Bay (Southeastern Brazil), with spatial distribution considerations.

    PubMed

    Alitto, Renata A S; Bueno, Maristela L; Guilherme, Pablo D B; Di Domenico, Maikon; Christensen, Ana Beardsley; Borges, Michela

    2018-04-05

    The detailed study of arm ossicles, particularly the lateral arm plates, is providing valuable information in the elucidation of ophiuroid taxonomy. The present study describes in detail 16 species of brittle stars from Araçá Bay, Brazil. This information is used to construct the first interactive electronic key, providing a valuable resource for a broad range of researchers. Brittle stars families were divided into three groups based on their spatial distribution: i) infaunal species of intertidal and shallow subtidal belonging to Amphiuridae and Ophiactidae, ii) epizoic species belonging to Amphiuridae, Ophiactidae, and Ophiotrichidae and, iii) epifaunal species of the subtidal belonging to Ophiodermatidae and Hemieuryalidae. In the global context of recent revisions of ophiuroid taxonomy, the present work provides additional characters for use in future phylogenetic studies.

  13. Incorporation of the NAG-FRAG Model for Ductile and Brittle Fracture into Help, a 2D Multimaterial Eulerian Program

    DTIC Science & Technology

    1978-09-01

    Models HELP Ductile Material HEMP Brittle Material PUFF Iron Aluminum Eulerian Codea Tap«.r«»H Flyor Pl^«-» rmp«^» tO. ABITRACT (Conllmjm M r«v... HEMP ) code with those obtained by the Eulerian (HELP) code 5.3 Relative void volume of damage regions at three times after impact in the 1145...plate calculation 5.5 Relative void volume of material in the 1145 aluminum target at 1.46 us after impact as computed by the Lagrangian ( HEMP

  14. The application of continuum damage mechanics to solve problems in geodynamics

    NASA Astrophysics Data System (ADS)

    Manaker, David Martin

    Deformation within the Earth's lithosphere is largely controlled by the rheology of the rock. Ductile behavior in rocks is often associated with plasticity due to dislocation motion or diffusion under high pressures and temperatures. However, ductile behavior can also occur in brittle materials. An example would be cataclastic flow associated with folding at shallow crustal levels, steep subduction zones, and large-scale deformation at plate boundaries. Engineers utilize damage mechanics to model the continuum deformation of brittle materials. We utilize a modified form of damage mechanics where damage represents a reduction in frictional strength and includes a yield stress. We use this empirical approach to simulate the bending of the lithosphere. We use numerical simulations to obtain elastostatic solutions for plate bending and where the stress exceeds a yield stress, we apply damage to reduce the elastic moduli. Damage is calculated at each time step by a power-law relationship of the ratio of the yield stress to stress and the yield strain to the strain. To test our method, we apply our damage rheology to a plate deforming under applied shear, a constant bending moment, and a constant load. We simulate a wide range of behaviors from slow relaxation to instantaneous failure, over timescales that span six orders of magnitude. Stress relaxation produces elastic-perfectly plastic behavior in cases where failure does not occur. For cases of failure, we observe a rapid increase in damage leading to failure. The changes in the rate of damage accumulation in failure cases are similar to the changes in b-values of acoustic emissions observed in triaxial compression tests of fractured rock and b-value changes prior to some large earthquakes. Thus continuum damage mechanics can simulate ductile behavior due to brittle mechanisms as well as observations of laboratory experiments and seismicity.

  15. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Angiboust, Samuel; Monié, Patrick; Oncken, Onno; Guigner, Jean-Michel

    2018-04-01

    Geophysical observations on active subduction zones have evidenced high seismicity clusters at 20-40 km depth in the fore-arc region whose origin remains controversial. We report here field observations of pervasive pseudotachylyte networks (interpreted as evidence for paleo-seismicity) in the now-exhumed Valpelline continental unit (Dent Blanche complex, NW. Alps, Italy), a tectonic sliver accreted to the upper plate at c. 30 km depth during the Paleocene Alpine subduction. Pre-alpine granulite-facies paragneiss from the core of the Valpelline unit are crosscut by widespread, mm to cm-thick pseudotachylyte veins. Co-seismic heating and subsequent cooling led to the formation of Ti-rich garnet rims, ilmenite needles, Ca-rich plagioclase, biotite microliths and hercynite micro-crystals. 39Ar-40Ar dating yields a 51-54 Ma age range for these veins, thus suggesting that frictional melting events occurred near peak burial conditions while the Valpelline unit was already inserted inside the duplex structure. In contrast, the base of the Valpelline unit underwent synchronous ductile and brittle, seismic deformation under water-bearing conditions followed by a re-equilibration at c. 40 Ma (39Ar-40Ar on retrograded pseudotachylyte veins) during exhumation-related deformation. Calculated rheological profiles suggest that pseudotachylyte veins from the dry core of the granulite unit record upper plate micro-seismicity (Mw 2-3) formed under very high differential stresses (>500 MPa) while the sheared base of the unit underwent repeated brittle-ductile deformation at much lower differential stresses (<40 MPa) in a fluid-saturated environment. These results demonstrate that some of the seismicity clusters nested along and above the plate interface may reflect the presence of stiff tectonic slivers rheologically analogous to the Valpelline unit acting as repeatedly breaking asperities in the basal accretion region of active subduction zones.

  16. Effect of Ni-P Plating Temperature on Growth of Interfacial Intermetallic Compound in Electroless Nickel Immersion Gold/Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Seo, Wonil; Kim, Kyoung-Ho; Kim, Young-Ho; Yoo, Sehoon

    2018-01-01

    The growth of interfacial intermetallic compound and the brittle fracture behavior of Sn-3.0Ag-0.5-Cu solder (SAC305) joints on electroless nickel immersion gold (ENIG) surface finish have been investigated using Ni-P plating solution at temperatures from 75°C to 85°C and fixed pH of 4.5. SAC305 solder balls with diameter of 450 μm were mounted on the prepared ENIG-finished Cu pads and reflowed with peak temperature of 250°C. The interfacial intermetallic compound (IMC) thickness after reflow decreased with increasing Ni-P plating temperature. After 800 h of thermal aging, the IMC thickness of the sample prepared at 85°C was higher than for that prepared at 75°C. Scanning electron microscopy of the Ni-P surface after removal of the Au layer revealed a nodular structure on the Ni-P surface. The nodule size of the Ni-P decreased with increasing Ni-P plating temperature. The Cu content near the IMC layer increased to 0.6 wt.%, higher than the original Cu content of 0.5 wt.%, indicating that Cu diffused from the Cu pad to the solder ball through the Ni-P layer at a rate depending on the nodule size. The sample prepared at 75°C with thicker interfacial IMC showed greater high-speed shear strength than the sample prepared at 85°C. Brittle fracture increased with decreasing Ni-P plating temperature.

  17. New-type steel plate with ultra high crack-arrestability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less

  18. Reaction-induced rheological weakening enables oceanic plate subduction.

    PubMed

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  19. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1987-01-01

    Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient.

  20. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  1. Meteoric water circulation and rolling-hinge detachment faulting: Example of the Northern Snake Range core complex, Nevada

    NASA Astrophysics Data System (ADS)

    Gébelin, Aude; Teyssier, Christian; Heizler, Matthew T.; Andreas, Mulch

    2014-05-01

    The Northern Snake Range metamorphic core complex developed as a consequence of Oligo-Miocene extension of the Basin and Range Province and is bounded by an arched detachment that separates the cold, brittle upper crust from the ductile middle crust. On the western and eastern limbs of the arch, the detachment footwall displays continuous sections of muscovite-bearing quartzite and schist from which we report new microfabrics, δD values, and 40Ar/39Ar ages. Results indicate that the two limbs record distinct stages of the metamorphic and kinematic Cenozoic events, including Eocene collapse of previously overthickned crust in the west, and one main Oligo-Miocene extensional event in the east. Quartzite from the western part of the range preserves Eocene fabrics (~49-45 Ma) that developed during coaxial deformation in the presence of metamorphic fluids. In contrast, those from the east reveal a large component of non coaxial strain, Oligo-Miocene ages (27-21 Ma) and contain recrystallized muscovite grains indicating that meteoric fluids sourced at high elevation (low-δD) infiltrated the brittle-ductile transition zone during deformation. Percolation of meteoric fluids down to the mylonitic detachment footwall was made possible by the development of an east-dipping rolling-hinge detachment system that controlled the timing and location of active faulting in the brittle upper crust and therefore the pathway of fluids from the surface to the brittle-ductile transition. Oligo-Miocene upper crustal extension was accommodated by a fan-shaped fault pattern that generated shear and tension fractures and channelized surface fluids, while top-to-the-east ductile shearing and advection of hot material in the lower plate allowed the system to be progressively exhumed. As extension proceeded, brittle normal faults active in the wedge of the hanging wall gradually rotated and translated above the detachment fault where, became inactive and precluded the circulation of fluids from the surface to the lower plate. The Eocene section observed on the western limb represents an example of such a tilted block that was rotated and exhumed in the first stages of the rolling-hinge detachment activity.

  2. An elastic failure model of indentation damage. [of brittle structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1984-01-01

    A mechanistically consistent model for indentation damage based on elastic failure at tensile or shear overloads, is proposed. The model accommodates arbitrary crack orientation, stress relaxation, reduction and recovery of stiffness due to crack opening and closure, and interfacial friction due to backward sliding of closed cracks. This elastic failure model was implemented by an axisymmetric finite element program which was used to simulate progressive damage in a silicon nitride plate indented by a tungsten carbide sphere. The predicted damage patterns and the permanent impression matched those observed experimentally. The validation of this elastic failure model shows that the plastic deformation postulated by others is not necessary to replicate the indentation damage of brittle structural ceramics.

  3. Constraints on the Lithospheric Strength at Volcanic Rifted Margins from the Geometry of Seaward Dipping Reflectors Using Analytic and Numerical Models

    NASA Astrophysics Data System (ADS)

    Tian, X.; Buck, W. R.

    2017-12-01

    Seaward dipping reflectors (SDRs) are found at many rifted margins. Drilling indicates SDRs are interbedded layers of basalts and sediments. Multi-channel seismic reflection data show SDRs with various width (2 100 km), thickness (1 15 km) and dip angles (0 30). Recent studies use analytic thin plate models (AtPM) to describe plate deflections under volcanic loads. They reproduce a wide range of SDRs structures without detachment faulting. These models assume that the solidified dikes provide downward loads at the rifting center. Meanwhile, erupted lava flows and sediments fill in the flexural depression and further load the lithosphere. Because the strength of the lithosphere controls the amount and wavelength of bending, the geometries of SDRs provide a window into the strength of the lithosphere during continental rifting. We attempt to provide a quantitative mapping between the SDR geometry and the lithospheric strength and thickness during rifting. To do this, we first derive analytic solutions to two observables that are functions of effective elastic thickness (Te). One observable (Xf) is the horizontal distance for SDRs to evolve from flat layers to the maximum bent layers. Another observable is the ratio between the thickness and the tangent of the maximum slope of SDRs at Xf. We then extend the AtPM to numerical thin plate models (NtPM) with spatially restricted lava flows. AtPM and NtPM show a stable and small relative difference in terms of the two observables with different values of Te. This provides a mapping of Te between NtPM and AtPM models. We also employ a fully two-dimensional thermal-mechanical treatment with elasto-visco-plastic rheology to simulate SDRs formation. These models show that brittle yielding due to bending can reduce the Te of the lithosphere by as much as 50% of the actual brittle lithospheric thickness. Quantification of effects of plastic deformation on bending allow us to use Te to link SDRs geometries to brittle lithospheric thickness. From published seismic reflection data, we obtain a global map of Te at volcanic rifted margins that ranges from 2 12 km using the AtPM and NtPM mapping. The corresponding brittle lithospheric thickness ranges from 6 20 km. In addition, preliminary results show Te increases along a given margin with distance away from a Large Igneous Province.

  4. Creep of phyllosilicates at the onset of plate tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiguet, Elodie; Reynard, Bruno; Caracas, Razvan

    Plate tectonics is the unifying paradigm of geodynamics yet the mechanisms and causes of its initiation remain controversial. Some models suggest that plate tectonics initiates when the strength of lithosphere is lower than 20-200 MPa, below the frictional strength of lithospheric rocks (>700 MPa). At present-day, major plate boundaries such as the subduction interface, transform faults, and extensional faults at mid-oceanic ridge core complexes indicate a transition from brittle behaviour to stable sliding at depths between 10 and 40 km, in association with water-rock interactions forming phyllosilicates. We explored the rheological behaviour of lizardite, an archetypal phyllosilicate of the serpentinemore » group formed in oceanic and subduction contexts, and its potential influence on weakening of the lithospheric faults and shear zones. High-pressure deformation experiments were carried out on polycrystalline lizardite - the low temperature serpentine variety - using a D-DIA apparatus at a variety of pressure and temperature conditions from 1 to 8 GPa and 150 to 400 C and for strain rates between 10{sup -4} and 10{sup -6} s{sup -1}. Recovered samples show plastic deformation features and no evidence of brittle failure. Lizardite has a large rheological anisotropy, comparable to that observed in the micas. Mechanical results and first-principles calculations confirmed easy gliding on lizardite basal plane and show that the flow stress of phyllosilicate is in the range of the critical value of 20-200 MPa down to depths of about 200 km. Thus, foliated serpentine or chlorite-bearing rocks are sufficiently weak to account for plate tectonics initiation, aseismic sliding on the subduction interface below the seismogenic zone, and weakening of the oceanic lithosphere along hydrothermally altered fault zones. Serpentinisation easing the deformation of the early crust and shallow mantle reinforces the idea of a close link between the occurrence of plate tectonics and water at the surface of the Earth.« less

  5. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional tectonics control the ongoing steady-state exhumation of the islands at a rate of 0.04 km/my. Most recently, the northeast escape of the Maracaibo block also drives deformation within the diffuse plate boundary zone. Overall, the Caribbean-South American plate boundary geometry has evolved with diachronous deformation, from west to east, accompanied by 135° of clockwise block rotation during collision and accretion of the Leeward Antilles since the Late Cretaceous.

  6. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  7. Reaction-induced rheological weakening enables oceanic plate subduction

    PubMed Central

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the ‘cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets. PMID:27562366

  8. A seismic gap along an accreting plate boundary : Example of the Djibouti Ridge, Afar, East Africa

    NASA Astrophysics Data System (ADS)

    Ruegg, Jean-Claude; Lépine, Jean-Claude

    1983-05-01

    A segment of the Gulf of Tadjoura (Djibouti, East-Africa) accreting plate boundary, shows a period of quiescence in the seismic activity since 1974. This segment corresponds to the extension area of the aftershock activity that has occured after a cluster of magnitude 5.5 earthquakes in April 1973. From this example we propose that the seismic gap concept can be extended to moderate earthquakes occuring at extensional plate boundaries. The magnitude of the largest earthquakes at the spreading axis is limited by the size of the rupture length and by the strength of the brittle lithosphere. In the case of the Djibouti ridge recurrence time of 10-20 years are found for earthquakes of about M =6.

  9. Preparation and properties of TiC-Ni cermets using Ni-plated TiC

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2002-04-01

    TiC powders were coated with Ni by a chemical plating technique and the pressed compacts sintered at 1623K. The density of the sintered bodies was 98-99%. Compared with mechanically-mixed powder, Ni-plated TiC powders gave a more uniform microstructure in which TiC particles were well dispersed in the Ni matrix. The cermets exhibited ductile fracture for TiC-70 vol.% Ni and brittle fracture for TiC-30 vol.% Ni. The flexural strength was improved by the homogeneous dispersion of TiC. The thermal expansion coefficient increased with a decrease in Ni content, following a nearly linear law of mixtures on the basis of volume fractions of pure TiC and Ni.

  10. Evidence for brittle deformation events at eclogite-facies P-T conditions (example of the Mt. Emilius klippe, Western Alps)

    NASA Astrophysics Data System (ADS)

    Hertgen, Solenn; Yamato, Philippe; Morales, Luiz F. G.; Angiboust, Samuel

    2017-06-01

    Eclogitic rocks are crucial for the understanding of tectonic processes as they provide key constraints on both the P-T-t evolutions and the deformation modes sustained by rocks in subduction zones. Here we focus on eclogitised and deformed mafic bodies that are exposed within granulites from the continental basement slice of the Mt. Emilius klippe (Western Alps, Italy). These eclogites exhibit highly deformed garnetite and clinopyroxenite layers. In some places, these deformed rocks (up to mylonitic grade) can be found as clasts within meter-thick brecciated fault rocks that formed close to the lawsonite-eclogite facies peak P-T conditions. Garnet-rich layers are dominated by brittle features, whereas deformation within clinopyroxene-rich layers is accommodated by both creep and fracturing. We present a petro-structural study of these eclogites, that allows to track the brittle deformation history associated with chemical evolution. Based on these data, we propose a new tectono-metamorphic model for these rocks, related to the alpine eclogitic stage. This model is consistent with the coexistence of both ductile and brittle features that developed at similar P-T conditions (i.e., at P 2.15-2.40 GPa and T 500-550 °C), and closely associated with fluid circulations. Our study demonstrates that crustal material, buried along the subduction interface at HP-LT conditions, can record several successive brittle events in places where deformation is classically envisioned as ductile. We suggest, based on our observations, that strain-rate increase along plate interface shear zones may trigger fracturing and fluid infiltration which in turn enables brittle-ductile instabilities along these deformation networks.

  11. Kinematic analysis of mélange fabrics: examples and applications from the McHugh Complex, Kenai Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.; Bradley, Dwight C.

    1999-12-01

    Permian to Cretaceous mélange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and mélange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the mélange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to σ1 are contracted in both the brittle and ductile regimes, layers at 30-45° to σ1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 45° to σ1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within mélange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics.

  12. Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation

    NASA Astrophysics Data System (ADS)

    Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.

    2017-08-01

    Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.

  13. Does intraplate brittle deformation indicate far-field stress signals? A case study of Central Europe

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Kley, Jonas; Le Breton, Eline; van Hinsbergen, Douwe J. J.; Ustaszewski, Kamil

    2017-04-01

    Even though Central Europe has been located within a plate interior since the end of the Variscan orogeny, its intracontinental basins and highs recorded a succession of different tectonic regimes throughout the Mesozoic and Cenozoic, which were coeval with events at distant plate margins. A long Triassic-Cretaceous period of weak subsidence with intermittent extension was followed by NNE-SSW contraction in the Late Cretaceous-Paleocene. Renewed extension led to the formation of the Cenozoic Rift System and eventually evolved to the present-day variable stress regimes with a consistent NW-SE-oriented maximum horizontal shortening, SHmax. The detailed knowledge of this evolution relies on exhaustive lithostratigraphy and geochronological datasets, as well as on reconstruction of successive states of paleostress that controlled the formation and/or inversion of intracontinental basins. In combination, these data provide an excellent opportunity of linking the intracontinental deformation to the lithospheric plate boundary kinematics. Regional-scale analysis of fault kinematics in Central Europe unveiled a succession of consistent stress states for the crystalline basement and sedimentary cover of the brittle crust. These states of stress include a post-Triassic normal faulting regime with NE-SW-trending σ3 axis, strike-slip and thrust faulting regimes with NNE-SSW-trending σ1 axis, supposedly of Late Cretaceous age, and two younger events of normal and strike-slip faulting regimes with NW-SE-trending σ3 and σ1 axes, respectively. In this study, we report on the first attempts of linking the central European intraplate kinematics to changes in relative motion between the plates. The integration of stress fields with plate boundary kinematics suggests that the Late Cretaceous contraction may be explained by a change in African plate motion with respect to Eurasia from SE-directed sinistral transform to NNE-directed convergence. The reorientation of contraction to the present-day SHmax likely results from a change in direction of Africa-Eurasia plate convergence from N-S to NW-SE combined with plume-enhanced ridge push of the North Atlantic Ocean.

  14. Spontaneous subduction at transform faults: common process or outlier?

    NASA Astrophysics Data System (ADS)

    Lallemand, S.; Abecassis, S.; Arcay, D.; Garel, F.

    2017-12-01

    Spontaneous subduction is argued to occur mainly at transform faults, as a result of gravitational instability of the older plate in the absence of convergence, leading to subduction. Spontaneous subduction has been suggested for the initiation of the Izu-Bonin-Mariana subduction zone, based on the occurrence of a specific magmatic sequence including forearc basalts and boninites. Some thermo-mechanical models have been designed to focus on gravitational instability but only of the colder plate present at the transform fault, restricting the study of conditions yielding spontaneous subduction. We perform a more general 2D parameteric study, by combining pseudo-brittle and ductile rheologies. We test the influence of the two plate ages but also the role and the rheological properties of the transform fault, assumed to be made of a weak layer (crust in our case). This crustal layer may also be present (or not) on top of plates. Slip is free on all sides of the simulation box. We observe three different behaviors depending on experimental set-up: overall static conductive cooling, spontaneous subduction of the colder plate, and spontaneous subduction of the younger lithosphere. Our results suggest that spontaneous subduction of the colder plate can occur only for a limited range of lithosphere age pairs and if the brittle strength of the oceanic crust is low enough. In any cases, this mode of subduction initiation yields an instantaneous slab rollback associated with an extremely fast trench retreat, resulting in upper plate extension and asthenosphere upwelling along the slab top up to the surface. Our first conclusion is that the set of conditions necessary to trigger spontaneous subduction is (extremely) rare in nature, so that this process appears as an outlier. The second conclusion is that, when it occurs, spontaneous subduction initiation is close to catastrophic. This implies that the typical magmatic sequence including boninites should erupt within a limited amount of time. Geological records of subduction infancy in Izu-Bonin, 52-50 Myr ago, attest for boninitic eruptions from 52 to 32 Ma, which is not compatible with a catastrophic process.

  15. Modeling of laser welding of steel and titanium plates with a composite insert

    NASA Astrophysics Data System (ADS)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  16. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  17. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of arc by a trench and outer rise, which is proposed to be a subduction zone based on its morphologic similiarity to several terrestrial features. Its interior is cut by a rift and several shear zones. (2) Lada Terra is a 1000 km diameter topographic rise centered near 65°S, 10°E. The 800 km diameter Quetzelpetlatl Corona (QC) defines its western margin. The western edge of QC is defined by a trench and outer rise. As at Artemis, the latter presents also graben and fractures similar to the extensional features seen in the laboratory. The subsurface density variations inferred from modeling the gravity and topography data at both coronae are compatible with the existence of a slab at depth. Moreover, the interior of Artemis looks like the system of growing microplates inside the coronae described in the laboratory. While the second type is probably occuring in the Lada Terra region, where the presence of an extension zone to the north (Kalaipahoa Linea) could mark the edge of a microplate currently subducting at QC. Moreover, evidence for geologically recent volcanism at Quetzelpetlatl suggests that subduction may be currently active on Venus.

  18. Coming out prevention by stopper for the shrink fitted sandwiched shaft from the ceramic sleeve

    NASA Astrophysics Data System (ADS)

    Zhang, Guowei; Noda, Nao-Aki; Sano, Yoshikazu; Sakai, Hiromasa; Oda, Kazuhiro

    2017-05-01

    Ceramic roller can be used in the heating furnace conveniently because of its high temperature resistance. The roller consists of sleeve and steel shaft connected only under a small shrink fitting ratio because of the brittleness. However, the coming out of the shaft may often happen from the ceramic sleeve under repeated bending load. Therefore, how to prevent the coming out failure becomes an important issue. Based on the previous study, a two-dimensional shrink fitted structure is considered by replacing the shaft with the inner plate and by replacing the sleeve with the outer plate. Then, this research focuses on preventing the inner plate coming out from the outer plate by introducing a newly designed stopper on the outer plate. The simulation results shows that the coming out phenomenon can be prevented effectively due to the contact between the inter plate and the stopper installed on the outer plate. In order to evaluate the contact force between the inner plate and the stopper, the coming out mechanism is clarified. To prevent the coming out by stopper safely, the effects of the magnitude of repeated load and the friction coefficient upon the contact compressive force are investigated under large number of loading cycles by using 2D simulation.

  19. Lower crustal flow and the role of shear in basin subsidence: An example from the Dead Sea basin

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2002-01-01

    We interpret large-scale subsidence (5–6 km depth) with little attendant brittle deformation in the southern Dead Sea basin, a large pull-apart basin along the Dead Sea transform plate boundary, to indicate lower crustal thinning due to lower crustal flow. Along-axis flow within the lower crust could be induced by the reduction of overburden pressure in the central Dead Sea basin, where brittle extensional deformation is observed. Using a channel flow approximation, we estimate that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is ≤7×1019–1×1021 Pa s, a value compatible with the normal heat flow in the region. Lower crustal viscosity due to the strain rate associated with basin extension is estimated to be similar to or smaller than the viscosity required for a channel flow. However, the viscosity under the basin may be reduced to 5×1017–5×1019 Pa s by the enhanced strain rate due to lateral shear along the transform plate boundary. Thus, lower crustal flow facilitated by shear may be a viable mechanism to enlarge basins and modify other topographic features even in the absence of underlying thermal anomalies.

  20. A study of degradation of plates for nickel-cadmium spacecraft cells

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1974-01-01

    The relative merits of coining and not coining of sintered nickel oxide and cadmium plates was investigated. Sample plate materials from most commercial cell suppliers were obtained and characterized for properties that may correlate with the tendency toward physical disintegration during handling and over long periods of time in the cell. Special test methods were developed to obtain comparative data in a short time. A wide range of physical properties and coining thickness was observed, resulting in a range of responses. The stronger materials resisted loss of sinter better than weaker materials whether or not coined. Coining improved handling and resistance to electrochemical cycling of weaker materials. The mechanism of break-down of positive plate edges under cycling appears to be the same as that of thickening and blistering. Brittle, nonadherent sinter, resulting from certain impregnation processes, is the most vulnerable to degradation. It is concluded that the latter type of materials should be coined, but coining of strong materials is optional.

  1. Going the Extra Mile: Enabling Joint Logistics for the Tactical War Fighter

    DTIC Science & Technology

    2010-05-04

    few of the links when relocating hubs. Chains v. Networks Supply Chain Too brittle , long CPL, low clustering, simple pattern, simple control...Mass Service Perspective Efficiency Highly Optimized Brittle , Rigid Supply Chains vs Networked Cross-Service Mutual Support Cross-Enterprise...Storage and Distribution Centei\\" Army Logistician 39, no. 6 (November-December 2007): 40. 68 Glen R Dowling, "Army and Marine Joint Ammunition

  2. Pressures in Tumuli: A Study of Tumuli Formation

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2005-01-01

    Tumuli form via localized inflation in surface lava flows. These domed features have widths of 10-20 m, lengths of 10-150 m, and heights of 1-9 m. The axial fracture exposes a brittle crust overlying a ductilely deformed layer. The total crustal thickness is typically less than lm. Tumuli are observed on both terrestrial and martian lava flow surfaces, and provide insight on the flow formation processes and rates. Past studies have estimated the inflation pressure using a bending model for a circular, thin elastic plate, assuming small deflection (Rossi and Gudmundson, 1996). This formulation results in unrealistic pressures for some tumuli. We thus examine alternative models, including those with different shapes, bending of the ductile crust, large deflection, plastic deformation, and thick plate bending. Using the thickness of the ductile crust in the equations for thin, circular plates reduces most pressures to reasonable values. Alternative plate shapes do not cause a significant reduction in inflation pressure. Although the large deflection equations should be applicable based on the plate thickness to tumuli height ratios, they give even less realistic pressures. Tumuli with unrealistic pressures appear to have exceeded the critical bending moment, and have relatively thick crusts, requiring thick plate bending models.

  3. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    NASA Astrophysics Data System (ADS)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  4. Physics of loose abrasive microgrinding.

    PubMed

    Golini, D; Jacobs, S D

    1991-07-01

    This study examined the physics of loose abrasive microgrinding (grinding with micron and submicron sized abrasives). More specifically, it focused on the transition from brittle to ductile mode grinding which occurs in this region of abrasive sizes. Process dependency on slurry chemistry was the primary area of emphasis and was studied for diamond abrasives varying in size from 3.0 to 0.75 microm on both ULE and Zerodur, with emphasis on ULE. Ductile mode grinding was achieved with smaller abrasives, as expected, however two significant discoveries were made. The first observation was that by simply changing slurry chemistry, it was possible to induce the transition from brittle fracture to ductile mode grinding in ULE. This transition point could be intentionally moved about for diamonds 3.0-0.75 microm in diameter. For any given abrasive size within these limits, either brittle fracture or ductile removal may be achieved, depending on the slurry used to suspend the diamonds. Several slurries were studied, including water, a series of homologous n-alcohols, and other solvents chosen for properties varying from molecular size to dielectric constant and zeta potential. The study revealed that this slurry dependency is primarily a Rebinder effect. The second finding was that a tremendous amount of surface stress is introduced in loose abrasive ductile mode grinding. This stress was observed when the Twyman Effect in ULE plates increased by a factor of 4 in the transition from the brittle to the ductile mode. An assessment of the cause of this stress is discussed.

  5. A study of degradation of plates for nickel-cadmium spacecraft cells. [feasibility of coining

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1973-01-01

    The relative merits of coining and not coining of sintered nickel-oxide and cadmium plates was investigated. A survey of the industry including cell manufactures and users was made and results summarized. Sample plate materials from most commercial cell suppliers were obtained and characterized for properties that may correlate with the tendency toward physical disintegration during handling and over long periods of time in the cell. Special test methods were developed to obtain comparative data in a short time. A wide range of physical properties and coining thicknesses was observed, resulting in a range of responses. The stronger, less brittle materials resisted loss of sinter better than weaker materials whether or not coined. Coining improved handling and resistance to electrochemical cycling in all materials tested. An apparent exception was found to be due to improper coining of a tapered edge.

  6. Successive post-Variscan stress fields in the French Massif Central and its borders (Western European plate): comparison with geodynamic data

    NASA Astrophysics Data System (ADS)

    Blés, J. L.; Bonijoly, D.; Castaing, C.; Gros, Y.

    1989-11-01

    Structural analysis and particularly microtectonic methods have made it possible to define the different stages of brittle deformation of the Massif Central basement and the surrounding sedimentary cover from the end of the Hercynian orogeny to the end of the Tertiary. During the Stephanian a compressional tectonic regime prevailed: regional faults appeared or were react vated reactivation as a result of initial N-S compression, becoming NW then E-W. These regional strike-slip faults caused local extension which led to the formation of small coal-bearing basins. This compressional regime, which marked the end of the formation of Pangea. was followed by a series of extension episodes: Permian-Triassic extension oscillating around N-S. E-W to NW-SE extension in the Early and Middle Jurassic and finally N-S to NE-SW extension in the Late Jurassic to Cretaceous. The normal faults formed during these episodes strongly influenced the distribution of emerging continents and sedimentary basins. From the Campanian (75 Ma) to the Present, the convergence of Africa and Eurasia involved the distribut on of stresses in the West European plate. Several tectonic episodes are distinguished in the Massif Central. During the Eocene approximately N-S compression predominated. General E-W extension in the Late Eocene-Oligocene resulted in grabens with general northerly strike, mainly in the centre of the Massif Central and on its east and southeast borders. Lastly, compression, varying from NW-SE to E-W, in the north and south of the Massif Central, prevailed during the Alpine orogenic phase at the end of the Miocene. These successive stages of brittle deformation are interpreted in the context of the evolution of the West European plate and its displacement in relation to the African plate. The correspondences between the major geodynamic periods and the distribution of stresses over the West European continent are noted as well as the problems which remair to be resolved.

  7. How the continents deform: The evidence from tectonic geodesy

    USGS Publications Warehouse

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  8. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  9. Deformation of the Pacific Plate above the Alpine fault ramp and its relationship to expulsion of metamorphic fluids: An array of backshears

    NASA Astrophysics Data System (ADS)

    Wightman, Ruth H.; Little, Timothy A.

    A ˜2 km-wide array of near-vertical backshears in the central Southern Alps, New Zealand, is interpreted to have slipped in an escalator-like way to up-ramp the Pacific Plate onto the Alpine Fault ramp, and to play an important role in channelling metamorphic fluids upward through this active orogen. The oblique-slip backshears formed in the lower crust, are evenly spaced (˜30 cm), and have an average offset of 14 cm that is brittle to ductile and extend over 500 m in vertical length. Cumulative vertical displacements suggest that the causative ramp-step in the Alpine Fault at depth had an angle of 22±8°. Microscale shearing between the backshears probably accomplished additional crustal tilting to ˜45°. We infer this shearing was focused above the basal ramp-step, was transient, and aseismic. Focal mechanisms of earthquakes in the Southern Alps suggest that similar backshearing may be accumulating at depth today, where it is linked to seismic-slip on upper crustal faults. Fluid was integral to the formation and accumulation of shear along the backshears. Near-lithostatic fluid pressures triggered deep, brittle shear failure (>20 km). The steep, dilative backshears allowed these fluids to escape upwards through low permeability (1 × 10-18m2) schist. Fluid expulsion may thus have accomplished a devolatilisation and rheological strengthening along the Alpine mylonite source region at depth, while also causing a hydrolytic weakening of the fluid-invaded rocks (especially quartz veins) in the Pacific Plate. These coupled strength changes may have enhanced the local partitioning of deformation onto steep planes in the Alpine Fault hangingwall.

  10. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Burov, E. B.

    2003-08-01

    Plate flexure is a phenomenon that describes how the lithosphere responds to long-term (>105 yr) geological loads. By comparing the flexure in the vicinity of ice, volcano, and sediment loads to predictions based on simple plate models it has been possible to estimate the effective elastic thickness of the lithosphere, Te. In the oceans, Te is the range 2-50 km and is determined mainly by plate and load age. The continents, in contrast, are characterised by Te values of up to 80 km and greater. Rheological considerations based on data from experimental rock mechanics suggest that Te reflects the integrated brittle, elastic and ductile strength of the lithosphere. Te differs, therefore, from the seismogenic layer thickness, Ts, which is indicative of the depth to which anelastic deformation occurs as unstable frictional sliding. Despite differences in their time scales, Te and Ts are similar in the oceans where loading reduces the initial mechanical thickness to values that generally coincide with the thickness of the brittle layer. They differ, however, in continents, which, unlike oceans, are characterised by a multi-layer rheology. As a result, Te≫Ts in cratons, many convergent zones, and some rifts. Most rifts, however, are characterised by a low Te that has been variously attributed to a young thermal age of the rifted lithosphere, thinning and heating at the time of rifting, and yielding due to post-rift sediment loading. Irrespective of their origin, the Wilson cycle makes it possible for low values to be inherited by foreland basins which, in turn, helps explain why similarities between Te and Ts extend beyond rifts into other tectonic regions such as orogenic belts and, occasionally, the cratons themselves.

  11. Lithospheric strength across the ocean-continent transition in the NW of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martín-Velázquez, Silvia; Martín-González, Fidel

    2014-05-01

    The main objective of this work is to investigate the relation between the strength of the lithosphere and the observed pattern of seismicity across the ocean-continent transition in the NW margin of the Iberian Peninsula. The seismicity is diffuse in this intraplate area, far from the seismically active margin of the plate: the Eurasia-African plate boundary, where convergence occurs at a rate of 4-5mm/year. The earthquake epicentres are mainly limited to an E-W trending zone (onshore seismicity is more abundant than offshore), and most earthquakes occur at depths less than 30 km, however, offshore depths are up to 150 km). Moreover, one of the problems to unravel in this area is that the seismotectonic interpretations of the anomalous seismicity in the NW peninsular are contradictory. The temperature and strength profiles have been modelled in three domains along the non-volcanic rifted West Iberian Margin: 1) the oceanic lithosphere of the Iberian Abyssal Plain, 2) the oceanic lithosphere near the ocean-continent transition of the Galicia Bank, and 3) the continental lithosphere of the NW Iberian Massif. The average bathymetry and topography have been used to fit the thermal structures of the three types of lithospheres, given that the heat flow and heat production values show a varied range. The geotherms, together with the brittle and ductile rheological laws, have been used to calculate the strength envelopes in different stress regimes (compression, shear and tensile). The continental lithosphere-asthenosphere boundary is located at 123 km and several brittle-ductile transitions appear in the crust and the mantle. However, the oceanic lithospheres are thinner (110 km near the Galicia Bank and 87 km in the Iberian Abbysal Plain) and more simple (brittle behaviour in the crust and upper mantle). The earthquake distribution is best explained by lithospheres with dry compositions and shear or tensile stress regimes. These results are similar can be compared to those of the Gulf of Cadiz oceanic-continental transition near the Eurasia-African plate boundary (Neves and Neves, 2009), and they contribute to complete the knowledge about seismicity and lithospheric strength in the ocean-continent transition of the Iberian Peninsula. References Neves M.C., Neves, R.G.M., 2009. Flexure and seismicity across the ocean-continent transition in the Gulf of Cadiz. Journal of Geodynamics, 47, 119-129.

  12. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to three orders of magnitude higher than those associated with earthquakes located where TH ≤ 0.55. We conclude that the brittle-ductile transition corresponds to the transition from long-range (regional) to short-range (localized on asperities) stress correlation.

  13. Field-based perspective on fault rock evolution and microstructures in low-angle fault zones (W-Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard

    2010-05-01

    The mechanics of sub-horizontal faults, typically active at the brittle/ductile transition zone, are still controversial because they do not conform to current fault-mechanical theory. In the Western Cyclades (Greece) conjugate high-angle brittle faults mechanically interact with sub-horizontal faults and therefore models based on fault and/or stress rotation can be rejected. A range of different deformation mechanisms and/or rock properties must have resulted in an reduction of the fault strength in both the ductily and cataclastically deformed fault rocks. Typically the low-angle faults have following characteristics: The footwall below the subhorizontal faults consists of coarse-grained impure marbles and greenschists, which record an increase in shear strain localizing in several meters to tens of meters thick ultra fine-grained marble mylonites. These ultamylonites are delimited along a knife-sharp slickenside plane juxtaposing tens of decimeter thick zones of polyphase ultracataclasites. The marbles accommodated high shear strain by ductile deformation mechanisms such as dislocation creep and/or grain size sensitive flow by recrystallization, which might have result in fault zone weakening. Typically the marbles are impure and record spatial arrangement of mica and quartz grains, which might have lead to structural softening by decoupling of the calcite matrix from the clasts. During brittle deformation the massif marble ultramylonites act as a strong plate and ultracataclastic deformation is localizing exactly along the border of this plate. Although some of the cataclastic deformation mechanisms lead to chaotic fabrics with evidence for frictional sliding and comminution, others favor the formation of foliated cataclasites and fault gouges with various intensities of phyllosilicate fabrics. Frequently, a repeated switch between grain fracturing processes and processes, which created a sc or scc'-type foliation can be observed. On Serifos the low-angle fault cuts the roof of a pluton, recording progressive deformation of the undeformed granodiorite at lower structural levels, to mylonitic granodiorite within the shear zone. Although there were almost no whole-rock compositional, mass or volume changes in the strongly deformed footwall, the weakly foliated granodiorite in the hanging wall has been heavily fractured and totally bleached by fluid infiltration. Concluding, a wide range of different deformation mechanisms, both in the ductile and the brittle field, acted during formation of the low-angle faults in the Western Cyclades.

  14. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    PubMed

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  15. Study on electroplating technology of diamond tools for machining hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Chen, Jian Hua; Sun, Li Peng; Wang, Yue

    2016-10-01

    With the development of the high speed cutting, the ultra-precision machining and ultrasonic vibration technique in processing hard and brittle material , the requirement of cutting tools is becoming higher and higher. As electroplated diamond tools have distinct advantages, such as high adaptability, high durability, long service life and good dimensional stability, the cutting tools are effective and extensive used in grinding hard and brittle materials. In this paper, the coating structure of electroplating diamond tool is described. The electroplating process flow is presented, and the influence of pretreatment on the machining quality is analyzed. Through the experimental research and summary, the reasonable formula of the electrolyte, the electroplating technologic parameters and the suitable sanding method were determined. Meanwhile, the drilling experiment on glass-ceramic shows that the electroplating process can effectively improve the cutting performance of diamond tools. It has laid a good foundation for further improving the quality and efficiency of the machining of hard and brittle materials.

  16. Metachronous bilateral subtrochanteric fracture of femur in an osteopetrotic bone: A case report with technical note.

    PubMed

    Kumar, Dharmendra; Jain, Vijay Kumar; Lal, Hitesh; Arya, Rajinder Kumar; Sinha, Skand

    2012-12-01

    Osteopetrosis is a rare inherited skeletal disorder characterized by increased density. The increased fragility of such dense bone results in a greater incidence of fractures, especially around hip and proximal femur. The surgical treatment of such fractures is difficult due to hard but brittle structure of bone. Herein we report a case of bilateral subtrochanteric fracture in an osteopetrotic patient. It was fixed using a dynamic hip screw with plate.

  17. Microstructural and fabric characterization of brittle-ductile transitional deformation of middle crustal rocks along the Jinzhou detachment fault zone, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Juyi; Jiang, Hao; Liu, Junlai

    2017-04-01

    Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500-630˚ C), whereas complicated fabric patterns (e.g. asymmetric single girdles) are formed in fault rocks from the upper part of the DFZ. The increasing fabric complexity is here interpreted as the result of progressive superposition of fault rocks by shearing either at relatively shallow levels or high rate of strain, during exhumation of the lower plate and shear zone rocks. The above observations and interpretations imply that dislocation creep processes contribute to the dynamic recrystallization of quartz in the middle crustal brittle-ductile transition. Progressive shearing as a consequence of exhumation of the lower plate of the MCC contributed to the obvious structural, microstructural and fabric superpositions. Strain localization occurs as the progressive shearing proceeded. Transition of mechanisms of deformation and dynamic recrystallization during strain localization may be resulted from changes in temperature conditions, in strain rates or addition of minor amount water.

  18. High Temperature Degradation of 5250-4 Polymer Resin

    DTIC Science & Technology

    2007-06-01

    fragments. The pieces were then repeatedly crushed between two stainless steel plates with a Wabash 30 Ton Press. After this process, the pieces...the BMI powder. Two stainless steel ASTM test sieves, with mesh sizes of 45 and 90 µm, were used to collect only the powder in the 45 to 90 µm range...The o,o’-diallylbisphenol A ( BPA ) monomer in Figure 1 is not a bismaleimide, but it is often used in BMI polymers to make otherwise brittle BMIs

  19. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin

    USGS Publications Warehouse

    England, Philip; Wells, Ray E.

    1991-01-01

    Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.

  20. Epoxy Resin Composite Based on Functional Hybrid Fillers

    PubMed Central

    Oleksy, Mariusz; Szwarc-Rzepka, Karolina; Heneczkowski, Maciej; Oliwa, Rafał; Jesionowski, Teofil

    2014-01-01

    A study was carried out involving the filling of epoxy resin (EP) with bentonites and silica modified with polyhedral oligomeric silsesquioxane (POSS). The method of homogenization and the type of filler affect the functional and canceling properties of the composites was determined. The filler content ranged from 1.5% to 4.5% by mass. The basic mechanical properties of the hybrid composites were found to improve, and, in particular, there was an increase in tensile strength by 44%, and in Charpy impact strength by 93%. The developed hybrid composites had characteristics typical of polymer nanocomposites modified by clays, with a fine plate morphology of brittle fractures observed by SEM, absence of a plate separation peak in Wide Angles X-ray Scattering (WAXS) curves, and an exfoliated structure observed by TEM. PMID:28788177

  1. Reliability Analysis of Uniaxially Ground Brittle Materials

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Nemeth, Noel N.; Powers, Lynn M.; Choi, Sung R.

    1995-01-01

    The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens.

  2. Manufacturing and actuation characterization of ionic polymer metal composites with silver as electrodes

    NASA Astrophysics Data System (ADS)

    Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol

    2006-03-01

    Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.

  3. Fracturing and brittleness index analyses of shales

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable candidate for hydraulic fracturing while if we would rely on stress-strain data (BI2) the Whitby mudstone would be a very good candidate. We are aiming to perform these kind of measurements on a wide variety of shales with varying compositions and origins etc. and compare all results and come up with a better brittleness index, as well as link the brittleness indices to the fracturing behaviour seen in the samples. References: Holt, R., Fjaer, E., Nes, O. & Alassi, H., 2011. A shaly look at brittleness. 45th U.S. Rock Mechanics / Geomechanics Symposium, ARMA-11-366 Jarvie, D., Hill, J., Ruble, T. & Pollastro, R., 2007. Unconventional shale-gas system: The Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment. AAPG, 91(doi: 10.1306/12190606068), pp. 475-499. Jin, X., Shah, S. N., Rogiers, J.-C. & Zhang, B., 2014. Fraccability Evaluation in Shale Reservoirs - An Integrated Petrophysics and Geomechanics Approach. Woodlands, Texas, SPE.

  4. Prediction of material strength and fracture of glass using the SPHINX smooth particle hydrodynamics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Wingate, C.A.

    1994-08-01

    The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, andmore » data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.« less

  5. Thermal structure of oceanic transform faults

    USGS Publications Warehouse

    Behn, M.D.; Boettcher, M.S.; Hirth, G.

    2007-01-01

    We use three-dimensional finite element simulations to investigate the temperature structure beneath oceanic transform faults. We show that using a rheology that incorporates brittle weakening of the lithosphere generates a region of enhanced mantle upwelling and elevated temperatures along the transform; the warmest temperatures and thinnest lithosphere are predicted to be near the center of the transform. Previous studies predicted that the mantle beneath oceanic transform faults is anomalously cold relative to adjacent intraplate regions, with the thickest lithosphere located at the center of the transform. These earlier studies used simplified rheologic laws to simulate the behavior of the lithosphere and underlying asthenosphere. We show that the warmer thermal structure predicted by our calculations is directly attributed to the inclusion of a more realistic brittle rheology. This temperature structure is consistent with a wide range of observations from ridge-transform environments, including the depth of seismicity, geochemical anomalies along adjacent ridge segments, and the tendency for long transforms to break into small intratransform spreading centers during changes in plate motion. ?? 2007 Geological Society of America.

  6. Obtaining Crack-free WC-Co Alloys by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Khmyrov, R. S.; Safronov, V. A.; Gusarov, A. V.

    Standard hardmetals of WC-Co system are brittle and often crack at selective laser melting (SLM). The objective of this study is to estimate the range of WC/Co ratio where cracking can be avoided. Micron-sized Co powder was mixed with WC nanopowder in a ball mill to obtain uniform distribution of WC over the surface of Co particles. Continuous layers of remelted material on the surface of a hardmetal plate were obtained from this composite powder by SLM at 1.07μm wavelength. The layers have satisfactory porosity and are well bound to the substrate. The chemical composition of the layers matches the composition of the initial powder mixtures. The powder mixture with 25wt.%WC can be used for SLM to obtain materials without cracks. The powder mixture with 50wt.%WC cracks because of formation of brittle W3Co3C phase. Cracking can considerably reduce the mechanical strength, so that the use of this composition is not advised.

  7. Lateral variations of thermo-rheological structure in SE Tibet

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Gong, W.

    2017-12-01

    The structure and geodynamics in SE Tibet is important to developing a full understanding of tectonic evolution of the Tibetan plateau. To investigate the lithospheric structure and deformation, we present thermo-rheological models for two transects across SE Tibet. The thermal models are determined by the heat flow and P-wave velocity models. Based on thermal models, the rheological models are constructed in the weak and strong cases where the lower crust is felsic or mafic granulite and the lithospheric mantle is wet or dry peridotite. The thermal models show an obvious high-temperature anomaly within the lithosphere beneath the Chuandian block. Strong lateral heterogeneity is present in the rheological modeling and corresponds to variations of thermal models. The Chuandian block demonstrates a lower level of lithospheric strength than its neighboring regions, which is in accord with the seismogenic layer distribution. Combining with a joint analysis of SKS splitting and GPS data, the crust and mantle is decoupled at a depth below the topmost mantle in SE Tibet. The strong crust beneath the South China plate and Indochina block has two brittle load-bearing layers in the crust, indicating the system is mechanically coupled. The crust beneath the Emeishan igneous province also has two brittle load-bearing layers, but the brittle deformation is restricted to the topmost 10 km of the upper and lower crust. In contrast, only one brittle load-bearing layer resides in the upper crust with the lower crust contributing little to the lithospheric strength at the location where low-velocity-high-conductivity zones have been recognized within the crust in the Chuandian block. This indicates that the crust beneath the Chuandian block becomes decoupled, as evidenced by the crustal anisotropy pattern.

  8. A brittle-ductile high- and low-angle fault related to the Kea extensional detachment (W Cyclades., Greece)

    NASA Astrophysics Data System (ADS)

    Rockenschaub, M.; Grasemann, B.; Iglseder, C.; Rice, A. H. N.; Schneider, D.; Zamolyi, A.

    2010-05-01

    Roll-back of the African Plate within the Eurasian-African collision zone since the Oligocene/Miocene led to extension in the Cyclades along low-angle normal fault zones and exhumation of rocks from near the brittle-ductile transition zone. On the island of Kea (W Cyclades), which represents such a crustal scale low-angle fault zone with top-to-SSW kinematics, remote sensing analysis of brittle fault lineaments in the Pissis area (W Kea) demonstrates two dominant strike directions: ca. NE-SW and NW-SE. From the north of Pisses southwards, the angle between the two main fault directions changes gradually from a rhombohedral geometry (ca. 50°/130° angle between faults, with the acute angle facing westwards) to an orthogonal geometry. The aim of this study is the development of this fault system. We investigate, if this fault system is related to the Miocene extension or if it is related to a later overprinting event (e.g. the opening of the Corinth) Field observations revealed that the investigated lineaments are high-angle (50-90° dip) brittle/ductile conjugate, faults. Due to the lack of marker layers offsets could only rarely be estimated. Locally centimetre thick marble layers in the greenschists suggest a displacement gradient along the faults with a maximum offset of less than 60 cm. Large displacement gradients are associated with a pronounced ductile fault drag in the host rocks. In some instances, high-angle normal faults were observed to link kinematically with low-angle, top-to-SSW brittle/ductile shear bands. Both the high- and the low-angle faults have a component of ductile shear, which is overprinted by brittle deformation mechanisms. In thin-section, polyphase mode-2 cracks are filled mainly with calcite and quartz (ultra)cataclasites, sometimes followed by further opening with fluid-related iron-rich carbonate (ankeritic) precipitation. CL analysis reveals several generations of cements, indicating multiple phases of cataclastic deformation and fluid infiltration. Ar/Ar white mica data from Pisses constrain ductile deformation to ca. 20 Ma. Since the high-angle faults show a continuum from ductile to brittle deformation, the Ar/Ar cooling ages suggest that faulting must have occurred in the Miocene. Consequently the high-angle faulting was genetically related to the SSW-directed low-angle extensional event and does not represent a later overprint related to a different kinematic event.

  9. Methods of localization of Lamb wave sources on thin plates

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2015-04-01

    Signal localization techniques are ubiquitous in both industry and academic communities. We propose a new localization method on plates which is based on energy amplitude attenuation and inverted source amplitude comparison. This inversion is tested on synthetic data using Lamb wave propagation direct model and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers (1-26 kHz frequency range)). We compare the performance of the technique to the classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. Furthermore, we measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, geometry, Signal to Noise Ratio, and we show that this very versatile technique works better than classical ones over the sampling rates 100kHz - 1MHz. Experimental phase consists of a glass plate having dimensions of 80cmx40cm with a thickness of 1cm. Generated signals due to a wooden hammer hit or a steel ball hit are captured by sensors placed on the plate on different locations with the mentioned sensors. Numerical simulations are done using dispersive far field approximation of plate waves. Signals are generated using a hertzian loading over the plate. Using imaginary sources outside the plate boundaries the effect of reflections is also included. This proposed method, can be modified to be implemented on 3d environments, monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  10. Tectonics of the Red Sea region reassessed

    NASA Astrophysics Data System (ADS)

    Ghebreab, Woldai

    1998-11-01

    The brittle upper level of the continental crust had been rifted with or without ocean opening many times in many places during the geological past and the process is still happening. Since the advent of plate tectonic theory in the early 1960s, the formation of such rifts has been viewed in the context of plate tectonic processes that caused the repeated dispersal of supercontinents. Several researchers focused on the mechanisms of formation of continental rifts because some rifts, like the Red Sea and Gulf of Aden, are precursors to ocean basins and many hydrocarbons yet to be located which are either directly or indirectly related to rift structures. The East African Rift System and the Red Sea-Gulf of Aden young oceans have been considered as prime examples of the early stage of continental separation that has long been a testing ground for classical hypotheses of continental drift. The Red Sea separates the once contiguous Neoproterozoic Arabian-Nubian Shields and started opening about 25 Ma ago. Geophysics and geochronology of dredged basaltic rocks indicate that sea-floor spreading began at only about 4-5 Ma. Numerous multidisciplinary investigations have been carried out in this region. However, several questions remain unresolved. Examples pertain to the nature of the crust that underlies the shelves, the extent of the ocean floor, the interplay between sea-floor spreading, crustal extension and plutonic activity and mechanisms of rifting. Several mechanisms of rifting have been proposed for the formation of the Red Sea. Examples include extension by prolonged steep normal faulting (horst-graben terrain), early diffuse ductile extension followed by brittle deformation, low-angle lithospheric simple shear, low-angle shear and magmatic expansion, lithospheric thinning by faulting and dike injection, northeastward migration of asymmetric rifting over a fixed mantle plume and the formation of pull-apart basin(s) by transtension. The major differences between the various models center on the relative timing of updoming, rifting and magmatism and whether the rifting was active and driven by a mantle plume or passive and due to lateral extension of the lithosphere leading to reactive effects in the mantle. New geological field data from the western margin of the Southern Red Sea in Eritrea reveal two main stages of NE-SW extension history. The first semi-brittle stage (⩾30 Ma) was dominantly characterized by top-to-east low-angle detachments. The second brittle stage of extension (since ˜22 Ma) occurred on a new system of dominantly down-to-southwest planar normal faults and dikes with NW-SE strikes. The earlier semi-brittle stage of extension corresponds to the predicted low-angle simple shear zone through the lithosphere and the later gives some support to the models that invoke graben-horst formation along steep normal faults that ultimately soled out to detachments at intermediate crustal level or merge with the Moho.

  11. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing

    NASA Astrophysics Data System (ADS)

    Dai, Yuting; Xu, Zhishuai; Luo, Zhiping; Han, Ke; Zhai, Qijie; Zheng, Hongxing

    2018-05-01

    High-temperature phase transition behavior and intrinsic brittleness of NaZn13-type τ1 phase in La-Fe-Si magnetocaloric materials are two key problems from the viewpoint of materials production and practical applications. In the present work, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation was introduced to quantitatively characterize the formation kinetics of τ1 phase in sub-rapidly solidified LaFe11.6Si1.4 plates during the isothermal annealing process. Avrami index was estimated to be 0.43 (∼0.5), which suggests that the formation of τ1 phase is in a diffusion-controlled one-dimensional growth mode. Meanwhile, it is found that the Vickers hardness as a function of annealing time for sub-rapidly solidified plates also agrees well with the JMAK equation. The Vickers hardness of τ1 phase was estimated to be about 754. Under a magnetic field change of 30 kOe, the maximum magnetic entropy change was about 22.31 J/(kg·K) for plates annealed at 1323 K for 48 h, and the effective magnetic refrigeration capacity reached 191 J/kg.

  12. Analysis of the aerodynamic interaction between two plunging plates in tandem at low Reynolds number for maximum propulsive efficiency

    NASA Astrophysics Data System (ADS)

    Ortega-Casanova, Joaquin; Fernandez-Feria, Ramon

    2015-11-01

    The thrust generated by two heaving plates in tandem is analysed for two particular sets of configurations of interest in forward flight: a plunging leading plate with the trailing plate at rest, and the two plates heaving with the same frequency and amplitude, but varying the phase difference. The thrust efficiency of the leading plate is augmented in relation to a single plate heaving with the same frequency and amplitude in most cases. In the first configuration, we characterize the range of nondimensional heaving frequencies and amplitudes of the leading plate for which the stationary trailing plate contributes positively to the global thrust. The maximum global thrust efficiency, reached for an advance ratio slightly less than unity and a reduced frequency close to 5, is about the same as the maximum efficiency for an isolated plate. But for low frequencies the tandem configuration with the trailing plate at rest is more thrust efficient than the isolated plate. In the second configuration, we find that the maximum thrust efficiency is reached for a phase lag of 180o (counterstroking), particularly for an advance ratio unity and a reduced frequency 4.4, and it is practically the same as in the other configuration and that for a single plate. Supported by the Ministerio de Economía y Competitividad of Spain Grant no. DPI2013-40479-P.

  13. Welding of titanium and stainless steel using the composite insert

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Mali, V. I.; Orishich, A. M.; Malikov, A. G.; Drozdov, V. O.; Malyutina, Y. N.

    2016-11-01

    The paper concerns the possibility of obtaining a lasting permanent joint of dissimilar metals: technically pure titanium and stainless steel using laser welding and an intermediate composite insert. The insert was a four-layer composition of plates of steel, copper, niobium, and titanium welded by explosion. The material layers used in the insert prevented the molten steel and titanium from mixing, which excluded the formation of brittle intermetallic compounds, such as FeTi and Fe2Ti. The optimization of explosion welding parameters provided a high quality of the four-layer composition and the absence of defects in the area of the joint of insert plates. The results of strength tests showed that values of the ultimate strength and yield of the permanent joint with the composite insert welded by explosion are comparable to the strength characteristics of titanium.

  14. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  15. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  16. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics 1166, 143-162.

  17. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip fault systems, both on Earth and throughout the solar system (e.g., the Tiger Stripe Fractures on Enceladus).

  18. Crystal-rich lava dome extrusion during vesiculation: An experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth

    2017-11-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the system. In the light of these results we propose a rheological description of crystal-rich lava dome mechanics. The contrasting experimental behaviours at different crystallinities have implications for the style of slow-ascending dome-forming eruptions. All other factors being equal, our experiments suggest that crystal-poor magmas will undergo efficient outgassing, reducing the potential for an explosive eruption. Conversely, crystal-rich magmas may experience limited outgassing and larger gas overpressures during vesiculation, therefore increasing the potential for an explosive eruption.

  19. Cuttability Assessment of Selected Rocks Through Different Brittleness Values

    NASA Astrophysics Data System (ADS)

    Dursun, Arif Emre; Gokay, M. Kemal

    2016-04-01

    Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.

  20. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.

  1. High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates

    NASA Astrophysics Data System (ADS)

    Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.

    2013-09-01

    The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.

  2. Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Qi, Zi-chen; Yu, Hui; Xu, Cheng; Xiao, Hong

    2018-03-01

    In this paper, a titanium alloy and low carbon steel were bonded via hot rolling in a vacuum, and the effect of roll bonding temperature and reduction ratio on the microstructural and mechanical properties of the plate was studied. When the bonding temperature was between 850 and 1050 °C, the shear strength of the interface increased with an increasing reduction ratio from 18 to 70%. At a bonding temperature of 950 °C and at a rolling reduction ratio of 70%, the best bonding strength was obtained, and a shear fracture occurred on the low carbon steel matrix. At 1050 °C, brittle compounds, i.e., TiC, FeTi, and Fe2Ti, formed at the interface, which decreased the bonding strength. The large reduction ratio can break up compounds at the interface and extrude fresh metal for bonding, thereby increasing the bonding strength.

  3. Fractal patterns of fracture in sandwich composite materials under biaxial tension

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Yao, Xuefeng; Qi, Jia

    1996-04-01

    The paper presents a successful experiment to generate a fractal pattern of branching cracks in a brittle material sandwiched in ductile plates. A glass sheet bonded between two polycarbonate plates was heated at different levels of temperatures and the stress field due to the difference of thermal coefficients of the materials was solved by combining the results from isochromatic fringes and thermal stress analysis. At a critical degree of temperature, a crack was initiated at a point and soon produced crack branches to release the stored energy. A tree—like fractal patterns of the branch cracks was then developed with the growth of the branches that subsequently produced more branches on their ways of propagation. The fractal dimension of the fracture pattern was evaluated and the mechanism of the fragmentation was analyzed with the help of the residual stress field of isochromatic and isoclinic patterns.

  4. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NASA Astrophysics Data System (ADS)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.

    2010-06-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.

  5. A new species of the remarkable brittle star genus Astrophiura (Echinodermata: Ophiuroidea) from the western Atlantic Ocean.

    PubMed

    Pawson, David L

    2018-02-07

    Astrophiura caroleae, new species, is described from off Curacao in the southern Caribbean, and from the western Gulf of Mexico, in depths of 244 to 434 meters. This new species, the first in the genus Astrophiura to be described from the Atlantic Ocean, has a distinctive combination of characters, including regularly arranged primary plates, large radial shields whose radial edges are in contact for their entire visible length, and prominent tubercles on central and radial plates. The mottled reddish coloration of the dorsal surface of this species usually contrasts with the color of the substratum, rendering it readily visible in situ, despite its disc diameter of less than 10 mm. Like its congeners, A. caroleae is gonochoric, the gonads of females containing conspicuous masses of bright orange eggs that are approximately 165 µm in diameter. DNA Barcoding data are provided for this new species, these are the first for Astrophiura.

  6. Application of SP test to Evaluate Embrittlement of Dual Phase Stainless Steel Caused by Sigma Phase and Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.S.; Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011; Kim, I.S.

    2004-07-01

    The degradation of mechanical properties in dual phase 309L stainless steel RPV clad caused by the presence of s-phase as well as neutron irradiation was investigated using a small punch (SP) test. Two kinds of overlay-weld clad were fabricated on SA508 cl.3 pressure vessel steel plates with ER309L welding consumable strip by differing in heat input rates. The microstructure of the clad was composed of a main part of fcc austenite, a few percent of bcc d- ferrite and brittle bct s-phase. Area fraction of s-phase was ranging approximately 2 {approx} 8 percent depending on welding conditions. The JMTR wasmore » utilized for neutron irradiation and SP specimens were irradiated up to 1.02 x 10{sup 19} n/cm{sup 2} (E>1 MeV) at 563 K. After irradiation the SP ductile-to-brittle transition behavior moved to higher temperatures, however, it was more strongly affected by the amount of brittle s-phase rather than the irradiation at current doses. The cracking appearances in the SP specimens gradually changed from circumferential to radial cracking as the test temperature became low, content of {sigma}-phase increased and the specimens were irradiated. Those results were accounted for in terms of the inconsistency of fracture stress between the phases as well as the effects of stress-strain portioning combined with the changes of governing stress components for crack initiation. (authors)« less

  7. ENTRAINMENT AND EFFICIENCY STUDIES IN A SMALL DIAMETER BUBBLECAP PLATE COLUMN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrones, J.

    1952-07-01

    Efficiency and entrainment studies were made in a 4inch diameter bubblecap plate column using a plate spacing of 4 inches. The plates contained one bubblecap each, and were designed so taat they could be easily inserted in a single length of 4 inch OD stainless steel tubing. An entrainment of 10% was obtained for the water-steam system at a column vapor velocity of 1.9 fps or a vapor mass rate of 255 pounds of steam per hour per square foot. This entraimnent value is gener ally accepted as the maximum allowable without impairing the plate efficiency appreciably. This low entrainmentmore » may be partly due to the small column diameter with the walls acting as entrainanent separators. The Murphree vapor plate efficiency, as measured for alcohol-water, was found to depend on the slope of the equilibrium line and the mass velocity factor V / sub v//sup 0.5/. An empirical equation was developed relating these factors. Fow low values of the slope of the equilibrium line (2 or less it was noted, that for practical purposes, the actual point efficiency on the plates was equal to the measured Murphree vapor plate efficiency regardless of the degree of mixing on the plate. (auth)« less

  8. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

    NASA Astrophysics Data System (ADS)

    Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet

    2017-08-01

    Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

  9. Main Ethiopian Rift Kinematic analogue modeling: Implications for Nubian-Somalian plate motion.

    NASA Astrophysics Data System (ADS)

    Erbello, A.; Corti, G.; Sani, F.; Agostini, A.; Buccianti, A.; Kidane, T. B.

    2016-12-01

    In this contribution, analogue modeling is used to provide new insights into the kinematics of the Nubia and Somalia plates responsible for development and evolution of the Main Ethiopian Rift (MER), at the northern termination of the East African Rift. In particular, we performed new crustal-scale, brittle models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The models reproduced the overall geometry of the 600km-long MER with its along-strike variation in orientation to test different hypothesis proposed to explain rift evolution. Analysis of model results in terms of statistics of fault length and orientation, as well as deformation architecture, and its comparison with the MER suggests that models of two-phase rifting (with a first phase of NW-SE extension followed by E-W rifting) or constant NW-SE extension, as well as models of constant ENE-WSW rifting are not able to reproduce the fault architecture observed in nature. Model results suggest instead that the rift has likely developed under a constant, post-11 Ma extension oriented roughly ESE-WNW (N97.5°E), consistent with recent plate kinematics models.

  10. Striations, duration, migration and tidal response in deep tremor.

    PubMed

    Ide, Satoshi

    2010-07-15

    Deep tremor in subduction zones is thought to be caused by small repeating shear slip events on the plate interface with significant slow components. It occurs at a depth of about 30 kilometres and provides valuable information on deep plate motion and shallow stress accumulation on the fault plane of megathrust earthquakes. Tremor has been suggested to repeat at a regular interval, migrate at various velocities and be modulated by tidal stress. Here I show that some time-invariant interface property controls tremor behaviour, using precise location of tremor sources with event duration in western Shikoku in the Nankai subduction zone, Japan. In areas where tremor duration is short, tremor is more strongly affected by tidal stress and migration is inhibited. Where tremor lasts longer, diffusive migration occurs with a constant diffusivity of 10(4) m(2) s(-1). The control property may be the ratio of brittle to ductile areas, perhaps determined by the influence of mantle wedge serpentinization on the plate interface. The spatial variation of the controlling property seems to be characterized by striations in tremor source distribution, which follows either the current or previous plate subduction directions. This suggests that the striations and corresponding interface properties are formed through the subduction of inhomogeneous structure, such as seamounts, for periods as long as ten million years.

  11. The role of fluid pressure on frictional behavior at the base of the seismogenic zone

    USGS Publications Warehouse

    Hirth, Greg; Beeler, Nicholas M.

    2015-01-01

    To characterize stress and deformation style at the base of the seismogenic zone, we investigate how the mechanical properties of fluid-rock systems respond to variations in temperature and strain rate. The role of fluids on the processes responsible for the brittle-ductile transition in quartz-rich rocks has not been explored at experimental conditions where the kinetic competition between microcracking and viscous flow is similar to that expected in the Earth. Our initial analysis of this competition suggests that the effective stress law for sliding friction should not work as efficiently near the brittle-ductile transition as it does at shallow conditions

  12. Determination of depth and size of defects in carbon-fiber-reinforced plastic with different methods of pulse thermography

    NASA Astrophysics Data System (ADS)

    Popow, Vitalij; Gurka, Martin

    2018-03-01

    The main advantage of high performance composite material is its exceptional light-weight capability due to individual tailoring of anisotropic fiber lay-up. Its main draw-back is a brittle and complex failure behavior under dynamic loading which requires extensive quality assurance measures and short maintenance intervals. For this reason efficient test methods are required, which not only generate good and reliable results, but are also simple in handling, allow rapid adaptation to different test situations and short measuring times. Especially the knowledge about size and position of a defect is necessary to decide about acceptance or rejection of a structure under investigation. As a promising method for contactless in-line and off-line inspection we used pulsed thermography. For the determination of the depth of the defects we used logarithmic peak second derivative, a widely accepted method. Alternatively an analytical model, describing the adiabatic heating of a solid plate by an instantaneous pulse, was fitted directly to the measurement data. For the determination of defect size four different approaches were investigated and compared with exact values. The measurements were done with continuous carbon-fiber reinforced materials.

  13. Coupling intensity and isostatic competition between subducting slab and overriding plate control trench motions and tectonics of the overriding plate

    NASA Astrophysics Data System (ADS)

    Wu, G.; Moresi, L. N.

    2017-12-01

    Trench motions not only reflect tectonic regimes on the overriding plate but also shed light on the competition between subducting slab and overriding plate, however, major controls over trench advance or retreat and their consequences are still illusive. We use 2D thermo-mechanical experiments to study the problem. We find that the coupling intensity particularly in the uppermost 200 km and the isostatic competition between subducting slab and overriding plate largely determine trench motion and tectonics of in the overriding plate. Coupling intensity is the result of many contributing factors, including frictional coefficient of brittle part of the subducting interface and the viscosity of the ductile part, thermal regime and rheology of the overriding plate, and water contents and magmatic activity in the subducting slab and overriding plate. In this study, we are not concerned with the dynamic evolution of individual controlling parameter but simply use effective media. For instance, we impose simple model parameters such as frictional coefficient and vary the temperature and strain-rate dependent viscosity of the weak layer between the subducting slab and overriding plate. In the coupled end-member case, strong coupling leads to strong corner flow, depth-dependent compression/extension, and mantle return flow on the overriding plate side. It results in fast trench retreat, broad overriding plate extension, and even slab breakoff. In the decoupled end-member case, weak coupling causes much weaker response on the overriding plate side compared with the coupled end-member case, and the subducting slab can be largely viewed as a conveyer belt. We find that the isostatic competition between the subducting slab and overriding plate also has a major control over trench motion, and may better be viewed in 3D models. This is consistent with the findings in previous 3D studies that trench motion is most pronounced close to the slab edge. Here we propose that the differential subduction and isostatic differences along strike are the major cause of complex trench behavior and tectonic variations in the overriding plate. Finally, our models must be placed in a reference frame outside our modeled domain when used in global scale.

  14. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    NASA Astrophysics Data System (ADS)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity above background levels occurred contemporaneous to megathrust ruptures. That correlation is stronger for normal fault events than reverse or strike-slip crustal earthquakes. More importantly, for any given megathrust the summation of the Mw accounted by the forearc normal fault aftershocks appears to have a positive linear correlation with the Mw of the subduction earthquake -- the larger the megathrust the larger the energy released by forearc events.

  15. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a function of lithology and loading pulse characteristics.

  16. Impact initiation of explosives and propellants via statistical crack mechanics

    NASA Astrophysics Data System (ADS)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using embedded velocity gauges.

  17. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle

    PubMed Central

    Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-01-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055

  18. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    PubMed

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  19. Convection-driven tectonics on Venus

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    1990-02-01

    An analysis is presented of convective stress coupling to an elastic lithosphere as applied to Venus. Theoretical solutions are introduced for the response of a mathematically thick elastic plate overlying a Newtonian viscous medium with an exponential depth dependence of viscosity, and a Green's function solution is obtained for the viscous flow driven by a harmonic density distribution at a specified depth. An elastic-plastic analysis is carried out for the deformation of a model Venus lithosphere. The results predict that dynamic uplift of Venusian topography must be accompanied by extensive brittle failure and viscous flow in the lithosphere.

  20. Using global, quantitative models of the coupled plates/mantle system to understand Late Miocene dynamics of the Pacific plate

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2017-04-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of the evolving mantle buoyancy-field and plate-boundary forces on the Pacific plate motion. Our approach allows linking geodynamical models and observations on the recent dynamics of the Pacific plate.

  1. Electrospun polyvinyl alcohol ultra-thin layer chromatography of amino acids.

    PubMed

    Lu, Tian; Olesik, Susan V

    2013-01-01

    Electrospun polyvinyl alcohol (PVA) ultrathin layer chromatographic (UTLC) plates were fabricated using in situ crosslinking electrospinning technique. The value of these ULTC plates were characterized using the separation of fluorescein isothiocyanate (FITC) labeled amino acids and the separation of amino acids followed visualization using ninhydrin. The in situ crosslinked electrospun PVA plates showed enhanced stability in water and were stable when used for the UTLC study. The selectivity of FITC labeled amino acids on PVA plate was compared with that on commercial Si-Gel plate. The efficiency of the separation varied with analyte concentration, size of capillary analyte applicator, analyte volume, and mat thickness. The concentration of 7mM or less, 50μm i.d. capillary applicator, minimum volume of analyte solution and three-layered mat provides the best efficiency of FITC-labeled amino acids on PVA UTLC plate. The efficiency on PVA plate was greatly improved compared to the efficiency on Si-Gel HPTLC plate. The hydrolysis products of aspartame in diet coke, aspartic acid and phenylalanine, were also successfully analyzed using PVA-UTLC plate. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Numerical Modelling of the Compressive and Tensile Response of Glass and Ceramic under High Pressure Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.

    1999-06-01

    Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless technique. Simulations of long rod impacts onto ceramic faced armour and hypervelocity impacts on glass solar array space structures are presented and compared with experiments.

  3. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the ;west; relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  4. Subduction Thermal Regime, Slab Dehydration, and Seismicity Distribution Beneath Hikurangi Based on 3-D Simulations

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan

    2018-04-01

    The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.

  5. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in efficiency provided by both hard-linkage and soft-linkage to be quantified and compared. Specialized models of interactions over the past 1 Ma between the Clark and Coyote Creek faults within the San Jacinto system reveal increasing mechanical efficiency as these fault structures change over time. Alongside this increasing efficiency is an increasing likelihood for single, larger earthquakes that rupture multiple fault segments. These models reinforce the sensitivity of mechanical efficiency to both fault structure and the regional tectonic stress orientation controlled by plate motions and provide insight into how slip may have been partitioned between the San Andreas and San Jacinto systems over the past 1 Ma.

  6. A bottom-driven mechanism for distributed faulting in the Gulf of California rift

    NASA Astrophysics Data System (ADS)

    Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc

    2017-11-01

    Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.

  7. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere

    NASA Astrophysics Data System (ADS)

    Burov, E.; Guillou-Frottier, L.

    2005-05-01

    Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.

  8. High-definition micropatterning method for hard, stiff and brittle polymers.

    PubMed

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparison of characteristics of fluorine doped zinc and gallium tin oxide composite thin films deposited on stainless steel 316 bipolar plate by electron cyclotron resonance-metal organic chemical vapor deposition for proton exchange membrane fuel cells.

    PubMed

    Park, Jihun; Hudaya, Chairul; Lee, Joong Kee

    2011-09-01

    In order to replace the brittle graphite bipolar plates currently used for the PEMFC stack, coated SUS 316 was employed. As a metallic bipolar plate, coated SUS 316 can provide higher mechanical strength, better durability to shocks and vibration, less permeability, improved thermal and bulk electrical conductivity, as well as being thinner and lighter. To enhance the interfacial contact resistance and corrosion resistance of SUS 316, the deposition of GTO:F and ZTO:F composite films was carried out by ECR-MOCVD. The surface morphology of the films consisted of tiny elliptically shaped grains with a thickness of 1 microm. The corrosion current for GTO:F was 0.13 Acm(-2) which was much lower than that of bare SUS 316 (50.16 Acm(-2)). The GTO:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The GTO:F coated film exhibited the highest cell voltage and power density due to its lower ICR values.

  10. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature

    PubMed Central

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Wang, X. P.; Fang, Q. F.; Liu, C. S.; Luo, G. N.; Lian, Y. Y.; Liu, X.

    2015-01-01

    The refractory tungsten alloys with high ductility/strength/plasticity are highly desirable for a wide range of critical applications. Here we report an interface design strategy that achieves 8.5 mm thick W-0.5 wt. %ZrC alloy plates with a flexural strength of 2.5 GPa and a strain of 3% at room temperature (RT) and ductile-to-brittle transition temperature of about 100 °C. The tensile strength is about 991 MPa at RT and 582 MPa at 500 °C, as well as total elongation is about 1.1% at RT and as large as 41% at 500 °C, respectively. In addition, the W-ZrC alloy plate can sustain 3.3 MJ/m2 thermal load without any cracks. This processing route offers the special coherent interfaces of grain/phase boundaries (GB/PBs) and the diminishing O impurity at GBs, which significantly strengthens GB/PBs and thereby enhances the ductility/strength/plasticity of W alloy. The design thought can be used in the future to prepare new alloys with higher ductility/strength. PMID:26531172

  11. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.

  12. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    NASA Astrophysics Data System (ADS)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the brittle-ductile transition corresponds to the transition from long-range to short-range stress correlation.

  13. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316 substrates were also tested for suitability in performing as PEM fuel cell bipolar plates. Interfacial contact resistance and accelerated corrosion resistance tests were carried out for various bulk materials and chromium carbide coatings. Results of the study showed that chromium carbide protective coatings had relatively low interfacial contact resistance and moderate corrosion resistance in comparison to other metals. Single fuel cells with 6.45cm2 and 50cm2 active areas were fabricated and tested for performance and lifetime durability using chromium carbide coated aluminum bipolar plates and graphite composite bipolar plates as a control reference. Polarization curves and power curves were recorded from these single cells under various load conditions. The results showed that coated aluminum bipolar plates had an advantage of anchoring the terminals directly into the plates resulting in higher power density of the fuel cell. This was due to the elimination of additional ICR to the power stack caused by the need for extra terminal plates. However, this study also revealed that direct terminal anchoring was efficient and useable only with metallic bipolar plates but was inapplicable to graphite composite plates due to the poor mechanical strength and brittleness of the graphite composite material. In addition, the 1000 hour lifetime testing of coated aluminum single cells conducted at 70°C cell temperature under cyclic loading condition showed minimal power degradation (<5%) due to metal corrosion. Surface characterization was also conducted on the bipolar plates and MEAs to identify possible chemical change to their surfaces during the fuel cell operation and the electrochemical reaction. The single cell performance evaluation was complemented by an extended study on the fuel cell stack level. For the latter, a ten-cell graphite composite stack with a 40 cm2 active area was fabricated and evaluated for the effect of humidity and operating temperature on the stack performance. Graphite plates were selected for this study to eliminate any possible metal corrosion. A finite element analysis (FEA) model of a bipolar plate was developed to evaluate the effect of air cooling system design parameters and different bipolar plate materials on maintaining the PEM power stack at a safe operating temperature of 80°C or less. In the final stage of this work, a three-cell metallic stack with a 50 cm2 active area and coated aluminum bipolar plates was fabricated based on the positive results that were obtained from earlier studies. The three-cell stack was successfully operated and tested for 750 hours at different temperatures and power densities. This laboratory testing coupled with characterization studies showed that small amounts of aluminum oxide were observed on the coating surface due to localized imperfections in the coating and a lack of protection in the uncoated areas, such as internal manifolds and mounting plates. However, the scanning electron microscopy (SEM) and the energy dispersive x-ray spectroscopy (EDX) showed that coating thickness, chemistry, and surface morphology remained consistent after 750 hours of operation.

  14. Application of thematic mapper imagery to oil exploration in Austin Chalk, Central Gulf Coast basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, W.M.

    1988-01-01

    One of the newest major oil plays in the Gulf Coast basin, the Austin Chalk reportedly produces in three belts: an updip belt, where production is from fractured chalk in structurally high positions along faults above 7,000 ft; a shallow downdip belt, where the chalk is uniformly saturated with oil from 7,000 to 9,000 ft; and a deeper downdip belt saturated with gas and condensate below 9,000 ft. The updip fields usually occur on the southeastern, upthrown side of the Luling, Mexia, and Charlotte fault zones. Production is from fractures that connect the relatively sparse matrix pores with more permeablemore » fracture systems. The fractures resulted from regional extensional stress during the opening of the Gulf Coast basin on the divergent margin of the North American plate during the Laramide orogeny. The fractures are more common in the more brittle chalk than in the overlying Navarro and underlying Eagle Ford shales, which are less brittle. The oil in the updip traps in the chalk may have been generated in place downdip, and migrated updip along the extension fractures into the updip traps during or after the Laramide orogeny.« less

  15. Accretion mode of oceanic ridges governed by axial mechanical strength

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  16. Revisiting (Some of) the Lasting Impacts of the Liberty Ships via a Metallurgical Analysis of Rivets from the SS "John W. Brown"

    NASA Astrophysics Data System (ADS)

    Harris, M. D.; Grogg, W. J.; Akoma, A.; Hayes, B. J.; Reidy, R. F.; Imhoff, E. F.; Collins, P. C.

    2015-12-01

    During World War II, 2710 Liberty ships were built in the United States across 18 ship yards. The rate of production of these ships was at a scale not previously witnessed, reflecting a strategic marshaling of national assets critical to the war effort. For the metallurgist, metallurgical engineer, or materials scientist, these ships also struck commanding images regarding their catastrophic failures. The study of these failures led to increased understanding of brittle fracture, fracture mechanics, and ductile-to-brittle transition temperatures. The post-mortem studies of Liberty ships highlighted the importance of composition and microstructure in controlling the properties of steel in fracture-critical applications. This study examines a rivet from the SS "John W. Brown", which was assembled in Baltimore, Maryland, and launched in September 1942, The "John W. Brown" was restored between 1988 and 1991. Classical metallurgical analysis of a rivet from the original 1942 vessel is compared with modern rivets used during its restoration. The rivets provide an analogue to the plate material used in these ships. A comparison of these materials is presented along with a discussion of the importance of composition-microstructure-property relationships that concomitantly evolved.

  17. Electroless-plating technique for fabricating thin-wall convective heat-transfer models

    NASA Technical Reports Server (NTRS)

    Avery, D. E.; Ballard, G. K.; Wilson, M. L.

    1984-01-01

    A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.

  18. Hypervelocity impacts into graphite

    NASA Astrophysics Data System (ADS)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  19. Laser Powder Welding of a Ti52Al46.8Cr1Si0.2Titanium Aluminide Alloy at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Smal, C. A.; Meacock, C. G.; Rossouw, H. J.

    2011-04-01

    A method for the joining of a Ti52Al46.8Cr1Si0.2Titanium Aluminide alloy by laser powder welding is presented. The technique acts to join materials by consolidating powder with focused laser beam to form weld beads that fill a V joint. In order to avoid the occurrence of residual thermal stresses and hence cracking of the brittle material, the weld plates were heated to a temperature of 1173 K (= 900 °C) by an ohmic heating device, welded and then slowly cooled to produce pore and crack free welds.

  20. Effect of geometric and process variables on the performance of inclined plate settlers in treating aquacultural waste.

    PubMed

    Sarkar, Sudipto; Kamilya, Dibyendu; Mal, B C

    2007-03-01

    Inclined plate settlers are used in treating wastewater due to their low space requirement and high removal rates. The prediction of sedimentation efficiency of these settlers is essential for their performance evaluation. In the present study, the technique of dimensional analysis was applied to predict the sedimentation efficiency of these inclined plate settlers. The effect of various geometric parameters namely, distance between plates (w(p)), plate angle (alpha), length of plate (l(p)), plate roughness (epsilon(p)), number of plates (n(p)) and particle diameter (d(s)) on the dynamic conditions, influencing the sedimentation process was studied. From the study it was established that neither the Reynolds criterion nor the Froude criterion was singularly valid to simulate the sedimentation efficiency (E) for different values of w(p) and flow velocity (v(f)). Considering the prevalent scale effect, simulation equations were developed to predict E at different dynamic conditions. The optimum dynamic condition producing the maximum E is also discussed.

  1. Using Global, Quantitative Models of the Coupled Plates/Mantle System to Understand Late Neogene Dynamics of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Stotz, I.; Davies, R.; Iaffaldano, G.

    2016-12-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of the evolving mantle buoyancy-field and plate-boundary forces on the Pacific plate motion. Our approach allows distinguishing between the top-down and bottom-up controls on the recent dynamics of the Pacific plate.

  2. Fundamental structure model of island arcs and subducted plates in and around Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Sato, H.; Ishiyama, T.; Shinohara, M.; Hashima, A.

    2015-12-01

    The eastern margin of the Asian continent is a well-known subduction zone, where the Pacific (PAC) and Philippine Sea (PHS) plates are being subducted. In this region, several island arcs (Kuril, Northeast Japan, Southwest Japan, Izu-Bonin and Ryukyu arcs) meet one another to form a very complicated tectonic environment. At 2014, we started to construct fundamental structure models for island arcs and subducted plates in and around Japan. Our research is composed of 6 items of (1) topography, (2) plate geometry, (3) fault models, (4) the Moho and brittle-ductile transition zone, (5) the lithosphere-asthenosphere boundary, and (6) petrological/rheological models. Such information is basic but inevitably important in qualitative understanding not only for short-term crustal activities in the subduction zone (particularly caused by megathrust earthquakes) but also for long-term cumulative deformation of the arcs as a result of strong plate-arc/arc-arc interactions. This paper is the first presentation of our research, mainly presenting the results of items (1) and (2). The area of our modelling is 12o-54o N and 118o-164o E to cover almost the entire part of Japanese Islands together with Kuril, Ryukyu and Izu-Bonin trenches. The topography model was constructed from the 500-m mesh data provided from GSJ, JODC, GINA and Alaska University. Plate geometry models are being constructed through the two steps. In the first step, we modelled very smooth plate boundaries of the Pacific and Philippine Sea plates in our whole model area using 42,000 earthquake data from JMA, USGS and ISC. For 7,800 cross sections taken with several directions to the trench axes, 2D plate boundaries were defined by fitting to the earthquake distribution (the Wadati-Benioff zone), from which we obtained equi-depth points of the plate boundary. These equi-depth points were then approximated by spline interpolation technique to eliminate shorter wave length undulation (<50-100 km). The obtained models represent the plate geometry with longer wave lengths (>75-150 km), but provide a rather clear undulation of the PHS plate under the SW Japan arc. In the second step, finer scale plate configuration is being constrained especially in the vicinity of Japan by recent results from seismic tomography, RF analysis and active source experiment.

  3. Insights into the structure and tectonic history of the southern South Island, New Zealand, from the 3-D distribution of P- and S-wave attenuation

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Reyners, Martin; Upton, Phaedra; Gubbins, David

    2018-05-01

    The Pacific-Australian plate boundary in the South Island of New Zealand is a transpressive boundary through continental lithosphere consisting of multiple terranes which were amalgamated during previous periods of subduction and plate reorganization. The style and locus of deformation within the present-day plate boundary is controlled by the mechanical behavior and distribution of these different lithospheric blocks. Geological studies are limited when it comes to illuminating lithospheric structure and rheology at depth. Imaging the 3-D seismic velocity and attenuation (1/Q), with distributed local earthquakes, helps unravel regional structure and variations in strength, fractures and fluids. We determine the 3-D distribution of Qp and Qs, which show much more variation than seismic velocity (Vp), underlining the utility of Q (1/attenuation). The Haast schist belt, previously shown as c. 25-km thick dry unit with moderate Vp and low Vp/Vs, is imaged with high Qs, and the highest Qs areas correlate with zones of higher grade schist. Below 25-km depth, the distribution of high Qp and Qs is markedly different from that of the overlying geological terranes. Both the strike and dip of the high Q regions indicate that they represent the subducted Hikurangi Plateau and its adjacent Cretaceous oceanic crust. The thickest part of the plateau, previously identified by Vp > 8.5 km/s from seismic tomography and P-wave precursors and associated with an eclogite layer at the base of the plateau, also has the highest Q. This confirms that the strong plateau extends southwestward as a narrow salient to the northern Fiordland subduction zone, where moderate-Q Eocene oceanic crust on the Australian plate is being subducted and bent to vertical. In the ductile crust, Q results suggest fluid saturation and elevated temperature conditions in the crustal root of the Southern Alps, and confirm that the shape of this crustal root is influenced by both the orientation and depth of the underlying plateau. Q also provides insight into the failed rifting that occurred in oceanic crust at the edges of the Hikurangi Plateau, with a region of relatively low Q at the on-land extension of the Bounty Trough and Canterbury Basin, at the narrowest part of the South Island. In the brittle crust above 10-km depth, low Q is related to regions of active recent seismicity which have high fracture density, with low Qs where fluids are present. In contrast, the locked Alpine fault does not exhibit low Q in the brittle crust.

  4. De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception

    PubMed Central

    Mallefet, Jérôme; Flammang, Patrick

    2016-01-01

    Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences between the two species. The results confirm (i) the ability of these brittle stars to perceive light using opsin-based photoreception, (ii) suggest the co-occurrence of both rhabdomeric and ciliary photoreceptors, and (iii) emphasise the complexity of light perception in this echinoderm class. PMID:27119739

  5. Modelling Earthquakes Using a Poro-Elastic Two-Phase Flow Formulation

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; van Dinther, Y.; Connolly, J. A.; Madonna, C.

    2017-12-01

    Seismicity along subduction zones ranges from large devastating megathrust earthquakes to aseismic slow slip events. These different slip phenomena are widely believed to be influenced by fluids and interactions of fluids with the host rock. To understand the slip or strain mode along the megathrust interface, it is thus crucial to understand the role of fluids. Considering the spatiotemporal limitations of observations, a promising approach is to develop a numerical model that couples the deformation of both fluids and solids in a single framework. The objective of this study is the development of such a seismo-hydro-mechanical approach and the subsequent identification of parameters that control the mode of slip. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples inertial mechanical deformation and fluid flow. It allows for the accurate treatment of localised brittle/plastic deformation through global iterations. To accurately simulate both long- and short-term deformation an adaptive time step is introduced. This makes it possible to resolve seismic event with time steps on the order of milliseconds. We use this new tool to investigate how the presence of fluids in the pore space of an visco-elasto-brittle/plastic (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model is able to simulate spontaneous quasi-periodic seismic events, nucleating near the brittle-ductile transition zone, along self-consistently forming highly localized ruptures, which accommodate shear displacement between two plates. The generated elastic rebound events show slip velocities on the order of m/s. The governing gradual strength decrease along the propagating fracture is related to a drop in total pressure due to shear localization in combination with an increase in fluid pressure due to elastic compaction of the pore space in a rock with low permeability (6e-19 m2). Reduction of the differential pressure decreases brittle/plastic strength of fluid-bearing rocks along the rupture, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  6. Effects of oil on the feeding mechanism of the bowhead whale. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braithwaite, L.F.

    1983-06-10

    Research was designed to determine the effect of crude oil on the filtration efficiency of bowhead whale (Balaena mysticetus) baleen. An experiment apparatus was constructed with temperature-controlled, circulating sea water moving through a chamber containing mounted baleen plates. All circulating water of the apparatus flowed over and through the hair-fringed stratum of the baleen plates. Efficiency of filtration of living plankters was measured and compared for various kinds and levels of petroleum fouling. The filtering efficiency of the baleen plates decreased when the plates were fouled with Prudhoe Bay crude oil.

  7. Assessment of Mudrock Brittleness with Micro-scratch Testing

    NASA Astrophysics Data System (ADS)

    Hernandez-Uribe, Luis Alberto; Aman, Michael; Espinoza, D. Nicolas

    2017-11-01

    Mechanical properties are essential for understanding natural and induced deformational behavior of geological formations. Brittleness characterizes energy dissipation rate and strain localization at failure. Brittleness has been investigated in hydrocarbon-bearing mudrocks in order to quantify the impact of hydraulic fracturing on the creation of complex fracture networks and surface area for reservoir drainage. Typical well logging correlations associate brittleness with carbonate content or dynamic elastic properties. However, an index of rock brittleness should involve actual rock failure and have a consistent method to quantify it. Here, we present a systematic method to quantify mudrock brittleness based on micro-mechanical measurements from the scratch test. Brittleness is formulated as the ratio of energy associated with brittle failure to the total energy required to perform a scratch. Soda lime glass and polycarbonate are used for comparison to identify failure in brittle and ductile mode and validate the developed method. Scratch testing results on mudrocks indicate that it is possible to use the recorded transverse force to estimate brittleness. Results show that tested samples rank as follows in increasing degree of brittleness: Woodford, Eagle Ford, Marcellus, Mancos, and Vaca Muerta. Eagle Ford samples show mixed ductile/brittle failure characteristics. There appears to be no definite correlation between micro-scratch brittleness and quartz or total carbonate content. Dolomite content shows a stronger correlation with brittleness than any other major mineral group. The scratch brittleness index correlates positively with increasing Young's modulus and decreasing Poisson's ratio, but shows deviations in rocks with distinct porosity and with stress-sensitive brittle/ductile behavior (Eagle Ford). The results of our study demonstrate that the micro-scratch test method can be used to investigate mudrock brittleness. The method is particularly useful for reservoir characterization methods that take advantage of drill cuttings or whenever large samples for triaxial testing or fracture mechanics testing cannot be recovered.

  8. Earthquakes, geodesy, and the structure of mountain belts

    NASA Astrophysics Data System (ADS)

    Allen, Mark; Walters, Richard; Nissen, Ed

    2015-04-01

    Most terrestrial mountain belts are the topographic expression of thrust faulting and folding, which are how the continents deform in compression. Fold-and-thrust belts are therefore a global phenomenon, in existence since at least the onset of plate tectonics. They are typically described as wedge-shaped zones of deformation, overlying a basal low-angle thrust fault (≤10o dip). Here we use earthquake focal mechanisms and geodetic data from active continental fold-and-thrust belts worldwide, to test these concepts. We find that widespread, seismogenic, low-angle thrusting at the base of a wedge occurs only in the Himalayas, New Guinea, Talesh and far-eastern Zagros, which are plausibly underthrust by strong plates. In other ranges there is no focal mechanism evidence for a basal low-angle thrust, and well-constrained hypocentre depths are typically <20 km. Available geodetic data show that active deformation is focussed on a single, low-angle thrust in the Himalayas and New Guinea, but distributed in other ranges for which there are sufficient observations. We suggest that the more common style of deformation approximates to pure shear, with a brittle lid overlying the rest of the plate, where ductile or plastic deformation predominates. Interpretations of both active and ancient mountain belts will need re-evaluation in the light of these results.

  9. Effects of A Weak Crustal Layer in a Transtensional Pull-Apart Basin: Results from a Scaled Physical Modeling Study

    NASA Astrophysics Data System (ADS)

    Dooley, T. P.; Monastero, F. C.; McClay, K. R.

    2007-12-01

    Results of scaled physical models of a releasing bend in the transtensional, dextral strike-slip Coso geothermal system located in the southwest Basin and Range, U.S.A., are instructive for understanding crustal thinning and heat flow in such settings. The basic geometry of the Coso system has been approximated to a 30? dextral releasing stepover. Twenty-four model runs were made representing successive structural iterations that attempted to replicate geologic structures found in the field. The presence of a shallow brittle-ductile transition in the field known from a well-documented seismic-aseismic boundary, was accommodated by inclusion of layers of silicone polymer in the models. A single polymer layer models a conservative brittle-ductile transition in the Coso area at a depth of 6 km. Dual polymer layers impose a local elevation of the brittle-ductile transition to a depth of 4 km. The best match to known geologic structures was achieved with a double layer of silicone polymers with an overlying layer of 100 µm silica sand, a 5° oblique divergent motion across the master strike-slip faults, and a thin-sheet basal rubber décollement. Variation in the relative displacement of the two base plates resulted in some switching in basin symmetry, but the primary structural features remained essentially the same. Although classic, basin-bounding sidewall fault structures found in all pull-apart basin analog models formed in our models, there were also atypical complex intra-basin horst structures that formed where the cross-basin fault zone is situated. These horsts are flanked by deep sedimentary basins that were the locus of maximum crustal thinning accomplished via high-angle extensional and oblique-extensional faults that become progressively more listric with depth as the brittle-ductile transition was approached. Crustal thinning was as much as 50% of the original model depth in dual polymer models. The weak layer at the base of the upper crust appears to focus brittle deformation and facilitate formation of listric normal faults. The implications of these modeling efforts are that: 1) Releasing stepovers that have associated weak upper crust will undergo a more rapid rate of crustal thinning due to the strain focusing effect of this ductile layer; 2) The origin of listric normal faults in these analog models is related to the presence of the weak, ductile layer; and, 3) Due to high dilatency related to major intra-basin extension these stepover structures can be the loci for high heat flow.

  10. More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Jacobsen, Chris

    Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less

  11. Hardness properties and microscopic investigation of crack- crystal interaction in SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F glass ceramic system.

    PubMed

    Roy, Shibayan; Basu, Bikramjit

    2010-01-01

    In view of the potential engineering applications requiring machinability and wear resistance, the present work focuses to evaluate hardness property and to understand the damage behavior of some selected glass-ceramics having different crystal morphologies with SiO(2)-MgO-Al(2)O(3)-K(2)O-B(2)O(3)-F composition, using static micro-indentation tests as well as dynamic scratch tests, respectively. Vickers hardness of up to 5.5 GPa has been measured in glass-ceramics containing plate like mica crystals. Scratch tests at a high load of 50 Nin artificial saliva were carried out in order to simulate the crack-microstructure interaction during real-time abrasion wear and machining operation. The experimental observations indicate that the novel "spherulitic-dendritic shaped "crystals, similar to the plate like crystals, have the potential to hinder the scratching induced crack propagation. In particular, such potential of the 'spherulitic-dendritic' crystals become more effective due to the larger interfacial area with the glass matrix as well as the dendritic structure of each mica plate, which helps in crack deflection and crack blunting, to a larger extent.While modest damage tolerant behavior is observed in case of 'spherulitic-dendritic' crystal containing material, severe brittle fracture of plate like crystals were noted, when both were scratched at 50 N load.

  12. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh)more » fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm 3 to 6.0 x 1021 fissions/cm 3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.« less

  13. Estimation Criteria for Rock Brittleness Based on Energy Analysis During the Rupturing Process

    NASA Astrophysics Data System (ADS)

    Ai, Chi; Zhang, Jun; Li, Yu-wei; Zeng, Jia; Yang, Xin-liang; Wang, Ji-gang

    2016-12-01

    Brittleness is one of the most important mechanical properties of rock: it plays a significant role in evaluating the risk of rock bursts and in analysis of borehole-wall stability during shale gas development. Brittleness is also a critical parameter in the design of hydraulic fracturing. However, there is still no widely accepted definition of the concept of brittleness in rock mechanics. Although many criteria have been proposed to characterize rock brittleness, their applicability and reliability have yet to be verified. In this paper, the brittleness of rock under compression is defined as the ability of a rock to accumulate elastic energy during the pre-peak stage and to self-sustain fracture propagation in the post-peak stage. This ability is related to three types of energy: fracture energy, post-peak released energy and pre-peak dissipation energy. New brittleness evaluation indices B 1 and B 2 are proposed based on the stress-strain curve from the viewpoint of energy. The new indices can describe the entire transition of rock from absolute plasticity to absolute brittleness. In addition, the brittle characteristics reflected by other brittleness indices can be described, and the calculation results of B 1 and B 2 are continuous and monotonic. Triaxial compression tests on different types of rock were carried out under different confining pressures. Based on B 1 and B 2, the brittleness of different rocks shows different trends with rising confining pressure. The brittleness of red sandstone decreases with increasing confining pressure, whereas for black shale it initially increases and then decreases in a certain range of confining pressure. Granite displays a constant increasing trend. The brittleness anisotropy of black shale is discussed. The smaller the angle between the loading direction and the bedding plane, the greater the brittleness. The calculation B 1 and B 2 requires experimental data, and the values of these two indices represent only relative brittleness under certain conditions. In field operations, both the relative brittleness and the brittleness obtained from seismic data or mineral composition should be considered to gain a more comprehensive knowledge of the brittleness of rock material.

  14. Alternative Fuels Data Center

    Science.gov Websites

    AFV special license plate, which are available from the Arizona Department of Transportation (ADOT license plate. ADOT has reached its maximum limit of 10,000 vehicles and the issuance of Energy Efficient Alternative Fuel Vehicle (AFV) and Energy Efficient Plate Programs Dedicated AFVs qualify for an

  15. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  16. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  17. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  18. Experimental Analysis of Displacements and Shears at the Surface on Contact between Two Loaded Bodies,

    DTIC Science & Technology

    1980-07-01

    thin bars are extended. The complete solution is presented in graphs for the use of designers . The theoretical development is correlated with experiments...The concept of "coefficient of efficiency" is introduced to evaluate the degree of optimization. An ideal design of the inside boundary of a tube...efficiency coefficient is increased from 0.59 to 0.95. Tests with a brittle material show an increase in strength of 20Z. An ideal design of the boundary of

  19. Fabrication of Lanthanum Telluride 14-1-11 Zintl High-Temperature Thermoelectric Couple

    NASA Technical Reports Server (NTRS)

    Ravi, Vilupanur A.; Li, Billy Chun-Yip; Fleurial, Pierre; Star, Kurt

    2010-01-01

    The development of more efficient thermoelectric couple technology capable of operating with high-grade heat sources up to 1,275 K is key to improving the performance of radioisotope thermoelectric generators. Lanthanum telluride La3-xTe4 and 14-1-11 Zintls (Yb14MnSb11) have been identified as very promising materials. The fabrication of advanced high-temperature thermoelectric couples requires the joining of several dissimilar materials, typically including a number of diffusion bonding and brazing steps, to achieve a device capable of operating at elevated temperatures across a large temperature differential (up to 900 K). A thermoelectric couple typically comprises a heat collector/ exchanger, metallic interconnects on both hot and cold sides, n-type and ptype conductivity thermoelectric elements, and cold-side hardware to connect to the cold-side heat rejection and provide electrical connections. Differences in the physical, mechanical, and chemical properties of the materials that make up the thermoelectric couple, especially differences in the coefficients of thermal expansion (CTE), result in undesirable interfacial stresses that can lead to mechanical failure of the device. The problem is further complicated by the fact that the thermoelectric materials under consideration have large CTE values, are brittle, and cracks can propagate through them with minimal resistance. The inherent challenge of bonding brittle, high-thermal-expansion thermoelectric materials to a hot shoe material that is thick enough to carry the requisite electrical current was overcome. A critical advantage over prior art is that this device was constructed using all diffusion bonds and a minimum number of assembly steps. The fabrication process and the materials used are described in the following steps: (1) Applying a thin refractory metal foil to both sides of lanthanum telluride. To fabricate the n-type leg of the advanced thermoelectric couple, the pre-synthesized lanthanum telluride coupon was diffusion bonded to the metal foil using a thin adhesion layer. (2) Repeating a similar process for the 14-1-11 Zintl p-type leg of the advanced thermoelectric couple. (3) Bonding thick CTE-matched metal plates on the metallized lanthanum telluride and Yb14MnSb11 to form the hot and cold sides of the thermoelectric couple. The calculated conversion efficiency of such an advanced couple would be about 10.5 percent, about 35 percent better than heritage radioisotope thermoelectric technology that relies on Si-Ge alloys. In addition, unlike Si-Ge alloys, these materials can be combined with many other thermoelectric materials optimized for operation at lower temperatures to achieve conversion efficiency in excess of 15 percent (a factor of 2 increase over heritage technology).

  20. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach.

    PubMed

    Ding, Fei; Wang, Zhuoxian; He, Sailing; Shalaev, Vladimir M; Kildishev, Alexander V

    2015-04-28

    We design, fabricate, and experimentally demonstrate an ultrathin, broadband half-wave plate in the near-infrared range using a plasmonic metasurface. The simulated results show that the linear polarization conversion efficiency is over 97% with over 90% reflectance across an 800 nm bandwidth. Moreover, simulated and experimental results indicate that such broadband and high-efficiency performance is also sustained over a wide range of incident angles. To further obtain a background-free half-wave plate, we arrange such a plate as a periodic array of integrated supercells made of several plasmonic antennas with high linear polarization conversion efficiency, consequently achieving a reflection-phase gradient for the cross-polarized beam. In this design, the anomalous (cross-polarized) and the normal (copolarized) reflected beams become spatially separated, hence enabling highly efficient and robust, background-free polarization conversion along with broadband operation. Our results provide strategies for creating compact, integrated, and high-performance plasmonic circuits and devices.

  1. Mechanisms of Ionizing Radiation-Induced Cell Death in Primary Lung Cells

    DTIC Science & Technology

    2013-03-05

    haemocytometer, and plated on 60 mm dishes coated with 0.5% gelatin (modification to allow attachment of PAEC). The cells were incubated for 14 days...we performed delayed plating where PAEC were first cultured to 70-90% confluence, exposed to varying doses of X-rays, incubated, and seeded then for...calculated as a function of plating efficiency of non-irradiated controls. The plating efficiency (PE) was defined as the percentage of the number

  2. A review on ductile mode cutting of brittle materials

    NASA Astrophysics Data System (ADS)

    Antwi, Elijah Kwabena; Liu, Kui; Wang, Hao

    2018-06-01

    Brittle materials have been widely employed for industrial applications due to their excellent mechanical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

  3. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    NASA Astrophysics Data System (ADS)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  4. Faulting and hydration of the Juan de Fuca plate system

    NASA Astrophysics Data System (ADS)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  5. A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.

    2017-12-01

    The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our findings motivate a suite of 3D models of the early plate boundary evolution in the Gulf, and highlight the importance of local stress field perturbations as a mechanism for broadening the deformation zone in other regions such as the Basin and Range, Rio Grande Rift and Malawi Rift.

  6. Easter microplate dynamics

    NASA Astrophysics Data System (ADS)

    Neves, M. C.; Searle, R. C.; Bott, M. H. P.

    2003-04-01

    We use two-dimensional elastic finite element analysis, supplemented by strength estimates, to investigate the driving mechanism of the Easter microplate. Modeled stresses are compared with the stress indicators compiled from earthquake focal mechanisms and structural observations. The objective is to constrain the tectonic forces that govern the Easter microplate rotation and to test the microplate driving hypothesis proposed by [1993]. We infer that the mantle basal drag cannot drive the microplate rotation but opposes it, and that the asthenospheric viscosity is no more than about 1 × 1018 Pa s. At most, the basal drag comprises 20% of the force resisting microplate rotation. The outward pull of the main plates can drive the rotation by shear drag applied along the northern and southern boundaries of the microplate. However, we propose an additional driving force which arises from the strong variation of the ridge resistance force along the east and west rifts, so that the main driving torques come from the pull of the major plates acting across the narrowing and slowing rifts. This requires the strength to increase substantially toward the rift tips due to thickening of the brittle lithosphere as the spreading rate slows.

  7. Damage sensing and mechanical characteristics of CFRP strengthened steel plate

    NASA Astrophysics Data System (ADS)

    Mieda, Genki; Nakano, Daiki; Fuji, Yuya; Nakamura, Hitoshi; Mizuno, Yosuke; Nakamura, Kentaro; Matsui, Takahiro; Ochi, Yutaka; Matsumoto, Yukihiro

    2017-10-01

    In recent years, a large number of structures that were built during the period of high economic growth in Japan is beginning to show signs of aging. For example, the structural performance of steel structures has degraded due to corrosion. One measure that has been proposed and studied to address this issue is the adhesive bonding method, which can be used to repair and reinforce these structures. However, this method produces brittle fracture in the adhesive layer and is difficult to maintain after bonding. To solve the problem faced by this method, a clarification of the mechanical properties inside the adhesive is necessary. Then this background, a fiber Bragg grating (FBG) sensor has been used in this study. This sensor can be embedded within the building material that needs repairing and reinforcing because an FBG sensor is extremely small. Eventually based on this, a three-point bending test of a carbon fiber reinforced plastic (CFRP) strengthened steel plate that was embedded with an FBG sensor was conducted. This paper demonstrates that an FBG sensor is effectively applicable for sensing when damage occurs.

  8. Rheology and strength of the Eurasian continental lithosphere in the foreland of the Taiwan collision belt: Constraints from seismicity, flexure, and structural styles

    NASA Astrophysics Data System (ADS)

    Mouthereau, FréDéRic; Petit, Carole

    2003-11-01

    Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of ˜15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.

  9. Hard X-ray focusing by stacked Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim; Kuznetsov, Serguei; Vaughan, Gavin; Di Michiel, Marco

    2007-09-01

    Stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates at high energies. Two identical Si chips each of which containing Fresnel zone plates were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern from the two zone plates. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips with zone plates were bonded together with slow solidification speed epoxy glue. Technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were produced and experimentally tested to focus 15 and 50 keV X-rays. Gain in the efficiency by factor 2.5 was demonstrated at 15 keV. Focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing Fresnel zone plates was discussed.

  10. Faulting of natural serpentinite: Implications for intermediate-depth seismicity

    NASA Astrophysics Data System (ADS)

    Gasc, Julien; Hilairet, Nadège; Yu, Tony; Ferrand, Thomas; Schubnel, Alexandre; Wang, Yanbin

    2017-09-01

    The seismic potential of serpentinites at high pressure was investigated via deformation experiments on cored natural serpentinite samples, during which micro-seismicity was monitored by recording Acoustic Emissions (AEs). Deformation was performed at pressures of 3-5 GPa, using a Deformation-DIA device, and over a wide range of temperatures, both within and outside antigorite's stability field. Below 400 °C, serpentinite deformation involves ;silent; semi-brittle mechanisms, even in cases where strain localization is observed. At high temperature (i.e., above 600 °C), despite conditions propitious to dehydration embrittlement (i.e., fast strain rates and reaction kinetics), joint deformation and dehydration lead to ductile shear, without generation of AEs. Brittle behavior was observed in a narrow temperature window ca. 500 °C. In this latter case, AEs are consistently observed upon faulting and extremely sharp strain localization is observed in recovered samples. The resulting microstructures are consistent with the inverse ductile-to-brittle transition proposed by Proctor and Hirth (2016) in antigorite. This may therefore be a source of seismicity in subducting slabs at mantle pressures and temperatures from 500 to 600 °C. However, the acoustic signal observed here is orders of magnitude weaker than what is obtained at low PT conditions with brittle failure, consistently with low radiation efficiency of serpentinite faulting (Prieto et al., 2013) and suggests that other mechanisms are responsible for large intermediate-depth earthquakes. In fact, the present results are in line with a recent study (Ferrand et al., 2017), that suggests that intermediate earthquakes are likely induced by mechanical instabilities due to dehydration in partly hydrated peridotites.

  11. Direct dating of Late Miocene-Early Pliocene compression on Elba Island: Is a new paradigm necessary for the opening of the Northern Tyrrhenian Sea?

    NASA Astrophysics Data System (ADS)

    Viola, Giulio; Torgersen, Espen; Mazzarini, Francesco; Musumeci, Giovanni; Garofalo, Paolo Stefano; van der Lelij, Roelant

    2017-04-01

    The northern Apennines accommodated the closure of the Liguro-Piemontese Ocean along the European and Adriatic continental margins. Crustal shortening via folding, eastward thrusting and stacking of oceanic and continental units during the westward subduction of Adria beneath the European plate shaped the orogenic prism starting in the Eocene and continuing to the Middle Miocene. Intrusive and volcanic rocks between 8.4 and 3 Ma crop out extensively in the northern Tyrrhenian Sea, and their emplacement in the inner portion of the belt is commonly interpreted as resulting from major crustal extension related to the Late Miocene-Pliocene opening of the northern Tyrrhenian Sea as a backarc basin. On the Island of Elba, which exposes the westernmost portion of the prism, the low-angle Zuccale fault (ZF) is generally interpreted as a major low-angle normal fault (LANF) whose Late Miocene activity would have greatly facilitated regional E-W extension in the geodynamic framework of the opening of the northern Tyrrhenian Sea between 10 and 5 Ma. In order to better constrain the kinematic meaning of the ZF and the timing of these important events, we have used the K-Ar method to date a set of brittle-ductile and brittle fault rocks cut by the ZF and sampled from its immediate footwall. A last sample from the brittle ZF itself is currently also being dated. The dated deformation zones in the ZF footwall are both thrusts with top-to-the east kinematics. They are undoubtedly cut by the brittle ZF and thus predate it; they are 1) the Calanchiole shear zone, formed by strongly sheared carbonate hornfelses and 2) the Capo Norsi fault, a brittle fault zone within serpentinites of the Ligurian sequence. While the Calanchiole shear zone developed coevally with the c. 6.2 Ma Porto Azzurro (PA) monzogranite, the Capo Norsi thrust led to the internal stacking of the PA contact aureole, and separates an upper complex that did not experience contact metamorphism from the underlying medium-grade hornfels rocks of the contact aureole at c. 6.2 Ma. K-Ar ages were produced from synkinematic illite separated from multiple grain sizes, with the goal to discriminate the role of clay synkinematic authigenesis and thus date the last increment of deformation. The age of the dated finest fraction constrains the age of the Calanchiole shear zone to 6.14±0.64 Ma (<0.1 µm fraction) and of the Capo Norsi thrust to 4.9±0.27 Ma (<0.4 µm fraction). Our results are fully consistent with the existing data and importantly provide the first direct dating of brittle deformation in the Apennines. In combination with field, kinematic and regional considerations, they undoubtedly constrain a Late Miocene-Early Pliocene regional compressive stress state, with the brittle ZF likely being its latest expression. This followed an earlier phase of upper crustal extension, presumably active since ˜16 Ma and was in turn followed by renewed extension. Compression at that time requires a re-evaluation of the geodynamic models of the evolution of the northern Apennines orogenic prism.

  12. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection

    NASA Astrophysics Data System (ADS)

    Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.

    2018-04-01

    Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.

  13. Study on convection improvement of standard vacuum tube

    NASA Astrophysics Data System (ADS)

    He, J. H.; Du, W. P.; Qi, R. R.; He, J. X.

    2017-11-01

    For the standard all-glass vacuum tube collector, enhancing the vacuum tube axial natural convection can improve its thermal efficiency. According to the study of the standard all-glass vacuum tube, three kinds of guide plates which can inhibit the radial convection and increase axial natural convection are designed, and theory model is established. Experiments were carried out on vacuum tubes with three types of baffles and standard vacuum tubes without the improvement. The results show that T-type guide plate is better than that of Y-type guide plate on restraining convection and increasing axial radial convection effect, Y type is better than that of flat plate type, all guide plates are better than no change; the thermal efficiency of the tube was 2.6% higher than that of the unmodified standard vacuum tube. The efficiency of the system in the experiment can be increased by 3.1%.

  14. Waves on Thin Plates: A New (Energy Based) Method on Localization

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Lengliné, Olivier; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    Noisy acoustic signal localization is a difficult problem having a wide range of application. We propose a new localization method applicable for thin plates which is based on energy amplitude attenuation and inversed source amplitude comparison. This inversion is tested on synthetic data using a direct model of Lamb wave propagation and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers, 1 - 26 kHz frequency range). We compare the performance of this technique with classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. The experimental setup consist of a glass / plexiglass plate having dimensions of 80 cm x 40 cm x 1 cm equipped with four accelerometers and an acquisition card. Signals are generated using a steel, glass or polyamide ball (having different sizes) quasi perpendicular hit (from a height of 2-3 cm) on the plate. Signals are captured by sensors placed on the plate on different locations. We measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, array geometry, signal to noise ratio and computational time. We show that this new technique, which is very versatile, works better than conventional techniques over a range of sampling rates 8 kHz - 1 MHz. It is possible to have a decent resolution (3cm mean error) using a very cheap equipment set. The numerical simulations allow us to track the contributions of different error sources in different methods. The effect of the reflections is also included in our simulation by using the imaginary sources outside the plate boundaries. This proposed method can easily be extended for applications in three dimensional environments, to monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  15. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    PubMed

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  16. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  17. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344).

    PubMed

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  18. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    PubMed Central

    Kurz, Walter; Rogowitz, Anna

    2017-01-01

    Abstract In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e‐twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal‐plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low‐angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high‐temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity. PMID:29081570

  19. Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira

    1999-11-01

    Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.

  20. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  1. Seismicity in the Vicinity of the Tristan Da Cunha Hot Spot: Particular Plate Tectonics and Mantle Plume Presence

    NASA Astrophysics Data System (ADS)

    Schlömer, Antje; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion

    2017-12-01

    Earthquake locations along the southern Mid-Atlantic Ridge have large uncertainties due to the sparse distribution of permanent seismological stations in and around the South Atlantic Ocean. Most of the earthquakes are associated with plate tectonic processes related to the formation of new oceanic lithosphere, as they are located close to the ridge axis or in the immediate vicinity of transform faults. A local seismological network of ocean-bottom seismometers and land stations on and around the archipelago of Tristan da Cunha allowed for the first time a local earthquake survey for 1 year. We relate intraplate seismicity within the African oceanic plate segment north of the island partly to extensional stresses induced by a bordering large transform fault and to the existence of the Tristan mantle plume. The temporal propagation of earthquakes within the segment reflects the prevailing stress field. The strong extensional stresses in addition with the plume weaken the lithosphere and might hint at an incipient ridge jump. An apparently aseismic zone coincides with the proposed location of the Tristan conduit in the upper mantle southwest of the islands. The margins of this zone describe the transition between the ductile and the surrounding brittle regime. Moreover, we observe seismicity close to the islands of Tristan da Cunha and nearby seamounts, which we relate to ongoing tectono-magmatic activity.

  2. Spatial and temporal variation in sponge spicule patches at Station M, northeast Pacific.

    PubMed

    Laguionie-Marchais, C; Kuhnz, L A; Huffard, C L; Ruhl, H A; Smith, K L

    Changes in habitat-forming organisms can have complex consequences for associated species. Sessile epibenthic glass "plate" sponges (Porifera: Hexactinellida) are conspicuous inhabitants of soft-sediment abyssal areas and their siliceous spicules create persistent spicule patches on the seafloor. Sponge spicule patch density, spatial dispersion, and percent cover were examined over a seven-year period (2006-2013) using remotely operated vehicle videos from Station M in the abyssal northeast Pacific (50˚00N, 123˚00W, ~4,000 m depth). There was an apparent large increase in newly dead plate sponges in February 2007 compared with December 2006, with this trend continuing through June 2007 (mean 0.03 % cover increasing to 0.33 %). A second increase in mean percent cover of dead plate sponges occurred from May 2011 (0.24 %) through June 2012 (0.60 %). Among the 28 megafaunal taxa occurring in association with the patches, the distributions of three taxa [two sponge taxa (Porifera) and brittle stars (Ophiuroidea)] suggested selectivity for the sponge spicule patches. The community structure of visible megafauna within sponge spicule patches was different when compared with that outside the patches suggesting that the sponges, after death, provide preferred habitat patches for certain benthic megafauna. These findings indicate that sponge spicule patches contribute to habitat heterogeneity in space and time.

  3. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    PubMed Central

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C. P.; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-01-01

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC). PMID:25019343

  4. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition.

    PubMed

    Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana

    2014-07-11

    Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).

  5. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    USGS Publications Warehouse

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This buttress occurs under the North Cascades region of Washington and under southern Vancouver Island. We find that regional faults zones such as the Devils Mt. and Darrington zones follow the margin of this buttress and the Olympic-Wallowa lineament forms its southern boundary east of the Puget Lowland. Thick, high-velocity, lower-crustal rocks are interpreted to be a mafic/ultramafic wedge occuring just above the subduction thrust. This mafic wedge appears to be jointly deformed with the arch, suggesting strong coupling between the subducting plate and upper plate crust in the Puget Sound region at depths >30 km. Such tectonic coupling is possible if brittle-ductile transition temperatures for mafic/ultramafic rocks on both sides of the thrust are assumed. The deformation models show that dominant north-south compression in the coast ranges of Washington and Oregon is controlled by a highly mafic crust and low heat flow, allowing efficient transmission of margin-parallel shear from Pacific plate interaction with North America. Complex stress patterns which curve around the Puget Sound region require a concentration of northwest-directed shear in the North Cascades of Washington. The preferred model shows that greatest horizontal shortening occurs across the Devils Mt. fault zone and the east end of the Seattle fault.

  6. Hydrodynamics of a three-dimensional self-propelled flexible plate

    NASA Astrophysics Data System (ADS)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  7. Structural Characterization of the Foliated-Layered Gabbro Transition in Wadi Tayin of the Samail Ophiolite, Oman; Oman Drilling Project Holes GT1A and GT2A

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Crispini, L.; Cheadle, M. J.; Harris, M.; Kelemen, P. B.; Teagle, D. A. H.; Matter, J. M.; Takazawa, E.; Coggon, J. A.

    2017-12-01

    Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Tayin massif, Samail ophiolite and both recovered ca. 400 m of continuous core through a section of the layered gabbros and the foliated-layered gabbro transition. Hole GT1A is cut by a discrete fault system including localized thin ultracataclastic fault zones. Hole GT2A is cut by a wider zone of brittle deformation and incipient brecciation. Here we report the structural history of the gabbros reflecting formation at the ridge to later obduction. Magmatic and high temperature history- 1) Both cores exhibit a pervasive, commonly well-defined magmatic foliation delineated by plagioclase, olivine and in places clinopyroxene. Minor magmatic deformation is present. 2) The dip of the magmatic foliation varies cyclically, gradually changing dip by 30o from gentle to moderate over a 50 m wavelength. 3) Layering is present throughout both cores, is defined by changes in mode and grain size ranging in thickness from 2 cm to 3 m and is commonly sub-parallel to the foliation. 4) There are no high temperature crystal-plastic shear zones in the core. Key observations include: no simple, systematic shallowing of dip with depth across the foliated-layered gabbro transition and layering is continuous across this transition. Cyclic variation of magmatic foliation dip most likely reflects the process of plate separation at the ridge axis. Near-axis faulting- i) On or near-axis structures consist of epidote-amphibole bearing hydraulic breccias and some zones of intense cataclasis with intensely deformed epidote and seams of clay and chlorite accompanied by syntectonic alteration of the wall rock. Early veins are filled with amphibole, chlorite, epidote, and anhydrite. ii) The deformation ranges from brittle-ductile, causing local deflection of the magmatic foliation, to brittle offset of the foliation and core and mantle structures in anhydrite veins. iii) The prevalent sense of shear is normal and slickenfibers indicate oblique offset. Obduction related faulting- i) Low temperature brittle faults and veins with laumontite, clay, and gypsum crosscut all structures. ii) Faults show a reverse sense of shear and crosscut, possibly reactivate, normal faults. Our observations suggest formation of reverse faults and late veins during obduction of the ophiolite.

  8. Tectonic escape of the Caribbean plate since the Paleocene: a consequence of the Chicxulub meteor impact?

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Martinez-Reyes, J.; Crespy, A.; Zitter, T. A. C.

    2012-04-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group, TOTAL S.A., Paris.

  9. Helium isotopes in matrix pore fluids from SAFOD drill core samples suggest mantle fluids cannot be responsible for fault weakening

    NASA Astrophysics Data System (ADS)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.

    2008-12-01

    To quantify fluid flow in the San Andreas Fault (SAF) (and since direct fracture fluid sampling of the fault zone was not available), we have adapted a method to extract rare gases from matrix fluids of whole rocks by diffusion. Helium was measured on drill core samples obtained from 3054 m (Pacific Plate) to 3990 m (North American Plate) through the San Andreas Fault Zone (SAFZ) ~3300 m during SAFOD Phases I (2004), II (2005), III (2007). Samples were typically collected as 2.54 cm diameter subcores drilled into the ends of the cores, or from the core catcher and drillcore fragments within <2hr after core recovery. The samples were placed into ultra high vacuum stainless steel containers, flushed with ultra high purity nitrogen and immediately evacuated. Helium isotopes of the extracted matrix pore fluids and the solid matrix were determined by mass spectrometery at LDEO. Matrix porefluid 3He/4He ratios are ~0.4 - 0.5xRa (Ra: atmospheric 3He/4He = 1.384 x 10-6) in the Pacific Plate, increasing toward the SAFZ, while pore fluids in the North American Plate have a 3He/4He range of 0.7-0.9Ra, increasing away from the SAFZ (consistent with results from mud gas samples (Wiersberg and Erzinger, 2007) and direct fluid samples (Kennedy et al., 2007)). Helium isotope ratios of the solid matrix are less than 0.06Ra across the SAF in samples from both the North American and the Pacific plates, thereby excluding the host matrix as source for the enhanced isotopic signature. If the system is assumed to be in steady state, then the flux of mantle helium must be from the North American Plate to the Pacific plate. The steeper gradient in the Pacific Plate relative to the North American plate is consistent with a porosity corrected effective diffusivity. The source for this mantle helium in the North American Plate is likely related to a low crustal conductivity zone identified by magnetotelluric signals (Becken et al., 2008) that provides a channel for transport of mantle helium within brittle crust under high strain rates (Kennedy et al., 2007). The helium isotope gradients suggest that fault weakening by mantle-derived fluid pressure is unlikely. More likely, mantle fluids "bleed" into the North American plate below seismogenic depths and are transported across the fault by nonseismic, diffusive processes.

  10. Experimental analysis and application of the effect of stress on continental shale reservoir brittleness

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Lv, Dawei; Jin, Lin; Ding, Wenlong

    2018-04-01

    Hydraulic fracturing is an effective measure of reservoir modification for the development of shale gas. The evaluation of rock brittleness can provide a basis for the optimization of fracturing. In this paper, the effect of stress on the brittleness of shale is systematically analyzed by designing triaxial mechanics tests. The strain analysis method was used to evaluate the shale brittleness. The research indicates that, with the increase of effective confining pressure, the value of the brittleness index (B 1) decreases. There is a linear and positive correlation between the average reduction ratio of B 1 and the buried depth. The stress has a significant effect on the shale brittleness. Therefore, the rock brittleness can be overestimated without considering the influence of the buried depth or the stress of formation when using the mineral composition method. Being affected by the stress, when the brittle mineral content of the shale reservoir is 70%, 65%, 60%, and 55%, the lower limit depth of the shale gas development is 5000 m, 4400 m, 3000 m, and 1800 m, respectively. However, when the brittle mineral content of the shale is less than 50%, the brittleness index is less than 50% in all of the buried depths. In this case, the shale will not have any commercial development potential. The logging interpretation results of the brittleness index conducted with stress correction are more consistent with the real situation, and thus, this method can be better used to help the optimization of the fracturing intervals of shale gas.

  11. On the brittleness of enamel and selected dental materials.

    PubMed

    Park, S; Quinn, J B; Romberg, E; Arola, D

    2008-11-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of "brittleness" is currently not used in assessing the clinical merits of dental materials. To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Specimens of human enamel were prepared from the third molars of "young" (18< or =age< or =25) and "old" (50< or =age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and micaceous glass ceramic (MGC) dental materials was estimated and compared with that of the enamel. The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 microm(-1) at the DEJ to nearly 900 microm(-1) at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to four times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel.

  12. Cohesive stress heterogeneities and the transition from intrinsic ductility to brittleness

    NASA Astrophysics Data System (ADS)

    Tanguy, D.

    2017-11-01

    The influence of nanoscale cavities on the fracture of the Σ 33 {554 }[110 ] symmetrical tilt grain boundary is studied by atomistic simulations. The crack crystallography is chosen such that dislocation emission is easy. A transition from a ductile behavior of the tip to a brittle one is obtained for a dense (coverage beyond 15% and intercavity spacing smaller than 4 nm) distribution of small cavities (sizes in-between 1 and 2 nm). The results are in good agreement with recent experiments from the literature. Even at the highest coverage, the character of the crack is highly sensitive to the initial position of the tip and a mixture of ductile and brittle responses is found. This complexity is beyond the usual criterion based on the drop of the work of separation with the amount of damage in the structure. It is shown that a heterogeneous cohesive zone model, with parameters extracted from the simulations and enriched with a criterion for plasticity, can explain the simulations and reproduce the transition. Additional simulations show that outside this range of small sizes and dense packing, which gives essentially a two-dimensional response (either crack opening or infinite straight dislocation emission), dislocation half-loops appear for intercavity spacing starting at about 4 nm. They constitute, together with regions of low coverage/small cavities, efficient obstacles to brittle cracking. These results could be guidelines to designing interfaces more resistant to solute embrittlement, in general. The cohesive zone model is generic. Furthermore, the {554} single crystal was used to determine to which extent the results depend on the details of the core structure versus the cavity distribution. These elements show that the conclusions reached have a generic character.

  13. Faulting of natural serpentinite: Implications for intermediate-depth seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasc, Julien; Hilairet, Nadège; Yu, Tony

    The seismic potential of serpentinites at high pressure was investigated via deformation experiments on cored natural serpentinite samples, during which micro-seismicity was monitored by recording Acoustic Emissions (AEs). Deformation was performed at pressures of 3–5 GPa, using a Deformation-DIA device, and over a wide range of temperatures, both within and outside antigorite's stability field. Below 400 °C, serpentinite deformation involves “silent” semi-brittle mechanisms, even in cases where strain localization is observed. At high temperature (i.e., above 600 °C), despite conditions propitious to dehydration embrittlement (i.e., fast strain rates and reaction kinetics), joint deformation and dehydration lead to ductile shear, withoutmore » generation of AEs. Brittle behavior was observed in a narrow temperature window ca. 500 °C. In this latter case, AEs are consistently observed upon faulting and extremely sharp strain localization is observed in recovered samples. The resulting microstructures are consistent with the inverse ductile-to-brittle transition proposed by Proctor and Hirth (2016) in antigorite. This may therefore be a source of seismicity in subducting slabs at mantle pressures and temperatures from 500 to 600 °C. However, the acoustic signal observed here is orders of magnitude weaker than what is obtained at low PT conditions with brittle failure, consistently with low radiation efficiency of serpentinite faulting (Prieto et al., 2013) and suggests that other mechanisms are responsible for large intermediate-depth earthquakes. In fact, the present results are in line with a recent study (Ferrand et al., 2017), that suggests that intermediate earthquakes are likely induced by mechanical instabilities due to dehydration in partly hydrated peridotites.« less

  14. Johanna and Tommy: Two Preschoolers in Sweden with Brittle Bones.

    ERIC Educational Resources Information Center

    Millde, Kristina; Brodin, Jane

    Information is presented for caregivers of Swedish children with osteogenesis imperfecta (brittle bones) and their families. Approximately five children with brittle bones are born in Sweden annually. Two main types of brittle bone disease have been identified: congenita and tarda. Typical symptoms include numerous and unexpected fractures, bluish…

  15. Slip events propagating along a ductile mid-crustal strike-slip shear zone (Malpica-Lamego line, Variscan Orogen, NW Iberia)

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, Sergio; de Paola, Nicola; Pozzi, Giacomo; Lopez-Sanchez, Marco Antonio

    2017-04-01

    The current level of erosion in NW Iberian peninsula exposes Variscan mid-crustal depths, where widespread deformation during orogenesis produced dominantly ductile structures. It constitutes an adequate window for the observation of structures close to the brittle-plastic transition in the continental crust. The shear zone object of this work is the Malpica-Lamego line (MLL), a major Variscan structure formed in the late stages of the Variscan collision. The MLL is a mostly strike-slip major structure that offsets laterally by several kilometres the assembly of allochthonous complexes, that contain a sub-horizontal suture zone, which are the remnants of the plate duplication during the Variscan convergence. The shear zone is exposed along the northern coast of Galicia (NW Spain). It is characterized by phyllonites and quartz-mylonites in a zone which is tens of meters in thickness. Within the phyllonites, a few seams of cataclastic rocks have been found in bands along the main fabric. Their cohesive character, the parallelism between the different bands, the fact that host rocks maintain mineral assemblage and that no cross-cutting relations in the field were identified, are considered indicative of these brittle structures forming coetaneously with the ductile shearing producing the phyllonites. Samples from the phyllonites, also from quartz-mylonites, were prepared and powdered to characterize friction properties in a rotary shear apparatus at high, seismic velocities (m/s). Preliminary experiments run at room temperature and effective normal stresses between 10 to 25 MPa, show that friction coefficients µ are relatively high and a limited drop in friction coefficient occurs after 10-20 cm of slip, with µ decreasing from 0.7 to 0.5. Fracturing seems coetaneous with dominant ductile shearing within the shear zone, however, given the frictional properties of the phyllonites, it is unlikely that brittle deformation nucleates within these fault rocks. Instead, it seems that faulting originated in other sectors of the fault zone, and then propagated through the studied section.

  16. Brittle fracture damage around the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Williams, J. N.; Toy, V.; Smith, S. A. F.; Boulton, C. J.; Massiot, C.; Mcnamara, D. D.

    2017-12-01

    We use field and drill-core samples to characterize macro- to micro-scale brittle fracture networks within the hanging-wall of New Zealand's Alpine Fault, an active plate-boundary fault that is approaching the end of its seismic cycle. Fracture density in the hanging-wall is roughly constant for distances of up to 500 m from the principal slip zone gouges (PSZs). Fractures >160 m from the PSZs are typically open and parallel to the regional mylonitic foliation or host rock schistosity, and likely formed as unloading joints during rapid exhumation of the hanging-wall at shallow depths. Fractures within c. 160 m of the PSZs are broadly oriented shear-fractures filled with gouge or cataclasite, and are interpreted to constitute the hanging-wall damage zone of the Alpine Fault. This is comparable to the 60-200 m wide "geophysical damage zone" estimated from low seismic wave velocities surrounding the Alpine Fault. Veins are pervasive within the c. 20 m-thick hanging-wall cataclasites and are most commonly filled by calcite, chlorite, muscovite and K-feldspar. Notably, there is a set of intragranular clast-hosted veins, as well as a younger set of veins that cross-cut both clasts and cataclasite matrix. The intragranular veins formed prior to cataclasis or during synchronous cataclasis and calcite-silicate mineralisation. Broad estimates for the depth of vein formation indicate that the cataclasites formed a c. 20 m wide actively deforming zone at depths of c. 4-8 km. Conversely, the cross-cutting veins are interpreted to represent off-fault damage within relatively indurated cataclasites following slip localization onto the <10 cm wide smectite-bearing PSZ gouges at depths of <4 km. Our observations therefore highlight a strong depth-dependence of the width of the actively deforming zone within the brittle seismogenic crust around the Alpine Fault.

  17. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    NASA Astrophysics Data System (ADS)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  18. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    PubMed

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  19. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    PubMed Central

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  20. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    USGS Publications Warehouse

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  1. Microchannel plate for high-efficiency field emission display

    NASA Astrophysics Data System (ADS)

    Yi, Whikun; Jin, Sunghwan; Jeong, Taewon; Lee, Jeonghee; Yu, SeGi; Choi, Yongsoo; Kim, J. M.

    2000-09-01

    The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol-gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality.

  2. Role of heat and detachment in continental extension as viewed from the eastern basin and range province in Arizona

    USGS Publications Warehouse

    Lucchitta, I.

    1990-01-01

    The Bill Williams River area of west-central Arizona includes not only the Rawhide-Buckskin metamorphic core complex, which is part of the lower Colorado River highly extended terrane (HET), but also the boundary between the extended terranes of the Basin and Range Province and the less deformed Arizona Transition Zone/Colorado Plateau. This provides important constraints on models that address the mechanisms for the mid- to late Tertiary deformation. Three phases of extension are present. The oldest is the extension associated with core-complex tectonism, which characteristically shows a lower plate composed of lineated mylonitic gneiss overlain by a detachment fault that is regionally nearly horizontal but undulates at the local scale. The fault in turn is overlain by an upper plate that includes Precambrian basement rocks, recrystallized Paleozoic sedimentary rocks, Mesozoic(?) metasedimentary and metavolcanic rocks of greenschist facies, and unaltered to hydrothermally altered syntectonic sedimentary and volcanic rocks of Miocene age. The upper plate is cut by closely spaced faults of modest structural relief that strike northwest and strongly rotate intervening blocks to face southwest. Most of these faults do not penetrate below the detachment fault. Fault spacing increases, and rotation decreases, to the northeast, away from the trace of the detachment. The second phase consists of "classic" Basin-Range high-angle normal faults that strike about north and have wide spacing, high structural relief, and modest rotation of blocks. These faults have no consistent direction of displacement and so produced horst and graben that form the ranges and basins visible today. This phase is locally superposed on Phase I, and also extends in more subdued form into the Transition Zone/Colorado Plateau. The third phase consists of tectonic quiescence and is present everywhere except parts of the Transition Zone that are still active seismically. The first phase occurred in the early and middle Miocene and was accompanied by deposition of syntectonic fluviolacustrine rocks (Suite I); the second (middle to late Miocene) was marked by interior-basin deposits (Suite II); the third (latest Miocene through Quaternary) is characterized by deposits related to through-flowing drainage. The phases grade into each other and thus are likely to be genetically related. Tectonic models must take into account not only the geographic distribution of deformation at any one time but also the time-dependent succession of deformation at any one place. A model proposed in this paper attempts to do this. The model is thermotectonic. A heating event in the lower crust, (basaltic intrusion, asthenospheric upwelling) combined with stretching, causes a sharp thermal front to rise within the crust. Embedded within the front is an "isotherm" that marks the brittle-ductile transition. As the front rises, it leaves behind a trail of shear zones, each marking a locus of preferred failure defined by mechanical or physical properties, or combinations thereof. The highest shear zone, now preserved in fossil form as the "detachment", occurs where the front impinges on the meteoric groundwater, a few km below the topographic surface. The water steepens the thermal gradient at the front, which it stabilizes. A convective hydrothermal circulation system is established, causing alteration and mineralization above the ductile-brittle transition, as well as pore overpressure that results in hydrofracturing (producing monolithologic breccias) and the sliding of gravity-glide sheets. During these events, extension is taking place by brittle failure in the upper plate and ductile deformation below the detachment. Simultaneously, the hottest areas (core complexes) are updomed, promoting drainage reversals and the sliding of breccias and glide sheets. All this occurred only in the hottest areas or "blisters", now marked by the core complexes. Distal areas showed less or no deformati

  3. Prediction of shale prospectivity from seismically-derived reservoir and completion qualities: Application to a shale-gas field, Horn River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Mo, Cheol Hoon; Lee, Gwang H.; Jeoung, Taek Ju; Ko, Kyung Nam; Kim, Ki Soo; Park, Kyung-sick; Shin, Chang Hoon

    2018-04-01

    Prospective shale plays require a combination of good reservoir and completion qualities. Total organic carbon (TOC) is an important reservoir quality and brittleness is the most critical condition for completion quality. We analyzed seismically-derived brittleness and TOC to investigate the prospectivity of the Horn River Group shale (the Muskwa, Otter Park, Evie shales) of a shale-gas field in the western Horn River Basin, British Columbia, Canada. We used the λρ-μρ brittleness template, constructed from the mineralogy-based brittleness index (MBI) and elastic logs from two wells, to convert the λρ and μρ volumes from prestack seismic inversion to the volume for the brittleness petrotypes (most brittle, intermediate, and least brittle). The probability maps of the most brittle petrotype for the three shales were generated from Bayesian classification, based on the λρ-μρ template. The relationship between TOC and P-wave and S-wave velocity ratio (VP/VS) at the wells allowed the conversion of the VP/VS volume from prestack inversion to the TOC volume, which in turn was used to construct the TOC maps for the three shales. Increased TOC is correlated with high brittleness, contrasting with the commonly-held understanding. Therefore, the prospectivity of the shales in the study area can be represented by high brittleness and increased TOC. We propose a shale prospectivity index (SPI), computed by the arithmetic average of the normalized probability of the most brittle petrotype and the normalized TOC. The higher SPI corresponds to higher production rates in the Muskwa and Evie shales. The areas of the highest SPI have not been fully tested. The future drilling should be focused on these areas to increase the economic viability of the field.

  4. Deep magma transport at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0.4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea. ?? 2005 Elsevier B.V. All rigths reserved.

  5. Deep magma transport at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, Thomas L.; Klein, Fred W.

    2006-03-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5° and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325°, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0.4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea.

  6. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoguang; Li, Qiang; Liu, Tao; Kang, Renke; Jin, Zhuji; Guo, Dongming

    2017-03-01

    Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.

  7. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  8. Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.

    2015-05-01

    We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.

  9. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Foix, Oceane; Crawford, Wayne; Pelletier, Bernard; Regnier, Marc; Garaebiti, Esline; Koulakov, Ivan

    2017-04-01

    The 1400-km long Vanuatu subduction zone results from subduction of the oceanic Australian plate (OAP) beneath the North-Fijian microplate (NFM). Seismic and volcanic activity are both high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the large forearc islands of Santo and Malekula. This collision coincides with a strongly decreased local convergence velocity rate - 35 mm/yr compared to 120-160 mm/yr to the north and south - and significant uplift on the overriding plate, indicating a high degree of deformation. The close proximity of large uplifted forearc islands to the trench provides excellent coverage of the megathrust seismogenic zone for a seismological study. We used 10 months of seismological data collected using the 30-instrument land and sea ARC-VANUATU seismology network to construct a 3D velocity model — using the LOTOS joint location/model inversion software — and locate 11655 earthquakes using the NonLinLoc software suite. The 3-D model reveals low P and S velocities in the first tens of kilometers beneath both islands, probably due to water infiltration in the heavily faulted upper plate. The model also suggests the presence of a subducted seamount beneath south Santo. The earthquake locations reveal a complex interaction of faults and stress zones related to high and highly variable deformation. Both brittle deformation and the seismogenic zone depth limits vary along-slab and earthquake clusters are identified beneath central and south Santo, at about 10-30 km of depth, and southwest of Malekula island between 10-20 km depth.

  10. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.C.; Russo, R.M.; Foland, K.A.

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal covermore » of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.« less

  11. Plume-induced subduction and accretion on present-day Venus and Archean Earth

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Sibrant, A.; Mittelstaedt, E. L.

    2017-12-01

    Plate tectonics is responsible for the majority of Earth's heat loss, cycling of volatiles between the atmosphere and interior, recycling in the mantle of most of the surface plates, and possibly even for maintaining habitability. Despite its similarity in size and bulk density to Earth, Venus lacks plate tectonics today, and its mode of operation remains debated. Using laboratory experiments in colloidal dispersion which brittle viscosity-elasto-plastic rheology, we recently showed that plume-induced subduction could be operating nowadays on Venus. The experimental fluids were heated from below to produce upwelling plumes, which in turn produced tensile fractures in the lithosphere-like skin that formed on the upper surface. Plume material upwelling through the fractures then spread above the skin, analogous to volcanic flooding, and lead to bending and eventual subduction of the skin along arcuate segments. These segments are analogous to the semi-circular trenches seen on large coronae. Scaling analysis suggests that this regime with limited, plume-induced subduction is favored by a hot lithosphere, such as that found on early Earth or present-day Venus. Moreover, in this regime, subduction proceeds primarily by roll-back and the coronae expands through time at velocity that could reach 10 cm/yr. A second set of experiments focusing on accretion processes suggests that accretion dynamics depends on the strength of the lithosphere, as well as the spreading velocity. Venus hot surface temperature would act to decrease the lithosphere strength, and therefore weaken the ridge axis, that would become highly unstable, showing large sinuosity and producing a number of micro-plates. These plume, subduction, and accretion characteristics explain well the features seen in Artemis coronae, the largest coronae on Venus.

  12. Seismic behaviour of mountain belts controlled by plate convergence rate

    NASA Astrophysics Data System (ADS)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.

    2018-01-01

    The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.

  13. Nanocrystalline Cobalt-Phosphorous Electroplating as an Alternative to Hard Chromium Electroplating

    DTIC Science & Technology

    2012-08-01

    Validate pulsed electrodeposition of Nanocrystalline Cobalt-Phosphorous (nCoP) alloy coatings as a Hard Chrome electroplating alternative for DoD...limits Cr+6  Cathode Efficiency Cr Plating *Co PEL is 20 µg/m3  ≈5X faster than Chrome plating  Increased throughput  One nCo-P tank can...replace several hard chrome tanks  Bath is Stable nCoP Plating Approaches 100% Efficiency  Process Comparison CoP Technical Approach

  14. Consequences of Chixculub Impact for the Tectonic and Geodynamic Evolution of the Gulf of Mexico North Carribean Region

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Crespy, A.; Martinez-Reyes, J.

    2013-05-01

    The debate for Pacific exotic origin versus in situ inter American plate Atlantic origin of the Caribbean plate is active in the scientific community since decades. Independently of the origin of this plate, its fast motion towards the east at a present rate of 2cm/yr is accepted to have been initiated during the early-most Cenozoic. The Paleocene is a key period in the global evolution of Central America mainly marked also by the Chicxulub multiring meteor impact in Yucatan. We question here the genetic relationship between this impact event and the incipient tectonic escape of the Caribbean plate. The mostly recent published models suggest this impact has affected the whole crust down to the Moho, the upper mantle being rapidly and considerably uplifted. The crust was then fragmented 600km at least from the point of impact, and large circular depressions were rapidly filled by clastic sediments from Cantarell to Western Cuba via Chiapas and Belize. North of the impact, the whole Gulf of Mexico was affected by mass gravity sliding, initiated also during the Paleocene in Texas, remaining active in this basin up to present time. South of the impact, in the Caribbean plate, the Yucatan basin was rapidly opened, indicating a fast escape of the crustal material towards the unique free boundary, the paleo-Antilles subduction zone. Shear waves velocity data below the Caribbean plate suggest this crustal tectonic escape was enhanced by the fast eastward flowing mantle supporting a fragmented and stretched crust. The proposed model suggests Chicxulub impact (but also the hypothetic Beata impact) have fragmented brittle crust, then easily drifted towards the east. This could explain the Paleogene evolution of the Caribbean plate largely stretched during its early evolution. Geologically, this evolution could explain the absence of evident Paleogene oblique subduction along the Caribbean plate northern and southern margins, marked only by Mid Cretaceous dragged volcanic complexes, but also the relatively recent motion along the Cayman Fault zone (Miocene instead of Eocene). These results are part of a cooperative research-industry programm conducted by CEREGE/EGERIE, Aix-en-Provence and GeoAzur, Nice, with Frontier Basin study group TOTAL S.A., Paris.

  15. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE PAGES

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less

  16. Mechanical properties of 8Cr-2WVTa steel aged for 30 000 h

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Shinozuka, K.; Esaka, H.; Sugimoto, S.; Ishizawa, K.; Masamura, K.

    2000-12-01

    A mill production plate of a reduced activation ferritic steel was thermally aged for up to 30 000 h at 400-650°C. Charpy impact tests, creep rupture tests and hardness tests were conducted. Both Vickers hardness number and creep strength decrease with aging at 650°C. The ductile-brittle transition temperature (DBTT) increases with both aging time and aging temperature. However, the DBTT does not exceed +20°C even after aging at 650°C for 30 000 h. Extracted residues and extraction replicas were analyzed metallurgically. The increase in DBTT is related mainly to the precipitation of Laves phase on the prior austenite grain boundaries. The rather low DBTT after aging is caused by the fine prior austenitic grain size.

  17. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-03-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  18. Investigation of a fatigue failure in a stainless steel femoral plate.

    PubMed

    Marcomini, J B; Baptista, C A R P; Pascon, J P; Teixeira, R L; Reis, F P

    2014-10-01

    Surgical implants are exposed to severe working conditions and therefore a wide range of failure mechanisms may occur, including fatigue, corrosion, wear, fretting and combinations of them. The mechanical failures of metallic implants may also be influenced by several other factors, including the design, material, manufacturing, installation, postoperative complications and misuse. An 83-year-old patient suffered an oblique femoral shaft fracture due to a fall at home. A stainless steel locking compression plate (LCP) employed in the fracture reduction failed after four months and was sent back to the producer. A second LCP of the same type was implanted and also failed after six months. A failure analysis of the second femoral LCP is performed in this paper. The results demonstrate that poor material quality was decisive to the failure. The chemical analysis revealed a high P content in the steel, which is not in accordance to the standards. A combination of factors lead to LCP fracture and these include: brittle crack initiation due to phosphorus, segregation at grain boundaries, crack propagation due to cyclic loading and final fast fracture favored by the loss of ductility due to cold work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of Ultra-Fast Cooling on Microstructure and Properties of High Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng; Ye, Qibin; Yan, Ling

    The effect of ultra-fast cooling(UFC) and conventional accelerated cooling(AcC) on the mechanical properties and microstructure of controlled rolled AH32 grade steel plates on industrial scale were compared using tensile test, Charpy impact test, welding thermal simulation, and microscopic analysis. The results show that the properties of the plate produced by UFC are improved considerably comparing to that by AcC. The yield strength is increased with 54 MPa without deterioration in the ductility and the impact energy is improved to more than 260 J at -60 °C with much lower ductile-to-brittle transition temperature(DBTT). The ferrite grain size is refined to ASTM No. 11.5 in the UFC steel with uniform microstructure throughout the thickness direction, while that of the AcC steel is ASTM No. 9.5. The analysis of nucleation kinetics of α-ferrite indicates that the microstructure is refined due to the increased nucleation rate of α-ferrite by much lower γ→α transition temperature through the UFC process. The Hall-Petch effect is quantified for the improvement of the strength and toughness of the UFC steel attributed to the grain refinement.

  20. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  1. Evidence for subduction in the ice shell of Europa

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Prockter, Louise M.

    2014-10-01

    Jupiter’s icy moon Europa has one of the youngest planetary surfaces in the Solar System, implying rapid recycling by some mechanism. Despite ubiquitous extension and creation of new surface area at dilational bands that resemble terrestrial mid-ocean spreading zones, there is little evidence of large-scale contraction to balance the observed extension or to recycle ageing terrains. We address this enigma by presenting several lines of evidence that subduction may be recycling surface material into the interior of Europa’s ice shell. Using Galileo spacecraft images, we produce a tectonic reconstruction of geologic features across a 134,000 km2 region of Europa and find, in addition to dilational band spreading, evidence for transform motions along prominent strike-slip faults, as well as the removal of approximately 20,000 km2 of the surface along a discrete tabular zone. We interpret this zone as a subduction-like convergent boundary that abruptly truncates older geological features and is flanked by potential cryolavas on the overriding ice. We propose that Europa’s ice shell has a brittle, mobile, plate-like system above convecting warmer ice. Hence, Europa may be the only Solar System body other than Earth to exhibit a system of plate tectonics.

  2. Brittle diabetes: Psychopathology and personality.

    PubMed

    Pelizza, Lorenzo; Pupo, Simona

    The term "brittle" is used to describe an uncommon subgroup of patients with type I diabetes whose lives are disrupted by severe glycaemic instability with repeated and prolonged hospitalization. Psychosocial problems are the major perceived underlying causes of brittle diabetes. Aim of this study is a systematic psychopathological and personological assessment of patients with brittle diabetes in comparison with subjects without brittle diabetes, using specific parameters of general psychopathology and personality disorders following the multi-axial format of the current DSM-IV-TR (Diagnostic and Statistical manual of Mental Disorders - IV Edition - Text Revised) diagnostic criteria for mental disorders. Patients comprised 42 subjects with brittle diabetes and a case-control group of 42 subjects with stable diabetes, matched for age, gender, years of education, and diabetes duration. General psychopathology and the DSM-IV-TR personality disorders were assessed using the Symptom Checklist-90-Revised (SCL-90-R) and the Structured Clinical Interview for axis II personality Disorders (SCID-II). The comparison for SCL-90-R parameters revealed no differences in all primary symptom dimensions and in the three global distress indices between the two groups. However, patients with brittle diabetes showed higher percentages in borderline, histrionic, and narcissistic personality disorder. In this study, patients with brittle diabetes show no differences in terms of global severity of psychopathological distress and specific symptoms of axis I DSM-IV-TR psychiatric diagnoses in comparison with subjects without brittle diabetes. Differently, individuals with brittle diabetes are more frequently affected by specific DSM-IV-TR cluster B personality disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ti/Al multilayer zone plate and Bragg-Fresnel lens.

    PubMed

    Koike, M; Suzuki, I H; Komiya, S; Amemiya, Y

    1998-05-01

    By using a helicon plasma sputtering technique, a one-dimensional Ti/Al multilayer zone plate with an outermost layer width of 76 nm has been successfully fabricated. A Bragg-Fresnel lens has been made by combining this zone plate with a Ge(422) crystal. Comparison of the Ti/Al multilayer zone plate with the Ag/Al zone plate is discussed in terms of focusing efficiency.

  4. Evolution of the stress field in the southern Scotia Arc from the late Mesozoic to the present-day

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Galindo-Zaldívar, Jesús; Bohoyo, Fernando; Mink, Sandra

    2014-12-01

    The geological evolution of the Scotia Arc, which developed between Antarctica and South America, has facilitated the connection between the Pacific and Atlantic oceans and, has important global implications. To improve the knowledge of the late Mesozoic evolution of the southern Scotia Arc, over 6000 brittle mesostructures were measured over the last 20 years at different outcrops from the northern Antarctic Peninsula and the South Shetland Islands as well as the James Ross and South Orkney archipelagos. This dataset covers a length of more than 1000 km of the arc. Fault data were analysed using the Etchecopar, y-R, Right Dihedra, Stress Inversion and Search Grid Inversion Palaeostress Determination methods. A total of 275 stress tensors were obtained. The results showed that the maximum horizontal stress was in the ENE-WSW and the NW-SE orientations and that the horizontal extension tensors were oriented NE-SW and NW-SE. In addition, seismic activity and focal mechanism solutions were analysed using the Gephart method to establish the present-day stress field and characterise the active tectonics. The results obtained suggest that there is a regional NE-SW compression and a NW-SE extension regime at the present day. The Southern Scotia Arc has a complex geological history due to the different tectonic settings (transform, convergent and divergent) that have affected this sector during its geological evolution from the late Mesozoic until the present day. Six stress fields were obtained from the brittle mesostructure population analysis in the region. The NW-SE and N-S maximum horizontal stresses were related to a combination of Mesozoic oceanic subduction of the former Phoenix Plate under the Pacific margin of the Antarctic Plate, Mesozoic-Cenozoic subduction of the northern Weddell Sea and the Oligocene to the Middle Miocene dextral strike-slip movement between the Scotia and Antarctic plates along the South Scotia Ridge. The NE-SW compression was related to late Miocene to present-day sinistral transcurrent movement along the South Scotia Ridge. Finally, the NW-SE extensional stress field may be related to the development of the following back-arc basins: the Late Cretaceous-Eocene Larsen Basin, the Lower to Middle Miocene Jane Basin and the Pliocene to present-day Bransfield Basin. In addition, the NE-SW and the E-W tensional stress fields were related to the Oligocene opening of the Powell Basin.

  5. Influence of nanomodification additives on the properties of multilayer composite coating obtained in laser surfacing

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Ovcharenko, V. E.; Malikov, A. G.; Drozdov, V. O.; Pshenichnikov, A. P.

    2017-10-01

    The paper presents the results of numerical and experimental studies of the process of obtaining a permanent joint of two plates of heterogeneous metals that cannot be welded in the usual way: alloy Grade 4 and steel AISI 321 using a laser beam and an intermediate composite insert. The composite insert was obtained by explosion welding of four thin plates of titanium (Grade 4), niobium, copper, and steel (AISI 321). The insert was placed between the welded plates of titanium and steel, and the steel plate was welded with the steel part of the insert, and the titanium plate was welded with the titanium part of the insert. The plates were welded using a CO2 laser. The connection of metals with the help of explosion is carried out without their melting, so the formation of the brittle intermetallics does not occur in most cases. This ensures the greatest strength of the joints as compared to the joints obtained by other welding methods. To analyze the distribution of thermal fields in the composite insert and welded plates, a numerical study was conducted of the laser welding of steel and titanium plates with the corresponding parts of the insert. The purpose of the study was to determine the rational parameters of welding (laser beam power, speed of its movement, size and position of the focal spot), at which there was no complete melting of the steel and titanium parts of the insert during through penetration of the welded plates. The experimental part of the work is devoted to analysis of formation of the internal boundaries and microstructure of the composite insert and the strength of the permanent joint. It is shown that as a result of the explosion welding, weld seams of different wavelike configuration are formed. The most pronounced wavelike boundary is observed in the steel-copper connection, since these materials have a face-centered cubic lattice and are easily subjected to plastic deformation. At the contact boundaries of the plates, transition diffusion zones with different widths (from 5 to 40 μm) and element concentrations are formed. The hardness in the boundary diffusion zones is higher than in the connected metals, which is due to the diffusion interaction of the materials adjacent to each other. It has been established that the tensile strength of the composite insert is comparable to the maximum strength of Grade 4 alloy (456-511 MPa), and the failure in most cases occurred over the least durable component of the composite material, which is the copper plate, whose strength was significantly increased by cold hardening during explosion welding and diffusion of elements of the contacting plates.

  6. Analytical and numerical analysis of frictional damage in quasi brittle materials

    NASA Astrophysics Data System (ADS)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  7. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  8. Stresses in Circular Plates with Rigid Elements

    NASA Astrophysics Data System (ADS)

    Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.

    2018-05-01

    Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.

  9. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency

    PubMed Central

    Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren

    2012-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  10. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  11. Exact nonstationary responses of rectangular thin plate on Pasternak foundation excited by stochastic moving loads

    NASA Astrophysics Data System (ADS)

    Chen, Guohai; Meng, Zeng; Yang, Dixiong

    2018-01-01

    This paper develops an efficient method termed as PE-PIM to address the exact nonstationary responses of pavement structure, which is modeled as a rectangular thin plate resting on bi-parametric Pasternak elastic foundation subjected to stochastic moving loads with constant acceleration. Firstly, analytical power spectral density (PSD) functions of random responses for thin plate are derived by integrating pseudo excitation method (PEM) with Duhamel's integral. Based on PEM, the new equivalent von Mises stress (NEVMS) is proposed, whose PSD function contains all cross-PSD functions between stress components. Then, the PE-PIM that combines the PEM with precise integration method (PIM) is presented to achieve efficiently stochastic responses of the plate by replacing Duhamel's integral with the PIM. Moreover, the semi-analytical Monte Carlo simulation is employed to verify the computational results of the developed PE-PIM. Finally, numerical examples demonstrate the high accuracy and efficiency of PE-PIM for nonstationary random vibration analysis. The effects of velocity and acceleration of moving load, boundary conditions of the plate and foundation stiffness on the deflection and NEVMS responses are scrutinized.

  12. ON THE BRITTLENESS OF ENAMEL AND SELECTED DENTAL MATERIALS

    PubMed Central

    Park, S.; Quinn, J. B; Romberg, E.; Arola, D.

    2008-01-01

    Although brittle material behavior is often considered undesirable, a quantitative measure of “brittleness” is currently not used in assessing the clinical merits of dental materials. Objective To quantify and compare the brittleness of human enamel and common dental restorative materials used for crown replacement. Methods Specimens of human enamel were prepared from the 3rd molars of “young” (18≤age≤25) and “old” (50≤age) patients. The hardness, elastic modulus and apparent fracture toughness were characterized as a function of distance from the DEJ using indentation approaches. These properties were then used in estimating the brittleness according to a model that accounts for the competing dissipative processes of deformation and fracture. The brittleness of selected porcelain, ceramic and Micaceous Glass Ceramic (MGC) dental materials was estimated and compared with that of the enamel. Results The average brittleness of the young and old enamel increased with distance from the DEJ. For the old enamel the average brittleness increased from approximately 300 µm−1 at the DEJ to nearly 900 µm−1 at the occlusal surface. While there was no significant difference between the two age groups at the DEJ, the brittleness of the old enamel was significantly greater (and up to 4 times higher) than that of the young enamel near the occlusal surface. The brittleness numbers for the restorative materials were up to 90% lower than that of young occlusal enamel. Significance The brittleness index could serve as a useful scale in the design of materials used for crown replacement, as well as a quantitative tool for characterizing degradation in the mechanical behavior of enamel. PMID:18436299

  13. Oblique Collision of the Leeward Antilles, Offshore Venezuela: Linking Onshore and Offshore Data from BOLIVAR

    NASA Astrophysics Data System (ADS)

    Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.

    2006-12-01

    The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between onshore micro- and mesoscopic deformational structures and offshore macro-scale structural features seen in the reflection data. The agreement of features supports our regional deformation and rotation model along the Caribbean - South America obliquely convergent plate boundary.

  14. A Model of Subduction of a Mid-Paleozoic Oceanic Ridge - Transform Fault System along the Eastern North American Margin in the Northern Appalachians

    NASA Astrophysics Data System (ADS)

    Kuiper, Y. D.

    2016-12-01

    Crustal-scale dextral northeasterly trending ductile-brittle fault systems and increased igneous activity in mid-Paleozoic eastern New England and southern Maritime Canada are interpreted in terms of a subducted oceanic spreading ridge model. In the model, the fault systems form as a result of subduction of a spreading ridge-transform fault system, similar to the way the San Andreas fault system formed. Ridge subduction results in the formation of a sub-surface slab window, mantle upwelling, and increased associated magmatism in the overlying plate. The ridge-transform system existed in the Rheic Ocean, and was subducted below parts of Ganderia, Avalonia and Meguma in Maine, New Brunswick and Nova Scotia. The subduction zone jumped southeastward as a result of accretion of Avalonia. Where the ridge-transform system was subducted, plate motions changed from predominantly convergent between the northern Rheic Ocean and Laurentian plates to predominantly dextral between the southern Rheic Ocean and Laurentian plates. In the model, dextral fault systems include the Norumbega fault system between southwestern New Brunswick and southern Maine and New Hampshire, and the Kennebecasis, Belle Isle and Caledonia faults in southeastern New Brunswick. A latest Silurian transition from arc- to within-plate- magmatism in the Coastal Volcanic Belt in eastern Maine may suggest the onset of ridge subduction. Examples of increased latest Silurian to Devonian within-plate magmatism include the Cranberry Island volcanic series and coastal Maine magmatic province in Maine, and the South Mountain Batholith in Nova Scotia. Widespread Devonian to earliest Carboniferous granitic to intermediate plutons, beyond the Coastal Volcanic Belt towards southern Maine and central New Hampshire, may outline the shape of a subsurface slab window. The possibility of ridge-transform subduction in Newfoundland and in the southern Appalachians will be discussed. The northern Appalachians may be a unique location along the Eastern North American Margin and possibly on Earth, in that it may preserve the only known evidence for an ancient Mendocino-style triple junction and San Andreas-type fault.

  15. The Relation Between Plate Spreading Rate, Crustal Thickness and Axial Relief at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Buck, W. R.

    2017-12-01

    Variations in axial valley relief and in faulting at plate spreading centers are clearly related to magma supply and axial lithospheric structure. Previous models that consider the interaction of magmatic dikes with lithospheric stretching do not successfully reproduce both of these trends. We present the first model that reproduces these trends by making simple assumptions about the partitioning of magma between dikes, gabbros and extrusives. A key concept is that dikes open not only in the brittle axial lithosphere but also into the underlying ductile crust, where they cool to form gabbro. The amount of gabbro so intruded depends on magma pressure that is related to axial relief. The deeper the valley the less magma goes into gabbros and the more magma is available for dikes to accommodate plate separation. We define the fraction of plate separation rate accommodated by dikes as M. If M<1 then part of the plate separation occurs as fault offset which deepens the axial valley. This axial deepening decreases the amount of magma go into gabbros and this increases M. If the valley reaches the depth where M =1 then the faulting ceases and the valley stays at that depth. However, even if M<1, the valley depth cannot increase without limit. Through a distributed pattern of tectonic faults, the valley depth reaches a maximum possible depth that depends on the thickness of the axial lithosphere. If M < 1, where the axial depth reaches this tectonic limit, then moderate to large offset faults can develop. If M = 1 before the depth reaches the tectonic limit, normal faults only develop in response to oscillations in magma supply and fault offset is proportional to the amount of extruded lava. We have derived analytic expressions relates axial lithospheric thickness (HL) and crustal thickness (Hc) to axial valley depth. We then used a 2D model numerical model with a fixed axial lithospheric structure to show that the analytic model predictions are reasonable. Finally, we describe themo-mechanical models that allow us to relate plate spreading rate and crustal thickness and to axial valley depth.

  16. Eocene to post-Miocene kinematic evolution of the central Cyclades (Greece)

    NASA Astrophysics Data System (ADS)

    Draganits, E.; Huet, B.; Grasemann, B.; Schneider, D.; Ertl, A.

    2012-04-01

    Due to the extraordinary geotectonic location of the Aegean above an active subduction zone and an exceptional high seismicity, this area and especially the Cyclades have been in the focus of structural investigations for several decades. The present deformation is the result of ongoing plate tectonic movements in this area since at least the Miocene. The ductile structures of the Miocene extension and related metamorphic core type deformation are quite well studied and understood. Equally well investigated are the active tectonic deformation and associated brittle structures through several decades of seismic records. However, due to the difficulties of dating brittle faults, the kinematic evolution from the early to middle Miocene ductile structures, to later Miocene brittle-ductile and brittle faults is much less understood. For these reasons detailed structural fieldwork, combined with Ar-Ar geochronology and P-T studies, have been carried out on the uninhabited island of Despotiko, SW of Antiparos, which is situated virtually in the center of the Cycladic islands. This island has been selected because the existence of metamorphic rocks penetrated by Messinian rhyolite pipes and Pleistocene eolianites provide exceptional age constraints for Eocene to post-Miocene deformation structures. Despotiko is part of lower structural levels of the polymetamorphic Blueschist Unit of the Attic-Cycladic Metamorphic Belt and correlated lithologically with the Parikia gneisses and Marathi unit of Paros. Foliation is shallowly dipping towards the SSW. The main lithologies of the island, from the footwall to the hanging wall, consist of dark to pale grey, strongly foliated, mylonitic granite gneiss with abundant pegmatite dikes. The gneiss is overlain by prominent white, strongly foliated, mylonitic gneiss. Above are medium-grained, white calcite marble followed by greenish-white, mylonitic gneiss and an alternation of mica schist, greenschist, thin marble layers and some small serpentinite lenses. The structurally highest levels, in the south and southwest of the island, comprise several tens of meters of dolomite marble. This metamorphic succession has been cut by six Messinian rhyolitic volcanic vents and all crystalline rocks have been covered by late Pleistocene eolianites. The kinematic evolution of the investigation area can be divided based on the deformation style and age. (1) The ductile deformation results in NE-SW trending stretching lineation and shear senses both top-to NE and top-to SW. Ar-Ar white mica cooling ages indicate an early Miocene age for this ductile deformation. (2) The brittle/ductile structures, which gradually advance from the previous ductile deformation, start with small but pervasive flanking folds, followed by larger shear bands and finally faults with tourmaline slickenlines. The shear sense is consistently top-to SW with middle to late Miocene age constrained by Ar-Ar white mica cooling ages and zircon fission-track data from Paros. (3a) Large, subvertical, sinistral strike-slip faults cross-cut the metamorphic rocks and show up to hundreds of meters displacement. Late Miocene age is constrained by apatite fission-track data from Paros and the observation that these faults are sealed by Messinian rhyolites. (3b) The Messinian volcanic rocks are almost exclusively deformed by E-W striking conjugate brittle normal faults, which started already during the formation of the volcanic rocks. No unequivocal tectonic deformation structures have been observed in the Pleistocene eolianites.

  17. EFFECTS OF TURBULENCE AND ELECTROHYDRODYAMICS ON THE PERFORMANCE OF ELECTROSTATIC PRECIPITATORS

    EPA Science Inventory

    Numerical simulations of the turbulent diffusion equation coupled with the electrohydrodynamics (EHD) are carried out for the plate-plate and wire-plate ESPs. The local particle concentration profiles and fractional collection efficiencies have been evaluated as a function of thr...

  18. Free-Standing Zone Plate Optimized for He II 30.4 nm Solar Irradiance Measurements Having High Accuracy and Stability in Space

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; McMullin, D. R.; Vest, R.; Sakdinawat, A.; Chang, C.; Jones, A. R.; Bremer, J.

    2015-12-01

    A zone plate was designed to record the He II 30.4 nm solar irradiance, was fabricated using electron beam lithography, and was absolutely calibrated using the NIST SURF synchrotron. The zone plate has an open support grid identical to those used to successfully launch transmission gratings in previous solar radiometers and is otherwise free-standing with no support membrane that would absorb EUV radiation. The measured efficiency of 3.0 ± 0.1% at 30.4 nm is consistent with detailed modeling of the efficiency and accounting for the geometrical transmittance of the support grid. The binary nature of the zone plate, consisting of opaque gold bars and open spaces with no support membrane, results in excellent long-term stability in space against contamination, radiation damage, and other effects that could alter the efficiency and instrument throughput. The zone plate's focusing property enables the rejection of out-of-band radiation by small apertures and high signal to background values that are superior to previous radiometers. The 4 mm outer diameter of the zone plate and the 25 mm focal length for 30.4 nm radiation enable a compact instrument that is attractive for small CubeSats and other space flight missions where resources are extremely limited.

  19. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelson, Lynne M.; Munoz, Krystal; Karas, Joseph

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of 1 dollar / W DC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipmentmore » choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200 thermal cycles, with results similar to silver paste control cells. 100 cells have been processed through Technic’s novel demo plating tool built and installed during budget period 2. This plating tool performed consistently from cell to cell, providing gentle handling for the solar cells. An agreement has been signed with a cell manufacturer to process their cells through our plating chemistry and equipment. Their main focus for plated contacts is to reduce the direct materials cost by utilizing nickel, copper, and tin in place of silver paste. Based on current market conditions and cost model calculations, the overall savings offered by plated contacts is only 3.5% dollar/W versus silver paste contacts; however, the direct materials savings depend on the silver market. If silver prices increase, plated contacts may find a wider adoption in the solar industry in order to keep the direct materials costs down for front grid contacts.« less

  20. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  1. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin

    2017-11-01

    We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its dehydration than in the central region. Fluid pressure in the overlying plate is high, but Qs/Qp indicates that it is not uniformly fluid-rich. This heterogeneity is consistent with the rough topography of the plateau, including seamounts which entrain fluid-rich sediments. Deep slow-slip events in the southern part of the margin occur where the Moho of the overlying plate meets the plate interface, as typically seen in other deep slow-slip events worldwide. But in the central and northern parts of the margin, the locations of shallow slow-slip events appear to be controlled by a shallow brittle-viscous transition within the fluid-rich upper plate. There is also evidence that a major fault zone in the overlying plate might bleed off some of the high fluid pressure promoting slow-slip events.

  2. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    NASA Astrophysics Data System (ADS)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.

  3. Plate refractive camera model and its applications

    NASA Astrophysics Data System (ADS)

    Huang, Longxiang; Zhao, Xu; Cai, Shen; Liu, Yuncai

    2017-03-01

    In real applications, a pinhole camera capturing objects through a planar parallel transparent plate is frequently employed. Due to the refractive effects of the plate, such an imaging system does not comply with the conventional pinhole camera model. Although the system is ubiquitous, it has not been thoroughly studied. This paper aims at presenting a simple virtual camera model, called a plate refractive camera model, which has a form similar to a pinhole camera model and can efficiently model refractions through a plate. The key idea is to employ a pixel-wise viewpoint concept to encode the refraction effects into a pixel-wise pinhole camera model. The proposed camera model realizes an efficient forward projection computation method and has some advantages in applications. First, the model can help to compute the caustic surface to represent the changes of the camera viewpoints. Second, the model has strengths in analyzing and rectifying the image caustic distortion caused by the plate refraction effects. Third, the model can be used to calibrate the camera's intrinsic parameters without removing the plate. Last but not least, the model contributes to putting forward the plate refractive triangulation methods in order to solve the plate refractive triangulation problem easily in multiviews. We verify our theory in both synthetic and real experiments.

  4. Zirconia toughened mica glass ceramics for dental restorations.

    PubMed

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Brittle Splitting Nails (Onychoschizia)

    MedlinePlus

    ... be divided into dry and brittle (too little moisture) and soft and brittle (often too much moisture). The usual cause is repeated wetting and drying ... that the nails may be getting too much moisture or being damaged by chemicals such as detergents, ...

  6. Testing Bonds Between Brittle And Ductile Films

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Ohsaki, Hiroyuki

    1989-01-01

    Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.

  7. Plate-shaped Yb:LuPO4 crystal for efficient CW and passively Q-switched microchip lasers

    NASA Astrophysics Data System (ADS)

    Liu, Junhai; Wang, Lisha; Han, Wenjuan; Xu, Honghao; Zhong, Degao; Teng, Bing

    2016-10-01

    It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.

  8. Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.

    PubMed

    Kim, Jong-Woong; Jung, Seung-Boo

    2012-04-01

    The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.

  9. Studies on crosslinked hydroxyapatite-polyethylene composite as a bone-analogue material

    NASA Astrophysics Data System (ADS)

    Smolko, E.; Romero, G.

    2007-08-01

    The paper examines the use of different types of polymeric matrix composites in hard-tissue replacement applications. The composite samples were prepared with hydroxyapatite (HA) powder and polyethylenes of different densities. The raw material was first compounded in the extruder and the resulting composite pre-forms were compression molded into desired plates and irradiated with different doses. Modulus of elasticity in tension, tensile strength, tensile fracture strain, elongation at break and gel content were obtained for all composites. Ceramic filler distribution was investigated under scanning electron microscopy (SEM). With HA incorporated in the samples an increase in the values of Young's Modulus, (stiffness) was observed, while elongation at break decreased with the amount of filler, showing increase of brittleness. Tensile strengths at yield and at break decreased with the filler content for LD and MDPE and stayed constant for HDPE.

  10. An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang

    2018-06-01

    There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of fracturing layer and fracturing construction schemes and the improvement of oil recovery.

  11. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  12. Heat transfer enhancement of flow insulator by combined stainless steel fibrous and wire net porous materials

    NASA Astrophysics Data System (ADS)

    Khantikomol, P.; Polsongkram, M.; Apisitpinyo, W.; Poowadin, T.

    2018-01-01

    The present research article aims to propose the heat transfer enhancement of the flow insulator using combined fibrous and wire net stainless steel porous material. The stainless fibrous plate with porosity of 0.9292 was combined to the stainless steel wire net having pore per inch (PPI) of 16 and total thickness of 30 mm. Two models of the arranging porous plates were prepared, which were model BA and model AB. Each porous plate segment had the same thickness. The examined porous plate model have porosities of 0.8452. The porous plate was placed normal to the flow direction. The air was used as working fluid heated by 5 kW electric heater, which was controlled by the automatic temperature control. Type-K thermocouples were employed to measure the air temperatures. The temperature at front of the porous plate was varied to be 350, 450, and 550°C. The air flow rate was varied in the range of 4-12 m3/hr. The experimental result showed that the temperature drop across the porous plate and the thermal efficiency increase with the inlet temperature. The air velocity slightly affects the temperature profile inside the test section at the upstream side of the porous plate but greatly affects temperature inside the porous plate. In consideration of the arranging porous plate, placing of the stainless steel wire net at the upstream side and placing the stainless steel fibrous at downstream side (model BA) results in the highest temperature drop and the highest thermal efficiency. At Re 733 and inlet temperature 550°C for model BA at 30 mm thickness, the thermal efficiency was 50%. It was shown that the combined stainless steel fibrous and stainless steel wire net porous material could be a good flow insulator.

  13. Absolute and angular efficiencies of a microchannel-plate position-sensitive detector

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1984-01-01

    This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.

  14. From brittle to ductile fracture in disordered materials.

    PubMed

    Picallo, Clara B; López, Juan M; Zapperi, Stefano; Alava, Mikko J

    2010-10-08

    We introduce a lattice model able to describe damage and yielding in heterogeneous materials ranging from brittle to ductile ones. Ductile fracture surfaces, obtained when the system breaks once the strain is completely localized, are shown to correspond to minimum energy surfaces. The similarity of the resulting fracture paths to the limits of brittle fracture or minimum energy surfaces is quantified. The model exhibits a smooth transition from brittleness to ductility. The dynamics of yielding exhibits avalanches with a power-law distribution.

  15. The Brittle-Ductile Transition in Crystal and Bubble-bearing Magmas

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Pistone, M.; Cordonnier, B.; Tripoli, B.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.

    2011-12-01

    The strain response of magma is critically dependent upon its viscosity, the magnitude of the applied stress and the experimental time-scale. The brittle-ductile transition in pure silicate melts is expected for an applied stress approaching 108±0.5 Pa (Dingwell, 1997). However, magmas are mostly mixture of crystal and bubble-bearing silicate melts. To date, there are no data to constrain the ductile-brittle transition for three-phase magmas. Thus, we conducted consistent torsion experiments at high temperature (673-973 K) and high pressure (200 MPa), in the strain rate range 1*10-5-4*10-3 s-1, using a HT-HP internally-heated Paterson-type rock deformation apparatus. The samples are composed of hydrous haplogranitic glass, quartz crystals (24-65 vol%) and CO2-rich gas-pressurized bubbles (9-12 vol%). The applied strain rate was increased until brittle failure occurred; micro-fracturing and healing processes commonly occurred before sample macroscopic fracturing. The experimental results highlight a clear relationship between the effective viscosity of the three-phase magmas, strain rate, temperature and the onset of brittle-ductile behavior. Crystal- and bubble-free melts at high viscosity (1011-1011.6 Pa*s at 673 K) show brittle behavior in the strain rate range between 1*10-4 and 5*10-4 s-1. For comparable viscosities crystal and bubble-bearing magmas show a transition to brittle behavior at lower strain rates. Synchrotron-based 3D imaging of fractured samples, show the presence of fractures with an antithetic trend with respect to shear strain directions. The law found in this study expresses the transition from ductile to brittle behavior for real magmas and could significantly improve our understanding of the control of brittle processes on extrusion of high-viscosity magmas and degassing at silicic volcanoes.

  16. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  17. Development of an economic solar heating system with cost efficient flat plate collectors

    NASA Astrophysics Data System (ADS)

    Eder-Milchgeisser, W.; Burkart, R.

    1980-10-01

    Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.

  18. Enhancing performance and uniformity of CH3NH3PbI3-xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Jin, Zhiwen; Li, Hui; Wang, Jizheng

    2016-02-01

    To fabricate high-performance metal-halide perovskite solar cells, a thermal annealing process is indispensable in preparing high quality perovskite film. And usually such annealing is performed on hot plate. However hot-plate annealing could cause problems such as inhomogeneous heating (induced by non-tight contact between the sample and the plate), it is also not fit for large scale manufactory. In this paper, we conduct the annealing process in air-heated oven under various humidity environments, and compared the resulted films (CH3NH3PbI3-xClx) and devices (Al/PC61BM/CH3NH3PbI3-xClx/PEDOT:PSS/ITO/glass) with that obtained via hot-plate annealing. It is found that the air-heated-oven annealing is superior to the hot-plate annealing: the annealing time is shorter, the films are more uniform, and the devices exhibit higher power conversion efficiency and better uniformity. The highest efficiencies achieved for the oven and hot-plate annealing processes are 14.9% and 13.5%, and the corresponding standard deviations are 0.5% and 0.8%, respectively. Our work here indicates that air-heated-oven annealing could be a more reliable and more efficient way for both lab research and large-scale production.

  19. Machining approach of freeform optics on infrared materials via ultra-precision turning.

    PubMed

    Li, Zexiao; Fang, Fengzhou; Chen, Jinjin; Zhang, Xiaodong

    2017-02-06

    Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.

  20. Deconvoluting complex structural histories archived in brittle fault zones

    NASA Astrophysics Data System (ADS)

    Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.

    2016-11-01

    Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.

  1. Fabrication and characterization of high-efficiency double-sided blazed x-ray optics.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2016-01-15

    The focusing efficiency of conventional diffractive x-ray lenses is fundamentally limited due to their symmetric binary structures and the corresponding symmetry of their focusing and defocusing diffraction orders. Fresnel zone plates with asymmetric structure profiles can break this limitation; yet existing implementations compromise either on resolution, ease of use, or stability. We present a new way for the fabrication of such blazed lenses by patterning two complementary binary Fresnel zone plates on the front and back sides of the same membrane chip to provide a compact, inherently stable, single-chip device. The presented blazed double-sided zone plates with 200 nm smallest half-pitch provide up to 54.7% focusing efficiency at 6.2 keV, which is clearly beyond the value obtainable by their binary counterparts.

  2. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    PubMed

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (p<0.05). Results illustrated that the brittle star extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (p<0.05). These finding revealed the anti-angiogenic effects of brittle star methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  3. Did the Malaysian Main Range record a weak hot Mega Shear?

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel

    2015-04-01

    The Main Range of Peninsular Malaysia is a batholith that extends over more than 500km from Malacca in the South to the Thailand border in the North. It results from the subduction/accretion history of the western margin of Sunda Plate by Late Triassic times. We present a structural analysis based on geomorphology, field observations and geochronological data. While most of the basement fabrics are characterized by N-S structures such as granitic plutons, sutures, and folds, a prominent oblique deformation occurred by the End of the Mesozoics synchronous with a widespread thermal anomaly (eg Tioman, Stong, Gunung Jerai, Khanom, Krabi plutons). Morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), allow us to highlight 2 major groups of penetrative faults in the Central Range Batholith: early NW-SE (5km spaced faults some of which are identified as thrust faults) cross-cut and offset by NNE-SSW dextral normal faults. The regularly spaced NW-SE faults bend toward the flanks of the Batholith and tend to parallel both the Bentong Raub Suture Zone to the East and the strike slip Bok Bak Fault to the West, thus giving the overall fault network the aspect of a large C/S band. Hence, a ductile/brittle behavior can be proposed for the sigmoid faults in the core of the Batholith, whereas the NNE faults are clearly brittle, more linear and are found on the smaller outlying plutons. Radiogenic crystallization ages are homogenous at 190±20Ma (U-Pb Zircon, Tc>1000°C and K-Ar Muscovite, Tc350°C) whereas Zircon fission tracks(Tc=250°C) show specific spatial zoning of the data distribution with ages at 100±10Ma for the outlying plutons and ages at 70±10Ma for the Main Range. We propose a structural mechanism according to which the Main Range would be the ductile core of a Mega-Shear Zone exhumed via transpressive tectonics by the end of Mesozoic Times. A first stage between 100 and 70Ma (Upper Cretaceous) of dextral transpression affected Peninsular Malaysia at a lithospheric scale, accommodated by N-S faults (C planes) such as the Bentong Raub Suture Zone, the Bukit Tinggi fault and the Kledang Fault. This lead to the formation of NW-SE fractures in already exhumed peripheral plutons (< 250°C) and deep level (> 250°C) sigmoid faults (S planes) in the Main range. Later a brittle stage of exhumation occurred in the same system, after 70Ma, leading to NNE-SSW dextral Riedel type faults reactivating pluton flanks, and offsetting older faults as well as quartz dykes. The occurrence of such a structure could be linked to the subduction of the Wharton Ridge at the western margin of Sunda Plate. As a result, a collapse of this hot and thin crust occurred accommodated by LANF's reactivating the basement fabrics including intrusive edges and folds hinges.

  4. Ion-plating of solar cell arrays encapsulation task: LSA project 32

    NASA Technical Reports Server (NTRS)

    Volkers, J. C.

    1983-01-01

    An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.

  5. Design and development of a chopping and deflecting system for the high current injector at IUAC

    NASA Astrophysics Data System (ADS)

    Kedia, Sanjay Kumar; Mehta, R.

    2018-05-01

    The Low Energy Beam Transport (LEBT) section of the High Current Injector (HCI) incorporates a Chopping cum Deflecting System (CDS). The CDS comprises of a deflecting system and a pair of slits that will remove dark current and produce time bunched beam of 60 ns at different repetition rates of 4, 2, 1, 0.5, 0.25 and 0.125 MHz. The distinguishing feature of the design is the use of a multi-plate deflecting structure with low capacitance to optimize the electric field, which in turn results in higher efficiency in terms of achievable ion current. To maximize the effective electric field and its uniformity, the gap between the deflecting plates has been varied and a semi-circular contour has been incorporated on the deflecting plates. Due to this the electric field variation is less than ±0.5% within the plate length. The length of deflecting plates was chosen to maximize the transmission efficiency. Since the velocity of the charged particles in the LEBT section is constant, therefore the separation between two successive sets of deflecting plates has been kept constant to match the ions transient time within the gap which is nearly 32 ns. A square pulse has been chosen, instead of a sinusoidal one, to increase the transmission efficiency and to decrease the tailing effect. The loaded capacitance of the structure was kept <10 pF to achieve fast rise/fall time of the applied voltage signal. A Python code has been developed to verify the various design parameters. The simulation also shows that one can get an efficient deflection of undesired particles resulting in >90% transmission efficiency with in the bunch length. Various simulation codes like Solid Works, TRACE 3D, CST MWS and homebrew Python codes were used to validate the design.

  6. On the role of tip curvature on flapping plates.

    PubMed

    Martin, Nathan; Gharib, Morteza

    2018-01-09

    During the flapping motion of a fish's tail, the caudal fin exhibits antero-posterior bending and dorso-ventral bending, the latter of which is referred to as chord-wise bending herein. The impact of chord-wise tip curvature on the hydrodynamic forces for flapping plates is investigated to explore potential mechanisms to improve the maneuverability or the performance of autonomous underwater vehicles. First, actuated chord-wise tip curvature is explored. Comparison of rigid curved geometries to a rigid flat plate as a baseline suggests that an increased curvature decreases the generated forces. An actuated plate with a dynamic tip curvature is created to illustrate a modulation of this decrease in forces. Second, the impact of curvature is isolated using curved plates with an identical planform area. Comparison of rigid curved geometries as a baseline corroborates the result that an increased curvature decreases the generated forces, with the exception that presenting a concave geometry into the flow increases the thrust and the efficiency. A passively-actuated plate is designed to capitalize on this effect by presenting a concave geometry into the flow throughout the cycle. The dynamically and passively actuated plates show potential to improve the maneuverability and the efficiency of autonomous underwater vehicles, respectively.

  7. History and Evolution of Precambrian plate tectonics

    NASA Astrophysics Data System (ADS)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction continues but the plates are weakened enough to allow buckling and also lithospheric delamination and drip-offs. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by pulling at and breaking the plate. References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370.

  8. The role of major rift faults in the evolution of deformation bands in the Rio do Peixe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Hilario Bezerra, Francisco; Araujo, Renata; Maciel, Ingrid; Cezar Nogueira, Francisco; Balsamo, Fabrizio; Storti, Fabrizio; Souza, Jorge Andre; Carvalho, Bruno

    2017-04-01

    Many studies have investigated on the evolution and properties of deformation bands, but their occurrence and relationships with basin-boundary faults remain elusive when the latter form by brittle reactivation of structural inheritance in crystalline basements. The main objective of our study was to systematically record the location, kinematics, geometry, and density of deformation bands in the early Cretaceous Rio do Peixe basin, NE Brazil, and analyze their relationship with major syn-rift fault zones. Reactivation in early Cretaceous times of continental-scale ductile shear zones led to the development of rift basins in NE Brazil. These shear zones form a network of NE- and E-W-trending structures hundreds of kilometers long and 3-10 km wide. They were active in the Brasiliano orogeny at 540-740 Ma. Brittle reactivation of these structures occurred in Neocomian times ( 140-120 Ma) prior the breakup between the South American and African plates in the late Cretaceous. The Rio do Peixe basin formed at the intersection between the NE-SW-striking Portalegre shear zone and the E-W-striking Patos shear zone. The brittle fault systems developed by the shear zone reactivation are the Portalegre Fault and the Malta Fault, respectively. In this research we used field structural investigations and drone imagery with centimetric resolution. Our results indicate that deformation bands occur in poorly sorted, medium to coarse grain size sandstones and localize in 3-4 km wide belts in the hanging wall of the two main syn-rifts fault systems. Deformation bands formed when sandstones were not completely lithified. They strike NE along the Portalegre Fault and E-W along the Malta Fault and have slip lineations with rake values ranging from 40 to 90. The kinematics recorded in deformation bands is consistent with that characterizing major rift fault systems, i.e. major extension with a strike-slip component. Since deformations bands are typical sub-seismic features, our findings can have implications for the prediction of deformation band occurrence in sedimentary basins and their geometric and kinematic relations with major basin-boundary fault systems.

  9. Modeling of slow crack propagation in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean

    2015-04-01

    Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the model. We also infer the statistical properties of the organization of the seismicity that shows strong space-time clustering. We conclude that aseismic processes might drive seismicity in the brittle-creep regime.

  10. Strike-slip brittle shear zone from coastal Deccan in and around Mumbai, India: Evidence for N-S extension

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Gourab; Ayan Misra, Achyuta; Bose, Narayan; Mukherjee, Soumyajit

    2013-04-01

    An E-W extension separated India from the Seychelles micro-continent at ~ 62 Ma. This post-dated the Deccan volcanic eruptions. However, the structures attributed to this extension lack geometrical quantification, especially in the western Indian coast. The Narmada-Tapi region, ~ 400 Km north of Mumbai, experienced a ~ N-S extension prior to and/or concurrent with the volcanism. Normal faults dip towards W. Sub-horizontal lava flows, slickensides, N-S shear zones etc. have been reported from the western part of the Deccan Large Igneous Province (DLIP). This work, for the first time, identifies and investigates a ~ 20°N strike-slip brittle shear zone, traced for ~ 100 Km along the west coast of India from Mumbai to Murud by fieldworks. The W-block moved north through a dextral-slip. Deformation is more enhanced in the south (near Murud). Field observations reveal Y-planes (~ N20°E; abundant), Riedels (~ 0-N30°E; abundant), anti-Riedels (~ N30-50°W; less abundant), asymmetric elevations (~ N15°E; locally abundant), extension and en-echelon fractures (2 sets: ~N-S and ~E-W) with a single miniature pull-apart basin (~ N-S extension). The E-W fractures reactivated locally and around Murud slipped/faulted ~ N-S dykes. Average directions of paleostress tensors were computed for the regime yielding σ1 (trend = 99°; plunge = 0°), σ2 (trend = 196°; plunge = 90°) and σ3 (trend = 10°; plunge = 0°). Associated strain results convincingly display a dominant N-S extension. It was not possible to establish which set of extensions (i.e. between N-S and E-W) occurred earlier. Alongside E-W extension, structurally weak shear zones might have channelized late-stage intrusions of ~ N-S dykes. The DLIP was not subject to any post-rifting deformations regionally, except isostatic adjustments. Hence, based on available data, we postulate that these two extensions were coevally operating in the late phases of the Deccan eruptions. As the Indian plate drifted NE, the strike-slip brittle shear zone might have been a structural adjustment in response to the E-W extension.

  11. Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, central Turkey

    NASA Astrophysics Data System (ADS)

    Lefebvre, Côme; Barnhoorn, Auke; van Hinsbergen, Douwe J. J.; Kaymakci, Nuretdin; Vissers, Reinoud L. M.

    2011-08-01

    In the Central Anatolian Crystalline Complex (CACC), 100 km scale metamorphic domains were exhumed in a context of north-south plate convergence during late Cretaceous to Cenozoic times. The timing, kinematics and mechanisms of exhumation have been the focus of previous studies in the southern Niğde Massif. In this study, we investigate the unexplored northern area regarding the tectonic features preserved on the edges of the Kırşehir Massif, based on detailed field-mapping in the Kaman area where high-grade metasediments, non-metamorphic ophiolites and monzonitic plutons are locally exposed together. Close to the contact with the ophiolites, west-dipping foliated marble-rich rocks display mylonites and discrete protomylonites with normal shear senses indicating a general top-to-the W-NW direction. Both of these structures have been brittlely overprinted into cataclastic corridors parallel to the main foliation. The mylonite series and superimposed brittle structures together define the Kaman fault zone. The study of the evolution of calcite deformation fabrics along an EW section supported by Electron Back Scattered Diffraction measurements (EBSD) on representative fabrics indicates that the Kaman fault zone represents an extensional detachment. In Ömerhacılı, in the vicinity of the Baranadağ quartz-monzonite, the metamorphic sequence shows static annealing of the calcite mylonitic fabrics. This evidence suggests that intrusion took place at shallow depth (˜10 km) into an already exhuming metamorphic sequence. As a consequence for the Kaman area, buried metasediments have been rapidly exhumed between 84 and 74 Ma (˜1 km/Ma) where exhumation along a detachment zone, displaying a top-to-the W-NW shear motion, took place in the mid to upper crust prior to magmatic intrusion in the late Campanian. As the intrusion cut through the detachment fault, the main shearing deformation ceased. Brittle tectonics coupled with erosion likely took over during the final unroofing stages at a slower rate (<0.2 km/Ma), until the pertinent rocks reached the Earth's surface in the late Paleocene.

  12. The effect of alloying elements and microstructure on the strength and fracture resistance of pearlitic steel

    NASA Astrophysics Data System (ADS)

    Nakase, K.; Bernstein, I. M.

    1988-11-01

    The processes of ductile and brittle fracture in fully pearlitic steel and their relation to both the scale of the microstructure and the presence of substitutional alloy elements have been investigated at room temperature using smooth tensile and over a range of temperatures using V-notched Charpy impact specimens. The results show that the early stages of cracking, revealed in both types of specimen, are largely the result of shear cracking of the pearlite lamellae. These cracks grow and can reach a size when they impinge upon the prior austenite boundary; afterward the character of fracture can be either microvoid coalescence or cleavage, depending on test conditions and metallurgical variables. Further, the carbide plates of the pearlite lamellae can act as barriers to the movement of dislocations as is the case normally with grain boundaries. For pearlite an optimum spacing of approximately 0.2 μm resulting from a balance between carbide plate thickness and interlamellar spacing was found to enhance toughness, although such changes are much smaller than corresponding changes due to varying alloy elements. Specific alloy elements used herein strengthened the lamellar ferrite in pearlite, inhibiting the movement of dislocations while also usually decreasing the lamellar cementite plate thickness for the same spacing. This dual behavior results in enhanced resistance to the initiation and propagation of microcracks leading to an improvement in strength, ductility, and toughness. The most effective alloy elements for the composition ranges studied in fully pearlitic steels are Si and Ni for strength improvement, and Ni and Mn for toughness.

  13. Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: Implications for Nubia-Somalia kinematics

    NASA Astrophysics Data System (ADS)

    Erbello, Asfaw; Corti, Giacomo; Agostini, Andrea; Sani, Federico; Kidane, Tesfaye; Buccianti, Antonella

    2016-12-01

    In this contribution, analogue modeling is used to provide new insights into the Nubia-Somalia kinematics responsible for development and evolution of the Main Ethiopian Rift (MER), at the northern termination of the East African Rift system. In particular, we performed new crustal-scale, brittle models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The models reproduced the overall geometry of the ∼600 km-long MER with its along-strike variation in orientation to test different hypothesis proposed to explain rift evolution. Analysis of model results in terms of statistics of fault length and orientation, as well as deformation architecture, and its comparison with the MER suggest that models of two-phase rifting (with a first phase of NW-SE extension followed by E-W rifting) or constant NW-SE extension, as well as models of constant ENE-WSW rifting are not able to reproduce the fault architecture observed in nature. Model results suggest instead that the rift has likely developed under a constant, post-11 Ma extension oriented roughly ESE-WNW (N97.5°E), consistent with recent plate kinematics models.

  14. Tectonic Uplift of the Danba Area in the Eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chang, C. P.; Ho, H. P.; Horng, C. S.; Hsu, Y. C.; Tan, X. B.

    2017-12-01

    The Danba anticline in the eastern Tibetan Plateau is located between the Longmenshan orogen to the east and the Xianshuihe sinistral fault zone to the west. This anticline has been recognized as an area with extreme exhumation by previous studies. The Tibetan plateau was built by the convergence between Indo-Australian plate and Eurasian plate since early Cenozoic. The eastward lower crustal flow under the plateau obstructed by the Yangtze craton soon after this convergence generated a very complex structural situation in the southeastern side of the Tibetan plateau. In this study, in order to understand the processes and mechanisms of the structural complexity of the Danba area, we apply two methods: stress analysis and magnetic measurement. By measuring the brittle deformation recorded in the strata, we carry out a series of stress analysis to demonstrate the stress field of this area. In addition, due to comprehend the magnetic characteristics of low-grade metamorphic rocks and volcanic rocks in this area, we process the rock magnetic measurement of hysteresis loop and X-ray diffraction analysis. The occurrence of pyrrhotite can be taken as an important isograd in low-grade metamorphic rocks, which is helpful for stratigraphic and structural studies. Based on our results, we try to explain the mechanism of this rapid uplift, which involves material, structural, and kinematic interaction.

  15. Literature Survey, biology in the Tongue of the Ocean and Exuma Sound

    DTIC Science & Technology

    1962-06-01

    ia physalis Portugese-man-of-war Bolst (personal communication) Stoichaetis helianthas Sea snenome Nt.•well et al (1959) Zoanthus sociatus Sea anenome...Ophiorkyxa flaccida Brittle star Clark (1942) Sphiostigma isacanthum Brittle star Clark (19b2) Ophiothrix angulata Brittle star COark (19b2) Ophiothrix

  16. A brittle star-like robot capable of immediately adapting to unexpected physical damage.

    PubMed

    Kano, Takeshi; Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-12-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star-a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion.

  17. Corrosion mechanism of carbon brick in the blast furnace hearth by potassium

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Zhuang-zhuang; Deng, Yong; Fan, Xiaoyue

    2017-11-01

    Alkali plays a significant role in the formation of brittle layer of carbon brick in the blast furnace hearth. The brittle layer in a commercial blast furnace hearth was investigated. Large amounts of potassium compounds were found in the brittle layer. Subsequently, the carbon bricks which reacted with potassium in the simulation of blast furnace hearth under different contents of potassium in the brick (0.25, 0.5, 1.0 and 2.0 wt.%) during various reaction times (0.5, 1, 2 and 4 h) were experimentally studied. Finally, the formation mechanism of the brittle layer in carbon brick was clarified. The investigation results show that a large number of cracks are present in the brittle layer. The average potassium content in the brittle layer is 1 wt.%. According to the experimental results, cracks in the carbon brick can be formed by the attack of potassium. The reason for the formation of the brittle layer in the carbon brick is that the liquid potassium permeates into the carbon brick through the pores and cracks, and then reacts with SiO2 and Al2O3 in CO atmosphere. The generated potassium compounds nepheline and leucite lead to the volume expansion and the damage of the carbon brick.

  18. Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance.

    PubMed

    Beismann, H; Wilhelmi, H; Baillères, H; Spatz, H C; Bogenrieder, A; Speck, T

    2000-03-01

    The twig bases within the genus Salix were investigated. Brittleness of twig bases as defined in the literature neither correlates with Young's modulus nor with growth strains, which were measured for S. alba, S. fragilis and S. x rubens. For the species S. alba, S. appendiculata, S. eleagnos, S. fragilis, S. purpurea, S. triandra, S. viminalis, and S. x rubens, fracture surfaces of broken twigs were investigated and semiquantitatively described in terms of 'relative roughness' (ratio of rough area of fracture surface over whole area of fracture surface). The relative roughness clearly corresponds with the classification into brittle and nonbrittle species given in the literature. An attempt was made to quantify brittleness with mechanical tests. The absolute values of stress and strain do not correlate with the brittleness of the twig bases as defined by the relative roughness. However, the 'index stress' (ratio of stress at yield over stress at fracture) or the 'index strain' (ratio of strain at yield over strain at fracture), correlate well with the relative roughness. The graphic analysis of index stress against index strain reveals a straight line on which the eight species are ordered according to their brittleness. Depending on growth form and habitat, brittle twig bases of willows may function ecologically as mechanical safety mechanisms and, additionally, as a propagation mechanism.

  19. A new tablet brittleness index.

    PubMed

    Gong, Xingchu; Sun, Changquan Calvin

    2015-06-01

    Brittleness is one of the important material properties that influences the success or failure of powder compaction. We have discovered that the reciprocal of diametrical elastic strain at fracture is the most suitable tablet brittleness indices (TBIs) for quantifying brittleness of pharmaceutical tablets. The new strain based TBI is supported by both theoretical considerations and a systematic statistical analysis of friability data. It is sufficiently sensitive to changes in both tablet compositions and compaction parameters. For all tested materials, it correctly shows that tablet brittleness increases with increasing tablet porosity for the same powder. In addition, TBI increases with increasing content of a brittle excipient, lactose monohydrate, in the mixtures with a plastic excipient, microcrystalline cellulose. A probability map for achieving less than 1% tablet friability at various combinations of tablet tensile strength and TBI was constructed. Data from marketed tablets validate this probability map and a TBI value of 150 is recommended as the upper limit for pharmaceutical tablets. This TBI can be calculated from the data routinely obtained during tablet diametrical breaking test, which is commonly performed for assessing tablet mechanical strength. Therefore, it is ready for adoption for quantifying tablet brittleness to guide tablet formulation development since it does not require additional experimental work. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A brittle star-like robot capable of immediately adapting to unexpected physical damage

    PubMed Central

    Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-01-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion. PMID:29308250

  1. Antimicrobial efficiency of ethanol and 2-propanol alcohols used on contaminated storage phosphor plates and impact on durability of the plate

    PubMed Central

    Wenzel, A; Kornum, F; Knudsen, MR; Lau, E Frandsen

    2013-01-01

    Objectives: To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Methods: Suspensions of C. albicans and S. oralis were prepared in concentrations of 109 and 105 organisms per ml, and Digora (Digora® Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan® Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5–60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Results: Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Conclusions: Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora. PMID:23420856

  2. Antimicrobial efficiency of ethanol and 2-propanol alcohols used on contaminated storage phosphor plates and impact on durability of the plate.

    PubMed

    Wenzel, A; Kornum, F; Knudsen, Mr; Lau, E Frandsen

    2013-01-01

    To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Suspensions of C. albicans and S. oralis were prepared in concentrations of 10(9) and 10(5) organisms per ml, and Digora (Digora(®) Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan(®) Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5-60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora.

  3. Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.

  4. Volume holographic elements in Kodak 131 plates processed with SHSG method

    NASA Astrophysics Data System (ADS)

    Collados, Manuel V.; Atencia, Jesus; Lopez, Ana M.; Quintanilla, Manuel M.

    2001-08-01

    A SHSG procedure to register volume phase holograms in Kodak 131 plates is presented. We analyze the influence on the diffraction efficiency of the developing step and the temperature of the bleaching bath of usual SHSG processes. Applying a simple 12 steps process to form phase transmission holograms developing with D-19, bleaching with R-10 at 70 degrees C and removing the sensitizing dyes that remain in the emulsion with a diluted methanol bath after the fixation step, we obtain relative efficiencies of 100 percent and effective efficiencies of 70 percent.

  5. Experimental demonstration of a semi-brittle origin for crustal strain transients

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Lavier, L. L.; Hayman, N. W.

    2015-12-01

    Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.

  6. Directionally solidified composite systems under evaluation

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.

    1974-01-01

    The directionally solidified eutectic in-situ composites being evaluated for use as turbine materials range from ductile-ductile systems, where both matrix and reinforcement are ductile, to brittle-brittle systems, where both phases are brittle. The alloys most likely to be used in gas turbine engines in the near term are the lamellar ductile-semi ductile alloys gamma prime-delta, Ni3Al-Ni3Nb and gamma/gamma prime-delta Ni,Cr,Cb,Al/Ni3Al-Ni3Nb and the fibrous ductile-brittle alloys M-MC CoTaC or NiTaC and M-M7C3(Co,Cr,Al)-(Cr,Co)7C3. The results of tests are given which indicate that gamma prime strengthened NiTaC alloys and a (Co,Cr,Al)7C3 have greater tensile strength than the strongest superalloys at temperatures up to about 600 C. The gamma prime-delta and gamma/gamma prime-delta alloys in the Ni,Al,Nb(Cr) systems have greater tensile strength than the superalloys at temperatures greater than 800 C. At low stresses fibrous carbide reinforced eutectic alloys have longer lives at high temperatures than the strongest superalloys. Lamellar delta, Ni3Nb reinforced eutectic alloys have longer lives at high temperatures than the strongest superalloys at all stresses. The experience currently being gained in designing with the brittle ceramics SiC and Si3N4 may eventually be applied to ceramic matrix eutectic in-situ composites. However, the refractory metal fiber reinforced brittle-ductile systems may find acceptance as turbine materials before the ceramic-ceramic brittle-brittle systems.

  7. Spectrally formulated user-defined element in conventional finite element environment for wave motion analysis in 2-D composite structures

    NASA Astrophysics Data System (ADS)

    Khalili, Ashkan; Jha, Ratneshwar; Samaratunga, Dulip

    2016-11-01

    Wave propagation analysis in 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first-order shear deformation theory which yields accurate results for wave motion at high frequencies. The 2-D WSFE model is highly efficient computationally and provides a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in 2-D composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Five numerical examples are presented in this article, namely undamaged plate, impacted plate, plate with ply drop, folded plate and plate with stiffener. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features.

  8. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  9. Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.

    PubMed

    Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu

    2013-11-08

    Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yu; Fan, Yu-Wei; Shu, Ting; Yuan, Cheng-wei; Zhang, Qiang

    2017-03-01

    The tunable high power microwave source (HPM's) is considered to be an important research direction. However, the corresponding mode converter has been researched little. In this paper, a high-efficiency tunable mode converter (HETMC) is investigated for high-power microwave applications. The HETMC that is consisted of coaxial inner and outer conductors, with four metal plates arranged radially, at 90° in the coaxial gap, and matching rods can transform coaxial transverse electromagnetic (TEM) mode to TE11 coaxial waveguide mode. The results show that adjusting the length of the downstream plate, and the distance between the rods installed upstream and the closest edges of the plates, can improve the conversion efficiency and bandwidth remarkably. Moreover, when the frequency ranges from 1.63 GHz to 2.12 GHz, the conversion efficiency is above 95% between 1.63 GHz and 2.12 GHz with a bandwidth of 26.1%. Besides, the unwished reflection and transmission can be eliminated effectively in the HETMC.

  11. Three Preschool Children with Osteogenesis Imperfecta--Interviews with Parents. Handicap Research Group Report No. 5.

    ERIC Educational Resources Information Center

    Brodin, Jane; Millde, Kristina

    The report describes three preschool Swedish children with osteogenesis imperfecta (brittle bones) and the psychosocial support families require from society. Introductory sections explain the condition, review international research on brittle bones, consider the life situation of children with brittle bones, and examine societal support for…

  12. Athermal brittle-to-ductile transition in amorphous solids.

    PubMed

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  13. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    NASA Astrophysics Data System (ADS)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  14. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  15. Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance

    NASA Astrophysics Data System (ADS)

    Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath

    2017-12-01

    Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.

  16. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  17. Self-ordering and complexity in epizonal mineral deposits

    USGS Publications Warehouse

    Henley, Richard W.; Berger, Byron R.

    2000-01-01

    Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.

  18. Effect of residual sericin on the structural characteristics and properties of regenerated silk films.

    PubMed

    Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul

    2016-08-01

    Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of monolithic nuclear fuels for RERTR by hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jue, J.-F.; Park, Blair; Chapple, Michael

    2008-07-15

    The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less

  20. Application of Numerical Simulation for the Analysis of the Processes of Rotary Ultrasonic Drilling

    NASA Astrophysics Data System (ADS)

    Naď, Milan; Čičmancová, Lenka; Hajdu, Štefan

    2016-12-01

    Rotary ultrasonic machining (RUM) is a hybrid process that combines diamond grinding with ultrasonic machining. It is most suitable to machine hard brittle materials such as ceramics and composites. Due to its excellent machining performance, RUM is very often applied for drilling of hard machinable materials. In the final phase of drilling, the edge deterioration of the drilled hole can occur, which results in a phenomenon called edge chipping. During hole drilling, a change in the thickness of the bottom of the drilled hole occurs. Consequently, the bottom of the hole as a plate structure is exposed to the transfer through the resonance state. This resonance state can be considered as one of the important aspects leading to edge chipping. Effects of changes in the bottom thickness and as well as the fillet radius between the wall and bottom of the borehole on the stress-strain states during RUM are analyzed.

  1. Fracture of an isotropic medium strengthened with a regular system of stringers

    NASA Astrophysics Data System (ADS)

    Mir-Salim-zadeh, M. V.

    2007-01-01

    An isotropic medium containing a system of foreign transverse rectilinear inclusions is considered. Such a medium can be interpreted as an infinite plate strengthened with a regular system of ribs (stringers) whose cross section is a very narrow rectangle. The medium is weakened by a periodic system of rectilinear cracks. The action of the stringers is re placed by unknown equivalent concentrated forces at the points of their connection with the medium. The boundary-value problem on equilibrium of the periodic system of cracks under the action of external tensile forces is reduced to a singular integral equation, from the solution of which the stress in tensity factors are found. The condition of limiting state of equilibrium of the cracks is formulated based on a criterion of brittle fracture. The stress state in the case where crack faces come into a partial contact is also considered.

  2. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing.

    PubMed

    Idrissi, Hosni; Bollinger, Caroline; Boioli, Francesca; Schryvers, Dominique; Cordier, Patrick

    2016-03-01

    The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.

  3. Silicon force sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload uponmore » the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.« less

  4. Thermal stresses, differential subsidence, and flexure at oceanic fracture zones

    NASA Technical Reports Server (NTRS)

    Wessel, Pal; Haxby, William F.

    1990-01-01

    Geosat geoid undulations over four Pacific fracture zones have been analyzed. After correcting for the isostatic thermal edge effect, the amplitudes of the residuals are shown to be proportional to the age offset. The shape of the residuals seems to broaden with increasing age. Both geoid anomalies and available ship bathymetry data suggest that slip must sometimes occur on the main fracture zone or secondary faults. Existing models for flexure at fracture zones cannot explain the observed anomalies. A combination model accounting for slip and including flexure from thermal stresses and differential subsidence is presented. This model accounts for lateral variations in flexural rigidity from brittle and ductile yielding due to both thermal and flexural stresses and explains both the amplitudes and the shape of the anomalies along each fracture zone. The best fitting models have mechanical plate thicknesses that are described by the depth to the 600-700 C isotherms.

  5. A model for the Global Quantum Efficiency for a TPB-based wavelength-shifting system used with photomultiplier tubes in liquid argon in MicroBooNE

    NASA Astrophysics Data System (ADS)

    Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.

    2018-02-01

    We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.

  6. Absolute calibration of a multichannel plate detector for low energy O, O-, and O+

    NASA Astrophysics Data System (ADS)

    Stephen, T. M.; Peko, B. L.

    2000-03-01

    Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.

  7. Shelter effect efficacy of sand fences: A comparison of systems in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Qu, Jianjun; Ling, Yuquan; Liu, Benli; Xiao, Jianhua

    2018-02-01

    The Lanzhou-Xinjiang High-speed Railway runs through an expansive wind area in the Gobi Desert and blown-sand disasters are a critical issue affecting its operation. To strengthen the blown-sand disaster shelter systems along the railway, the shelter effects of punching plate and wire mesh fences with approximately equal porosity (48%) were simulated in a wind tunnel. The experimental results showed that the wind velocity was reduced to a higher extent by the punching plate fence than by the wire mesh fence. When a single row of sand fencing was used, the wind velocity reduction coefficient (Rcz) values downwind of the punching plate fence and wire mesh fence reached 71.77% and 39.37%, respectively. When double rows of sand fencing were used, the Rcz values downwind of the punching plate and wire mesh fences were approximately 87.48% and 60.81%, respectively. For the flow field structure on the leeward side of the fencing, the deceleration zone behind the punching plate fence was more pronounced than that behind the wire mesh fence. The vortex zone was not obvious and the reverse flow disappeared for both types of fences, which indicates that the turbulent intensity was small. The sand-trapping efficiency of the wire mesh fence was close to that of punching plate fence. When a single row of sand fencing was set up, the total mass flux density decreased, on average, by 65.85% downwind of the wire mesh fence, and 75.06% downwind of the punching plate fence; when double rows of sand fencing were present, the total mass flux density decreased, on average, by 84.53% downwind of the wire mesh fence and 84.51% downwind of the punching plate fence. In addition, the wind-proof efficiency and the sand-proof efficiency of the punching plate fence and the wire mesh fence decreased with increasing wind velocities. Consequently, punching plate and wire mesh fences may effectively control the sand hazard in the expansive wind area of the Gobi Desert.

  8. Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Li, C.

    2017-12-01

    Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.

  9. Application of thematic mapper imagery to oil exploration in Austin Chalk, central Gulf Coast basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, W.M.

    1988-02-01

    One of the newest major oil plays in the Gulf Coast basin, the Austin Chalk reportedly produces in three belts: an updip belt, where production is from fractured chalk in structurally high positions along faults above 7000 ft; a shallow downdip belt, where the chalk is uniformly saturated with oil from 7000 to 9000 ft; and a deeper downdip belt saturated with gas and condensate below 9000 ft. The updip fields usually occur on the southeastern, upthrown side of the Luling, Mexia, and Charlotte fault zones. Production is from fractures that connect the relatively sparse matrix pores with more permeablemore » fracture systems. The fractures resulted from regional extensional stress during the opening of the Gulf Coast basin on the divergent margin of the North American plate during the Laramide orogeny. The fractures are more common in the more brittle chalk than in the overlying Navarro and underlying Eagle Ford shales, which are less brittle. The oil in the updip traps in the chalk may have been generated in place downdip, and migrated updip along the extension fractures into the updip traps during or after the Laramide orogeny. A fairway of previously unmapped updip faults and drag folds has been mapped using Thematic Mapper imagery and seismic, structural, and resistivity maps near the Nixon field, Burleson County, Texas. This fairway, prospective for oil from the Austin Chalk, contains wells reported to produce from the Austin Chalk which lie along lineaments and linear features on the Thematic Mapper imagery and faults in the seismic and structure maps.« less

  10. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  11. A novel combined method of osteosynthesis in treatment of tibial fractures: a comparative study on sheep with application of rod-through-plate fixator and bone plating.

    PubMed

    Tralman, G; Andrianov, V; Arend, A; Männik, P; Kibur, R T; Nõupuu, K; Uksov, D; Aunapuu, M

    2013-04-01

    The study compares the efficiency of a new bone fixator combining periostal and intramedullary osteosynthesis to bone plating in treatment of tibial fractures in sheep. Experimental osteotomies were performed in the middle third of the left tibia. Animals were divided into two groups: in one group (four animals) combined osteosynthesis (rod-through-plate fixator, RTP fixator) was applied, and in the other group (three animals) bone plating was used. The experiments lasted for 10 weeks during which fracture union was followed by radiography, and the healing process was studied by blood serum markers reflecting bone turnover and by histological and immunohistochemical investigations. In the RTP fixator group, animals started to load body weight on the operated limbs the next day after the surgery, while in the bone plating group, this happened only on the seventh day. In the RTP fixator group, consolidation of fractures was also faster, as demonstrated by radiographical, histological, and immunohistochemical investigations and in part by blood serum markers for bone formation. It can be concluded that application of RTP fixation is more efficient than plate fixation in the treatment of experimental osteotomies of long bones in sheep. © 2012 Blackwell Verlag GmbH.

  12. How to Simulate the Interplate Domain in Thermo-mechanical Experiments of Subduction ? Critical Effects of Resolution and Rheology, and Consequences on Wet Mantle Melting

    NASA Astrophysics Data System (ADS)

    Arcay, D.

    2017-12-01

    Oceanic plate subduction implies tight interactions between converging lithospheres and surrounding mantle. Plate-mantle couplings can be modeled using thermo-chemical codes of mantle convection. But how to model correctly with a continuous fluid approach the subduction interface, characterised by strong and localised discontinuities? The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate, simply modeled by a weak crust layer, free to evolve. Pseudo-brittle and non-Newtonian behaviours are modelled. This study shows first that the numerical resolution is critical. If the subducting plate is 100 Myr old, subduction occurs for any crust strength. The stiffer the crust is, the shallower the interplate down-dip extent is and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel leads to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. If the incoming plate is 20 Myr old, subduction occurs only if the crust is either stiff and denser than the mantle, or weak and buoyant. These conditions lead notably to (1) fore-arc lithosphere cooling, and (2) partial or complete hindrance of wet mantle melting. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow: either focussed towards the mantle wedge tip and strongly warming the subduction plate, or, diffuse and favoring global cooling by the lengthening of the subduction plane. The thermal states simulated within the mantle wedge are compared with observations to decipher the best rheological ranges modelling the subduction channel. Two intervals of crustal activation energy are underlined: 345-385 kJ/mol to reproduce the slab surface temperature range inferred from geothermometry, and 415-455 kJ/mol to reproduce the hot mantle wedge core suggested by seismic tomographies. As these two intervals do not overlap, an extra process involved in subduction dynamics is needed. A moderate mantle viscosity reduction, caused by metasomatism in the mantle wedge, is proposed. From these results, it can be inferred that the subduction channel down-dip extent should vary with the subduction setting, consistently with the worldwide variability of sub-arc depths of the subducting plate surface.

  13. A Novel Computer-Aided Approach for Parametric Investigation of Custom Design of Fracture Fixation Plates.

    PubMed

    Chen, Xiaozhong; He, Kunjin; Chen, Zhengming

    2017-01-01

    The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.

  14. Increasing thermal efficiency of solar flat plate collectors

    NASA Astrophysics Data System (ADS)

    Pona, J.

    A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.

  15. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  16. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates

    NASA Astrophysics Data System (ADS)

    Jarrett, Anthony; Kim, Il Yong

    2014-01-01

    The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.

  17. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  18. Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.

    PubMed

    Yip, W S; To, S

    2018-03-02

    Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

  19. Experimental investigation of the brittle-viscous transition in mafic rocks - Interplay between fracturing, reaction, and viscous deformation

    NASA Astrophysics Data System (ADS)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2017-12-01

    Rock deformation experiments are performed on fault gouge fabricated from 'Maryland Diabase' rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of γ˙ = 3 ·10-5 - 3 ·10-6 s-1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution.

  20. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings.more » The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.« less

  1. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet.

    PubMed

    Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11-13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  2. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    PubMed

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Tayeb, A., E-mail: ahmed.khalil@ejust.edu.eg; El-Shazly, A. H.; Elkady, M. F.

    In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5more » mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O{sub 3} in air discharge, O{sub 3} in water, and H{sub 2}O{sub 2}) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.« less

  4. Identification of a Suitable 3D Printing Material for Mimicking Brittle and Hard Rocks and Its Brittleness Enhancements

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Zhu, J. B.

    2018-03-01

    Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.

  5. Kinematics and age of Early Tertiary trench parallel volcano-tectonic lineaments in southern Mexico: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.

    2007-05-01

    We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely distributed flow and shear zones with relatively small individual displacement that might represent an immature stage of the developing North American-Caribbean plate boundary. The documented transition from ductile to brittle deformation and the localization of shearing and volcanism in the Late Eocene may be related to the focusing of inter-plate deformation in a discrete left lateral transcurrent North America-Caribbean boundary. The opening of the Cayman Through at ~49 Ma may have accelerated this process.

  6. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2010-01-01

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  7. Abrupt plate acceleration during rifted margin formation: Cause and effect

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon; Butterworth, Nathaniel; Müller, Dietmar

    2017-04-01

    Extension rate is known to control key processes during rifted margin formation such as crust-mantle coupling, decompression melting, magmatism, and serpentinisation. Here we build on recent advances in plate tectonic reconstructions by quantifying the extension velocity history of Earth's major rifted margins during the last 240 million years. We find that many successful rifts start with a slow phase of extension followed by rapid acceleration that introduces a fast phase. The transition from slow to fast rifting takes place long before crustal break-up: approximately half of the present day rifted margin area was created during the slow, and the other half during the fast rift phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. In these models, rift velocities are not imposed but instead evolve naturally in response to the changing strength of the rift. Our results demonstrate that abrupt plate acceleration during continental rifting is controlled by a rift-intrinsic strength-velocity feedback. The abruptness of rift acceleration is thereby governed by the nonlinearity of lithospheric localization. Realistic brittle and power-law rheologies lead to a speed-up duration between two and ten million years. For successful rifts that generate a new ocean basin, the duration of rift speed-up is notably almost independent of the applied extensional force. Instead, the force controls the duration of the slow phase: higher forces shorten the slow phase while lower forces prolong it. If the force is too low, however, delocalisation processes prevent the rift from reaching the point of speed-up and produce a failed rift, even if the extensional system was active for many million years.

  8. Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad

    2008-07-08

    Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection thatmore » has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.« less

  9. Flexural bending-induced plumelets and their seamounts in accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Dilek, Y.

    2015-12-01

    Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.

  10. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    NASA Astrophysics Data System (ADS)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  11. Regional Characterization of Tokyo Metoropolitan area using a highly-dense seismic netwok(MeSO-net)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Nakagawa, S.; Sakai, S.; Panayotopoulos, Y.; Ishikawa, M.; Ishibe, T.; Kimura, H.; Honda, R.

    2014-12-01

    We have developed a dense seismic network, MeSO-net (Metropolitan Seismic Observation network), since 2007 in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area (FY2007-FY2011) and Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters (FY2012-FY2016)( Hirata et al., 2009). So far we have acquired more than 120TB continuous seismic data form MeSO-net which consists of about 300 seismic stations. Using MeSO-net data, we obtain clear P- and S- wave velocity tomograms (Nakagawa et al., 2010) and Qp, Qs tomograms (Panayotopoulos et al., 2014) which show a clear image of Philippine Sea Plate (PSP) and PAcific Plate (PAP). A depth to the top of PSP, 20 to 30 km beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Because strength of the serpentinized peridotite is not large enough for brittle fracture, if the area is smaller than previously estimated, a possible area of the large thrust fault on the upper surface of PSP can be larger than previously thought. Change of seismicity rate after the 2011 Tohoku-oki earthquake suggests change of stressing rate in greater Tokyo. Quantitative analysis of MeSO-net data shows significant increase of rate of earthquakes that have a fault orientation favorable to increasing Coulomb stress after the Tohoku-oki event.

  12. Novel Methods in Terminal Ballistics and Mechanochemistry of Damage 2. Phenomenological Mechanochemistry of Damage in Solid Brittle Dielectrics

    DTIC Science & Technology

    2015-09-01

    Phenomenological Mechanochemistry of Damage in Solid Brittle Dielectrics by MA Grinfeld Approved for public release...Army Research Laboratory Novel Methods in Terminal Ballistics and Mechanochemistry of Damage 2. Phenomenological Mechanochemistry of Damage...2. Phenomenological Mechanochemistry of Damage in Solid Brittle Dielectrics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  13. Attenuation characteristics of fiberoptic plates for digital mammography and other X-ray imaging applications.

    PubMed

    Vedantham, S; Karellas, A; Suryanarayanan, S

    2003-01-01

    Spatially coherent fiberoptic plates are important components of some charge-coupled device (CCD)-based x-ray imaging systems. These plates efficiently transmit scintillations from the phosphor, and also filter out x-rays not absorbed by the phosphor, thus protecting the CCD from direct x-ray interaction. The thickness of the fiberoptic plate and the CCD package present a significant challenge in the design of a digital x-ray cassette capable of insertion into the existing film-screen cassette holders of digital mammography systems. This study was performed with an aim to optimize fiberoptic plate thickness. Attenuation measurements were performed on nine fiberoptic plates varying in material composition that exhibit desirable optical characteristics such as good coupling efficiency. Mammographic spectra from a clinical mammographic system and an Americium-241 (Am-241) source (59.54 KeV) were used. The spectra were recorded with a high-resolution cadmium zinc telluride (CZT)-based spectrometer and corrected for dead time and pile-up. The linear attenuation coefficients varied by a factor of 3 in the set of tested fiberoptic plates at both mammographic energies and 59.54 keV. Our results suggest that a 3-mm thick high-absorption plate might provide adequate for shielding at mammographic energies. A thickness of 2-mm is feasible for mammographic applications with further optimization of the fiberoptic plate composition by incorporating non-scintillating, high-atomic number material. This would allow more space for cooling components of the cassette and for a more compact device, which is critical for clinical implementation of the technology.

  14. The hydrodynamic principle for the caudal fin shape of small aquatic animals

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young

    2014-11-01

    The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.

  15. A model for the Global Quantum Efficiency for a TPB-based wavelength-shifting system used with photomultiplier tubes in liquid argon in MicroBooNE

    DOE PAGES

    Pate, S. F.; Wester, T.; Bugel, L.; ...

    2018-02-28

    We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less

  16. A model for the Global Quantum Efficiency for a TPB-based wavelength-shifting system used with photomultiplier tubes in liquid argon in MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pate, S. F.; Wester, T.; Bugel, L.

    We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less

  17. New mounting improves solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1980-01-01

    Method boosts output by about 20 percent by trapping and redirecting solar radiation without increasing module depth. Mounted solar-cell array is covered with internally reflecting plate. Plate is attached to each cell by transparent adhesive, and space between cells is covered with layer of diffusely reflecting material. Solar energy falling on space between cells is diffused and reflected internally by plate until it is reflected onto solar cell.

  18. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  19. Intelligent Pilot Aids for Flight Re-Planning in Emergencies

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.

    2002-01-01

    Experimental studies were conducted with pilots to investigate the attributes of automation that would be appropriate for aiding pilots in emergencies. The specific focus of this year was on methods of mitigating automation brittleness. Brittleness occurs when the automatic system is used in circumstances it was not designed for, causing it to choose an incorrect action or make an inaccurate decision for the situation. Brittleness is impossible to avoid since it is impossible to predict every potential situation the automatic system will be exposed to over its life. However, operators are always ultimately responsible for the actions and decisions of the automation they are monitoring or using, which means they must evaluate the automation's decisions and actions for accuracy. As has been pointed out, this is a difficult thing for human operators to do. There have been various suggestions as to how to aid operators with this evaluation. In the study described in this report we studied how presentation of contextual information about an automatic system's decision might impact the ability of the human operators to evaluate that decision. This study focused on the planning of emergency descents. Fortunately, emergencies (e.g., mechanical or electrical malfunction, on-board fire, and medical emergency) happen quite rarely. However, they can be catastrophic when they do. For all predictable or conceivable emergencies, pilots have emergency procedures that they are trained on, but those procedures often end with 'determine suitable airport and land as quickly as possible.' Planning an emergency descent to an unplanned airport is a difficult task, particularly under the time pressures of an emergency. Automatic decision aids could be very efficient at the task of determining an appropriate airport and calculating an optimal trajectory to that airport. This information could be conveyed to the pilot through an emergency descent procedure listing all of the actions necessary to safely land the plane. However, there is still the potential problem of brittleness. This study examined the impact of contextual information in presentations of emergency descent procedures to see if they might impact the pilot's evaluation of the feasibility of the presented procedure. The study and its results are described in detail.

  20. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An interlaboratory study on efficient detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O121, O145, and O157 in food using real-time PCR assay and chromogenic agar.

    PubMed

    Hara-Kudo, Yukiko; Konishi, Noriko; Ohtsuka, Kayoko; Iwabuchi, Kaori; Kikuchi, Rie; Isobe, Junko; Yamazaki, Takumiko; Suzuki, Fumie; Nagai, Yuhki; Yamada, Hiroko; Tanouchi, Atsuko; Mori, Tetsuya; Nakagawa, Hiroshi; Ueda, Yasufumi; Terajima, Jun

    2016-08-02

    To establish an efficient detection method for Shiga toxin (Stx)-producing Escherichia coli (STEC) O26, O103, O111, O121, O145, and O157 in food, an interlaboratory study using all the serogroups of detection targets was firstly conducted. We employed a series of tests including enrichment, real-time PCR assays, and concentration by immunomagnetic separation, followed by plating onto selective agar media (IMS-plating methods). This study was particularly focused on the efficiencies of real-time PCR assays in detecting stx and O-antigen genes of the six serogroups and of IMS-plating methods onto selective agar media including chromogenic agar. Ground beef and radish sprouts samples were inoculated with the six STEC serogroups either at 4-6CFU/25g (low levels) or at 22-29CFU/25g (high levels). The sensitivity of stx detection in ground beef at both levels of inoculation with all six STEC serogroups was 100%. The sensitivity of stx detection was also 100% in radish sprouts at high levels of inoculation with all six STEC serogroups, and 66.7%-91.7% at low levels of inoculation. The sensitivity of detection of O-antigen genes was 100% in both ground beef and radish sprouts at high inoculation levels, while at low inoculation levels, it was 95.8%-100% in ground beef and 66.7%-91.7% in radish sprouts. The sensitivity of detection with IMS-plating was either the same or lower than those of the real-time PCR assays targeting stx and O-antigen genes. The relationship between the results of IMS-plating methods and Ct values of real-time PCR assays were firstly analyzed in detail. Ct values in most samples that tested negative in the IMS-plating method were higher than the maximum Ct values in samples that tested positive in the IMS-plating method. This study indicates that all six STEC serogroups in food contaminated with more than 29CFU/25g were detected by real-time PCR assays targeting stx and O-antigen genes and IMS-plating onto selective agar media. Therefore, screening of stx and O-antigen genes followed by isolation of STECs by IMS-plating methods may be an efficient method to detect the six STEC serogroups. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    NASA Technical Reports Server (NTRS)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though, probing the deformation mechanisms operating in fatigue will lead to a better understanding of NiAl's unique characteristics. Low cycle fatigue properties have been reported on binary NiAl in the past year, yet those studies were limited to two temperature ranges: room temperature and near 1000 K. Eventually, fatigue property data will be needed for a wide range of temperatures and compositions. The intermediate temperature range near the brittle-to-ductile transition was chosen for this study to ascertain whether the sharp change occurring in monotonic behavior also occurs under cyclic conditions. An effort was made to characterize the dislocation structures which evolved during fatigue testing and comment on their role in the deformation process.

  3. Effect of High-Temperature Thermomechanical Treatment on the Brittle Fracture of Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Smirnov, M. A.; Pyshmintsev, I. Yu.; Varnak, O. V.; Mal'tseva, A. N.

    2018-02-01

    The effect of high-temperature thermomechanical treatment (HTMT) on the brittleness connected with deformation-induced aging and on the reversible temper brittleness of a low-carbon tube steel with a ferrite-bainite structure has been studied. When conducting an HTMT of a low-alloy steel, changes should be taken into account in the amount of ferrite in its structure and relationships between the volume fractions of the lath and the acicular bainite. It has been established that steel subjected to HTMT undergoes transcrystalline embrittlement upon deformation aging. At the same time, HTMT, which suppresses intercrystalline fracture, leads to a weakening of the development of reversible temper brittleness.

  4. Temporary brittle bone disease: fractures in medical care.

    PubMed

    Paterson, Colin R

    2009-12-01

    Temporary brittle bone disease is the name given to a syndrome first reported in 1990, in which fractures occur in infants in the first year of life. The fractures include rib fractures and metaphyseal fractures which are mostly asymptomatic. The radiological features of this disorder mimic those often ascribed to typical non-accidental injury. The subject has been controversial, some authors suggesting that the disorder does not exist. This study reports five infants with typical features of temporary brittle bone disease in whom all or most of the fractures took place while in hospital. A non-accidental cause can be eliminated with some confidence, and these cases provide evidence in support of the existence of temporary brittle bone disease.

  5. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    NASA Astrophysics Data System (ADS)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  6. Study on an undershot cross-flow water turbine

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  7. Experimental Observation of the Effects of Translational and Rotational Electrode Misalignment on a Planar Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.

    2018-04-01

    The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.

  8. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  9. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  10. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  11. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE PAGES

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; ...

    2016-06-06

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  12. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    DTIC Science & Technology

    2015-08-01

    exhibit many distinctive physical and mechanical properties, compared to metallic and polymeric materials, but the propensity toward brittle fracture ...micromechanism for the plastic deformation of ductile metals while the mechanical performance of high-strength ceramics is often dominated by brittle fracture at...SUPPLEMENTARY NOTES A reprint from Acta Materialia 88 (2015) 252–259 14. ABSTRACT Ceramics are known to be mechanically hard, chemically inert and

  13. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  14. Developing a molecular picture for polymer glasses under large deformation

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Wang, Panpan

    2014-03-01

    Polymer glasses differ from most other types of glassy materials because they can be ductile under tensile extension. Remarkably, a ductile polymer can turn brittle and vice versa. For example, upon cooling, the glass changes from ductile to brittle at a temperature known as the brittle-ductile transition temperature (BDT). Aging causes the ductile glass to be brittle. Mechanical ``rejuvenation'' or pressurization brings a brittle glass into a ductile state. Finally, one glass can be ductile 100 degrees below Tg while another polymer is already brittle even just 10 degree below Tg. Polystyrene and bisphenol A polycarbonate are at the two extremes in the family of polymer glasses. How to rationale such a wide range of behavior in terms of a molecular picture has been a challenging task. What is the role of ``chain entanglement''? Since many of the procedures including the temperature change do not alter the ``chain entanglement'', it is clearly insufficient to explain the nature of the BDT in terms of the entanglement density. Our work attempts to answer the question of what then is the role of chain networking. We have formulated a molecular picture that presents a unifying and coherent explanation for all the known phenomenology concerning the BDT and condition for crazing. This work is supported, in part, by NSF (CMMI-0926522 and DMR-1105135).

  15. Improvements in Boron Plate Coating Technology for Higher Efficiency Neutron Detection and Coincidence Counting Error Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    This informal report presents the measurement data and information to document the performance of the advanced Precision Data Technology, Inc. (PDT) sealed cell boron-10 plate neutron detector that makes use of the advanced coating materials and procedures. In 2015, PDT changed the boron coating materials and application procedures to significantly increase the efficiency of their basic corrugated plate detector performance. A prototype sealed cell unit was supplied to LANL for testing and comparison with prior detector cells. Also, LANL had reference detector slabs from the original neutron collar (UNCL) and the new Antech UNCL with the removable 3He tubes. Themore » comparison data is presented in this report.« less

  16. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    PubMed

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ( 99 Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced 99 Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient 99 Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fault geometries illuminated from seismicity in central Taiwan: Implications for crustal scale structural boundaries in the northern Central Range

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan R.; Byrne, Timothy; Chan, Yu-Chang; Wu, Francis; Rau, Ruey-Juin

    2007-12-01

    Data sets of collapsed earthquake locations, earthquake focal mechanisms, GPS velocities and geologic data are integrated to constrain the geometry and kinematics of a crustal block within the accreted continental margin rocks of Taiwan's northeastern Central Range. This block is laterally extruding and exhuming towards the north-northeast. The block is bound on the west-southwest by the previously recognized Sanyi-Puli seismic zone and on the east by a vertical seismic structure that projects to the eastern mountain front of the Central Range. Focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS) catalog consistently show west-side-up reverse displacements for this fault zone. A second vertical structure is recognized beneath the Slate Belt-Metamorphic Belt boundary as a post-Chi-Chi relaxation oblique normal fault. BATS focal mechanisms show east-side-up, normal displacements with a minor left-lateral component. The vertical and lateral extrusion of this crustal block may be driven by the current collision between the Philippine Sea Plate and the Puli basement high indenter on the Eurasian Plate and/or trench rollback along the Ryukyu subduction zone. In addition, the vertical extent of the two shear zones suggests that a basal décollement below the eastern Central Range is deeper than previously proposed and may extend below the brittle-ductile transition.

  18. Emergence of energy dependence in the fragmentation of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Pál, Gergő; Varga, Imre; Kun, Ferenc

    2014-12-01

    The most important characteristics of the fragmentation of heterogeneous solids is that the mass (size) distribution of pieces is described by a power law functional form. The exponent of the distribution displays a high degree of universality depending mainly on the dimensionality and on the brittle-ductile mechanical response of the system. Recently, experiments and computer simulations have reported an energy dependence of the exponent increasing with the imparted energy. These novel findings question the phase transition picture of fragmentation phenomena, and have also practical importance for industrial applications. Based on large scale computer simulations here we uncover a robust mechanism which leads to the emergence of energy dependence in fragmentation processes resolving controversial issues on the problem: studying the impact induced breakup of platelike objects with varying thickness in three dimensions we show that energy dependence occurs when a lower dimensional fragmenting object is embedded into a higher dimensional space. The reason is an underlying transition between two distinct fragmentation mechanisms controlled by the impact velocity at low plate thicknesses, while it is hindered for three-dimensional bulk systems. The mass distributions of the subsets of fragments dominated by the two cracking mechanisms proved to have an astonishing robustness at all plate thicknesses, which implies that the nonuniversality of the complete mass distribution is the consequence of blending the contributions of universal partial processes.

  19. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    PubMed

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  20. The Potential of Brittle Star Extracted Polysaccharide in Promoting Apoptosis via Intrinsic Signaling Pathway.

    PubMed

    Baharara, Javad; Amini, Elaheh

    2015-01-01

    Anti-cancer potential of marine natural products such as polysaccharides represented therapeutic potential in oncological researches. In this study, total polysaccharide from brittle star [Ophiocoma erinaceus (O. erinaceus)] was extracted and chemopreventive efficacy of Persian Gulf brittle star polysaccharide was investigated in HeLa human cervical cancer cells. To extract polysaccharide, dried brittle stars were ground and extracted mechanically. Then, detection of polysaccharide was performed by phenol sulfuric acid, Ultra Violet (UV)-sulfuric acid method and FTIR. The anti proliferative activity of isolated polysaccharide was examined by MTT assay and evaluation of cell death was done through morphological cell changes; Propodium Iodide staining, fluorescence microscopy and caspase-3, -9 enzymatic measurements. To assess its underlying mechanism, expression of Bax, Bcl-2 was evaluated. The polysaccharide detection methods demonstrated isolation of crude polysaccharide from Persian Gulf brittle star. The results revealed that O. erinaceus polysaccharide suppressed the proliferation of HeLa cells in a dose and time dependent manner. Morphological observation of DAPI and Acridine Orange/Propodium Iodide staining was documented by typical characteristics of apoptotic cell death. Flow cytometry analyses exhibited the accumulation of treated cells in sub-G1 region. Additionally, polysaccharide extracted induced intrinsic apoptosis via up-regulation of caspase-3, caspase-9 and Bax along with down-regulation of Bcl-2 in HeLa cells. Taken together, the apoptosis inducing effect of brittle star polysaccharide via intrinsic pathway confirmed the anti tumor potential of marine polysaccharide. Therefore, these findings proposed new insight into anti cancer properties of brittle star polysaccharide as a promising agent in cervical cancer treatment.

  1. Prediction of Brittle Failure for TBM Tunnels in Anisotropic Rock: A Case Study from Northern Norway

    NASA Astrophysics Data System (ADS)

    Dammyr, Øyvind

    2016-06-01

    Prediction of spalling and rock burst is especially important for hard rock TBM tunneling, because failure can have larger impact than in a drill and blast tunnel and ultimately threaten excavation feasibility. The majority of research on brittle failure has focused on rock types with isotropic behavior. This paper gives a review of existing theory and its application before a 3.5-m-diameter TBM tunnel in foliated granitic gneiss is used as a case to study brittle failure characteristics of anisotropic rock. Important aspects that should be considered in order to predict brittle failure in anisotropic rock are highlighted. Foliation is responsible for considerable strength anisotropy and is believed to influence the preferred side of v-shaped notch development in the investigated tunnel. Prediction methods such as the semi- empirical criterion, the Hoek- Brown brittle parameters, and the non-linear damage initiation and spalling limit method give reliable results; but only as long as the angle between compression axis and foliation in uniaxial compressive tests is relevant, dependent on the relation between tunnel trend/plunge, strike/dip of foliation, and tunnel boundary stresses. It is further demonstrated that local in situ stress variations, for example, due to the presence of discontinuities, can have profound impact on failure predictions. Other carefully documented case studies into the brittle failure nature of rock, in particular anisotropic rock, are encouraged in order to expand the existing and relatively small database. This will be valuable for future TBM planning and construction stages in highly stressed brittle anisotropic rock.

  2. Theoretical Bounds for the Influence of Tissue-Level Ductility on the Apparent-Level Strength of Human Trabecular Bone

    PubMed Central

    Nawathe, Shashank; Juillard, Frédéric; Keaveny, Tony M.

    2015-01-01

    The role of tissue-level post-yield behavior on the apparent-level strength of trabecular bone is a potentially important aspect of bone quality. To gain insight into this issue, we compared the apparent-level strength of trabecular bone for the hypothetical cases of fully brittle versus fully ductile failure behavior of the trabecular tissue. Twenty human cadaver trabecular bone specimens (5 mm cube; BV/TV = 6–36%) were scanned with micro-CT to create 3D finite element models (22-micron element size). For each model, apparent-level strength was computed assuming either fully brittle (fracture with no tissue ductility) or fully ductile (yield with no tissue fracture) tissue-level behaviors. We found that the apparent-level ultimate strength for the brittle behavior was only about half the value of the apparent-level 0.2%-offset yield strength for the ductile behavior, and the ratio of these brittle to ductile strengths was almost constant (mean ± SD = 0.56 ± 0.02; n=20; R2 = 0.99 between the two measures). As a result of this small variation, although the ratio of brittle to ductile strengths was positively correlated with the bone volume fraction (R2=0.44, p=0.01) and structure model index (SMI, R2=0.58, p<0.01), these effects were small. Mechanistically, the fully ductile behavior resulted in a much higher apparent-level strength because in this case about 16-fold more tissue was required to fail than for the fully brittle behavior; also, there was more tensile- than compressive-mode of failure at the tissue level for the fully brittle behavior. We conclude that, in theory, the apparent-level strength behavior of human trabecular bone can vary appreciably depending on whether the tissue fails in a fully ductile versus fully brittle manner, and this effect is largely constant despite appreciable variations in bone volume fraction and microarchitecture. PMID:23497799

  3. Terrestrial photovoltaic collector technology trends

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Costogue, E.

    1984-01-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  4. Hand portable thin-layer chromatography system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.

    2000-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  5. Illumination box and camera system

    DOEpatents

    Haas, Jeffrey S.; Kelly, Fredrick R.; Bushman, John F.; Wiefel, Michael H.; Jensen, Wayne A.; Klunder, Gregory L.

    2002-01-01

    A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

  6. Viscoelastic property identification from waveform reconstruction

    NASA Astrophysics Data System (ADS)

    Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.

    2002-05-01

    An inverse method is proposed for the determination of the viscoelastic properties of material plates from the plane-wave transmitted acoustic field. Innovations lie in a two-step inversion scheme based on the well-known maximum-likelihood principle with an analytic signal formulation. In addition, establishing the analytical formulations of the plate transmission coefficient we implement an efficient and slightly noise-sensitive process suited to both very thin plates and strongly dispersive media.

  7. Development efforts to improve curved-channel microchannel plates

    NASA Technical Reports Server (NTRS)

    Corbett, M. B.; Feller, W. B.; Laprade, B. N.; Cochran, R.; Bybee, R.; Danks, A.; Joseph, C.

    1993-01-01

    Curved-channel microchannel plate (C-plate) improvements resulting from an ongoing NASA STIS microchannel plate (MCP) development program are described. Performance limitations of previous C-plates led to a development program in support of the STIS MAMA UV photon counter, a second generation instrument on the Hubble Space Telescope. C-plate gain, quantum detection efficiency, dark noise, and imaging distortion, which are influenced by channel curvature non-uniformities, have all been improved through use of a new centrifuge fabrication technique. This technique will be described, along with efforts to improve older, more conventional shearing methods. Process optimization methods used to attain targeted C-plate performance goals will be briefly characterized. Newly developed diagnostic measurement techniques to study image distortion, gain uniformity, input bias angle, channel curvature, and ion feedback, will be described. Performance characteristics and initial test results of the improved C-plates will be reported. Future work and applications will also be discussed.

  8. Fixture for assembling solar panels

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.; Fritz, W. M.

    1979-01-01

    Vacuum fixture attaches array of silicon solar cells to mounting plate made of clear glass which holds and protects cells. Glass plate transmits, rather than absorbs, solar energy thus cooling cells for efficient operation. Device therefore reduces handling of cells and interconnecting conductors to one operation.

  9. Cell Libraries

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A NASA contract led to the development of faster and more energy efficient semiconductor materials for digital integrated circuits. Gallium arsenide (GaAs) conducts electrons 4-6 times faster than silicon and uses less power at frequencies above 100-150 megahertz. However, the material is expensive, brittle, fragile and has lacked computer automated engineering tools to solve this problem. Systems & Processes Engineering Corporation (SPEC) developed a series of GaAs cell libraries for cell layout, design rule checking, logic synthesis, placement and routing, simulation and chip assembly. The system is marketed by Compare Design Automation.

  10. Determination of the ductile-brittle transition temperature from the microplastic-strain rate

    NASA Astrophysics Data System (ADS)

    Andreev, A. K.; Solntsev, Yu. P.

    2008-04-01

    The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.

  11. Analytical model of brittle destruction based on hypothesis of scale similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakcheev, A. S., E-mail: asarakcheev@gmail.com; Lotov, K. V.

    2012-08-15

    The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refinemore » the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.« less

  12. The effect of butterfly scales on flight efficiency and leading edge vortex formation

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Wilroy, Jacob; Wahidi, Redha; Slegers, Nathan; Heilman, Micahel; Cranford, Jacob

    2016-11-01

    It is hypothesized that the scales on a butterfly wing lead to increased flight efficiency. Recent testing of live butterflies tracked their motion over 246 flights for 11 different specimens. Results show a 37.8 percent mean decrease in flight efficiency and a flapping amplitude reduction of 6.7 percent once the scales were removed. This change could be largely a result of how the leading edge vortex (LEV) interacts with the wing. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied, as well as the subsequent effect on the LEV's growth rate and peak circulation. For this experiment butterfly inspired grooves were created using additive manufacturing and were attached to a flat plate with a chordwise orientation, thus increasing plate surface area. The vortex generated by the grooved plate was then compared to a smooth case as the plate translated vertically through a tow tank at Re = 1500, 3000, and 6000. Using DPIV, the vortex formation was documented and a maximum vortex formation time of 4.22 was found based on the flat plate travel distance and chord length. Results indicate that the patterned surface slows down the growth of the vortex which corroborates the flight test results. Funding from NSF CBET Fluid Dynamcis is gratefully acknowledged.

  13. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  14. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.

  15. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis.

    PubMed

    Atkinson, Colin; Martineau, Philip M; Khan, Rizwan U A; Field, John E; Fisher, David; Davies, Nick M; Samartseva, Julia V; Putterman, Seth J; Hird, Jonathan R

    2015-03-28

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307-310 (doi:10.1038/nature04408)). The elastic wave speeds (c(l)≈18 000 m s(-1), c(s)≈11 750 m s(-1)) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305-4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond-a routine operation in the fashioning of diamonds for gemstone purposes--as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1-31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074-1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature of diamonds, Cambridge University Press). The scientific insights gained by studying these gemstones suggest a method of producing macroscale atomically flat and stress-free surfaces on other brittle materials.

  16. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis

    PubMed Central

    Atkinson, Colin; Martineau, Philip M.; Khan, Rizwan U. A.; Field, John E.; Fisher, David; Davies, Nick M.; Samartseva, Julia V.; Putterman, Seth J.; Hird, Jonathan R.

    2015-01-01

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307–310 (doi:10.1038/nature04408)). The elastic wave speeds (cl≈18 000 m s−1, cs≈11 750 m s−1) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305–4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond—a routine operation in the fashioning of diamonds for gemstone purposes—as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1–31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074–1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature of diamonds, Cambridge University Press). The scientific insights gained by studying these gemstones suggest a method of producing macroscale atomically flat and stress-free surfaces on other brittle materials. PMID:25713458

  17. A nanostructure based on metasurfaces for optical interconnects

    NASA Astrophysics Data System (ADS)

    Lin, Shulang; Gu, Huarong

    2017-08-01

    Optical-electronic Integrated Neural Co-processor takes vital part in optical neural network, which is mainly realized by optical interconnects. Because of the accuracy requirement and long-term goal of integration, optical interconnects should be effective and pint-size. In traditional solutions of optical interconnects, holography built on crystalloid or law of Fresnel diffraction exploited on zone plate was used. However, holographic method cannot meet the efficiency requirement and zone plate is too bulk to make the optical neural unit miniaturization. Thus, this paper aims to find a way to replace holographic method or zone plate with enough diffraction efficiency and smaller size. Metasurfaces are composed of subwavelength-spaced phase shifters at an interface of medium. Metasurfaces allow for unprecedented control of light properties. They also have advanced optical technology of enabling versatile functionalities in a planar structure. In this paper, a nanostructure is presented for optical interconnects. The comparisons of light splitting ability and simulated crosstalk between nanostructure and zone plate are also made.

  18. Refined Zigzag Theory for Laminated Composite and Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco

    2009-01-01

    A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.

  19. Refined Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates: A Homogeneous Limit Methodology for Zigzag Function Selection

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, marco

    2010-01-01

    The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.

  20. Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist

    NASA Astrophysics Data System (ADS)

    Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc; John, Timm; Deldicque, Damien; Ferrand, Thomas; Wang, Yanbin; Renner, Jörg; Morales, Luiz; Schubnel, Alexandre

    2017-04-01

    The origin of intermediate-depth seismicity has been debated for decades. A substantial fraction of these events occurs within the upper plane of Wadati-Benioff double seismic zones believed to represent subducting oceanic crust. We deformed natural lawsonite-rich blueschist samples under eclogite-facies conditions, using a D-DIA apparatus installed at a synchrotron beamline continuously monitoring stress, strain, phase changes, and acoustic emissions (AEs). Two distinct paths were investigated during which i) lawsonite and glaucophane became gradually unstable while entering the stability field of lawsonite-eclogite and the breakdown reaction of lawsonite was only crossed in case of the highest final temperature; ii) lawsonite broke down and the sample successively entered the stability fields of epidote-blueschist and eclogite-amphibolite but not of lawsonite-eclogite. Upon entering the Lws-Ecl stability field, samples exhibited brittle failure, accompanied by the radiation of AEs. In-situ X-ray diffraction and microstructural analysis demonstrate that fractures are topologically related to the formation of omphacite. Amorphous material was detected along the fractures by transmission-electron microscopy without evidence for free-water. Since the newly formed omphacite crystals are small compared to the initial grains, we interpret the observed mechanical instability as a transformation-induced runaway under stress triggered during the transformation from lawsonite-blueschist to lawsonite-eclogite. In contrast, we find no microstructural evidence that the breakdown of lawsonite, and hence the liberation of water leads to the fracturing. Our experimental results challenge the concept of "dehydration embrittlement", which ascribes the genesis of intermediate-depth earthquakes to the breakdown of hydrous phases in the subducting oceanic plate. Instead we suggest that grain-size reduction (transformational faulting) during the transformation from lawsonite-blueschist to lawsonite-eclogite leads to brittle failure of the deviatorically loaded samples.

  1. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity.

    PubMed

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S; McCann, Maureen C; Vermerris, Wilfred; Carpita, Nicholas C; Johal, Gurmukh

    2007-12-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared analyses, levels of saponifiable hydroxycinnamates are elevated in bk2 leaves and stems. As Bk2 is highly expressed during early development, well before the onset of the brittle phenotype, we propose that Bk2 functions in a patterning of lignin-cellulosic interactions that maintain organ flexibility rather than having a direct role in cellulose biosynthesis.

  2. Slow slip rate and excitation efficiency of deep low-frequency tremors beneath southwest Japan

    NASA Astrophysics Data System (ADS)

    Daiku, Kumiko; Hiramatsu, Yoshihiro; Matsuzawa, Takanori; Mizukami, Tomoyuki

    2018-01-01

    We estimated the long-term average slip rate on the plate interface across the Nankai subduction zone during 2002-2013 using deep low-frequency tremors as a proxy for short-term slow slip events based on empirical relations between the seismic moment of short-term slow slip events and tremor activities. The slip rate in each region is likely to compensate for differences between the convergence rate and the slip deficit rate of the subducting Philippine Sea plate estimated geodetically, although the uncertainty is large. This implies that the strain because of the subduction of the plate is partially stored as the slip deficit and partially released by slow slip events during the interseismic period. The excitation efficiency of the tremors for the slow slip events differs among regions: it is high in the northern Kii region. Some events in the western Shikoku region show a somewhat large value. Antigorite serpentinite of two types exists in the mantle wedge beneath southwest Japan. Slips with more effective excitation of tremors presumably occur in high-temperature conditions in the antigorite + olivine stability field. Other slip events with low excitation efficiency are distributed in the antigorite + brucite stability field. Considering the formation reactions of these minerals and their characteristic structures, events with high excitation efficiency can be correlated with a high pore fluid pressure condition. This result suggests that variation in pore fluid pressure on the plate interface affects the magnitude of tremors excited by slow slip events.

  3. Optimization of Uranium Molecular Deposition for Alpha-Counting Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monzo, Ellen; Parsons-Moss, Tashi; Genetti, Victoria

    2016-12-12

    Method development for molecular deposition of uranium onto aluminum 1100 plates was conducted with custom plating cells at Lawrence Livermore National Laboratory. The method development focused primarily on variation of electrode type, which was expected to directly influence plated sample homogeneity. Solid disc platinum and mesh platinum anodes were compared and data revealed that solid disc platinum anodes produced more homogenous uranium oxide films. However, the activity distribution also depended on the orientation of the platinum electrode relative to the aluminum cathode, starting current, and material composition of the plating cell. Experiments demonstrated these variables were difficult to control undermore » the conditions available. Variation of plating parameters among a series of ten deposited plates yielded variations up to 30% in deposition efficiency. Teflon particles were observed on samples plated in Teflon cells, which poses a problem for alpha activity measurements of the plates. Preliminary electropolishing and chemical polishing studies were also conducted on the aluminum 1100 cathode plates.« less

  4. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    NASA Astrophysics Data System (ADS)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  5. Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.

    2015-12-01

    Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.

  6. Combined structural analysis and dating of authigenic/synkinematic illite: A step towards unravelling brittle faulting processes in time and space

    NASA Astrophysics Data System (ADS)

    Viola, Giulio

    2017-04-01

    Faulting accommodates momentous deformation and its style reflects the complex interplay of often transient processes such as friction, fluid flow and rheological changes within generally dilatant systems. Brittle faults are thus unique archives of the stress state and the physical and chemical conditions at the time of both initial strain localization and subsequent slip(s) during structural reactivation. Opening those archives, however, may be challenging due to the commonly convoluted (if not even chaotic) nature of brittle fault architectures and fault rocks. This is because, once formed, faults are extremely sensitive to variations in stress field and environmental conditions and are prone to readily slip in a variety of conditions, also in regions affected by only weak, far-field stresses. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for any study aiming at reconstructing the complex framework of brittle deformation. However, considering that present-day exposures of faults only represent the end result of the faults' often protracted and heterogeneous histories, the obtained structural and mechanical results have to be integrated over the life span of the studied fault system. Dating of synkinematic illite/muscovite to constrain the time-integrated evolution of faults is therefore the natural addition to detailed structural studies. By means of selected examples it will be demonstrated how careful structural analysis integrated with illite characterization and K-Ar dating allows the high-resolution reconstruction of brittle deformation histories and, in turn, multiple constraints to be placed on strain localization, deformation mechanisms, fluid flow, mineral alteration and authigenesis within actively deforming brittle fault rocks. Complex and long brittle histories can thus be reconstructed and untangled in any tectonic setting.

  7. Geometric consequences of ductile fabric development from brittle shear faults in mafic melt sheets: Evidence from the Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Lenauer, Iris; Riller, Ulrich

    2012-02-01

    Compared to felsic igneous rocks the genetic relationship between brittle and ductile fabric development and its influence on the geometry of deformed mafic melt sheets has received little attention in structural analyses. We explore these relationships using the Sudbury Igneous Complex (SIC) as an example. The SIC is the relic of a layered impact melt sheet that was transformed into a fold basin, the Sudbury Basin, during Paleoproterozoic deformation at the southern margin of the Archean Superior Province. We studied brittle and ductile strain fabrics on the outcrop and map scales in the southern Sudbury Basin, notably in the Norite and Quartz Gabbro layers of the SIC. Here, deformation is heterogeneous and occurred under variable rheological conditions, evident by the development of brittle shear fractures, brittle-ductile shear zones and pervasive ductile strain. The mineral fabrics formed under low- to middle greenschist-facies metamorphism, whereby brittle deformation caused hydrolytic weakening and ductile fabric development. Principal strain axes inferred from all structural elements are collinear and point to a single deformation regime that led to thinning of SIC layers during progressive deformation. Ductile fabric development profoundly influenced the orientation of SIC material planes, such as lithological contacts and magmatic mineral fabrics. More specifically, these planar structural elements are steep where the SIC underwent large magnitudes of thinning, i.e., in the south limb of the Sudbury Basin. Here, the actual tilt component of material planes is likely smaller than its maximum total rotation (60°) inferred from inclined igneous layering in the Norite. Our field-based study shows that ductile fabric development from brittle faults can have a profound influence on the rotational components of primary material planes in deformed igneous melt sheets.

  8. Efficient High-Fidelity, Geometrically Exact, Multiphysics Structural Models

    DTIC Science & Technology

    2011-10-14

    fuctionally graded core. International Journal for Numerical Methods in Engineering, 68:940– 966, 2006. 7F. Shang, Z. Wang, and Z. Li. Analysis of...normal deformable plate theory and MLPG method with radial basis fuctions . Composite Structures, 80:539– 552, 2007. 17W. Zhen and W. Chen. A higher-order...functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis fuctions . Composite Structures, 80

  9. Dynamic and Quasi Static Mechanical Properties of Comp B and TNT.

    DTIC Science & Technology

    1985-11-01

    strains Explosives RDX pArticle size TNT puriety TNT puriety Wax Brittle Voids Poroaity Artillery launch Young’s modulus Polsson’s ratio Cracks...the yield strength under the confined condition of the triaxial test Is larger than the uniaxial coapres- sive strength as expected for brittle ...TNT both for a reference for Coup B and because TNT is an Important explisive itself. SComposition B and TNT are very brittle materials and are much

  10. Breaking new ground in the mind: an initial study of mental brittle transformation and mental rigid rotation in science experts.

    PubMed

    Resnick, Ilyse; Shipley, Thomas F

    2013-05-01

    The current study examines the spatial skills employed in different spatial reasoning tasks, by asking how science experts who are practiced in different types of visualizations perform on different spatial tasks. Specifically, the current study examines the varieties of mental transformations. We hypothesize that there may be two broad classes of mental transformations: rigid body mental transformations and non-rigid mental transformations. We focus on the disciplines of geology and organic chemistry because different types of transformations are central to the two disciplines: While geologists and organic chemists may both confront rotation in the practice of their profession, only geologists confront brittle transformations. A new instrument was developed to measure mental brittle transformation (visualizing breaking). Geologists and organic chemists performed similarly on a measure of mental rotation, while geologists outperformed organic chemists on the mental brittle transformation test. The differential pattern of skill on the two tests for the two groups of experts suggests that mental brittle transformation and mental rotation are different spatial skills. The roles of domain general cognitive resources (attentional control, spatial working memory, and perceptual filling in) and strategy in completing mental brittle transformation are discussed. The current study illustrates how ecological and interdisciplinary approaches complement traditional cognitive science to offer a comprehensive approach to understanding the nature of spatial thinking.

  11. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  12. Potential of thin-film solar cell module technology

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  13. Optimizing a spectral element for modeling PZT-induced Lamb wave propagation in thin plates

    NASA Astrophysics Data System (ADS)

    Ha, Sungwon; Chang, Fu-Kuo

    2010-01-01

    Use of surface-mounted piezoelectric actuators to generate acoustic ultrasound has been demonstrated to be a key component of built-in nondestructive detection evaluation (NDE) techniques, which can automatically inspect and interrogate damage in hard-to-access areas in real time without disassembly of the structural parts. However, piezoelectric actuators create complex waves, which propagate through the structure. Having the capability to model piezoelectric actuator-induced wave propagation and understanding its physics are essential to developing advanced algorithms for the built-in NDE techniques. Therefore, the objective of this investigation was to develop an efficient hybrid spectral element for modeling piezoelectric actuator-induced high-frequency wave propagation in thin plates. With the hybrid element we take advantage of both a high-order spectral element in the in-plane direction and a linear finite element in the thickness direction in order to efficiently analyze Lamb wave propagation in thin plates. The hybrid spectral element out-performs other elements in terms of leading to significantly faster computation and smaller memory requirements. Use of the hybrid spectral element is proven to be an efficient technique for modeling PZT-induced (PZT: lead zirconate titanate) wave propagation in thin plates. The element enables fundamental understanding of PZT-induced wave propagation.

  14. Dislocation dynamics modelling of the ductile-brittle-transition

    NASA Astrophysics Data System (ADS)

    Hennecke, Thomas; Hähner, Peter

    2009-07-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  15. On improving the efficiency of tensor voting.

    PubMed

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim

    2011-11-01

    This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.

  16. Secondary barrier construction for low temperature liquefied gas storage tank carrying vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, T.; Nishimoto, T.; Sawada, K.

    1978-12-05

    A new LNG-cargo-tank secondary barrier developed by Japan's Hitachi Shipbuilding and Engineering Co., Ltd., offers ease of fabrication, simple construction, improved efficiency of installation, and protection against seawater ingress as well as LNG leakage. The secondary barrier, intended for use below spherical LNG tanks, consists of unit heat-insulating block plates adhesively secured to the bottom plate of the ship's hold, heat-insulating filling members stuffed into the joints between the block plates, and a protective layer formed on the entire surface of the block plates and the filling members. These unit block plates are in the form of heat-insulating members ofmore » the required thickness, preformed into a square or trapezoidal shape, particularly in the form of rigid-foam synthetic-resin plates.« less

  17. Influence of the wavelet order on proper damage location in plate structures

    NASA Astrophysics Data System (ADS)

    Pawlak, Zdzisław; Knitter-Piątkowska, Anna

    2018-01-01

    The rectangular thin plates were analyzed in the paper. The static response in plate structure subjected to the uniform load was derived by applying the finite element method. In the dynamic, experimental tests the accelerations were obtained with the use of modal hammer and DEWEsoft® software. Next, the analysis of the signal was carried out with the use of Discrete Wavelet Transform (DWT), provided that damage exists in the considered plate structure. It was assumed, that in the middle of the structure a certain area of the plate is thinner or there is a crack across the entire plate thickness. The aim of this work was to choose the appropriate wavelet order to reveal the localization of defect. The results of selected numerical example proved the efficiency of proposed approach.

  18. The nature of temper brittleness of high-chromium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separationmore » into layers of high-chromium ferrite and decomposition of the interstitial solid solution.« less

  19. Representation and Management of the Knowledge of Brittle Deformation in Shear Zones Using Microstructural Data From the SAFOD Core Samples

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Broda, C. M.; Kumar, A.; Hadizadeh, J.

    2010-12-01

    Web access to data that represent knowledge acquired by investigators studying the microstructures in the core samples of the SAFOD (San Andreas Observatory at Depth) project can help scientists efficiently integrate and share knowledge, query the data, and update the knowledge base on the Web. To achieve this, we have used OWL (Web Ontology Language) to build the brittle deformation ontology for the microstructures observed in the SAFOD core samples, by explicitly formalizing the knowledge about deformational processes, geological objects undergoing deformation, and the underlying mechanical and environmental conditions in brittle shear zones. The developed Web-based ‘SAFOD Brittle Microstructure and Mechanics Knowledge base’ (SAFOD BM2KB), which instantiates this ontology and is available at http://codd.cs.gsu.edu:9999/safod/index.jsp, will host and serve data that pertains to spatial objects, such as microstructure, gouge, fault, and SEM image, acquired by the SAFOD investigators through the studies of the SAFOD core samples. Deformation in shear zones involves complex brittle and ductile processes that alter, create, and/or destroy a wide variety of one- to three-dimensional, multi-scale spatial entities such as rocks and their constituent minerals and structure. These processes occur through a series of sub-processes that happen in different time intervals, and affect the spatial objects at granular to regional scales within shear zones. The processes bring about qualitative change to the spatial entities over time intervals that start and end with events. Processes, such as mylonitization and cataclastic flow, change the spatial location, distribution, dimension, size, shape, and orientation of some objects through translation, rotation and strain. These processes may also result in newly formed entities, such as a new mineral, gouge, vein, or fault, during one or more phases of deformation. Deformation processes may also destroy entities, such as a mineral, fossil, or original structure. Laboratory investigations by the SAFOD scientists result in ever-increasing volumes of complex data related to different tectonic processes, deformed rocks, and structures. These data are often published in the tables of scientific articles or are stored in personal Excel worksheets or, in rare cases, in a network community database. It is extremely hard to integrate autonomously built databases distributed on the Web because of their heterogeneous schemas. As a closed world model, databases can only store and serve a finite set of static data that are known to be true. They cannot represent knowledge in a constantly changing, open world. In contrast, integration of scientific data and presentation of their underlying knowledge can be achieved through the use of Semantic Web technologies. These technologies are capable of handling an infinite supply of known and yet to be known facts due to their open world model. The inference rules of OWL and its underlying RDFS and RDF semantic languages allow formal and explicit specification of the theories and knowledge of a particular domain such as brittle deformation in shear zone.

  20. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    NASA Astrophysics Data System (ADS)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-06-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  1. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  2. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  3. Rodding Surgery

    MedlinePlus

    ... A Translational Approach to Brittle Bone Disease 1 st edition. New York, NY: Elsevier Academic Press. Jacobsen, S, ... A Translational Approach to Brittle Bone Disease 1 st edition. New York, NY: Elsevier Academic Press. Zionts ...

  4. The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing

    PubMed Central

    Berthaume, Michael A.; Dumont, Elizabeth R.; Godfrey, Laurie R.; Grosse, Ian R.

    2014-01-01

    Teeth are often assumed to be optimal for their function, which allows researchers to derive dietary signatures from tooth shape. Most tooth shape analyses normalize for tooth size, potentially masking the relationship between relative food item size and tooth shape. Here, we model how relative food item size may affect optimal tooth cusp radius of curvature (RoC) during the fracture of brittle food items using a parametric finite-element (FE) model of a four-cusped molar. Morphospaces were created for four different food item sizes by altering cusp RoCs to determine whether optimal tooth shape changed as food item size changed. The morphospaces were also used to investigate whether variation in efficiency metrics (i.e. stresses, energy and optimality) changed as food item size changed. We found that optimal tooth shape changed as food item size changed, but that all optimal morphologies were similar, with one dull cusp that promoted high stresses in the food item and three cusps that acted to stabilize the food item. There were also positive relationships between food item size and the coefficients of variation for stresses in food item and optimality, and negative relationships between food item size and the coefficients of variation for stresses in the enamel and strain energy absorbed by the food item. These results suggest that relative food item size may play a role in selecting for optimal tooth shape, and the magnitude of these selective forces may change depending on food item size and which efficiency metric is being selected. PMID:25320068

  5. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    NASA Astrophysics Data System (ADS)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  6. The mechanics of stick-slip

    USGS Publications Warehouse

    Byerlee, J.D.

    1970-01-01

    Physical mechanisms that have been proposed to explain the occurrence of stick-slip motion during frictional sliding have been examined in the light of results obtained from experiments with rocks and brittle minerals. An instability caused by sudden brittle fracture of locked regions on surfaces in contact is the most likely explanation for stick-slip during dry frictional sliding of brittle rocks at room temperature. Areas requiring further study and the uncertainties in applying the results of laboratory experiments to earthquake studies are emphasized. ?? 1970.

  7. Continuum Mechanics at the Atomic Scale.

    DTIC Science & Technology

    1977-01-01

    an infinite hoop stress at the tip of the crack (Figure 9 ). Because of this singularity a perfectly good criterion of brittle fracture, the maximum...for brittle fracture, we will arrive at the Griffith criterion with the extra benefit that the Griffith constant is now fully determined. As a result...crack tip. From (5.9) it now follows that 2 2 2toZ - [a/2 C (v)] t = C (5.10) 0c Alas, this is the Griffith fracture criterion for brittle fracture with

  8. Children with Brittle Bones.

    ERIC Educational Resources Information Center

    Alston, Jean

    1982-01-01

    Special help given to children with Osteogenesis Imperfecta (brittle bone disease) is described, including adapted equipment to allow for writing and use of a classroom assistant to aid participation in a regular classroom. (CL)

  9. Structure property relationships in various filled polymers

    NASA Astrophysics Data System (ADS)

    Yu, Jiong

    The toughness of impact modified poly(vinyl chloride) (PVC) compounds was examined using a modified Charpy test. Increasing impact speed resulted in a quasi-brittle to ductile transition in all PVC compounds. In the quasi-brittle region, a PVC of 56,000 Mw fractured through a craze-like damage zone that could be described by a modified Dugdale model. Furthermore, the same molecular weight PVC modified with either 10 pph chlorinated polyethylene (CPE) or 10 pph methylmethacrylate-butadiene-styrene (MBS) impact modifier also conformed to the Dugdale model with the craze-like damage zone. It was found that CPE effectively improved the impact performance of PVC by shifting the quasi-brittle to ductile transition to a higher loading rate. Compared to CPE, MBS was found to be a better impact modifier and resulted in a higher quasi-brittle to ductile transition loading rate in the same PVC matrix. Fracture initiation toughness of all the materials was described by the Hayes-Williams modification of the Dugdale model. The intrinsic brittle fracture energy obtained by extrapolation to zero craze length was determined only by the PVC matrix and was independent of the impact modifier. However, the kinetics of craze growth, and hence the response to rapid loading, depended on the impact modifier. Increasing molecular weight of the PVC resin resulted in a more complex damage zone that was not amendable to the Dugdale analysis. A new in-situ infusion method was used to incorporate small amounts (ca. 1wt%) of metal and metal oxide particles into a polymer matrix. Nano-sized particles were observed by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Oxygen (O2) and carbon dioxide (CO2) transport properties of the infused materials were investigated using a dynamic diffusion approach in which both testing and purge gases can be controlled. It was discovered that trace amounts (ca. 2%) of hydrogen (H2) in the purge gas was sufficient to considerably reduce the O2 flux of FEP films infused with Palladium (Pd) nano-particles, up to two hundred fold decrease. In contrast, H2 has essentially no effect on the transport of CO2. The generality of the remarkable reduction in oxygen flux was also demonstrated with films of PP, LLDPE, PET, Nylon 6,6 infused with Pd nano-particles. This oxygen scavenging effect became more pronounced at lower oxygen concentrations. The catalytic role of Pd in the reaction of O2 and H2, and the enormous surface area provided by the dispersed nano-particles were responsible for this highly efficient oxygen scavenging effect. (Abstract shortened by UMI.)

  10. Thinner, More-Efficient Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Galica, Leo M.; Losey, Robert W.

    1992-01-01

    Better gas-distribution plates fabricated more easily. Oxygen-separation cell redesigned to make it more efficient, smaller, lighter, and easier to manufacture. Potential applications include use as gas separators, filters, and fuel cells.

  11. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    PubMed

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  12. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  13. High-aspect ratio zone plate fabrication for hard x-ray nanoimaging

    NASA Astrophysics Data System (ADS)

    Parfeniukas, Karolis; Giakoumidis, Stylianos; Akan, Rabia; Vogt, Ulrich

    2017-08-01

    We present our results in fabricating Fresnel zone plate optics for the NanoMAX beamline at the fourth-generation synchrotron radiation facility MAX IV, to be used in the energy range of 6-10 keV. The results and challenges of tungsten nanofabrication are discussed, and an alternative approach using metal-assisted chemical etching (MACE) of silicon is showcased. We successfully manufactured diffraction-limited zone plates in tungsten with 30 nm outermost zone width and an aspect ratio of 21:1. These optics were used for nanoimaging experiments at NanoMAX. However, we found it challenging to further improve resolution and diffraction efficiency using tungsten. High efficiency is desirable to fully utilize the advantage of increased coherence on the optics at MAX IV. Therefore, we started to investigate MACE of silicon for the nanofabrication of high-resolution and high-efficiency zone plates. The first type of structures we propose use the silicon directly as the phase-shifting material. We have achieved 6 μm deep dense vertical structures with 100 nm linewidth. The second type of optics use iridium as the phase material. The structures in the silicon substrate act as a mold for iridium coating via atomic layer deposition (ALD). A semi-dense pattern is used with line-to-space ratio of 1:3 for a so-called frequency-doubled zone plate. This way, it is possible to produce smaller structures with the tradeoff of the additional ALD step. We have fabricated 45 nm-wide and 3.6 μm-tall silicon/iridium structures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, L. M.; Katoh, Y.; Snead, L. L.

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780°C and fast neutron fluences of 0.02-9.0×1025 n/m2, E>0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22°C. After only 0.0039 dpa this was reduced to 7.7% elongation, andmore » no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22°C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  16. Hugoniot equation of state of rock materials under shock compression

    PubMed Central

    Braithwaite, C. H.; Zhao, J.

    2017-01-01

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5–12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure–particle velocity (P–up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956506

  17. Influence of restraint and thermal exposure on welds in T-111 and ASTAR-811C

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Lessmann, G. G.

    1971-01-01

    The notched-tensile, tensile, and bend properties of GTA welds in T-111 and ASTAR-811C sheet were determined following a wide range of thermal exposures in order to define changes in ductility and mechanical property behavior due to weld aging response. No notch sensitivity or unusual tensile response was noted for any of the conditions evaluated. An aging response was noted for the bend ductile-brittle transition temperature determinations on both T-111 and ASTAR-811C welds. A tentative explanation for the observed response of each alloy is presented. In addition, the interrelationship of mechanical and chemical factors leading to underbead cracking in T-111 was investigated. The problem was shown to be amenable primarily to chemical solutions, such as alloy compositional changes. This was demonstrated by the improved performance of ASTAR-811C over T-111 in plate weld studies. Only modest success was achieved using procedural techniques as a means of eliminating underbead cracking.

  18. Impact fragmentation of polyurethane and polypropylene cylinder

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Noguchi, Daisuke; Preechasupanya, Worrayut; Matsumoto, Hitoshi

    2013-11-01

    The impact fragmentation of a bulk polyurethane elastomer (PU) and polypropylene (PP) cylinder have been investigated using a Cu plate projectile launched by a propellant gun at a velocity of 0.53-1.4 km/s. A projectile drills into a PU sample and forms a cavity in the sample. A small number of tiny fragments are formed. When the projectile smashes in at 1.4 km/s, the PU cylinder bursts and PU fragments form. On the other hand, a brittle fracture occurs on the PP cylinder. The mass of fragments from the PU sample generated at a lower impact velocity is distributed in the lognormal form, whereas the mass of fragments from the PU sample generated by a 1.4 km/s impact follows a power-law distribution. The fragment mass distribution of the PP sample generated at a lower impact velocity obeys the power-law form, whereas that generated at a higher impact velocity follows the lognormal form.

  19. An experimental study of the mechanism of failure of rocks under borehole jack loading

    NASA Technical Reports Server (NTRS)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  20. Silicon force sensor and method of using the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload uponmore » the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.« less

  1. Orthopaedic Considerations for the Adult With Osteogenesis Imperfecta.

    PubMed

    Roberts, Timothy T; Cepela, Daniel J; Uhl, Richard L; Lozman, Jeffery

    2016-05-01

    Osteogenesis imperfecta is a heritable group of collagen-related disorders that affects up to 50,000 people in the United States. Although the disease is most symptomatic in childhood, adults with osteogenesis imperfecta also are affected by the sequelae of the disease. Orthopaedic manifestations include posttraumatic and accelerated degenerative joint disease, kyphoscoliosis, and spondylolisthesis. Other manifestations of abnormal collagen include brittle dentition, hearing loss, cardiac valve abnormalities, and basilar invagination. In general, nonsurgical treatment is preferred for management of acute fractures. High rates of malunion, nonunion, and subsequent deformity have been reported with both closed and open treatment. When surgery is necessary, surgeons should opt for load-sharing intramedullary devices that span the entire length of the bone; locking plates and excessively rigid fixation generally should be avoided. Arthroplasty may be considered for active patients, but the procedure frequently is associated with complications in this patient population. Underlying deformities, such as malunion, bowing, rotational malalignment, coxa vara, and acetabular protrusio, pose specific surgical challenges and underscore the importance of preoperative planning.

  2. A. V. Peyve — the founder of the concept of deep faults

    NASA Astrophysics Data System (ADS)

    Sherman, S. I.

    2009-03-01

    The further development of Peyve’s concept of deep faults in the Earth’s crust and brittle part of the lithosphere is discussed. Three aspects are accentuated in this paper: (1) the modern definition of the term deep fault; (2) the parameters of deep faults as ruptures of the geological medium and three-dimensional, often boundary, geological bodies; and (3) reactivation of deep faults, including the development of this process in real time. Peyve’s idea of deep faults readily fitted into the concept of new global tectonics (plate tectonics). This was facilitated, first of all, by the extensive efforts made to elaborate Peyve’s ideas by a large group of researchers at the Geological Institute of the Russian Academy of Sciences (GIN RAS) and other scientists. At present, the term deep fault has been extended and transformed to cover three-dimensional geological bodies; the geological and geophysical properties and parameters of these bodies, as well as their reactivation (recurrent activation) in real time, have been studied.

  3. Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall

    NASA Astrophysics Data System (ADS)

    Masuzaki, S.; Tokitani, M.; Otsuka, T.; Oya, Y.; Hatano, Y.; Miyamoto, M.; Sakamoto, R.; Ashikawa, N.; Sakurada, S.; Uemura, Y.; Azuma, K.; Yumizuru, K.; Oyaizu, M.; Suzuki, T.; Kurotaki, H.; Hamaguchi, D.; Isobe, K.; Asakura, N.; Widdowson, A.; Heinola, K.; Jachmich, S.; Rubel, M.; contributors, JET

    2017-12-01

    Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011-2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.

  4. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics.

    PubMed

    Kim, Wansun; Lee, Inhwa; Yoon Kim, Dong; Yu, Youn-Yeol; Jung, Hae-Yoon; Kwon, Seyeoul; Seo Park, Weon; Kim, Taek-Soo

    2017-05-12

    To protect brittle layers in organic photovoltaic devices, the mechanical neutral plane strategy can be adopted through placing the brittle functional materials close to the neutral plane where stress and strain are zero during bending. However, previous research has been significantly limited in the location and number of materials to protect through using a single neutral plane. In this study, multiple neutral planes are generated using low elastic modulus adhesives and are controlled through quantitative analyses in order to protect the multiple brittle materials at various locations. Moreover, the protection of multiple brittle layers at various locations under both concave and convex bending directions is demonstrated. Multilayer structures that have soft adhesives are further analyzed using the finite element method analysis in order to propose guidelines for structural design when employing multiple neutral planes.

  5. Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism.

    PubMed

    Sun, Guoyan; Zhao, Lingling; Zhao, Qingliang; Gao, Limin

    2018-05-10

    There have been few investigations dealing with the force model on grinding brittle materials. However, the dynamic material removal mechanisms have not yet been sufficiently explicated through the grain-workpiece interaction statuses while considering the brittle material characteristics. This paper proposes an improved grinding force model for Zerodur, which contains ductile removal force, brittle removal force, and frictional force, corresponding to the ductile and brittle material removal phases, as well as the friction process, respectively. The critical uncut chip thickness a gc of brittle-ductile transition and the maximum uncut chip thickness a gmax of a single abrasive grain are calculated to identify the specified material removal mode, while the comparative result between a gmax and a gc can be applied to determine the selection of effective grinding force components. Subsequently, indentation fracture tests are carried out to acquire accurate material mechanical properties of Zerodur in establishing the brittle removal force model. Then, the experiments were conducted to derive the coefficients in the grinding force prediction model. Simulated through this model, correlations between the grinding force and grinding parameters can be predicted. Finally, three groups of grinding experiments are carried out to validate the mathematical grinding force model. The experimental results indicate that the improved model is capable of predicting the realistic grinding force accurately with the relative mean errors of 6.04% to the normal grinding force and 7.22% to the tangential grinding force, respectively.

  6. Effect of Cohesion Uncertainty of Granular Materials on the Kinematics of Scaled Models of Fold-and-Thrust Belts

    NASA Astrophysics Data System (ADS)

    Nilfouroushan, F.; Pysklywec, R.; Cruden, S.

    2009-05-01

    Cohesionless or very low cohesion granular materials are widely used in analogue/physical models to simulate brittle rocks in the upper crust. Selection of materials with appropriate cohesion values in such models is important for the simulation of the dynamics of brittle rock deformation in nature. Uncertainties in the magnitude of cohesion (due to measurement errors, extrapolations at low normal stresses, or model setup) in laboratory experiments can possibly result in misinterpretation of the styles and mechanisms of deformation in natural fold-and thrust belts. We ran a series of 2-D numerical models to investigate systematically the effect of cohesion uncertainties on the evolution of models of fold-and-thrust belts. The analyses employ SOPALE, a geodynamic code based on the arbitrary Lagrangian-Eulerian (ALE) finite element method. Similar to analogue models, the material properties of sand and transparent silicone (PDMS) are used to simulate brittle and viscous behaviors of upper crustal rocks. The suite of scaled brittle and brittle-viscous numerical experiments have the same initial geometry but the cohesion value of the brittle layers is increased systematically from 0 to 100 Pa. The stress and strain distribution in different sets of models with different cohesion values are compared and analyzed. The kinematics and geometry of thrust wedges including the location and number of foreland- and hinterland- verging thrust faults, pop-up structures, tapers and topography are also explored and their sensitivity to cohesion value is discussed.

  7. Assessment of brittleness and empirical correlations between physical and mechanical parameters of the Asmari limestone in Khersan 2 dam site, in southwest of Iran

    NASA Astrophysics Data System (ADS)

    Lashkaripour, Gholam Reza; Rastegarnia, Ahmad; Ghafoori, Mohammad

    2018-02-01

    The determination of brittleness and geomechanical parameters, especially uniaxial compressive strength (UCS) and Young's modulus (ES) of rocks are needed for the design of different rock engineering applications. Evaluation of these parameters are time-consuming processes, tedious, expensive and require well-prepared rock cores. Therefore, compressional wave velocity (Vp) and index parameters such as point load index and porosity are often used to predict the properties of rocks. In this paper, brittleness and other properties, physical and mechanical in type, of 56 Asmari limestones in dry and saturated conditions were analyzed. The rock samples were collected from Khersan 2 dam site. This dam with the height of 240 m is being constructed and located in the Zagros Mountain, in the southwest of Iran. The bedrock and abutments of the dam site consist of Asemari and Gachsaran Formations. In this paper, a practical relation for predicting brittleness and some relations between mechanical and index parameters of the Asmari limestone were established. The presented equation for predicting brittleness based on UCS, Brazilian tensile strength and Vp had high accuracy. Moreover, results showed that the brittleness estimation based on B3 concept (the ratio of multiply compressive strength in tensile strength divided 2) had more accuracy as compared to the B2 (the ratio of compressive strength minus tensile strength to compressive strength plus tensile strength) and B1 (the ratio of compressive strength to tensile strength) concepts.

  8. Lower plate deformation structures along the Costa Rica erosive plate boundary - results from IODP Expedition 344 (CRISP 2)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Micheuz, Peter; Krenn, Kurt

    2015-04-01

    The primary objective of Integrated Ocean Drilling Program (IODP) Expedition 344 offshore the Osa Peninsula in Costa Rica was to sample and quantify the material entering the seismogenic zone of the Costa Rican erosive subduction margin. Fundamental to this objective is an understanding of the nature of both the subducting Cocos plate crust and of the overriding Caribbean plate. The subducting Cocos plate is investigated trying to define its hydrologic system and thermal state. The forearc structures recorded by the sediment deposited on the forearc, instead, document periods of uplift and subsidence and provide important information about the process of tectonic erosion that characterizes the Costa Rica margin. Offshore the western margin of Costa Rica, the oceanic Cocos plate subducts under the Caribbean plate, forming the southern end of the Middle America Trench. Subduction parameters including the age, convergence rate, azimuth, obliquity, morphology, and slab dip all vary along strike. The age of the Cocos plate at the Middle America Trench decreases from 24 Ma offshore the Nicoya Peninsula to 15 Ma offshore the Osa Peninsula. Subduction rates vary from 70 mm/y offshore Guatemala to 90 mm/y offshore southern Costa Rica. Convergence obliquity across the trench varies from offshore Nicaragua, where it is as much as 25° oblique, to nearly orthogonal southeast of the Nicoya Peninsula. Passage of the Cocos plate over the Galapagos hotspot created the aseismic Cocos Ridge, an overthickened welt of oceanic crust. This ridge is ~25 km thick, greater than three times normal oceanic crustal thickness. During IODP Expedition 344, the incoming Cocos plate was drilled at sites U1381 and U1414. Site U1381 is located ~4.5 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. It is located on a local basement high. Basement relief often focuses fluid flow, so data from this site are likely to document the vigor of fluid flow in this area. Site U1414 is located ~1 km seaward of the deformation front offshore the Osa Peninsula and Caño Island. Primary science goals at Site U1414 included characterization of the alteration state of the magmatic basement. Brittle structures within the incoming plate (sites U1380, U1414) are mineralized extensional fractures and shear fractures. The shear fractures mainly show a normal component of shear. Within the sedimentary sequence both types of fractures dip steeply (vertical to subvertical) and strike NNE-SSW. Deformation bands trend roughly ENE-WSW, sub-parallel to the trend of the Cocos ridge. Structures in the Cocos Ridge basalt mainly comprise mineralized veins at various orientations. A preferred orientation of strike directions was not observed. Some veins show straight boundaries, others are characterized by an irregular geometry characterized by brecciated wall rock clasts embedded within vein precipitates. The vein mineralization was analysed in detail by RAMAN spectroscopy. Precipitation conditions and fluid chemistry were analysed by fluid inclusions entrapped within vein minerals. Vein mineralizations mainly consist of carbonate (fibrous aragonite, calcite), chalcedony, and quartz. Vein mineralization is mainly characterized by zoned antitaxial growth of carbonate fibres including a suture along the central vein domains. Quartz is often characterized by fibre growth of crystals perpendicular to the vein boundaries, too. These zoned veins additinally have wall rock alteration seams consisting of clay minerals. The precipitation sequence basically indicates that fluid chemistry evolved from an CO2-rich towards a SiO2- rich fluid.

  9. Comparison of two temperature control techniques in a forced water heater solar system

    NASA Astrophysics Data System (ADS)

    Hernández, E.; E Guzmán, R.; Santos, A.; Cordoba, E.

    2017-12-01

    a study on the performance of a forced solar heating system in which a comparative analysis of two control strategies, including the classic on-off control and PID control is presented. From the experimental results it was found that the two control strategies show a similar behaviour in the solar heating system forced an approximate settling time of 60 min and over-elongation 2°C for the two control strategies. Furthermore, the maximum temperature in the storage tank was 46°C and the maximum efficiency of flat plate collector was 76.7% given that this efficiency is the ratio of the energy of the radiation on the collector and the energy used to heat water. The efficiency obtained is a fact well accepted because the business efficiencies of flat plate collectors are approximately 70%.

  10. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density atmore » 170–206 Hz.« less

  11. Repeating Deep Very Low Frequency Earthquakes: An Evidence of Transition Zone between Brittle and Ductile Zone along Plate Boundary

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Yamamoto, Y.; Arai, R.

    2017-12-01

    Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent independent activity. Further 3D survey around plate boundary may take us important understanding of controlling feature of seismic and geodetic slip.

  12. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    NASA Astrophysics Data System (ADS)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of eclogitization and determine if this can sufficiently decrease the integrated strength of the lithosphere to allow a measurable increase in strain rate.

  13. Understanding pyrotechnic shock dynamics and response attenuation over distance

    NASA Astrophysics Data System (ADS)

    Ott, Richard J.

    Pyrotechnic shock events used during stage separation on rocket vehicles produce high amplitude short duration structural response that can lead to malfunction or degradation of electronic components, cracks and fractures in brittle materials, local plastic deformation, and can cause materials to experience accelerated fatigue life. These transient loads propagate as waves through the structural media losing energy as they travel outward from the source. This work assessed available test data in an effort to better understand attenuation characteristics associated with wave propagation and attempted to update a historical standard defined by the Martin Marietta Corporation in the late 1960's using out of date data acquisition systems. Two data sets were available for consideration. The first data set came from a test that used a flight like cylinder used in NASA's Ares I-X program, and the second from a test conducted with a flat plate. Both data sets suggested that the historical standard was not a conservative estimate of shock attenuation with distance, however, the variation in the test data did not lend to recommending an update to the standard. Beyond considering attenuation with distance an effort was made to model the flat plate configuration using finite element analysis. The available flat plate data consisted of three groups of tests, each with a unique charge density linear shape charge (LSC) used to cut an aluminum plate. The model was tuned to a representative test using the lowest charge density LSC as input. The correlated model was then used to predict the other two cases by linearly scaling the input load based on the relative difference in charge density. The resulting model predictions were then compared with available empirical data. Aside from differences in amplitude due to nonlinearities associated with scaling the charge density of the LSC, the model predictions matched the available test data reasonably well. Finally, modeling best practices were recommended when using industry standard software to predict shock response on structures. As part of the best practices documented, a frequency dependent damping schedule that can be used in model development when no data is available is provided.

  14. Controls on mid-ocean ridge segmentation and transform fault formation from laboratory experiments using fluids of complex rheology.

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Mittelstaedt, E. L.; Davaille, A.

    2017-12-01

    Mid-ocean ridges are tectonically segmented at scales of 10s to 100s of kilometers by several types of offsets including transform faults (TF), overlapping spreading centers (OSC), and slow-spreading non-transform offsets (NTO). Differences in segmentation along axis have been attributed to changes in numerous processes including magma supply from the upwelling mantle, viscous flow in the asthenosphere, ridge migration, and plate spreading direction. The wide variety of proposed mechanisms demonstrate that the origin of tectonic offsets and their relationship to segment-scale magmatic processes remain actively debated; each of the above processes, however, invoke combinations of tectonic and magmatic processes to explain changes in segmentation. To address the role of tectonic deformation and magmatic accretion on the development of ridge offsets, we present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Experiments are performed in a Plexiglas tank with two Plexiglas plates suspended above the base of the tank. The tank is filled with the colloidal fluid to just above the suspended plates, a thin layer of saline water is spread across the surface, and spreading initiated by moving the suspended Plexiglas plates apart at a fixed rate. Results show formation of OSCs, NTOs, and TFs. For parameters corresponding to the Earth, TF offsets are < 5 mm and form at all spreading velocities, corresponding to transform offsets of < 100 km on Earth. Measured TF offset size and ridge segment lengths exhibit a Poisson-type distribution with no apparent dependence on spreading rate. Observations of TF offset size on Earth show a similar distribution for TFs <100 km long and supports the hypothesis that TFform spontaneously through a mechanical instability of the axis. Here, we present an analysis of the magmatic and tectonic controls on axis instability leading to the formation of TFs, OSCs, and NTOs, and their implications for the evolution of mid-ocean ridges.

  15. Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Eldred, Lloyd B.

    2007-01-01

    An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.

  16. Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes.

    PubMed

    Zeng, Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun, Wenbing

    2008-05-01

    Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 murad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.

  17. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  18. Maize Brittle stalk2 Encodes a COBRA-Like Protein Expressed in Early Organ Development But Required for Tissue Flexibility at Maturity1[C][OA

    PubMed Central

    Sindhu, Anoop; Langewisch, Tiffany; Olek, Anna; Multani, Dilbag S.; McCann, Maureen C.; Vermerris, Wilfred; Carpita, Nicholas C.; Johal, Gurmukh

    2007-01-01

    The maize (Zea mays) brittle stalk2 (bk2) is a recessive mutant, the aerial parts of which are easily broken. The bk2 phenotype is developmentally regulated and appears 4 weeks after planting, at about the fifth-leaf stage. Before this time, mutants are indistinguishable from wild-type siblings. Afterward, all organs of the bk2 mutants turn brittle, even the preexisting ones, and they remain brittle throughout the life of the plant. Leaf tension assays and bend tests of the internodes show that the brittle phenotype does not result from loss of tensile strength but from loss in flexibility that causes the tissues to snap instead of bend. The Bk2 gene was cloned by a combination of transposon tagging and a candidate gene approach and found to encode a COBRA-like protein similar to rice (Oryza sativa) BC1 and Arabidopsis (Arabidopsis thaliana) COBRA-LIKE4. The outer periphery of the stalk has fewer vascular bundles, and the sclerids underlying the epidermis possess thinner secondary walls. Relative cellulose content is not strictly correlated with the brittle phenotype. Cellulose content in mature zones of bk2 mature stems is lowered by 40% but is about the same as wild type in developing stems. Although relative cellulose content is lowered in leaves after the onset of the brittle phenotype, total wall mass as a proportion of dry mass is either unchanged or slightly increased, indicating a compensatory increase in noncellulosic carbohydrate mass. Fourier transform infrared spectra indicated an increase in phenolic ester content in the walls of bk2 leaves and stems. Total content of lignin is unaffected in bk2 juvenile leaves before or after appearance of the brittle phenotype, but bk2 mature and developing stems are markedly enriched in lignin compared to wild-type stems. Despite increased lignin in bk2 stems, loss of staining with phloroglucinol and ultraviolet autofluorescence is observed in vascular bundles and sclerid layers. Consistent with the infrared analyses, levels of saponifiable hydroxycinnamates are elevated in bk2 leaves and stems. As Bk2 is highly expressed during early development, well before the onset of the brittle phenotype, we propose that Bk2 functions in a patterning of lignin-cellulosic interactions that maintain organ flexibility rather than having a direct role in cellulose biosynthesis. PMID:17932309

  19. History and evolution of Subduction in the Precambrium

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2013-12-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g. Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic subduction is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further subduction history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures < 175 K above the present day value a subduction style appears which is close to present day subduction but with more frequent slab break-off. At upper-mantle temperatures 175 - 250 K above present day values steep subduction changes to shallow underplating and buckling. For upper-mantle temperatures > 250 K above the present day value no subduction occurs any more. The whole lithosphere starts to delaminate and drip-off. But the subduction style is not only a function of upper-mantle temperature but also strongly depends on the thickness of the subducting plate. If thinner present day oceanic plates are used in the Precambrian models, no shallow underplating is observed but steep subduction can be found up to an upper-mantle temperature of 200 K above present day values. Increasing oceanic plate thickness introduces a transition from steep to flat subduction at lower temperatures of around 150 K. Thicker oceanic plates in the Precambrium also agree with results from earlier studies, e.g. Abbott (1994). References: Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 34, 961-964. Brun, J.P., 2002. Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications 200, 355-370. Subduction depends strongly on upper-mantle temperature. (a) Modern subduction with present day temperature gradients in upper-mantle and lithosphere. (b) Increase of temperature by 100 K at the lithosphere-asthenosphere boundary (LAB) leads to melting and drip-off of the of the slab-tip. (c) A temperature increase of 200 K leads to buckling of the subducting slab and Rayleigh-Taylor instabilities not only at the slab-tip but the whole LAB. At this stage subduction is no longer possible as the slab melts or breaks before it can be subducted into the mantle.

  20. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  1. Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bratton, Robert L.

    2011-01-01

    The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.

  2. The recognition and interpretation of micro-particle impacts on space craft surfaces

    NASA Astrophysics Data System (ADS)

    Kearsley, Anton

    Modern analysis instruments now allow the rapid examination of returned spacecraft surfaces, enabling the location and identification of impact features, and the attribution of their impactor origins. This paper describes application of novel electron, ion and micro-X-ray Fluorescence techniques to impacts on diverse compositions of substrate, including solar cell glass, poly-sulfone and fluoro-polymer-impregnated glass fibre composites, multilayer insulation foils, aluminium and titanium alloys. Examples will include two generations of solar cells and stiffener materials from the Hubble Space Telescope (HST), Beta-cloth from the NASA Mir-Trek cover blanket, aluminised Kapton foils from the Japanese Space Flyer Unit (SFU) and the European Retrievable Carrier (EuReCa), Al-alloy plates from the Long Duration Exposure Facility (LDEF), Al foils from the NASA Stardust mission, Al-alloy and Zinc orthotitanate (ZOT) painted alloy plate from HST, and titanium alloys from a re-entered titanium pressure tank. Each type of spacecraft surface poses unique problems of analysis, especially in the recognition of extraneous signatures from the impacting particle, especially if a complex chemical composition is already present in the target. For example, solar cells provide an excellent capture and analysis medium for monitoring fluxes of micrometre-scale orbital debris from solid rocket motor firings in low Earth orbit. However, they provide a hard and dense capture medium upon which substantial modification of the impactor may occur, making the precise identification of micrometeoroid components difficult. Unfortunately, extensive spallation by larger (> 100 micrometre) particle impacts on the thin and brittle structure of solar cells also usually results in complete loss of impactor signature. Although thick alloy surfaces may prevent complete impact penetration, the analysis of particle residues within their deep concavity has proven difficult, until the recent introduction of new high-efficiency energy dispersive X-ray (EDX) detectors. Along with Particle Induced X-ray Emission and micro-XRF imaging systems, the new EDX detectors allow recognition of subtle trace quantities of residue from even millimetre-scale craters and thin foil penetrations. Data from these differing substrates and techniques need to be integrated if we are to fully document micro-particle populations from the wide range of natural (cometary and asteroidal, i.e. micrometeoroid) and artificial (i.e. orbital debris) sources.

  3. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting

    DOE PAGES

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; ...

    2018-02-20

    Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2more » A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.« less

  4. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye

    Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2more » A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.« less

  5. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, Bill; Honig, John; Hackel, Lloyd; Dane, C. Brent; Dixit, Shamasundar

    1998-01-01

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.

  6. S-F graphic representation analysis of photoelectric facula focometer poroo-plate glass

    NASA Astrophysics Data System (ADS)

    Tong, Yilin; Han, Xuecai

    2016-10-01

    Optical system focal length is usually based on the magnification method with focal length measurement poroo-plate glass is used as base element measuring focal length of focometer. On the basis of using analysis of magnification method to measure the accuracy of optical lens focal length, an expression between the ruling span of poroo-plate glass and the focal length of measured optical system was deduced, an efficient method to work out S-F graph with AUTOCAD was developed, the selecting principle of focometer parameter was analyzed, and Applied examples for designing poroo-plate glass in S-F figure was obtained.

  7. Distributed coupling high efficiency linear accelerator

    DOEpatents

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  8. Investigation on filter method for smoothing spiral phase plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  9. The constraint method: A new finite element technique. [applied to static and dynamic loads on plates

    NASA Technical Reports Server (NTRS)

    Tsai, C.; Szabo, B. A.

    1973-01-01

    An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.

  10. Extended plate and beam demonstration home

    Treesearch

    Patricia Gunderson; Vladimir Kochkin; Xiping Wang

    2018-01-01

    An extended plate and beam (EP&B) design was developed at Home Innovation Research Labs (Upper Marlboro, Maryland) in an effort to provide traditional light-frame wall construction details that are compatible with continuous insulating sheathing. This would encourage wide-spread adoption of high-R walls and promote greater energy efficiency in new houses. The...

  11. Grooved Armor Plate

    DTIC Science & Technology

    1935-05-16

    that many of the olateo tested do sux^ ass the reouired limita by a considerable margin. Therefore, the efficiency of these grooved plate...Plpte Thicknesn B>lll<tle .Llji^f - ./.. s... a’ ^ea:: of All RtSUltS !’ Teen of Rlgbeot lOf of All Reoultr. s/i«- 1830 an« 7/16" ?180

  12. 76 FR 17577 - Increased Scope of Coverage for Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... motors do not include a full frame, front plate, bearings, shaft, or shaft support. Because the ability.... chosen, the efficiency of these motors is therefore dependent on the application. Because of this, they... face plate, and therefore can be tested with a ``dummy test bracket'' using the current test procedure...

  13. Preheating Water In The Covers Of Solar Water Heaters

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1995-01-01

    Solar water heaters that include glass covers over absorber plates redesigned to increase efficiencies according to proposal. Redesign includes modification of single-layer glass cover into double-layer glass cover and addition of plumbing so cool water to be heated made to flow between layers of cover before entering absorber plate.

  14. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....037 Where: d = inside diameter in inches; E = 1.0 welded joint efficiency; P = minimum required bursting pressure in psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179... −d 2) where: d = inside diameter in inches; D = outside diameter in inches; p = tank test pressure in...

  15. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural cracking directly into account may provide a more physics-based approach for compressive failure in the future.

  16. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.

  17. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    PubMed Central

    Rehman, Atteq ur; Lee, Soo Hong

    2014-01-01

    Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed. PMID:28788516

  18. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells.

    PubMed

    Rehman, Atteq Ur; Lee, Soo Hong

    2014-02-18

    Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  19. Development of zinc-plated regenerator material

    NASA Astrophysics Data System (ADS)

    Y Xu, M.; Morie, T.; Tsuchiya, A.

    2017-12-01

    An effective way to improve the efficiency of a cryocooler is to improve the efficiency of the regenerator. In general, the heat capacity of materials decreases as temperature decreases. Thus, when temperature is below 40 K, lead or bismuth spheres are often used as regenerator materials. However, the pressure drop in a sphere regenerator is much larger than that in a screen regenerator. To overcome this dilemma, Xu et al. reported that cooling performance at the temperature of less than 40 K was improved when using tin-plated screens at the cold end of the regenerator. However, the reliability of tin at low temperatures is still not verified fully because of its phase transition from a normal β phase to an abnormal α phase, which may result in a significant reduction of the mechanical strength. In this paper, a zinc-plated screen is proposed as another potential alternative. A comparison test was performed with a two-stage GM cryocooler by replacing part of the first stage regenerator material, phosphorus bronze screens, with zinc-plated screens. Compared to a regenerator filled with bronze screens, the cooling capacity of the first stage increased by about 11% at 40 K and 60% at 30 K with these zinc-plated screens. The detailed experimental results are reported in this paper.

  20. Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures

    NASA Astrophysics Data System (ADS)

    Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.

    1999-12-01

    The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.

  1. The memory of the accreting plate boundary and the continuity of fracture zones

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.

    1982-01-01

    A detailed aeromagnetic anomaly map of the Mesozoic seafloor-spreading lineations southwest of Bermuda reveals the dominant magnetic grain of the oceanic crust and the character of the accreting boundary at the time of crustal formation. The magnetic anomaly pattern is that of a series of elongate lobes perpendicular to the fracture zone (flowline) trends. The linear sets of magnetic anomaly peaks and troughs have narrow regions of reduced amplitude anomalies associated with the fracture zones. During the period of Mesozoic geomagnetic polarity reversals (when 1200 km of central North Atlantic seafloor formed), the Atlantic accreting boundary consisted of stationary, elongate, spreading center cells that maintained their independence even though sometimes only minor spatial offsets existed between cells. Normal oceanic crustal structure was formed in the spreading center cells, but structural anomalies and discontinuities characteristic of fracture zones were formed at their boundaries, which parallel flowlines of Mesozoic relative plate motion in the central North Atlantic. We suggest that the memory for a stationary pattern of independent spreading center cells resides in the young brittle lithosphere at the accreting boundary where the lithosphere is weakest; here, each spreading center cell independently goes through its cylce of stress buildup, stress release, and crustal accretion, after which its memory is refreshed. The temporal offset between the peaks of the accretionary activity that takes place within each cell may provide the mechanism for maintaining the independence of adjacent spreading center cells through times when no spatial offset between the cells exists.

  2. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  3. Assessment of the RIVET fixation system for cranioplasty using the pull-out technique.

    PubMed

    Sakamoto, Yoshiaki; Minabe, Toshiharu; Kato, Tatsuya; Kishi, Kazuo

    2015-03-01

    Cranioplasty using custom-made hydroxyapatite (HAP) ceramic implants is a common procedure to repair skull defects. However, commercially available titanium screws are only minimally stabilized due to characteristic brittleness. We developed the RIVET technique which involves fixing a bioabsorbable plate atop a HAP block using bioabsorbable screws extending beyond both layers, and evaluated fixation strength using the pull-out test and microtomography. Three experimental conditions were compared: a non-RIVET group, RIVET group, and dry skull control group. Pull-out strength significantly differed across groups (non-RIVET group, 1.33 ± 1.21 kgf; RIVET group, 4.46 ± 0.84 kgf; and control group, 6.99 ± 1.14 kgf, P < 0.01). Microtomography of the dry skull control group revealed thread grooves fitted to the screws. The non-RIVET and RIVET groups presented fewer thread grooves than the control group, and the screws did not fit perfectly to the HAP block. However, fixation in the RIVET group was more stable, as the rivet was firmly lodged into the implant. In conclusion, by melting and creating the rivet, pull-out strength can be increased and rigid stabilization of HAP can be obtained. This technique uses commercially available absorbable plate and screws, and thus can be used widely in clinical applications involving HAP blocks with different porosities and thicknesses. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. The influence of propolis on rheological properties of lipstick.

    PubMed

    Goik, U; Ptaszek, A; Goik, T

    2015-08-01

    The aim of this work was to study the effect of propolis on the rheological and textural properties of lipsticks. The studied lipsticks were based on raw materials and contained no synthetic compounds, preservatives, fragrances or dyes. The rheological and textural properties of the prepared lipsticks, both with and without propolis, were studied as a function of temperature and storage period. Measurements were taken using an RS6000 rheometer (Haake, Germany) with a cone-plate sensor. The cone parameters were as follows: diameter 35 mm and angle 2°. Textural tests were performed using the same cone-plate geometry. The research results of rheological and textural properties of lipsticks, with and without the addition of propolis, indicate the possibility of application of propolis as a beneficial additive to such type of cosmetics. The presence of propolis does not significantly alter the viscoelastic properties of the lipsticks. The courses of flow curves indicate shear thinning, which is very advantageous from an application point of view. From the rheological point of view, the properties of lipsticks tested in low deformation conditions show some structural changes, most likely due to consolidation of the structure. The analysis of textural properties indicates that lipsticks with added propolis are more brittle and prone to crushing. However, the temperature increase (30°C) does not cause significant changes to the textural characteristics of these lipsticks. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Eurekan deformation on Prins Karls Forland, Svalbard - new insights from Ar40/Ar39 muscovite dating

    NASA Astrophysics Data System (ADS)

    Faehnrich, Karol; Schneider, David; Manecki, Maciej; Czerny, Jerzy; Myhre, Per Inge; Majka, Jarosław; Kośmińska, Karolina; Barnes, Christopher; Maraszewska, Maria

    2017-04-01

    Eurekan deformation has been proven to be a complex sequence of tectonic episodes, dominated by compression in the Circum Arctic region. It was associated with early Cenozoic collision of Eurasia, North America and Greenland plates producing fold-thrust belt style of deformation. Timing of this enigmatic event has not yet been extensively resolved by radiometric dating (Piepjohn et al. 2016, Journal of the Geological Society, 173(6), 1007-1024). Reinhardt et al. (2013, Z. Dt. Ges. Geowiss., 164 (1), 131-147) dated syn-tectonic volcanic ashes at c. 60 Ma and 54 Ma on Ellesmere Island, Canada. Tagner et al. (2011, Earth and Planetary Science Letters, 303(3), 203-214) interpreted c. 49-47 Ma 40Ar/39Ar ages on trachyte flows in northern Greenland as peak compression during the Eurekan event. On Svalbard, Tessensohn et al. (2001, Geologisches Jahrbuch, B 91, 83-104) reported K/Ar whole rock ages ranging from c. 67 to 49 Ma for the slates from Svartfjella-Eidembukta-Daudmannsodden Lineament. Bentonite layers in the Central Tertiary Basin are as young as c. 56 Ma (Charles et al. 2011, Geochem. Geophys. Geosyst., 12, 1-19), predating latest deformation. Moreover, Barnes et al (2017, in prep.) applied (U-Th)/He thermochronology along the western margin of Svalbard and resolved Early to Middle Eocene heating, likely documenting burial related to thrusting. Here we present new results from 40Ar/39Ar muscovite dating of ductile to brittle shear zone on Prins Karls Forland, Svalbard, indicating Eurekan age of thrusting. Prins Karls Forland is dominated by Neoproterozoic siliciclastic metasediments (comprising Caledonian basement) regionally metamorphosed to greenschist facies conditions. A ˜1 km wide ductile to brittle shear zone (the Bouréefjellet shear zone) separates the amphibolite facies Pinkie Unit from the lower grade upper structural unit, the Grampianfjella Formation (Faehnrich et al. 2016, EGU 2016). The age of the amphibolite facies metamorphism (c. 370-355 Ma) indicates Ellesmerian tectonism, unlike other higher grade rocks on Svalbard (Kośmińska et al. 2016, EGU 2016). Ten metasedimentary rocks from within the shear zone were collected for dating, with eight muscovite crystals dated per sample via 40Ar/39Ar total fusion. High strain is evinced by mylonitic fabric, mica fish or C' shear zones. Moreover, quartz was dynamically recrystallized with significant grain boundary migration. There is notable age dispersion between the samples with weighted mean ages varying from 45 up to 103 Ma and single grain ages are more than 300 Ma, reflecting partial recrystallization and resetting during Eurekan deformation. Younger ages were obtained from lower structural levels, yielding dates of 44 to 54 Ma for the Eurekan deformation on Prins Karls Forland. We suggest that an Ellesmerian ductile shear zone was reactivated during Eocene (commencing as early as 54 Ma) progressing to brittle conditions which continued after 44 Ma. These are the first documented Eurekan 40Ar/39Ar muscovite deformation ages from Svalbard, and enable to better distinguish individual stages of the Eurekan deformation in the Eocene improving our understanding of relative plate tectonic movements. This work is partially funded by AGH research grant no 11.11.140.319 and the NCN research projects 2013/11/N/ST10/00357 and 2015/17/B/ST10/03114.

  6. A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle-Ductile Transition in Mechanical Response

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian

    2018-06-01

    As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.

  7. A damage-tolerant glass.

    PubMed

    Demetriou, Marios D; Launey, Maximilien E; Garrett, Glenn; Schramm, Joseph P; Hofmann, Douglas C; Johnson, William L; Ritchie, Robert O

    2011-02-01

    Owing to a lack of microstructure, glassy materials are inherently strong but brittle, and often demonstrate extreme sensitivity to flaws. Accordingly, their macroscopic failure is often not initiated by plastic yielding, and almost always terminated by brittle fracture. Unlike conventional brittle glasses, metallic glasses are generally capable of limited plastic yielding by shear-band sliding in the presence of a flaw, and thus exhibit toughness-strength relationships that lie between those of brittle ceramics and marginally tough metals. Here, a bulk glassy palladium alloy is introduced, demonstrating an unusual capacity for shielding an opening crack accommodated by an extensive shear-band sliding process, which promotes a fracture toughness comparable to those of the toughest materials known. This result demonstrates that the combination of toughness and strength (that is, damage tolerance) accessible to amorphous materials extends beyond the benchmark ranges established by the toughest and strongest materials known, thereby pushing the envelope of damage tolerance accessible to a structural metal.

  8. Brittle and ductile friction and the physics of tectonic tremor

    USGS Publications Warehouse

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  9. Forced tearing of ductile and brittle thin sheets.

    PubMed

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  10. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion

    PubMed Central

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al12W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs. PMID:23056910

  11. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion.

    PubMed

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  12. Sometimes two arms are enough--an unusual life-stage in brittle stars (Echinodermata: Ophiuroidea).

    PubMed

    Stöhr, Sabine; Alme, Øydis

    2015-08-03

    Off West Africa (Angola-Morocco), benthos samples were collected in the years 2005-2012. These contained 124 specimens of brittle stars with two long arms and three extremely short or absent arms and an elongated, narrow disc. These unusual brittle stars, as well as 33 specimens with five fully developed arms, were identified as Amphiura ungulata. The specimens with unequal arms were juvenile stages, whereas adults had five equal arms. The large number of specimens with unequal arms suggests that this condition is not the result of damage and regeneration, but a normal growth pattern in this species. This study documents the morphology by SEM, amends the species description, and discusses possible explanations for the evolution of this condition. Although brittle star species with unequal arm growth have been reported, this is an extreme case that was unknown before this study.

  13. A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

    NASA Astrophysics Data System (ADS)

    Li, Jie; Huang, Houxu; Wang, Mingyang

    2017-03-01

    In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack's behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using the p-alpha ( p- α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.

  14. Variation of depth to the brittle-ductile transition due to cooling of a midcrustal intrusion.

    USGS Publications Warehouse

    Gettings, M.E.

    1988-01-01

    The depth to the brittle-ductile transition in the crust is often defined by the intersection of a shear resistance relation in the brittle upper crust that increases linearly with depth and a power law relation for ductile flow in the lower crust that depends strongly on T. Transient variation of this depth caused by a magmatic intrusion at a depth near the regional transition can be modelled by a heat conduction model for a rectangular parallelepiped superimposed on a linear geothermal gradient. When parameters appropriate for the southeastern US are used, a moderate-sized intrusion is found to decrease the transition depth by as much as 7 km; significant variations last approx 10 m.y. Since the base of the seismogenic zone is identified with the brittle-ductile transition, these results imply that intrusions of late Tertiary age or younger could be important sources of clustered seismicity. -A.W.H.

  15. Induction-heating MOCVD reactor with significantly improved heating efficiency and reduced harmful magnetic coupling

    NASA Astrophysics Data System (ADS)

    Li, Kuang-Hui; Alotaibi, Hamad S.; Sun, Haiding; Lin, Ronghui; Guo, Wenzhe; Torres-Castanedo, Carlos G.; Liu, Kaikai; Valdes-Galán, Sergio; Li, Xiaohang

    2018-04-01

    In a conventional induction-heating III-nitride metalorganic chemical vapor deposition (MOCVD) reactor, the induction coil is outside the chamber. Therefore, the magnetic field does not couple with the susceptor well, leading to compromised heating efficiency and harmful coupling with the gas inlet and thus possible overheating. Hence, the gas inlet has to be at a minimum distance away from the susceptor. Because of the elongated flow path, premature reactions can be more severe, particularly between Al- and B-containing precursors and NH3. Here, we propose a structure that can significantly improve the heating efficiency and allow the gas inlet to be closer to the susceptor. Specifically, the induction coil is designed to surround the vertical cylinder of a T-shaped susceptor comprising the cylinder and a top horizontal plate holding the wafer substrate within the reactor. Therefore, the cylinder coupled most magnetic field to serve as the thermal source for the plate. Furthermore, the plate can block and thus significantly reduce the uncoupled magnetic field above the susceptor, thereby allowing the gas inlet to be closer. The results show approximately 140% and 2.6 times increase in the heating and susceptor coupling efficiencies, respectively, as well as a 90% reduction in the harmful magnetic flux on the gas inlet.

  16. An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2016-04-01

    This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

  17. Effect of fly ash on catalytic removal of gaseous dioxins over V{sub 2}O{sub 5}-WO{sub 3} catalyst of a sinter plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Hao Chang; Kai Hsien Chi; Chi Wei Young

    2009-10-01

    A PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran)-containing gas stream generating system was developed to investigate the efficiency and effectiveness of V{sub 2}O{sub 5}-WO{sub 3} catalyst for PCDD/F destruction. Catalytic decomposition of PCDD/Fs (simulated gas streams) was evaluated with lab-scale pelletized and plate-type catalyst based on V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} at controlled temperature, space velocity, and inlet PCDD/F concentration. Due to the lower porosity of the pelletized catalyst, PCDD/F destruction efficiencies reach 72.9-83.2% for different levels of inlet PCDD/F concentrations (1.08-3.04 ng-TEQ/Nm{sup 3}) of the gas stream (space velocity: 5000 h-1). As the surface area is increased from 287 m{sup 2}/m{supmore » 3} (plate-type A) to 550 m{sup 2}/m{sup 3} (plate-type B), the PCDD/F destruction achieved with plate-type catalyst increases from 76.0% to 85.3% at 320{sup o}C (space velocity: 5000 h{sup -1}). In addition, the results of pilot-scale experiment (real flue gases of a sinter plant) indicate that relatively lower PCDD/F destruction efficiencies (62.1-65.7%) were achieved with the plate-type B catalyst as the solid-phase PCDD/F and fly ash passed through the reactor (space velocity: 5000 h{sup -1}). Overall, the lab-scale and pilot-scale experiments indicate that PCDD/F destructions achieved with pelletized and plate-type catalysts strongly depend on the operating temperature of the catalyst. The results also indicate that the presence of fly ash lowers PCDD/F destruction due to significant PCDD/F formation via de novo synthesis at 320{sup o}C. 20 refs., 5 figs., 3 tabs.« less

  18. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less

  19. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  20. Optomechanical study and optimization of cantilever plate dynamics

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1995-06-01

    Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.

  1. Probing the Statistical Validity of the Ductile-to-Brittle Transition in Metallic Nanowires Using GPU Computing.

    PubMed

    French, William R; Pervaje, Amulya K; Santos, Andrew P; Iacovella, Christopher R; Cummings, Peter T

    2013-12-10

    We perform a large-scale statistical analysis (>2000 independent simulations) of the elongation and rupture of gold nanowires, probing the validity and scope of the recently proposed ductile-to-brittle transition that occurs with increasing nanowire length [Wu et al. Nano Lett. 2012, 12, 910-914]. To facilitate a high-throughput simulation approach, we implement the second-moment approximation to the tight-binding (TB-SMA) potential within HOOMD-Blue, a molecular dynamics package which runs on massively parallel graphics processing units (GPUs). In a statistical sense, we find that the nanowires obey the ductile-to-brittle model quite well; however, we observe several unexpected features from the simulations that build on our understanding of the ductile-to-brittle transition. First, occasional failure behavior is observed that qualitatively differs from that predicted by the model prediction; this is attributed to stochastic thermal motion of the Au atoms and occurs at temperatures as low as 10 K. In addition, we also find that the ductile-to-brittle model, which was developed using classical dislocation theory, holds for nanowires as small as 3 nm in diameter. Finally, we demonstrate that the nanowire critical length is higher at 298 K relative to 10 K, a result that is not predicted by the ductile-to-brittle model. These results offer practical design strategies for adjusting nanowire failure and structure and also demonstrate that GPU computing is an excellent tool for studies requiring a large number of independent trajectories in order to fully characterize a system's behavior.

  2. A comprehensive method for the fracability evaluation of shale combined with brittleness and stress sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiong; Ge, Hongkui; Wang, Daobing; Wang, Jianbo; Chen, Hao

    2017-12-01

    An effective fracability evaluation on the fracture network is key to the whole process of shale gas exploitation. At present, neither a standard criteria nor a generally accepted evaluation method exist. Well log and laboratory results have shown that the commonly used brittleness index calculated from the mineralogy composition is not entirely consistent with that obtained from the elastic modulus of the rock, and is sometimes even contradictory. The brittle mineral reflects the brittleness of the rock matrix, and the stress sensitivity of the wave velocity reflects the development degree of the natural fracture system. They are both key factors in controlling the propagating fracture morphology. Thus, in this study, a novel fracability evaluation method of shale was developed combining brittleness and stress sensitivity. Based on this method, the fracability of three shale gas plays were evaluated. The cored cylindrical samples were loaded under uniaxial stress up to 30 MPa and the compressional wave velocities were obtained along the axis stress direction at each MPa stress. From the stress velocity evolution, the stress sensitivity coefficients could be obtained. Our results showed that the fracability of Niutitang shale is better than that of Lujiaping shale, and the fracability of Lujiaping shale is better than Longmaxi shale. This result is in good agreement with acoustic emission activity measurements. The new fracability evaluation method enables a comprehensive reflection of the characteristics of rock matrix brittleness and the natural fracture system. This work is valuable for the evaluation of hydraulic fracturing effects in unconventional oil and gas reservoirs in the future.

  3. Polarization Raman spectroscopy to explain rodent models of brittle bone

    NASA Astrophysics Data System (ADS)

    Makowski, Alexander J.; Nyman, Jeffry S.; Mahadevan-Jansen, Anita

    2013-03-01

    Activation Transcription Factor 4 (Atf-4) is essential for osteoblast maturation and proper collagen synthesis. We recently found that these bones demonstrate a rare brittleness phenotype, which is independent of bone strength. We utilized a confocal Renishaw Raman microscope (50x objective; NA=.75) to evaluate embedded, polished cross-sections of mouse tibia from both wild-type and knockout mice at 8 weeks of age (24 mice, n<=8 per group). Analysis of peak ratios indicated statistically significant changes in both mineral and collagen; however, compositional changes did not fully encompass biomechanical differences. To investigate the impact of material organization, we acquired colocalized spectra aligning the polarization angle parallel and perpendicular to the long bone axis from wet intact femurs. To validate our results, we used MMP9-/- mice, which have a brittleness phenotype that is not explained by compositional Raman measures. Polarization angle difference spectra show marked significant changes in orientation of these compositional differences when comparing wild type to knockout bones. Relative to wild-type, Atf4 -/- and MMP9 -/- bones show significant differences (t-test; p<0.05) in prominent collagen peaks. Further investigation of known peak ratios illustrates that this physical anisotropy of molecular organization is tightly clustered in brittle knockout bones. Such findings could have alternate interpretations about net collagen orientation or the angular distribution of collagen molecules. Use of polarization specific Raman measurements has implicated a structural profile that furthers our understanding of models of bone brittleness. Polarization content of Raman spectra may prove significant in future studies of brittle fracture and human fracture risk.

  4. Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps

    NASA Astrophysics Data System (ADS)

    Frost, Erik; Dolan, James; Ratschbacher, Lothar; Hacker, Bradley; Seward, Gareth

    2011-02-01

    Structural analysis of two key exposures reveals the architecture of the brittle-ductile transition (BDT) of the subvertical, strike-slip Salzachtal fault. At Lichtensteinklamm, the fault zone is dominantly brittle, with a ˜70 m wide, high-strain fault core highlighted by a 50 m thick, highly foliated gouge zone. In contrast, at Kitzlochklamm, deformation is dominantly ductile, albeit with relatively low strain indicated by weak lattice-preferred orientations (LPOs). The marked contrast in structural style indicates that these sites span the BDT. The close proximity of the outcrops, coupled with Raman spectroscopy indicating similar maximum temperatures of ˜400°C, suggests that the difference in exhumation depth is small, with a commensurately small difference in total downdip width of the BDT. The small strains indicated by weak LPOs at Kitzlochklamm, coupled with evidence for brittle slip at the main fault contact and along the sides of a 5 m wide fault-bounded sliver of Klammkalk exposed 30 m into the Grauwacken zone rocks, suggest the possibility that this exposure may record hybrid behavior at different times during the earthquake cycle, with ductile deformation occurring during slow interseismic slip and brittle deformation occurring during earthquakes, as dynamic coseismic stresses induced a strain rate-dependent shift to brittle fault behavior within the nominally ductile regime in the lower part of the BDT. A key aspect of both outcrops is evidence of a high degree of strain localization through the BDT, with high-strain fault cores no wider than a few tens of meters.

  5. A probabilistic approach towards understanding how planet composition affects plate tectonics - through time and space.

    NASA Astrophysics Data System (ADS)

    Stamenkovic, V.

    2017-12-01

    We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are suggested to be statistically more common around young stars in the outer disk of the Milky Way. Rocky super-Earths, undifferentiated planets, and still hypothetical carbon planets have the lowest plate yielding efficiencies found in our study. This work aids exoplanet characterization and helps explore the fundamental drivers of plate tectonics.

  6. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    PubMed

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  7. Time variability in Cenozoic reconstructions of mantle heat flow: Plate tectonic cycles and implications for Earth's thermal evolution

    PubMed Central

    Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.

    2007-01-01

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806

  8. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.A. Christini; R.K. Dawless; S.P. Ray

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.« less

  9. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  10. Field programmable gate arrays-based number plate binarization and adjustment for automatic number plate recognition systems

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza

    2013-01-01

    Number plate (NP) binarization and adjustment are important preprocessing stages in automatic number plate recognition (ANPR) systems and are used to link the number plate localization (NPL) and character segmentation stages. Successfully linking these two stages will improve the performance of the entire ANPR system. We present two optimized low-complexity NP binarization and adjustment algorithms. Efficient area/speed architectures based on the proposed algorithms are also presented and have been successfully implemented and tested using the Mentor Graphics RC240 FPGA development board, which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run with a maximum frequency of 95.8 MHz and are capable of processing one image in 0.07 to 0.17 ms.

  11. Chromatic characterization of ion-exchanged glass binary phase plates for mode-division multiplexing.

    PubMed

    Prieto-Blanco, Xesús; Montero-Orille, Carlos; Moreno, Vicente; Mateo, Eduardo F; Liñares, Jesús

    2015-04-10

    Mode-division multiplexing (MDM) in few-mode fibers is regarded as a promising candidate to increase optical network capacity. A fundamental element for MDM is a modal transformer to LP modes which can be implemented in a free-space basis by using multiregion phase plates, that is, LP plates. Likewise, several wavelengths have to be used due to wavelength multiplexing purposes, optical amplification tasks, and so on. In this work we show that efficient monolithic binary phase plates for different wavelengths can be fabricated by ion-exchange in glass and used for MDM tasks. We introduce an optical characterization method of the chromatic properties of such phase plates which combines the inverse Wentzel-Kramers-Brillouin (IWKB) together with Mach-Zehnder and Michelson-based interferometric techniques. The interferometric method provides a measurement of the phase step for several wavelengths, which characterizes the chromatic properties of the phase plate. Consequently, it is shown that the IWKB method allows us to design and characterize the phase plates in an easy and fast way.

  12. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  13. Heat adaptation of bioabsorbable craniofacial plates: a critical review of science and technology.

    PubMed

    Pietrzak, William S

    2009-11-01

    Bioabsorbable fixation plates often require adaptation to the bone. This is typically accomplished by heating the plates to above the glass transition temperature and placing the softened plates against the bone or a prebent template until cool. Upon cooling, the plates regain stiffness and can be attached to bone to obtain anatomic fixation. This procedure is both efficient and effective and has been used throughout the craniofacial skeleton. There are many types of equipment available to heat the plates, each with advantages and disadvantages. Although a conceptually simple process, there are several nuances that have been reported in the literature, including transient effects on plate mechanical properties, memory effects, differences between wet and dry heating, and others. Upon the backdrop of the overwhelming clinical success of heat adaptation, this review critically evaluates the method and provides a comprehensive examination and explanation of the basic science and technology involved. This should help give surgeons a better understanding of the process that can help improve their use and further advance the technology.

  14. Preventing and Treating Brittle Bones and Osteoporosis | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Javascript on. Feature: Osteoporosis Preventing and Treating Brittle Bones and Osteoporosis Past Issues / Winter 2011 Table of ... at high risk due to low bone mass. Bone and Bone Loss Bone is living, growing tissue. ...

  15. Nanotubular Toughening Inclusions

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the intrinsic physical properties of the matrix.

  16. Nanotubular Toughening Inclusions

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2015-01-01

    Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.

  17. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    NASA Astrophysics Data System (ADS)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  18. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  19. Killing of Bacillus Megaterium Spores by X-rays at the Phosphorus K-edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10(exp 18) photons/sec/sq mm. The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140 eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

  20. Killing of Bacillus Megaterium Spores by X-Rays at the Phosphorus K-Edge

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Frigo, Sean P.; Ehret, Charles F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This study continues a progression of experiments on the radiation-induced killing of bacterial spores that began at the Argonne National Laboratory in 1957. A series of aliquots of Bacillus megaterium spores were prepared onto polycarbonate filters and irradiated with photons of 2159 eV compared to 2140 eV energy on the 2-IDB beamline at the Advanced Photon Source. Flux density was approximately 10 photons/sec/mm . The phosphorous K-edge absorption spectrum in these spores was determined to peak at 2159 eV, wheras 2140 eV was determined to be outside that absorption spectrum. Spores on filters were irradiated at ambient conditions, and were either immediately plated for colony formation after irradiation, or were held for postirradiation exposure to oxygen prior to plating. Slopes of survival curves from the four conditions of irradiation, i.e., two photon energies each comparing immediate plating vs postirradiation holding, were used for quantitative determination of differences in rates of spore killing over a range of radiation doses. It was found that spores irradiated at the phosphorus K-edge were killed 20% more efficiently than when irradiated with 2140eV photons, and this was true for both immediate plating and postirradiation holding in air. Postirradiation holding in air increased killing efficiency by about 12% for both photon energies compared to plating immediately after irradiation. The increase of killing efficiency with postirradiation holding is less than expected from earlier experiments using relatively low-flux X-rays, and raises the possibility of dose-mitigation by radical-radical recombination in the case of high-flux X-rays from the synchrotron.

Top