Sample records for efficient buildings program

  1. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.« less

  2. Building Energy Asset Score for Utilities and Energy Efficiency Program Administrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for utilities and energy efficiency program administrators.

  3. Advanced Commercial Buildings Initiative Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Sydney G.

    The Southface Advanced Commercial Buildings Initiative has developed solutions to overcome market barriers to energy reductions in small commercial buildings by building on the success of four local and Southeast regional energy efficiency deployment programs. These programs address a variety of small commercial building types, efficiency levels, owners, facility manager skills and needs for financing. The deployment programs also reach critical private sector, utility, nonprofit and government submarkets, and have strong potential to be replicated at scale. During the grant period, 200 small commercial buildings participated in Southface-sponsored energy upgrade programs, saving 166,736,703 kBtu of source energy.

  4. Energy Efficient Building Management | Climate Neutral Research Campuses |

    Science.gov Websites

    NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may

  5. How effective is mandatory building energy disclosure program in Australia?

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lim, B. T. H.

    2018-04-01

    Mandatory green building regulations are often considered as the most effective tool to promote better energy efficiency and environmental protection. Nevertheless, its effectiveness compared to the voluntary counterpart has not been fully explored yet. In addressing this gap, this study aims to examine the environmental performance of green building stocks affected by the Australian mandatory building energy disclosure program. To this, this study analysed energy savings and carbon reduction efficiencies using the normalisation approach. The result shows that mandatory energy disclosure program did contribute to the reduction in energy usage and carbon emissions from the affected building stocks. More specifically, affected green building stocks showed a good efficiency especially in carbon reductions. The research results inform policymakers the possible improvement required for the mandatory disclosure program to increase the effectiveness towards dealing with the contemporary environmental issues aroused from the building sector, especially in energy savings perspective.

  6. Energy Efficiency Program Administrators and Building Energy Codes

    EPA Pesticide Factsheets

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  7. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operationmore » in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.« less

  8. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heslin, Thomas

    The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park District’s Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi-stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The City’s target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern themore » NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowell’s success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi-family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.« less

  9. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed for this analysis indicates that this method of market prediction may be used to adequately capture cumulative construction metrics for a whole-building analysis as opposed to individual energy efficiency measures used in green building.

  10. City of San Antonio, Texas Better Buildings Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Liza C.; Hammer, Mary C.

    2014-06-30

    The San Antonio Better Buildings Program is a unified single-point-of-service energy efficiency delivery mechanism targeting residential, commercial, institutional, industrial and public buildings. This comprehensive and replicable energy efficiency program is designed to be an effective demand side management initiative to provide a seamless process for program participants to have turn-key access to expert analysis, support and incentives to improve the performance of their in-place energy using systems, while reducing electrical energy use and demand.

  11. Interim Final Report for the Strengthening Retrofit Markets for Comprehensive Savings in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinking, Rick; Adamson, Joy M

    2013-12-20

    Energy efficiency is vitally important in Maine. Nearly 70% of Maine households rely on fuel oil as their primary energy source for home heating, a higher share than in any other state. Coupled with the state's long, cold winters, Maine's dependence on oil renders homeowners particularly vulnerable to fluctuating fuel costs. With $4.5 million in seed funding from the Energy Department's Better Buildings Neighborhood Program, the Governor's Energy Office (GEO), through Efficiency Maine Trust (the Trust), is spurring Maine landlords to lower their monthly energy bills and improve comfort for their tenants during the state's cold winter months and increasinglymore » warmer summers. Maine's aging multifamily housing stock can be expensive to heat and costly to maintain. It is not unusual to find buildings with little or no insulation, drafty windows, and significant air leaks, making them ideal candidates for energy efficiency upgrades. Maine modeled its Multifamily Efficiency Program (MEP) after the state's highly successful Home Energy Savings Program (HESP) for single-family homes. HESP provided cash incentives and financing opportunities to owners of one-to four-unit structures, which resulted in thousands of energy assessments and whole-house energy upgrades in 225 communities. Maine's new MEP multifamily energy efficiency upgrade and weatherization initiative focuses on small to medium-sized (i.e., five to 20 units) apartment buildings. The program's energy efficiency upgrades will provide at least 20% energy savings for each upgraded multifamily unit. The Trust’s MEP relies on a network of approved program partners who help move projects through the pipeline from assessment to upgrade. MEP has two components: benchmarking and development of an Energy Reduction Plan (ERP). Using the ENERGY STAR® Portfolio Manager benchmarking tool, MEP provides an assessment of current energy usage in the building, establishes a baseline for future energy efficiency improvements, and enables tracking and monitoring of future energy usage at the building— all at no cost to the building owner. The ERP is developed by a program partner using either the Trust’s approved modeling or prescriptive tools; it provides detailed information about the current energyrelated conditions in the building and recommends energy efficiency, health, and safety improvements. The Trust's delivery contractor provides quality assurance and controls throughout the process. Through this effort, MEP's goal is to establish a self-sustaining, market-driven program, demonstrating the value of energy efficiency to other building owners. The increasing value of properties across the state will help incentivize these owners to continue upgrades after the grant period has ended. Targeting urban areas in Maine with dense clusters of multifamily units—such as Portland, Lewiston- Auburn, Bangor, and Augusta—MEP engaged a variety of stakeholder groups early on to design its multifamily program. Through direct emails and its website, program officials invited lending institutions, building professionals, engineering firms, equipment distributors, and local property owners associations to attend open meetings around the state to learn about the goals of the multifamily program and to help define its parameters. These meetings helped program administrators understand the diversity of the customer base: some owners are individuals with a single building, while other owners are groups of people or management companies with an entire portfolio of multifamily buildings. The diversity of the customer base notwithstanding, owners see MEP as an opportunity to make gains in their respective properties. Consistently high turnouts at stakeholder meetings fueled greater customer interest as awareness of the program spread through word of mouth. The program also gained traction by utilizing the program partner networks and building on the legacy of the Trust’s successful HESP for single-family residences. MEP offers significant incentives for building owners to participate in the upgrade program. Wholebuilding benchmarking services are available to most multifamily housing buildings free of charge. The service provides the building owner with an assessment of the building's current energy efficiency as compared to other multifamily buildings on a national scale, establishes a baseline to measure future improvements, and enables owners to track monthly energy consumption using the ENERGY STAR Portfolio Manager. Once the benchmarking process is complete, the program links building owners with approved program partners (e.g., energy professionals, home performance contractors) to identify and implement specific energy-saving opportunities in the building. Program partners can also provide project quotes with estimated financing incentives and payback period calculations that enable building owners to make informed decisions. What's more, the Trust provides two financial incentives for successful completion of program milestones. The first is a per-unit incentive for completion of an approved ERP (i.e., $100 per unit if a prescriptive path is followed, and $200 per unit for a modeled ERP). Upon final inspection of the installed project scope of work, an incentive of $1,400 per unit or 50% of installed cost—whichever is less—is paid. The Trust originally established a $1 million loan-loss reserve fund (LLRF) to further enhance financing opportunities for qualified multifamily building owners. This funding mechanism was designed to connect building owners with lenders that retain the mortgages for their properties and encourages the lenders to offer financing for energy efficiency improvements. However, there has been no interest in the LLRF and therefore the LLRF has been reduced. Ultimately, MEP plans to build an online tool for building owners to assess opportunities to make upgrades in their multifamily units. The tool will include a performance rating system to provide a way for building owners to more easily understand energy use in their building, and how it could be improved with energy efficiency upgrades. Prospective tenants will also be able to use the rating system to make informed decisions about where to rent. Furthermore, the rating can be incorporated into real estate listings as a way for prospective home buyers and the real estate financial community to evaluate a home's operating costs. The Trust’s MEP has identified the state's most experienced energy professionals, vendors, suppliers, and contractors that install energy efficiency equipment in the multifamily sector to be qualified program partners. To be eligible for partnership, energy assessment professionals and contractors are required to have demonstrated experience in the multifamily sector and hold associated professional certifications, such as Building Operator Certification (BOC), Certified Energy Manager (CEM), Professional Engineer (PE), or Building Performance Institute (BPI) Multifamily Building Analyst. Widespread program interest has enabled the Trust to redirect funds that might otherwise be needed for program promotion to building capacity through contractor training. In addition to boosting professional training and certification opportunities, MEP teaches its partners how to market the multifamily program to prospective multifamily homeowners.« less

  12. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Evans, Meredydd

    2010-04-01

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listedmore » in the program documents and websites.« less

  13. Commercial Building Energy Asset Rating Program -- Market Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing nationalmore » and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.« less

  14. Residential Building Energy Code Field Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Bartlett, M. Halverson, V. Mendon, J. Hathaway, Y. Xie

    This document presents a methodology for assessing baseline energy efficiency in new single-family residential buildings and quantifying related savings potential. The approach was developed by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) Building Energy Codes Program with the objective of assisting states as they assess energy efficiency in residential buildings and implementation of their building energy codes, as well as to target areas for improvement through energy codes and broader energy-efficiency programs. It is also intended to facilitate a consistent and replicable approach to research studies of this type and establish a transparent data setmore » to represent baseline construction practices across U.S. states.« less

  15. Chapter 8: Whole-Building Retrofit with Consumption Data Analysis Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Agnew, Ken; Goldberg, Mimi

    Whole-building retrofits involve the installation of multiple measures. Whole-building retrofit programs take many forms. With a focus on overall building performance, these programs usually begin with an energy audit to identify cost-effective energy efficiency measures for the home. Measures are then installed, either at no cost to the homeowner or partially paid for by rebates and/or financing. The methods described here may also be applied to evaluation of single-measure retrofit programs. Related methods exist for replace-on-failure programs and for new construction, but are not the subject of this chapter.

  16. The Role of Values, Moral Norms, and Descriptive Norms in Building Occupant Responses to an Energy-Efficiency Pilot Program and to Framing of Related Messages

    ERIC Educational Resources Information Center

    Arpan, Laura M.; Barooah, Prabir; Subramany, Rahul

    2015-01-01

    This study examined building occupants' responses associated with an occupant-based energy-efficiency pilot in a university building. The influence of occupants' values and norms as well as effects of two educational message frames (descriptive vs. moral norms cues) on program support were tested. Occupants' personal moral norm to conserve energy…

  17. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    ERIC Educational Resources Information Center

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  18. Lawrence Berkeley Laboratory/University of California lighting program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, S.

    1981-12-01

    The objective of the Lighting Program is to assist and work in concert with the lighting community (composed of manufacturers, designers, and users) to achieve a more efficient lighting economy. To implement its objectives, the Lighting Program has been divided into three major categories: technical engineering, buildings applications, and human impacts (impacts on health and vision). The technical program aims to undertake research and development projects that are both long-range and high-risk and which the lighting industry has little interest in pursuing on its own, but from which significant benefits could accrue to both the public and the industry. Themore » building applications program studies the effects that introducing daylighting in commercial buildings has on lighting and cooling electrical energy requirements as well as on peak demand. This program also examines optimization strategies for integrating energy-efficient design, lighting hardware, daylighting, and overall building energy requirements. The impacts program examines relationships between the user and the physical lighting environment, in particular how new energy-efficient technologies relate to human productivity and health. These efforts are interdisciplinary, involving engineering, optometry, and medicine. The program facilities are described and the personnel in the program is identified.« less

  19. 76 FR 33332 - Announcement of Funding Awards for the Technical Assistance and Capacity Building under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... of key Departmental objectives, including but not limited to, energy efficiency and green building... Awards for the Technical Assistance and Capacity Building under the Transformation Initiative Program...) for the Technical Assistance and Capacity Building under the Transformation Initiative program for...

  20. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns in...

  1. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns in...

  2. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns in...

  3. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns in...

  4. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The.../energy, building on the Energy Star for Small Business Program, to assist small business concerns in...

  5. New Hampshire Better Buildings - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramton, Karen; Peters, Katherine

    2014-11-01

    With $10 million in funding from the U.S. Department of Energy's (DOE) Better Buildings Neighborhood Program, the NH Better Buildings program was established as an initiative that initially empowered the three “Beacon Communities” of Berlin, Nashua and Plymouth to achieve transformative energy savings and reductions in fossil fuel use and greenhouse gases through deep energy retrofits and complementary sustainable energy solutions. The program also enabled those Communities to provide leadership to other communities around the state as “beacons” of energy efficiency. The goal of the program was to reduce energy use by a minimum of 15% through energy efficiency upgradesmore » in residential and commercial buildings in the communities. The program expanded statewide in April 2012 by issuing a competitive solicitation for additional commercial projects non-profit, and municipal energy efficiency projects from any community in the state, and a partnership with the state’s utility-run, ratepayer-funded residential Home Performance with ENERGY STAR® (HPwES) program. The NH Better Buildings program was administered by the New Hampshire Office of Energy and Planning (OEP) and managed by the NH Community Development Finance Authority (CDFA). The program started in July 2010 and the last projects funded with American Reinvestment and Recovery Act (ARRA) funds were completed in August 2013. The program will continue after the American Recovery and Reinvestment Act program period as a Revolving Loan Fund, enabling low-interest financing for deep energy retrofits into the future.« less

  6. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less

  7. The Impact of DOE Building Technology Energy Efficiency Programs on U.S. Employment, Income, and Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.

    2008-07-31

    To more fully evaluate its programs to increase the energy efficiency of the U.S. residential and commercial building stock, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) assesses the macroeconomic impacts of those programs, specifically on national employment, wage income, and (most recently) investment. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirementsmore » and investment. In the scenario of the Fiscal Year (FY) 2005 Buildings Technology (BT) program, the technologies and building practices being developed and promoted by the BT program have the prospect of saving about 2.9×1015 Btu in buildings by the year 2030, about 27% of the expected growth in buildings energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation’s future economy.« less

  8. SUNREL Related Links | Buildings | NREL

    Science.gov Websites

    SUNREL Related Links SUNREL Related Links DOE Simulation Software Tools Directory a directory of 301 building software tools for evaluation of energy efficiency, renewable energy, and sustainability in buildings. TREAT Software Program a computer program that uses SUNREL and is designed to provide

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramton, Karen; Peters, Katherine

    With $10 million in funding from the U.S. Department of Energy's (DOE) Better Buildings Neighborhood Program, the NH Better Buildings program was established as an initiative that initially empowered the three “Beacon Communities” of Berlin, Nashua and Plymouth to achieve transformative energy savings and reductions in fossil fuel use and greenhouse gases through deep energy retrofits and complementary sustainable energy solutions. The program also enabled those Communities to provide leadership to other communities around the state as “beacons” of energy efficiency. The goal of the program was to reduce energy use by a minimum of 15% through energy efficiency upgradesmore » in residential and commercial buildings in the communities. The program expanded statewide in April 2012 by issuing a competitive solicitation for additional commercial projects non-profit, and municipal energy efficiency projects from any community in the state, and a partnership with the state’s utility-run, ratepayer-funded residential Home Performance with ENERGY STAR® (HPwES) program. The NH Better Buildings program was administered by the New Hampshire Office of Energy and Planning (OEP) and managed by the NH Community Development Finance Authority (CDFA). The program started in July 2010 and the last projects funded with American Reinvestment and Recovery Act (ARRA) funds were completed in August 2013. The program will continue after the American Recovery and Reinvestment Act program period as a Revolving Loan Fund, enabling low-interest financing for deep energy retrofits into the future.« less

  10. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    NASA Astrophysics Data System (ADS)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  11. 78 FR 55245 - Activities and Methodology for Assessing Compliance With Building Energy Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2013-BT-BC... Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of reopening of public..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Mailstop EE-2J, 1000...

  12. Federally Funded Programs Related to Building Energy Use: Overlaps, Challenges, and Opportunities for Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, Katherine A.; Butner, Ryan S.; Hostick, Donna J.

    2010-10-01

    As energy efficiency in buildings continues to move from discreet technology development to an integrated systems approach, the need to understand and integrate complementary goals and targets becomes more pronounced. Whether within Department of Energy’s (DOE) Building Technologies Program (BTP), across the Office of Energy Efficiency and Renewable Energy (EERE), or throughout DOE and the Federal government, mutual gains and collaboration synergies exist that are not easily achieved because of organizational and time constraints. There also cases where federal agencies may be addressing similar issues, but with different (and sometimes conflicting) outcomes in mind. This report conducts a comprehensive inventorymore » across all EERE and other relevant Federal agencies of potential activities with synergistic benefits. A taxonomy of activities with potential interdependencies is presented. The report identifies a number of federal program objectives, products, and plans related to building energy efficiency and characterizes the current structure and interactions related to these plans and programs. Areas where overlap occurs are identified as are the challenges of addressing issues related to overlapping goals and programs. Based on the input gathered from various sources, including 20 separate interviews with federal agency staff and contractor staff supporting buildings programs, this study identifies a number of synergistic opportunities and makes recommends a number of areas where further collaboration could be beneficial.« less

  13. Colorado Better Buildings Project. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strife, Susie; Yancey, Lea

    The Colorado Better Buildings project intended to bring new and existing energy efficiency model programs to market with regional collaboration and funding partnerships. The goals for Boulder County and its program partners were to advance energy efficiency investments, stimulate economic growth in Colorado and advance the state’s energy independence. Collectively, three counties set out to complete 9,025 energy efficiency upgrades in 2.5 years and they succeeded in doing so. Energy efficiency upgrades have been completed in more than 11,000 homes and businesses in these communities. Boulder County and its partners received a $25 million BetterBuildings grant from the U.S. Departmentmore » of Energy under the American Recovery and Reinvestment Act in the summer of 2010. This was also known as the Energy Efficiency and Conservation Block Grants program. With this funding, Boulder County, the City and County of Denver, and Garfield County set out to design programs for the residential and commercial sectors to overcome key barriers in the energy upgrade process. Since January 2011, these communities have paired homeowners and business owners with an Energy Advisor – an expert to help move from assessment to upgrade with minimal hassle. Pairing this step-by-step assistance with financing incentives has effectively addressed many key barriers, resulting in energy efficiency improvements and happy customers. An expert energy advisor guides the building owner through every step of the process, coordinating the energy assessment, interpreting results for a customized action plan, providing a list of contractors, and finding and applying for all available rebates and low-interest loans. In addition to the expert advising and financial incentives, the programs also included elements of social marketing, technical assistance, workforce development and contractor trainings, project monitoring and verification, and a cloud-based customer data system to coordinate among field advisors and across local governments and local service vendors. A portion of the BetterBuildings grant went to the Metro Mayors Caucus (MMC) who worked in partnership with the Denver Regional Council of Governments (DRCOG) to conduct a series of 10 energy efficiency workshops for local government officials and other interested parties. The workshops helped showcase lessons learned on energy efficiency and helped guide other local governments in the establishment of similar programs. The workshops covered a wide range of energy efficiency and renewable energy topics such as clean energy finance, social mobilization and communications, specific case studies of Colorado towns, energy efficiency codes, net zero buildings and solar power. Since the programs launched in January 2011, these communities have collectively spurred economic investments in energy efficiency, achieved greater than 5:1 leveraging of grant funds, saved energy and reduced greenhouse gas emissions, provided trainings for a robust local energy contractor network, and proved out viable and replicable program models that local utilities and other communities are adopting, with long lasting market transformation.« less

  14. 76 FR 41196 - Notice of Funding Availability (NOFA): Section 515 Rural Rental Housing Program for New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... achieve in their certification: (a.) LEED for Homes program by the United States Green Building Council... Home Builders (NAHB) ICC 700- 2008 National Green Building Standard TM: http://www.nahb.org . (1... Level (10 points). iv. Participation in local green/energy efficient building standards; Applicants, who...

  15. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Tan, Qing; Evans, Meredydd

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, buildingmore » energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.« less

  16. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in amore » way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.« less

  17. Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavousian, A; Rajagopal, R

    2014-01-01

    Frontier methods quantify the energy efficiency of buildings by forming an efficient frontier (best-practice technology) and by comparing all buildings against that frontier. Because energy consumption fluctuates over time, the efficiency scores are stochastic random variables. Existing applications of frontier methods in energy efficiency either treat efficiency scores as deterministic values or estimate their uncertainty by resampling from one set of measurements. Availability of smart meter data (repeated measurements of energy consumption of buildings) enables using actual data to estimate the uncertainty in efficiency scores. Additionally, existing applications assume a linear form for an efficient frontier; i.e.,they assume that themore » best-practice technology scales up and down proportionally with building characteristics. However, previous research shows that buildings are nonlinear systems. This paper proposes a statistical method called stochastic energy efficiency frontier (SEEF) to estimate a bias-corrected efficiency score and its confidence intervals from measured data. The paper proposes an algorithm to specify the functional form of the frontier, identify the probability distribution of the efficiency score of each building using measured data, and rank buildings based on their energy efficiency. To illustrate the power of SEEF, this paper presents the results from applying SEEF on a smart meter data set of 307 residential buildings in the United States. SEEF efficiency scores are used to rank individual buildings based on energy efficiency, to compare subpopulations of buildings, and to identify irregular behavior of buildings across different time-of-use periods. SEEF is an improvement to the energy-intensity method (comparing kWh/sq.ft.): whereas SEEF identifies efficient buildings across the entire spectrum of building sizes, the energy-intensity method showed bias toward smaller buildings. The results of this research are expected to assist researchers and practitioners compare and rank (i.e.,benchmark) buildings more robustly and over a wider range of building types and sizes. Eventually, doing so is expected to result in improved resource allocation in energy-efficiency programs.« less

  18. Building America Systems Integration Research Annual Report. FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestwick, Michael

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  19. Unlocking energy efficiency in small commercial buildings through mechanical contractors

    DOE PAGES

    Granderson, Jessica; Hult, Erin; Fernandes, Samuel; ...

    2017-03-01

    Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less

  20. Unlocking energy efficiency in small commercial buildings through mechanical contractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Hult, Erin; Fernandes, Samuel

    Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less

  1. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Yvonne X.

    2014-02-14

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  2. 75 FR 31323 - Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    .... EERE-2010-BT-STD-0011] RIN 1904-AC22 Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and Availability of the Framework Document AGENCY: Office of Energy Efficiency and... Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies, EE-2J, 1000 Independence...

  3. Northwest Energy Efficient Manufactured Housing Program Specification Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  4. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  5. SUNREL Energy Simulation Software | Buildings | NREL

    Science.gov Websites

    SUNREL Energy Simulation Software SUNREL Energy Simulation Software SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are

  6. Energy Efficiency for Building Construction Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units of materials on energy efficiency that were designed to be incorporated into an existing program in building construction. The following topics are examined: conservation measures (residential energy use and methods for reducing…

  7. 76 FR 42688 - Updating State Residential Building Energy Efficiency Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... 19, 2013. ADDRESSES: Certification Statements must be addressed to the Buildings Technologies Program...-rise (greater than three stories) multifamily residential buildings and hotel, motel, and other..., townhouses, row houses, and low-rise multifamily buildings (not greater than three stories) such as...

  8. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  9. Building America Systems Integration Research Annual Report: FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  10. Building Efficiency Evaluation and Uncertainty Analysis with DOE's Asset Score Preview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-08-12

    Building Energy Asset Score Tool, developed by the U.S. Department of Energy (DOE), is a program to encourage energy efficiency improvement by helping building owners and managers assess a building's energy-related systems independent of operations and maintenance. Asset Score Tool uses a simplified EnergyPlus model to provide an assessment of building systems, through minimum user inputs of basic building characteristics. Asset Score Preview is a newly developed option that allows users to assess their building's systems and the potential value of a more in-depth analysis via an even more simplified approach. This methodology provides a preliminary approach to estimating amore » building's energy efficiency and potential for improvement. This paper provides an overview of the methodology used for the development of Asset Score Preview and the scoring methodology.« less

  11. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings inmore » a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.« less

  12. Citizens Utilities Company's successful residential new construction market transformation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caulfield, T.O.; Shepherd, M.A.

    1998-07-01

    Citizens Utilities Company, Arizona Electric Division (CUC/AED) fielded a Residential New Construction Program (RNC) in the forth quarter of 1994 that had been designed from conception as a market transformation program. The CUC RNC Program encouraged builders to adopt energy efficient building practices for new homes by supplying builders estimates of energy savings, supplying inspections services to assist builders in applying energy efficient building practices while verifying compliance, and posting and promoting the home as energy efficient during the sales period. Measures generally required to qualify for the program were R-38 ceiling insulation, R-21 wall insulation, polysealing of all infiltrationmore » gaps during construction, well sealed air-conditioning ducts, and an air conditioner Seasonal Energy Efficiency Rating (SEER) of 11.0 or greater. In less than two years the program achieved over 17% market penetration without offering rebates to builders. This paper reviews the design of the program, including a discussion of the features felt to be primarily responsible for its success. It reviews the levels of penetration achieved, free-ridership, spillover, and market barriers encountered. Finally it proposes improvements to the program designed to carry it the next step toward a self-sustaining market transformation program.« less

  13. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.

    1994-07-01

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promotemore » the adoption, implementation, and enforcement of energy-efficient building energy codes.« less

  14. Creswell's Energy Efficient Construction Program: A Big Project for a Small School.

    ERIC Educational Resources Information Center

    Kelsh, Bruce

    1982-01-01

    In Creswell (Oregon) High School's award winning vocational education program, students study energy efficient construction along with basic building skills. Part of the program has been the active recruitment of female, minority, disadvantaged, and handicapped students into the vocational area. Students have assembled solar hot water collectors,…

  15. Strengthening the Workforce in Better Buildings Neighborhoods

    ScienceCinema

    Sperling, Gil; Adams, Cynthia; Fiori, Laura; Penzkover, Dave; Wood, Danny; Farris, Joshua

    2018-05-01

    The Better Buildings Neighborhood Program is supporting an expanding energy efficiency workforce upgrading buildings in communities around the country. Contractors are being trained and have access to additional job opportunities, spurring local economic growth while helping Americans use less energy, save money, and be more comfortable in their homes and other buildings.

  16. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  17. Building technolgies program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, S.E.

    1995-04-01

    The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effectivemore » solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.« less

  18. Center for Building Science: Annual report, FY 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairns, E.J.; Rosenfeld, A.H.

    1987-05-01

    The Center for Building Science consists of four programs in the Applied Science Division: energy analysis, buildings energy systems, windows and lighting, and indoor environment. It was established to provide an umbrella so that goups in different programs but with similar interests could combine to perform joint research, develop new research areas, share resources, and produce joint publications. As detailed below, potential savings for the U.S. society from energy efficient buildings are enormous. But these savings can only be realized through an expanding federal RandD program that develops expertise in this new area. The Center for Building Science develops efficientmore » new building componenets, computer models, data and information systems, and trains needed builidng scientists. 135 refs., 72 figs., 18 tabs.« less

  19. Commercial Building Partnerships Replication and Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used inmore » the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.« less

  20. 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Andrew; Goldthwaite, Carolyn Sarno; Coffman, Eric

    Leadership by state and local governments is critical to unlock national energy efficiency opportunities and deliver the benefits of efficiency to all Americans. But related to building energy efficiency, what will it mean to be a public sector leader over the next several years? What are the energy efficiency solutions that cities, counties, and states are implementing today that will make their communities more affordable, livable, healthy, and economically competitive? The SEE Action Network 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings establishes a benchmark for state and local government leadership on improving the energy efficiency of buildings andmore » seeks two-way collaboration among state, local, and federal officials. It defines a suite of innovative, yet practical policies and programs for policymakers to consider implementing by 2020, focusing on six important areas.« less

  1. Building Energy Efficiency in Rural China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Yu, Sha; Song, Bo

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese governmentmore » recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.« less

  2. The impact of state energy programs and other contextual factors on U.S. buildings energy consumption

    NASA Astrophysics Data System (ADS)

    Ofori-Boadu, Andrea N. Y. A.

    High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption and intensity, over and above the variation associated with the contextual factors. This study also had implications in program implementation theory, and revealed that resource availability, stringency and adherence had significant impacts on program outcomes. Using seven classification tables, this study categorized and matched the predictors of electricity consumption and intensity with the specific energy sectors in which they demonstrated significance. Project developers, energy advocates, policy makers, program administrators, building occupants and other stakeholders could use study findings in conjunction with other empirical findings, to make informed decisions regarding the adoption, continuation or discontinuation of energy programs, while taking contextual factors into consideration. The adoption and efficient implementation of the most significant programs could reduce U.S. electricity consumption, and in the long term, probably reduce U.S. energy waste, environmental degradation, energy imports, energy prices, and demands for expanding energy generation and distribution infrastructure.

  3. Scott Horowitz | NREL

    Science.gov Websites

    area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed

  4. Whole-building Design Increases Energy Efficiency in a Mixed-Humid Climate: Ideal Homes - Norman, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    New houses designed by Ideal Homes, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by applying the principles of "whole-building" design. The homes are in Norman, Oklahoma.

  5. Whole-Building Design Increases Energy Efficiency in a Mixed-Humid Climate: Ideal Homes, Norman, Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, L.; Anderson, R.

    New houses designed by Ideal Homes, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by applying the principles of ''whole-building'' design. The homes are in Norman, Oklahoma.

  6. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2010-01-01 2010-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  7. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  8. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  9. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  10. 10 CFR 431.323 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  11. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  12. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  13. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.105 Section 431.105 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  14. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  15. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  16. 10 CFR 431.293 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.293 Section 431.293 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  17. 10 CFR 431.63 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 431.63 Section 431.63 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND...

  18. 10 CFR 431.323 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.323 Section 431.323 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL...

  19. Indoor environment program. 1994 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daisey, J.M.

    1995-04-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, andmore » energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.« less

  20. Solar buildings program contract summary, calendar year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries andmore » by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.« less

  1. Fayette County Better Buildings Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capella, Arthur

    The Fayette County Better Buildings Initiative represented a comprehensive and collaborative approach to promoting and implementing energy efficiency improvements. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. The ultimate goal of Fayette County’s Better Buildings Initiative was to implement a total of 1,067 residential energy efficiency retrofits with a minimum 15% estimated energy efficiency savings per unit. Program partners included: United States Department of Energy, Allegheny Power, and Private Industry Council of Westmoreland-Fayette, Fayette County Redevelopment Authority, and various local partners.more » The program was open to any Fayette County residents who own their home and meet the prequalifying conditions. The level of assistance offered depended upon household income and commitment to undergo a BPI – Certified Audit and implement energy efficiency measures, which aimed to result in at least a 15% reduction in energy usage. The initiative was designed to focus on implementing energy efficiency improvements in residential units, while simultaneously supporting general marketing of the benefits of implementing energy efficiency measures. Additionally, the program had components that involved recruitment and training for employment of persons in the energy sector (green jobs), as well as marketing and implementation of a commercial or community facilities component. The residential component of Fayette County’s Better Buildings Initiative involved a comprehensive approach, providing assistance to low- moderate- and market-rate homeowners. The initiative will also coordinate activities with local utility providers to further incentivize energy efficiency improvements among qualifying homeowners. The commercial component of Fayette County’s Better Building Initiative involved grants and loans to assist up to $15,000 projects per commercial structure with a mixture of a grant and financing at 0% for up to three – (3) years. The maximum award can be a $5,000 grant and a $10,000 loan. For projects less than $15,000, the award will have a ratio of 1/3 grant and 2/3 loan.« less

  2. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weakley, Steven A.

    2012-04-01

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  3. Quantifying the Financial Benefits of Multifamily Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Philbrick; Scheu, R.; Brand, L.

    The U.S. Department of Energy’s Building America research team Partnership for Advanced Residential Retrofit analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy-efficiency retrofits and financial performance on three levels: building, city, and community.

  4. Method for Evaluating Energy Use of Dishwashers, Clothes Washers, and Clothes Dryers: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastment, M.; Hendron, R.

    Building America teams are researching opportunities to improve energy efficiency for some of the more challenging end-uses, such as lighting (both fixed and occupant-provided), appliances (clothes washer, dishwasher, clothes dryer, refrigerator, and range), and miscellaneous electric loads, which are all heavily dependent on occupant behavior and product choices. These end-uses have grown to be a much more significant fraction of total household energy use (as much as 50% for very efficient homes) as energy efficient homes have become more commonplace through programs such as ENERGY STAR and Building America. As modern appliances become more sophisticated the residential energy analyst ismore » faced with a daunting task in trying to calculate the energy savings of high efficiency appliances. Unfortunately, most whole-building simulation tools do not allow the input of detailed appliance specifications. Using DOE test procedures the method outlined in this paper presents a reasonable way to generate inputs for whole-building energy-simulation tools. The information necessary to generate these inputs is available on Energy-Guide labels, the ENERGY-STAR website, California Energy Commission's Appliance website and manufacturer's literature. Building America has developed a standard method for analyzing the effect of high efficiency appliances on whole-building energy consumption when compared to the Building America's Research Benchmark building.« less

  5. Energy efficiency façade design in high-rise apartment buildings using the calculation of solar heat transfer through windows with shading devices

    NASA Astrophysics Data System (ADS)

    Ha, P. T. H.

    2018-04-01

    The architectural design orientation at the first design stage plays a key role and has a great impact on the energy consumption of a building throughout its life-cycle. To provide designers with a simple and useful tool in quantitatively determining and simply optimizing the energy efficiency of a building at the very first stage of conceptual design, a factor namely building envelope energy efficiency (Khqnl ) should be investigated and proposed. Heat transfer through windows and other glazed areas of mezzanine floors accounts for 86% of overall thermal transfer through building envelope, so the factor Khqnl of high-rise buildings largely depends on shading solutions. The author has established tables and charts to make reference to the values of Khqnl factor in certain high-rise apartment buildings in Hanoi calculated with a software program subject to various inputs including: types and sizes of shading devices, building orientations and at different points of time to be respectively analyzed. It is possible and easier for architects to refer to these tables and charts in façade design for a higher level of energy efficiency.

  6. The Cost of Saving Electricity Through Energy Efficiency Programs Funded by Utility Customers: 2009–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Ian M.; Goldman, Charles A.; Murphy, Sean

    The average cost to utilities to save a kilowatt-hour (kWh) in the United States is 2.5 cents, according to the most comprehensive assessment to date of the cost performance of energy efficiency programs funded by electricity customers. These costs are similar to those documented earlier. Cost-effective efficiency programs help ensure electricity system reliability at the most affordable cost as part of utility planning and implementation activities for resource adequacy. Building on prior studies, Berkeley Lab analyzed the cost performance of 8,790 electricity efficiency programs between 2009 and 2015 for 116 investor-owned utilities and other program administrators in 41 states. Themore » Berkeley Lab database includes programs representing about three-quarters of total spending on electricity efficiency programs in the United States.« less

  7. 78 FR 51100 - Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Open Teleconference/Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... and Building Codes, U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy... posted at http://www1.eere.energy.gov/buildings/appliance_standards/asrac.html : Update on Commercial... Energy, Building Technologies Program, Mailstop EE-2J, 1000 Independence Avenue SW., Washington, DC 20585...

  8. 76 FR 43287 - Building Energy Standards Program: Determination Regarding Energy Efficiency Improvements in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... determined that the quantitative analysis of the energy consumption of buildings built to Standard 90.1-2007... Determination 3. Public Comments Regarding the Preliminary Determination II. Summary of the Comparative Analysis... Analysis B. Quantitative Analysis 1. Discussion of Whole Building Energy Analysis 2. Results of Whole...

  9. Maine PACE Program Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Dana; Adamson, Joy M

    The ARRA EECBG BetterBuilding helped augment the existing Home Energy Savings Programs (HESP) and incentives with financing through a subordinate lien PACE and HUD PowerSaver programs. The program was designed to document innovative techniques to dramatically increase the number of homes participating in weatherization programs in participating towns. Maine will support new energy efficiency retrofit pilots throughout the state, designed to motivate a large number of homeowners to invest in comprehensive home energy efficiency upgrades to bring real solutions to market.

  10. ICI Showcase House Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-02-16

    Building Science Corporation collaborated with ICI Homes in Daytona Beach, FL on a 2008 prototype Showcase House that demonstrates the energy efficiency and durability upgrades that ICI currently promotes through its in-house efficiency program called EFactor.

  11. Energy Engineering Analysis Program (EEAP), Limited Energy Study-Lighting Fort Campbell, Kentucky: Volume 1-Sections 1-5

    DTIC Science & Technology

    1994-09-23

    Buildings, and Blanchfield Hospital buildings B and C. The energy conservation opportunities (ECOs) evaluated were high efficiency interior and exterior lighting, and indoor lighting controls . Cost estimates were prepared.

  12. Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine

    Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost,more » with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy use models, against measured data from a large dataset of 537 buildings. The results of this study show that the already available advanced interval data baseline models hold great promise for scaling the adoption of building measured savings calculations using Advanced Metering Infrastructure (AMI) data. Median coefficient of variation of the root mean squared error (CV(RMSE)) was less than 25% for every model tested when twelve months of training data were used. With even six months of training data, median CV(RMSE) for daily energy total was under 25% for all models tested. Finally, these findings can be used to build confidence in model robustness, and the readiness of these approaches for industry uptake and adoption« less

  13. Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings

    DOE PAGES

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine; ...

    2016-04-16

    Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost,more » with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy use models, against measured data from a large dataset of 537 buildings. The results of this study show that the already available advanced interval data baseline models hold great promise for scaling the adoption of building measured savings calculations using Advanced Metering Infrastructure (AMI) data. Median coefficient of variation of the root mean squared error (CV(RMSE)) was less than 25% for every model tested when twelve months of training data were used. With even six months of training data, median CV(RMSE) for daily energy total was under 25% for all models tested. Finally, these findings can be used to build confidence in model robustness, and the readiness of these approaches for industry uptake and adoption« less

  14. Building Energy Codes: Policy Overview and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  15. Phased Retrofits in Existing Homes in Florida Phase I: Shallow and Deep Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Parker; Sutherland, K.; Chasar, D.

    2016-02-01

    The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report.« less

  16. Accessorizing Building Science – A Web Platform to Support Multiple Market Transformation Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Michael C.; Antonopoulos, Chrissi A.; Dowson, Scott T.

    As demand for improved energy efficiency in homes increases, builders need information on the latest findings in building science, rapidly ramping-up energy codes, and technical requirements for labeling programs. The Building America Solution Center is a Department of Energy (DOE) website containing hundreds of expert guides designed to help residential builders install efficiency measures in new and existing homes. Builders can package measures with other media for customized content. Website content provides technical support to market transformation programs such as ENERGY STAR and has been cloned and adapted to provide content for the Better Buildings Residential Program. The Solution Centermore » uses the Drupal open source content management platform to combine a variety of media in an interactive manner to make information easily accessible. Developers designed a unique taxonomy to organize and manage content. That taxonomy was translated into web-based modules that allow users to rapidly traverse structured content with related topics, and media. We will present information on the current design of the Solution Center and the underlying technology used to manage the content. The paper will explore development of features, such as “Field Kits” that allow users to bundle and save content for quick access, along with the ability to export PDF versions of content. Finally, we will discuss development of an Android based mobile application, and a visualization tool for interacting with Building Science Publications that allows the user to dynamically search the entire Building America Library.« less

  17. Expert Meeting Report: Transforming Existing Buildings through New Media - An Idea Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Stacy

    This report describes results of a Building America expert meeting on September 13, 2011, in Las Vegas, Nevada, hosted by the Building America Retrofit Alliance (BARA). This meeting provided a forum for presentations and discussions on the use of new media to work with remodelers and retrofit projects to improve energy efficiency and deliver research results from the Building America program to remodelers.

  18. Expert Meeting Report: Transforming Existing Buildings through New Media--An Idea Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, S.

    This report describes results of a Building America expert meeting on September 13, 2011, in Las Vegas, Nevada, hosted by the Building America Retrofit Alliance (BARA). This meeting provided a forum for presentations and discussions on the use of new media to work with remodelers and retrofit projects to improve energy efficiency and deliver research results from the Building America program to remodelers.

  19. Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Chioke; Langevin, Jared; Roth, Amir

    Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipmentmore » stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.« less

  20. 76 FR 30696 - Technology Evaluation Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... technologies for commercial buildings based on the voluntary submittal of product test data. The program would...

  1. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  2. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  3. The Super Efficient Refrigerator Program: Case study of a Golden Carrot program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, J B

    1995-07-01

    The work in this report was conducted by the Analytic Studies Division (ASD) of the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Office of Building Technologies. This case study describes the development and implementation of the Super Efficient Refrigerator Program (SERP), which awarded $30 million to the refrigerator manufacturer that developed and commercialized a refrigerator that exceeded 1993 federal efficiency standards by at least 25%. The program was funded by 24 public and private utilities. As the first Golden Carrot program to be implemented in the United States, SERPmore » was studied as an example for future `market-pull` efforts.« less

  4. 76 FR 53880 - Funds Availability for Section 514 Farm Labor Housing Loans and Section 516 Farm Labor Housing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... achieve in their certification: LEED for Homes program by the United States Green Building Council (USGBC... Builders (NAHB) ICC 700-2008 National Green Building Standard TM: http://www.nahb.org . [cir] Bronze Level... (10 points). (4) Participation in local green/energy efficient building standards; Applicants, who...

  5. User News. Volume 17, Number 1 -- Spring 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This is a newsletter for users of the DOE-2, PowerDOE, SPARK, and BLAST building energy simulation programs. The topics for the Spring 1996 issue include the SPARK simulation environment, DOE-2 validation, listing of free fenestration software from LBNL, Web sites for building energy efficiency, the heat balance method of calculating building heating and cooling loads.

  6. International Review of Frameworks for Impact Evaluation of Appliance Standards, Labeling, and Incentives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Romankiewicz, John; Vine, Edward

    2012-12-15

    In recent years, the number of energy efficiency policies implemented has grown very rapidly as energy security and climate change have become top policy issues for many governments around the world. Within the sphere of energy efficiency policy, governments (federal and local), electric utilities, and other types of businesses and institutions are implementing a wide variety of programs to spread energy efficiency practices in industry, buildings, transport, and electricity. As programs proliferate, there is an administrative and business imperative to evaluate the savings and processes of these programs to ensure that program funds spent are indeed leading to a moremore » energy-efficient economy.« less

  7. 10 CFR 430.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, SW... B. (8) ASHRAE 103-1993, Methods of Testing for Annual Fuel Utilization Efficiency of Residential...) ASHRAE 116-1995 (RA 2005), Methods of Testing for Rating Seasonal Efficiency of Unitary Air Conditioners...

  8. Examining Strategies to Build and Sustain Healthy Aging Programming Collaboratives

    ERIC Educational Resources Information Center

    Altpeter, Mary; Schneider, Ellen Caylor; Whitelaw, Nancy

    2014-01-01

    Background: Community collaboratives provide a means to build local capacity, reduce service fragmentation and duplication, maximize efficiency, and create synergies for "systems change". But what are the collaborative practices that aging services providers and other stakeholders employ for "system change" and…

  9. Unvented Attic Increases Energy Efficiency and Reduces Duct Losses: Pulte Homes - Sun Lake at Banning, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2001-10-01

    New houses in the Sun Lakes at Banning subdivision are designed by Pulte Homes with technical support from the Building Science Consortium as part of the U.S. Department of Energy's Building America Program.

  10. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components,more » initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.« less

  11. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components,more » initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.« less

  12. Breakthrough Ideas.

    ERIC Educational Resources Information Center

    American School & University, 1996

    1996-01-01

    Describes innovative strategies that schools and universities are using to save money and reshape operations. Focuses on ideas in energy efficiency and facilities improvement, direct purchasing, energy management, retrofitting buildings, ceiling insulation upgrades, automation systems, electric demand programs, facilities programs, warranty…

  13. High-Performance Buildings – Value, Messaging, Financial and Policy Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly

    At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were • to evaluate the link between high-performance buildings and their market value • to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings • to summarize financial mechanisms that facilitate increased investment inmore » these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.« less

  14. Get Started: Energy Efficiency Makes More Sense Than Ever.

    ERIC Educational Resources Information Center

    Alban, Josh; Drabick, J. R.

    2003-01-01

    Describes the benefits of making school building more energy efficient. Provides examples of physical retrofits and behavioral changes to save energy costs. Describes four-step process to create an energy efficiency plan. Includes resources and information such as U.S. Department of Energy's Energy STAR program (www.energystar.gov). (PKP)

  15. 10 CFR 430.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... appendix M to subpart B. (9) ASHRAE 103-1993, Methods of Testing for Annual Fuel Utilization Efficiency of... subpart B. (10) ASHRAE 116-1995 (RA 2005), Methods of Testing for Rating Seasonal Efficiency of Unitary...

  16. Close Calls

    ERIC Educational Resources Information Center

    Erickson, Paul

    2010-01-01

    As student enrollment drops, school districts need less learning space and fewer facilities. With cuts in funding, budgets cannot sustain existing building operations and program costs, and buildings must be taken offline or repurposed for financial efficiency. How does a community address this issue? Whether a district is having to shutter…

  17. Equation-based languages – A new paradigm for building energy modeling, simulation and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.

    Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less

  18. New Whole-House Solutions Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes - Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-01

    This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential Construction and Bonneville Power Administration to help four factory homebuilders build prototype zero energy ready manufactured homes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). Previous phases of this project created a HPMH specification and prototyped individual measuresmore » from the package to obtain engineering approvals and develop preliminary factory construction processes. This case study describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability. Monitoring is expected to continue into 2016.« less

  19. Equation-based languages – A new paradigm for building energy modeling, simulation and optimization

    DOE PAGES

    Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.

    2016-04-01

    Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less

  20. Whole-House Solutions for Existing Homes: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-02-24

    The Philadelphia Housing Authority worked with the U.S. Department of Energy’s Building America Program to integrate energy-efficiency measures into the refurbishment process that each unit normally goes through between occupancies.

  1. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hourmore » onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.« less

  2. Sensor Characteristics Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systemsmore » through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information« less

  3. Strengthening Building Retrofit Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Mary; Jackson, Robert

    2014-04-15

    The Business Energy Financing (BEF) program offered commercial businesses in Michigan affordable financing options and other incentives designed to support energy efficiency improvements. We worked through partnerships with Michigan utilities, lenders, building contractors, trade associations, and other community organizations to offer competitive interest rates and flexible financing terms to support energy efficiency projects that otherwise would not have happened. The BEF program targeted the retail food market, including restaurants, grocery stores, convenience stores, and wholesale food vendors, with the goal of achieving energy efficiency retrofits for 2 percent of the target market. We offered low interest rates, flexible payments, easymore » applications and approval processes, and access to other incentives and rebates. Through these efforts, we sought to help customers strive for energy savings retrofits that would save 20 percent or more on their energy use. This program helped Michigan businesses reduce costs by financing energy efficient lighting, heating and cooling systems, insulation, refrigeration, equipment upgrades, and more. Businesses completed the upgrades with the help of our authorized contractors, and, through our lending partners, we provided affordable financing options.« less

  4. Overcoming Codes and Standards Barriers to Innovations in Building Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Pamala C.; Gilbride, Theresa L.

    2015-02-15

    In this journal article, the authors discuss approaches to overcoming building code barriers to energy-efficiency innovations in home construction. Building codes have been a highly motivational force for increasing the energy efficiency of new homes in the United States in recent years. But as quickly as the codes seem to be changing, new products are coming to the market at an even more rapid pace, sometimes offering approaches and construction techniques unthought of when the current code was first proposed, which might have been several years before its adoption by various jurisdictions. Due to this delay, the codes themselves canmore » become barriers to innovations that might otherwise be helping to further increase the efficiency, comfort, health or durability of new homes. . The U.S. Department of Energy’s Building America, a program dedicated to improving the energy efficiency of America’s housing stock through research and education, is working with the U.S. housing industry through its research teams to help builders identify and remove code barriers to innovation in the home construction industry. The article addresses several approaches that builders use to achieve approval for innovative building techniques when code barriers appear to exist.« less

  5. Better Buildings Alliance 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-01-31

    We are pleased to share with you a copy of the 2013 Annual Report. Inside, you’ll find significant program accomplishments, profiles on highlighted members, and plans for 2014. With your contributions, support, and leadership over the past 12 months, the program has reached significant milestones, including: Growing membership to over 200 members, to represent over 10 billion square feet of U.S. commercial building space and one-seventh of the market; Increasing participation in the 15 Solutions Teams by 75%; Developing 3 new high-efficiency technology specifications that if widely implemented, could save more than $5 billion in energy costs per year; Launchingmore » the Advanced RTU Campaign and Wireless Meter Challenge, and surpassing 100 million sq. ft. in the Lighting Energy Efficiency in Parking (LEEP) Campaign; Welcoming partners in new sectors, including K-12 schools and local governments; The program is a critical element of the Better Buildings Initiative, driving 20% energy savings in the building sector by 2020 through innovation, new technologies, and profiling leadership. Thank you for your ongoing participation, we are looking forward to working with you in the new year on your energy saving targets and advancing technical and market practices that promote energy savings at your organization.« less

  6. G STL: the geostatistical template library in C++

    NASA Astrophysics Data System (ADS)

    Remy, Nicolas; Shtuka, Arben; Levy, Bruno; Caers, Jef

    2002-10-01

    The development of geostatistics has been mostly accomplished by application-oriented engineers in the past 20 years. The focus on concrete applications gave birth to many algorithms and computer programs designed to address different issues, such as estimating or simulating a variable while possibly accounting for secondary information such as seismic data, or integrating geological and geometrical data. At the core of any geostatistical data integration methodology is a well-designed algorithm. Yet, despite their obvious differences, all these algorithms share many commonalities on which to build a geostatistics programming library, lest the resulting library is poorly reusable and difficult to expand. Building on this observation, we design a comprehensive, yet flexible and easily reusable library of geostatistics algorithms in C++. The recent advent of the generic programming paradigm allows us elegantly to express the commonalities of the geostatistical algorithms into computer code. Generic programming, also referred to as "programming with concepts", provides a high level of abstraction without loss of efficiency. This last point is a major gain over object-oriented programming which often trades efficiency for abstraction. It is not enough for a numerical library to be reusable, it also has to be fast. Because generic programming is "programming with concepts", the essential step in the library design is the careful identification and thorough definition of these concepts shared by most geostatistical algorithms. Building on these definitions, a generic and expandable code can be developed. To show the advantages of such a generic library, we use G STL to build two sequential simulation programs working on two different types of grids—a surface with faults and an unstructured grid—without requiring any change to the G STL code.

  7. Energy Efficiency on Parade

    Science.gov Websites

    heating, ventilation and air conditioning (HVAC) systems, structural insulated panels to improve products and systems. NREL building engineers estimate the combination of advanced products and design Building America program manager George James. "All of the technologies and systems used in this house

  8. Credit Enhancement Overview Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Financing Solutions Working Group

    2014-01-01

    Provides considerations for state and local policymakers and energy efficiency program administrators designing and implementing successful credit enhancement strategies for residential and commercial buildings.

  9. SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Timothy; Ball, Kia; Fournier, Ashley

    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency marketmore » in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub-grantee program was designed to address the unique local conditions and population of its community. There was great diversity in programs design, types of financing and incentives, building stock characteristics, climate and partnerships. From 2010 through 2013, SEEA and its sub-grantee programs focused on determining best practices in program administration, workforce development, marketing and consumer education, financing, and utility partnerships. One of the common themes among programs that were most successful in each of these areas was strong partnerships and collaborations with people or organizations in the community. In many instances engaged partners proved to be the key to addressing barriers such as access to financing, workforce development opportunities and access to utility bill data. The most challenging barrier proved to be the act of building a market for energy efficiency where none previously existed. With limited time and resources, educating homeowners of the value in investing in energy efficiency while engaging electric and gas utilities served as a significant barrier for several programs. While there is still much work to be done to continue to transform the energy efficiency market in the Southeast, the programmatic activities led by SEEA and its sub-grantees resulted in 8,180 energy audits and 5,155 energy efficiency retrofits across the Southeast. In total the Southeast Consortium saved an estimated 27,915,655.93 kWh and generated an estimated $ 2,291,965.90 in annual energy cost savings in the region.« less

  10. Energy-Efficiency Retrofits in Small-Scale Multifamily Rental Housing: A Business Model

    NASA Astrophysics Data System (ADS)

    DeChambeau, Brian

    The goal of this thesis to develop a real estate investment model that creates a financial incentive for property owners to perform energy efficiency retrofits in small multifamily rental housing in southern New England. The medium for this argument is a business plan that is backed by a review of the literature and input from industry experts. In addition to industry expertise, the research covers four main areas: the context of green building, efficient building technologies, precedent programs, and the Providence, RI real estate market for the business plan. The thesis concludes that the model proposed can improve the profitability of real estate investment in small multifamily rental properties, though the extent to which this is possible depends partially on utility-run incentive programs and the capital available to invest in retrofit measures.

  11. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 - Toilets and Urinals (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-02-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  12. High-performance commercial building systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in newmore » buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort by reviewing and critiquing work to date, and by partnering in activities that advance results toward market impacts. The goals, objectives and key accomplishments of each technical program element and projects are described in the sections that follow. For each project we then summarize the Task Approach, the Outcomes of each task, and our Conclusions and Recommendations. We also provide a list and short summary of each significant research product e.g. report, prototype, software, standard, etc.« less

  13. Evaluating the Maturity of Cybersecurity Programs for Building Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Somasundaram, Sriram; Mylrea, Michael E.

    The cyber-physical security threat to buildings is complex, non-linear, and rapidly evolving as operational and information technologies converge and connect buildings to cyberspace. Cyberattacks on buildings can exploit smart building controls and breach corporate networks, causing financial and reputational damage. This may result in the loss of sensitive building information or the disruption of, or damage to, the systems necessary for the safe and efficient operation of buildings. For the buildings and facility infrastructure, there is a need for a robust national cybersecurity strategy for buildings, guidance on the selection and implementation of appropriate cybersecurity controls for buildings, an approachmore » to evaluate the maturity and adequacy of the cybersecurity programs. To provide an approach for evaluating the maturity of the cybersecurity programs for building control systems, the US Department of Energy’s widely used Cybersecurity Capability and Maturity Model (C2M2) has been adapted into a building control systems version. The revised model, the Buildings-C2M2 (B-C2M2) provides maturity level indicators for cybersecurity programmatic domains. A “B-C2M2 Lite” version allows facility managers and building control system engineers, or information technology personnel to perform rapid self-assessments of their cybersecurity program. Both tools have been pilot tested on several facilities. This paper outlines the concept of a maturity model, describes the B-C2M2 tools, presents results and observations from the pilot assessments, and lays out plans for future work.« less

  14. 75 FR 27170 - Energy Conservation Program for Consumer Products: Determination Concerning the Potential for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... issue a final rule determining whether to issue efficiency standards for battery chargers (BCs) and EPSs... Standards for Non- Class A External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy... Office of Energy Efficiency and Renewable Energy's Web site at http://www.eere.energy.gov/buildings...

  15. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less

  16. Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vine, E.

    Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of thesemore » programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.« less

  17. Residential Indoor Temperature Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booten, Chuck; Robertson, Joseph; Christensen, Dane

    2017-04-07

    In this study, we are adding to the body of knowledge around answering the question: What are good assumptions for HVAC set points in U.S. homes? We collected and analyzed indoor temperature data from US homes using funding from the U.S. Department of Energy's Building America (BA) program, due to the program's reliance on accurate energy simulation of homes. Simulations are used to set Building America goals, predict the impact of new building techniques and technologies, inform research objectives, evaluate home performance, optimize efficiency packages to meet savings goals, customize savings approaches to specific climate zones, and myriad other uses.

  18. Sharing success: State energy program special projects results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-03-15

    The State Energy Program was created in 1996 by an act of Congress through the consolidation of the State Energy Conservation Program (SECP) and the Institutional Conservation Program (ICP). Formerly, SECP provided funding for a variety of energy efficiency and renewable energy projects, and ICP assisted schools and hospitals with technical analysis and installation of energy conservation measures. Through these programs, more than 8,000 specific State conservation projects have been implemented since 1983 and more than 69,000 buildings have been made more energy efficient since 1979. The Department of Energy's Office of Energy Efficiency and Renewable Energy recognized the valuemore » of delivering programs through the States and created Special Projects in 1996. This report is an overview of State Energy Program operations, strategic focus, activities and accomplishments.« less

  19. NREL's Sustainable Campus Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  20. Unvented Attic Increases Energy Efficiency and Reduces Duct Losses - Sun Lake at Banning, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.; Wells, N.

    2001-09-05

    New houses in the Sun Lakes at Banning subdivision are designed by Pulte Homes with technical support from the Building Science Consortium as part of the U.S. Department of Energy's Building America Program. These homes save their homeowners money by applying the principles of ''whole-building'' design, which considers the house as a complete system instead of separate components.

  1. 75 FR 54117 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Response to Comments on Previous Analysis C. Summary of the Comparative Analysis 1. Quantitative Analysis 2... preliminary quantitative analysis are specific building designs, in most cases with specific spaces defined... preliminary determination. C. Summary of the Comparative Analysis DOE carried out both a broad quantitative...

  2. Exploring Solar Power at Zion-Benton High

    ERIC Educational Resources Information Center

    Kasper, Rick

    1978-01-01

    Developed to provide students with actual hands-on experience in constructing energy-efficient homes and to increase the community's and students' knowledge of solar power as an alternate source of energy, a building trades program at a high school in Zion, Illinois has its students building single-family solar energy homes. (BM)

  3. Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    This fact sheet "Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency" explains how the City of Moab used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  4. South Lake Tahoe, California: Using Energy Data to Partner on Building Energy Efficiency Actions (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    This fact sheet "South Lake Tahoe, California: Using Energy Data to Partner on Building Energy Efficiency Actions" explains how the City of South Lake Tahoe used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  5. Buildings and community systems technology transfer support: Task 8, No. 1088

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Information on items prepared for delivery by the contractor for the Industrial Energy Conservation Program are presented in this document. The information in the following brochures: Integrated Community Energy Systems (ICES); Energy Savings Through Automatic Thermostat Controls; Energy-Conserving Systems in Restaurants; Waste Heat Recovery: More Power from Fuels; and Fuel Cells: A New Kind of Power Plant is included. The Energy Efficiency Logo and 2 photographs are presented. A memo concerning ERDA energy data collection, dated November 4, 1976 and a letter about Goldmark Communications, Inc., dated August 16, 1976 are included. The Energy Efficiency Research pamphlet (EER) is reprinted.more » The following are also included: Working draft - Technology Transfer Section of Buildings Conservation Pad; Environmental Concerns/Industrial Growth - Speech to Industrial Council Workshop, Urban Land Institute, 1976 Fall Meeting, October 5, 1976; discussion on Liquid Nitrogen Freezing for Process Foods; and paper on Buildings and Community Systems Program Strategy. Information on high temperature recuperator systems; microwave/vacuum grain drying; Annual Cycle Energy Systems (ACES); Sambo's; Energy Outreach Program; and thermally activated heat pumps is also included. (MCW)« less

  6. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2014-01-01 2014-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  7. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2012-01-01 2012-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  8. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2013-01-01 2013-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  9. 10 CFR 431.423 - Filing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Efficiency and Renewable Energy, U.S. Department of Energy, Section 327 Petitions, Building Technologies, EE... 10 Energy 3 2011-01-01 2011-01-01 false Filing requirements. 431.423 Section 431.423 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...

  10. Application of automated measurement and verification to utility energy efficiency program data

    DOE PAGES

    Granderson, Jessica; Touzani, Samir; Fernandes, Samuel; ...

    2017-02-17

    Trustworthy savings calculations are critical to convincing regulators of both the cost-effectiveness of energy efficiency program investments and their ability to defer supply-side capital investments. Today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of energy efficiency programs. They also require time-consuming data acquisition. A spectrum of savings calculation approaches is used, with some relying more heavily on measured data and others relying more heavily on estimated, modeled, or stipulated data. The increasing availability of “smart” meters and devices that report near-real time data, combined with new analytical approaches to quantifymore » savings, offers the potential to conduct M&V more quickly and at lower cost, with comparable or improved accuracy. Commercial energy management and information systems (EMIS) technologies are beginning to offer these ‘M&V 2.0’ capabilities, and program administrators want to understand how they might assist programs in quickly and accurately measuring energy savings. This paper presents the results of recent testing of the ability to use automation to streamline the M&V process. In this paper, we apply an automated whole-building M&V tool to historic data sets from energy efficiency programs to begin to explore the accuracy, cost, and time trade-offs between more traditional M&V, and these emerging streamlined methods that use high-resolution energy data and automated computational intelligence. For the data sets studied we evaluate the fraction of buildings that are well suited to automated baseline characterization, the uncertainty in gross savings that is due to M&V 2.0 tools’ model error, and indications of labor time savings, and how the automated savings results compare to prior, traditionally determined savings results. The results show that 70% of the buildings were well suited to the automated approach. In a majority of the cases (80%) savings and uncertainties for each individual building were quantified to levels above the criteria in ASHRAE Guideline 14. In addition the findings suggest that M&V 2.0 methods may also offer time-savings relative to traditional approaches. Lastly, we discuss the implications of these findings relative to the potential evolution of M&V, and pilots currently being launched to test how M&V automation can be integrated into ratepayer-funded programs and professional implementation and evaluation practice.« less

  11. Application of automated measurement and verification to utility energy efficiency program data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Touzani, Samir; Fernandes, Samuel

    Trustworthy savings calculations are critical to convincing regulators of both the cost-effectiveness of energy efficiency program investments and their ability to defer supply-side capital investments. Today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of energy efficiency programs. They also require time-consuming data acquisition. A spectrum of savings calculation approaches is used, with some relying more heavily on measured data and others relying more heavily on estimated, modeled, or stipulated data. The increasing availability of “smart” meters and devices that report near-real time data, combined with new analytical approaches to quantifymore » savings, offers the potential to conduct M&V more quickly and at lower cost, with comparable or improved accuracy. Commercial energy management and information systems (EMIS) technologies are beginning to offer these ‘M&V 2.0’ capabilities, and program administrators want to understand how they might assist programs in quickly and accurately measuring energy savings. This paper presents the results of recent testing of the ability to use automation to streamline the M&V process. In this paper, we apply an automated whole-building M&V tool to historic data sets from energy efficiency programs to begin to explore the accuracy, cost, and time trade-offs between more traditional M&V, and these emerging streamlined methods that use high-resolution energy data and automated computational intelligence. For the data sets studied we evaluate the fraction of buildings that are well suited to automated baseline characterization, the uncertainty in gross savings that is due to M&V 2.0 tools’ model error, and indications of labor time savings, and how the automated savings results compare to prior, traditionally determined savings results. The results show that 70% of the buildings were well suited to the automated approach. In a majority of the cases (80%) savings and uncertainties for each individual building were quantified to levels above the criteria in ASHRAE Guideline 14. In addition the findings suggest that M&V 2.0 methods may also offer time-savings relative to traditional approaches. Lastly, we discuss the implications of these findings relative to the potential evolution of M&V, and pilots currently being launched to test how M&V automation can be integrated into ratepayer-funded programs and professional implementation and evaluation practice.« less

  12. NREL's Sustainable Campus Overview

    ScienceCinema

    Rukavina, Frank; Pless, Shanti

    2018-05-11

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  13. Commercial Building Energy Saver, API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    2015-08-27

    The CBES API provides Application Programming Interface to a suite of functions to improve energy efficiency of buildings, including building energy benchmarking, preliminary retrofit analysis using a pre-simulation database DEEP, and detailed retrofit analysis using energy modeling with the EnergyPlus simulation engine. The CBES API is used to power the LBNL CBES Web App. It can be adopted by third party developers and vendors into their software tools and platforms.

  14. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  15. Building Energy Consumption Pattern Analysis of Detached Housing for the Policy Decision Simulator

    NASA Astrophysics Data System (ADS)

    Lim, Jiyoun; Lee, Seung-Eon

    2018-03-01

    The Korean government announced its plan to raise the previous reduction goal of greenhouse gas emission from buildings by 26.9% until 2020 on July 2015. Therefore, policies regarding efficiency in the building energy are implemented fast, but the level of building owners and market understanding is low in general, and the government service system which supports decision making for implementing low-energy buildings has not been provided yet. The purpose of this study is to present the design direction for establishing user customized building energy database to perform a role to provide autonomous ecosystem of low-energy buildings. In order to reduce energy consumption in buildings, it is necessary to carry out the energy performance analysis based on the characteristics of target building. By analysing about 20-thousand cases of the amount of housing energy consumption in Korea, this study suggested the real energy consumption pattern by building types. Also, the energy performance of a building could be determined by energy consumption, but previous building energy consumption analysis programs required expert knowledge and experience in program usage, so it was difficult for normal building users to use such programs. Therefore, a measure to provide proper default using the level of data which general users with no expert knowledge regarding building energy could enter easily was suggested in this study.

  16. Target Pilots Energy Efficiency Measures for Broad Rollout in Existing Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    Target Corporation partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce annual energy consumption by at least 30% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  17. 10 CFR 420.15 - Minimum criteria for required program activities for plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... leased by the United States), above a certain size, as determined by the State; (3) For new public... political subdivisions. (d) Mandatory thermal efficiency standards for new and renovated buildings shall— (1... design and equipment selection; (3) For all new commercial and multifamily high-rise buildings, be no...

  18. Energy Smart Colorado, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitchell, John M.; Palmer, Adam L.

    2014-03-31

    Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions tomore » their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.« less

  19. 10 CFR 433.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...

  20. 10 CFR 433.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...

  1. 10 CFR 433.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 433.3 Section 433.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth...

  2. Insulated Concrete Homes Increase Durability and Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building America; Hendron, B.; Poole, L.

    2001-06-05

    New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andrena

    The Ida H. Goode Gymnasium was constructed in 1964 to serve as a focal point for academics, student recreation, and health and wellness activities. This 38,000 SF building contains a gymnasium with a stage, swimming pool, eight classrooms, a weight room, six offices and auxiliary spaces for the athletic programs. The gym is located on a 4-acre greenfield, which is slated for improvement and enhancement to future athletics program at Bennett College. The available funding for this project was used to weatherize the envelope of the gymnasium, installation of a new energy-efficient mechanical system, and a retrofit of the existingmore » lighting systems in the building’s interior. The envelope weatherization was completed without disturbing the building’s historic preservation eligibility. The existing heating system was replaced with a new high efficiency condensing system. The new heating system also includes a new Building Automation System which provides additional monitoring. Proper usage of this system will provide additional energy savings. Most of the existing interior lighting fixtures and bulbs were replaced with new LED and high efficiency T-8 bulbs and fixtures. Occupancy sensors were installed in applicable areas. The Ida Goode Gymnasium should experience high electricity and natural gas savings as well as operational/maintenance efficiency increases. The aesthetics of the building was maintained and the overall safety was improved.« less

  4. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leah Glameyer

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how tomore » best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.« less

  5. Does integration matter? A holistic model for building community resilience in Pakistan.

    PubMed

    Kanta Kafle, Shesh

    2017-01-01

    This paper analyses an integrated communitybased risk reduction model adopted by the Pakistan Red Crescent. The paper analyses the model's constructs and definitions, and provides a conceptual framework and a set of practical recommendations for building community resilience. The study uses the process of outcome-based resilience index to assess the effectiveness of the approach. The results indicate that the integrated programming approach is an effective way to build community resilience as it offers a number of tangible and longlasting benefits, including effective and efficient service delivery, local ownership, sustainability of results, and improved local resilience with respect to the shock and stress associated with disaster. The paper also outlines a set of recommendations for the effective and efficient use of the model for building community resilience in Pakistan.

  6. Key factors of clinical research network capacity building.

    PubMed

    Li, Guowei; Wu, Qianyu; Jin, Yanling; Vanniyasingam, Thuva; Thabane, Lehana

    2018-01-01

    In general, clinical research network capacity building refers to programs aimed at enhancing networks of researchers to conduct clinical research. Although in the literature there is a large body of research on how to develop and build capacity in clinical research networks, the conceptualizations and implementations remain controversial and challenging. Moreover, the experiences learnt from the past accomplishments and failures can assist in the future capacity building efforts to be more practical, effective and efficient. In this paper, we aim to provide an overview of capacity building in clinical research network by (1) identifying the key barriers to clinical research network capacity building, (2) providing insights into how to overcome those obstacles, and (3) sharing our experiences in collaborating with national and international partners to build capacity in clinical research networks. In conclusion, we have provided some insight into how to address the key factors of clinical research network capacity building and shared some empirical experiences. A successful capacity building practice requires a joint endeavor to procure sufficient resources and support from the relevant stakeholders, to ensure its efficiency, cost-effectiveness, and sustainability.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies onmore » building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.« less

  8. An Energy Saver Called NECAP

    NASA Technical Reports Server (NTRS)

    1979-01-01

    One of the most comprehensive and most effective programs is NECAP, an acronym for NASA Energy Cost Analysis Program. Developed by Langley Research Center, NECAP operates according to heating/cooling calculation procedures formulated by the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE). The program enables examination of a multitude of influences on heat flow into and out of buildings. For example, NECAP considers traditional weather patterns for a given locale and predicts the effects on a particular building design of sun, rain, wind, even shadows from other buildings. It takes into account the mass of structural materials, insulating values, the type of equipment the building will house, equipment operating schedules, heat by people and machinery, heat loss or gain through windows and other openings and a variety of additional details. NECAP ascertains how much energy the building should require ideally, aids selection of the most economical and most efficient energy systems and suggests design and operational measures for reducing the building's energy needs. Most importantly, NECAP determines cost effectiveness- whether an energy-saving measure will pay back its installation cost through monetary savings in energy bills. thrown off

  9. Commercial Building Partners Catalyze Energy Efficient Buildings Across the Nation

    DTIC Science & Technology

    2012-08-01

    PNNL ) with companies starting in 2008 and discusses some partner insights from projects joining the program later. In 2008, PNNL and the National...provides an overview of the CBP effort and the variety of buildings and partners currently participating with PNNL . Many of the projects are now...Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response

  10. 77 FR 6178 - FY 2012 Discretionary Funding Opportunities: Bus and Bus Facilities Programs (State of Good...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... and green building initiatives for transit facilities and equipment. 3. For transit asset management... efficiency or reduces energy consumption/green house gas emissions. Proposers are encouraged to provide... to: 1. Improve energy efficiency or reduce energy consumption/green house gas emissions. Proposers...

  11. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting: Atlanta, Georgia -- March 16-18, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This summary report outlines needs and issues for increasing energy efficiency of new and existing U.S homes, as identified at the U.S Department of Energy Building America program Spring 2011 stakeholder meeting in Atlanta, Georgia.

  12. Clean Energy Finance Tool

    EPA Pesticide Factsheets

    State and local governments interested in developing a financing program can use this Excel tool to support energy efficiency and clean energy improvements for large numbers of buildings within their jurisdiction.

  13. 75 FR 24824 - Energy Efficiency Program for Consumer Products: Public Meeting and Availability of the Framework...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Availability of the Framework Document for Commercial Refrigeration Equipment AGENCY: Office of Energy... data collection process to consider amended energy conservation standards for commercial refrigeration... Energy, Building Technologies Program, Mailstop EE-2J, Framework Document for Commercial Refrigeration...

  14. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi,more » to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.« less

  15. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2011-02-01

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. Themore » best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.« less

  16. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, Jenne; Ruch, Russell

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depleting rental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  17. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, Jenne; Ruch, Russell

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depletingrental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  18. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2015-09-30

    libraries. Many levels of library interfaces—where some libraries are dynamically linked and some are provided in binary form only—significantly limit...software at build time. The opportunity: Our objective in this project is to substantially improve the performance, size, and robustness of binary ...executables by using static and dynamic binary program analysis techniques to perform whole-program optimization directly on compiled programs

  19. Exploring efficacy of residential energy efficiency programs in Florida

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas Wade

    Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale datasets that would facilitate robust program analysis. Along with measuring and optimizing energy conservation programs, utilities should provide public access to historical consumption data. Open access to data, program optimization, consistent measurement and verification and transparency in reported savings are essential to reducing energy use and its associated environmental impacts.

  20. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  1. IN2 Profile: 7AC Technologies Takes High-Efficiency Air Conditioning to a New Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, Eric; Swan, Jed; Luttik, Peter

    As part of the Wells Fargo Innovation Incubator (IN²) program, 7AC Technologies has developed a liquid desiccant evaporative technology that will result in a 40-50% energy savings for commercial buildings. The IN² program launched in October 2014 and is part of Wells Fargo’s 2020 Environmental Commitment to provide $100 million to environmentally-focused nonprofits and universities. The goal is to create an ecosystem that fosters and accelerates the commercialization of promising commercial buildings technologies that can provide scalable solutions to reduce the energy impact of buildings. According to the Department of Energy, nearly 40 percent of energy consumption in the U.S.more » today comes from buildings at an estimated cost of $413 billion.« less

  2. Standard Energy Efficiency Data Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheifetz, D. Magnus

    2014-07-15

    The SEED platform is expected to be a building energy performance data management tool that provides federal, state and local governments, building owners and operators with an easy, flexible and cost-effective method to collect information about groups of buildings, oversee compliance with energy disclosure laws and demonstrate the economic and environmental benefits of energy efficiency. It will allow users to leverage a local application to manage data disclosure and large data sets without the IT investment of developing custom applications. The first users of SEED will be agencies that need to collect, store, and report/share large data sets generated bymore » benchmarking, energy auditing, retro-commissioning or retrofitting of many buildings. Similarly, building owners and operators will use SEED to manage their own energy data in a common format and centralized location. SEED users will also control the disclosure of their information for compliance requirements, recognition programs such as ENERGY STAR, or data sharing with the Buildings Performance Database and/or other third parties at their discretion.« less

  3. Building America Case Study: Quantifying the Financial Benefits of Multifamily Retrofits, Chicago, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Increasing the adoption of energy efficient building practices will require the energy sector to increase their understanding of the way that retrofits affect multifamily financial performance as well as how those indicators are interpreted by the lending and appraisal industries. This project analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy efficiency retrofits and financial performance on three levels: building, city, and community. The project goals were to increase the data and analysis in the growing body of multifamily financial benefits work as well provide a framework formore » other geographies to produce similar characterization. The goals are accomplished through three tasks: Task one: A pre- and post-retrofit analysis of thirteen Chicago multifamily buildings. Task two: A comparison of Chicago income and expenses to two national datasets. Task three: An in-depth look at multifamily market sales data and the subsequent impact of buildings that undergo retrofits.« less

  4. DOE Voluntary Partnership Program with Utilities and Local Governments Supports the Design of New Data Access Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Monisha; Burr, Andrew; Schulte, Andrew

    2016-08-26

    The Better Buildings Energy Data Accelerator (BBEDA) is a unique effort that has supported 22 pairs of local governments and their utility companies to help building owners gain access to their whole-building energy data. Municipal and Utility BBEDA Partners committed to develop streamlined and easy-to-use solutions to provide whole-building energy data, especially for multitenant commercial buildings, by the end of 2015. As a result, building owners would be able to make data-driven decisions about their buildings by utilizing readily available energy consumption data for entire buildings. Traditionally, data access was difficult to implement due to technical barriers and the lackmore » of clear value propositions for the utilities. During the past two years, BBEDA has taken a hands-on approach to overcome these barriers by offering a platform for the partners to discuss their challenges and solutions. Customized support was also provided to Partners building their local strategies. Based on the lessons learned from the partners, BBEDA developed a final toolkit with guiding documents that addressed key barriers and served as a resource for the other cities and utilities attempting to establish whole-building data access, including an exploration of opportunities to apply the whole-building data to various aspects of utility demand-side management (DSM) programs. BBEDA has been a catalyst for market transformation by addressing the upstream (to efficiency implementation) barrier of data access, demonstrated through the success of the BBEDA partners to address policy, engagement, and technical hurdles and arrive at replicable solutions to make data access a standard practice nationwide. As a result of best practices identified by the BBEDA, 18 utilities serving more than 2.6 million commercial customers nationwide will provide whole-building energy data access to building owners by 2017. This historic expansion of data accessibility will increase building energy benchmarking, the first step many building owners take to improve the energy efficiency of their buildings.« less

  5. Management and Marketing. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    This Alberta curriculum guide defines competencies that help students build daily living skills, investigate career options in management and marketing occupations, use technology in these fields effectively and efficiently, and prepare for entry into the workplace or related postsecondary programs. The first section provides a program rationale…

  6. 78 FR 72077 - Energy Efficiency Program for Industrial Equipment: Final Determination Classifying UL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Verification Services Inc. as a Nationally Recognized Certification Program for Small Electric Motors AGENCY... FURTHER INFORMATION CONTACT: Mr. Lucas Adin, U.S. Department of Energy, Building Technologies Office, Mail... conservation requirements for, among other things, electric motors and small electric motors, including test...

  7. Answer Set Programming and Other Computing Paradigms

    ERIC Educational Resources Information Center

    Meng, Yunsong

    2013-01-01

    Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to…

  8. Logistics. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    This Alberta curriculum guide defines competencies that help students build daily living skills, investigate career options in logistics occupations, use technology in the logistics field effectively and efficiently, and prepare for entry into the workplace or related postsecondary programs. The first section provides a program rationale and…

  9. Financial Management. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    This Alberta curriculum guide defines competencies that help students build daily living skills, investigate career options in financial management, use technology in the financial management field effectively and efficiently, and prepare for entry into the workplace or related postsecondary programs. The first section provides a program rationale…

  10. Cosmetology Studies. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    This Alberta curriculum guide defines competencies that help students build daily living skills, investigate career options in cosmetology, use technology in the cosmetology field effectively and efficiently, and prepare for entry into the workplace or related postsecondary programs in the field. The first section provides a program rationale and…

  11. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grin, A.; Lstiburek, J.

    2012-09-01

    This report describes the work conducted by the Building Science Corporation (BSC) Building America Research Team's 'Energy Efficient Housing Research Partnerships' project. Based on past experience in the Building America program, they have found that combinations of materials and approaches---in other words, systems--usually provide optimum performance. No single manufacturer typically provides all of the components for an assembly, nor has the specific understanding of all the individual components necessary for optimum performance.

  12. Department of the Army Justification of Estimates for Fiscal Year 1985. Procurement Appropriations-Construction Program Submitted to Congress February 1984. DD Forms 1391.

    DTIC Science & Technology

    1984-02-01

    REQUIREMENT FOR CONSTRUCTION PROJECT: These buildings house electronic equipment, irreplaceable rocket motor design and performance records, a...consists of five subprojects which are to provide modern facilities designed for rocket motor production. These production efficient buildings will...replace facilities which were designed and built in 1930-1942 for artillery shell loading. Four of the sub- projects are for buildings while the fifth

  13. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications inmore » green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.« less

  14. User's guide for LTGSTD24 program, Version 2. 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanlon, R.L.; Connell, L.M.

    1993-05-01

    On January 30, 1989, the US Department of Energy (DOE) promulgated an interim rule entitled [open quotes]Energy Conservation Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for New Federal Buildings[close quotes] (10 CFR Part 435, Subpart A). These standards require federal agencies to design all future federal commercial and multifamily high-rise residential buildings in accordance with the standards, or demonstrate that their current requirements already meet or exceed the energy-efficiency requirements of the standards. Although these newly enacted standards do not regulate the design of non-federal buildings, the DOE recommends that all design professionals usemore » the standards as guidelines for designing energy-conserving buildings. To encourage private sector use, the DOE published the standards in the January 30, 1989, Federal Register in the format typical of commercial standards. The Pacific Northwest Laboratory developed several computer programs for the DOE to make it easier for designers to comply with the standards. One of the programs, LTGSTD24 (Version 2.4), is detailed in this user's guide and is provided on the accompanying diskettes. The program will facilitate the designer's use of the standards dealing specifically with building lighting design. Using this program will greatly simplify the designer's task of performing the calculations needed to determine if a design complies with the standards.« less

  15. BIM cost analysis of transport infrastructure projects

    NASA Astrophysics Data System (ADS)

    Volkov, Andrey; Chelyshkov, Pavel; Grossman, Y.; Khromenkova, A.

    2017-10-01

    The article describes the method of analysis of the energy costs of transport infrastructure objects using BIM software. The paper consideres several options of orientation of a building using SketchUp and IES VE software programs. These options allow to choose the best direction of the building facades. Particular attention is given to a distribution of a temperature field in a cross-section of the wall according to the calculation made in the ELCUT software. The issues related to calculation of solar radiation penetration into a building and selection of translucent structures are considered in the paper. The article presents data on building codes relating to the transport sector, on the basis of which the calculations were made. The author emphasizes that BIM-programs should be implemented and used in order to optimize a thermal behavior of a building and increase its energy efficiency using climatic data.

  16. NREL's Work for the U.S. Navy Illuminates Energy and Cost Savings | News

    Science.gov Websites

    load controls and whole-building energy efficiency retrofits as good investments for the Navy. " Program Director Steve Gorin said. Advanced power strips, a plug load control technology that cuts power and an office building with capacity for roughly 100 staff. While plug load savings depend on what can

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  18. Business Metrics for High-Performance Homes: A Colorado Springs Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.; Jones, A.

    The building industry needs to understand how energy ratings can impact homebuilders. Of interest is how energy efficiency may or may not have a positive impact on homebuilders’ business success. Focusing on Colorado Springs, Colorado, as a case study, the U.S. Department of Energy’s Building America research team IBACOS suggests a win–win between a builder’s investment in energy efficiency and that builder’s ability to sell homes. Although this research did not ultimately determine why a correlation may exist, a builder’s investment in voluntary energy-efficiency programs correlated with that builder’s ability to survive the Great Recession of 2007 to 2009. Thismore » report explores the relationship between energy-efficiency ratings and the market performance of several builders in Colorado Springs.« less

  19. Research utilization in the building industry: decision model and preliminary assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.

    1985-10-01

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formatingmore » information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.« less

  20. 10 CFR 431.303 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th..._standards/. Standards can be obtained from the sources listed below. (b) ASTM. American Society for Testing...

  1. Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2011-09-01

    This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices describedmore » in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.« less

  2. Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.

    2011-09-01

    This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices describedmore » in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.« less

  3. System and method for creating expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M. (Inventor); Luczak, Edward C. (Inventor)

    1998-01-01

    A system and method provides for the creation of a highly graphical expert system without the need for programming in code. An expert system is created by initially building a data interface, defining appropriate Mission, User-Defined, Inferred, and externally-generated GenSAA (EGG) data variables whose data values will be updated and input into the expert system. Next, rules of the expert system are created by building appropriate conditions of the rules which must be satisfied and then by building appropriate actions of rules which are to be executed upon corresponding conditions being satisfied. Finally, an appropriate user interface is built which can be highly graphical in nature and which can include appropriate message display and/or modification of display characteristics of a graphical display object, to visually alert a user of the expert system of varying data values, upon conditions of a created rule being satisfied. The data interface building, rule building, and user interface building are done in an efficient manner and can be created without the need for programming in code.

  4. A New Campus Built on Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Ari; Mercado, Andrea; Regnier, Cindy

    2015-08-01

    The University of California (UC), Merced partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce energy consumption by as part of DOE’s Commercial Buildings Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. This case study reports on the process and outcome of this project including the achieved savings from design improvements for the campus. The intent of the project was to retrofit the Science & Engineering (S&E) building and the central plant at UC Merced to achieve up to 30% energy reduction. The anticipated savingsmore » from these retrofits represented about 17% of whole-campus energy use. If achieved, the savings contribution from the CBP project would have brought overall campus performance to 56% of the 1999 UC/CSU benchmark performance for their portfolio of buildings. However, the final design that moved forward as part of the CBP program only included the retrofit measures for the S&E building.« less

  5. Fred Hutchinson Cancer Research Center, Seattle, Washington: Laboratories for the 21st Century Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2001-12-01

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less

  6. Fred Hutchinson Cancer Research Center, Seattle, Washington: Laboratories for the 21st Century Case Studies (Revision)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2002-03-01

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less

  7. Santa Barbara Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley

    2013-11-30

    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. Duringmore » the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative program design that has earned statewide recognition and distinction. As a result of the County’s leadership, the California Energy Commission (CEC) and the California Public Utilities Commission (PUC) offered over $5 million in funding to continue realizing ongoing returns on the initial investment made in developing emPower, alongside remaining (extended) DOE BBNP funds. These new funding sources, accepted by the County Board of Supervisors on June 25, 2013, also allow the program to expand its innovative energy solutions to the broader region, including Ventura and San Luis Obispo Counties.« less

  8. Middle East Environmental Ministries, Partners and other Resources

    EPA Pesticide Factsheets

    The EPA works with many partners to ensure capacity building and efficient, successful programs, including environmental ministries, enforcement networks, non-governmental organizations, and more in the Middle East and North Africa region.

  9. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less

  10. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.« less

  11. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less

  12. Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ronald; Neymark, Joel; Kennedy, Mike D.

    This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area ofmore » modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.« less

  13. INTEGRATING HEALTH INTO BUILDINGS OF THE FUTURE.

    PubMed

    Heidari, Leila; Younger, Margalit; Chandler, George; Gooch, James; Schramm, Paul

    2016-01-01

    The health and wellbeing of building occupants should be a key priority in the design, building, and operation of new and existing buildings. Buildings can be designed, renovated, and constructed to promote healthy environments and behaviors and mitigate adverse health outcomes. This paper highlights health in terms of the relationship between occupants and buildings, as well as the relationship of buildings to the community. In the context of larger systems, smart buildings and green infrastructure strategies serve to support public health goals. At the level of the individual building, interventions that promote health can also enhance indoor environmental quality and provide opportunities for physical activity. Navigating the various programs that use metrics to measure a building's health impacts reveals that there are multiple co-benefits of a "healthy building," including those related to the economy, environment, society, transportation, planning, and energy efficiency.

  14. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono

    2017-02-01

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  15. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Deep Retrofits, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions.

  16. One of the Countries That Turkey Models: Finland Secondary Education Social Studies Curriculum

    ERIC Educational Resources Information Center

    Kop, Yasar

    2017-01-01

    Teaching of social studies has basis of education dynamism that governments maintain to raise qualified and efficient citizens. That's why; being examined programs in question has importance for the global citizen concept which comes up with globalization. Therefore, how to be raised efficient citizens who build both governments' and world's…

  17. 78 FR 8998 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... and Renewable Energy, Department of Energy. ACTION: Notice of reopening of public comment period.... James Raba, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Efficiency and Renewable Energy. [FR Doc. 2013-02755 Filed 2-6-13; 8:45 am] BILLING CODE 6450-01-P ...

  18. Web-based automation of green building rating index and life cycle cost analysis

    NASA Astrophysics Data System (ADS)

    Shahzaib Khan, Jam; Zakaria, Rozana; Aminuddin, Eeydzah; IzieAdiana Abidin, Nur; Sahamir, Shaza Rina; Ahmad, Rosli; Nafis Abas, Darul

    2018-04-01

    Sudden decline in financial markets and economic meltdown has slow down adaptation and lowered interest of investors towards green certified buildings due to their higher initial costs. Similarly, it is essential to fetch investor’s attention towards more development of green buildings through automated tools for the construction projects. Though, historical dearth is found on the automation of green building rating tools that brings up an essential gap to develop an automated analog computerized programming tool. This paper present a proposed research aim to develop an integrated web-based automated analog computerized programming that applies green building rating assessment tool, green technology and life cycle cost analysis. It also emphasizes to identify variables of MyCrest and LCC to be integrated and developed in a framework then transformed into automated analog computerized programming. A mix methodology of qualitative and quantitative survey and its development portray the planned to carry MyCrest-LCC integration to an automated level. In this study, the preliminary literature review enriches better understanding of Green Building Rating Tools (GBRT) integration to LCC. The outcome of this research is a pave way for future researchers to integrate other efficient tool and parameters that contributes towards green buildings and future agendas.

  19. OpenStudio: A Platform for Ex Ante Incentive Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Amir; Brackney, Larry; Parker, Andrew

    Many utilities operate programs that provide ex ante (up front) incentives for building energy conservation measures (ECMs). A typical incentive program covers two kinds of ECMs. ECMs that deliver similar savings in different contexts are associated with pre-calculated 'deemed' savings values. ECMs that deliver different savings in different contexts are evaluated on a 'custom' per-project basis. Incentive programs often operate at less than peak efficiency because both deemed ECMs and custom projects have lengthy and effort-intensive review processes--deemed ECMs to gain confidence that they are sufficiently context insensitive, custom projects to ensure that savings are claimed appropriately. DOE's OpenStudio platformmore » can be used to automate ex ante processes and help utilities operate programs more efficiently, consistently, and transparently, resulting in greater project throughput and energy savings. A key concept of the platform is the OpenStudio Measure, a script that queries and transforms building energy models. Measures can be simple or surgical, e.g., applying different transformations based on space-type, orientation, etc. Measures represent ECMs explicitly and are easier to review than ECMs that are represented implicitly as the difference between a with-ECM and without-ECM models. Measures can be automatically applied to large numbers of prototype models--and instantiated from uncertainty distributions--facilitating the large scale analysis required to develop deemed savings values. For custom projects, Measures can also be used to calibrate existing building models, to automatically create code baseline models, and to perform quality assurance screening.« less

  20. Quantifying the Financial Benefits of Multifamily Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbrick, D.; Scheu, R.; Brand, L.

    Increasing the adoption of energy efficient building practices will require the energy sector to increase their understanding of the way that retrofits affect multifamily financial performance as well as how those indicators are interpreted by the lending and appraisal industries. This project analyzed building, energy, and financial program data as well as other public and private data to examine the relationship between energy efficiency retrofits and financial performance on three levels: building, city, and community. The project goals were to increase the data and analysis in the growing body of multifamily financial benefits work as well provide a framework formore » other geographies to produce similar characterization. The goals are accomplished through three tasks. Task one: A pre- and post-retrofit analysis of thirteen Chicago multifamily buildings. Task two: A comparison of Chicago income and expenses to two national datasets. Task three: An in-depth look at multifamily market sales data and the subsequent impact of buildings that undergo retrofits.« less

  1. TO BUILD OR NOT TO BUILD, A REPORT ON THE UTILIZATION AND PLANNING OF INSTRUCTIONAL FACILITIES IN SMALL COLLEGES.

    ERIC Educational Resources Information Center

    JAMRICH, JOHN X.

    A SOLUTION TO PROBLEMS OF GROWING COLLEGE ENROLLMENTS IS TO INCREASE THE EFFICIENCY OF USE OF EXISTING SPACE TO MAKE ROOM FOR MORE STUDENTS, RATHER THAN TO RESTRICT ENROLLMENTS OR TO CREATE MORE SPACE. PLANNING OF COLLEGE FACILITIES MUST INCLUDE ANALYSIS OF THE PRESENT PLANT, THE INSTRUCTIONAL PROGRAM, THE STUDENT BODY, AND THE FINANCIAL…

  2. Alabama SEP Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Elizabeth M.

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplacemore » elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and lack of trained market actors including contractors and real estate professionals. The programs were able to make progress on addressing all of these barriers and were most successful in offering financing options and training market actors. The most challenging barriers proved to be the act of building a market for energy efficiency where none previously existed, convincing homeowners of the value in investing in energy efficiency (and therefore completing retrofits), engaging electric and natural gas utilities to partner on delivery, and achieving the overall project target of 1,365 completed retrofits. The components that proved to be the most valuable to program success were engaged contractor networks that could promote and endorse the program, partnerships with local business and organizations, and the access to rebates, incentives and financing mechanisms. The programs were successful in building relationships with a variety of community participants including: local contractors, Associations of REALTORS, home builders associations, universities, utilities, local and state governments, and other non-profit organizations. Throughout this program, 933 building audits and 795 building retrofits were completed making homes in Alabama more comfortable, less expensive to operate, more valuable to the marketplace, and safer and healthier for families. Continuing on this momentum, Nexus Energy Center plans to continue operating and expanding operations in Alabama as a Home Performance with ENERGY STAR sponsor and will continue to provide energy services and education to communities in Alabama.« less

  3. Users guide for ENVSTD program Version 2. 0 and LTGSTD program Version 2. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawley, D.B.; Riesen, P.K.; Briggs, R.S.

    1989-02-01

    On January 30, 1989, the US Department of Energy (DOE) promulgated 10 CFR Part 435, Subpart A, an Interim Rule entitled ''Energy Conservation Voluntary Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings; Mandatory for New Federal Buildings.'' As a consequence, federal agencies must design all future federal commercial and multifamily high rise residential buildings in accordance with the Standards, or show that their current standards already meet or exceed the energy-efficiency requirements of the Standards. Although these newly enacted Standards do not regulate the design of nonfederal buildings, DOE recommends that all design professionals use the Standardsmore » as guidelines for designing energy-conserving buildings. To encourage private sector use, the Standards were presented in the January 30, 1989, Federal Register in the format typical of commercial standards rather than a federal regulation. As a further help, DOE supported the development of various microcomputer programs to ease the use of the Standards. Two of these programs/emdash/ENVSTD (Version 2.0) and LTGSTD (Version 2.0)/emdash/are detailed in this users guide and provided on the accompanying diskette. This package, developed by Pacific Northwest Laboratory (PNL), is intended to facilitate the designer's use of the Standards dealing specifically with a building's envelope and lighting system designs. Using these programs will greatly simplify the designer's task of performing the sometimes complex calculations needed to determine a design's compliance with the Standards. 3 refs., 6 figs.« less

  4. 76 FR 43298 - Building Energy Standards Program: Preliminary Determination Regarding Energy Efficiency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... Methodology II. Summary of the Comparative Analysis A. Qualitative Analysis 1. Discussion of Detailed Textual... used for this preliminary determination. II. Summary of the Comparative Analysis DOE carried out both a...

  5. 76 FR 64904 - Building Energy Standards Program: Final Determination Regarding Energy Efficiency Improvements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... Determination 3. Public Comments Regarding the Preliminary Determination II. Summary of the Comparative Analysis... the Department to finalize this determination. II. Summary of the Comparative Analysis DOE carried out...

  6. Energy Resources for State and Local Governments

    EPA Pesticide Factsheets

    Hosts capacity building and decision-support tools and data, best practice policy and program implementation information.Technical information tailored to the needs of state, local, and tribal governments use energy efficiency and renewable energy policies

  7. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  8. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-08-07

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  9. Technical and Economic Aspects of Designing an Efficient Room Air-Conditioner Program in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Nikit; Shah, Nihar; Phadke, Amol

    Several studies have projected a massive increase in the demand for air conditioners (ACs) over the next two decades in India. By 2030, room ACs could add 140 GW to the peak load, equivalent to over 30% of the total projected peak load. Therefore, there is significant interest among policymakers, regulators, and utilities in managing room AC demand by enhancing energy efficiency. Building on the historical success of the Indian Bureau of Energy Efficiency’s star-labeling program, Energy Efficiency Services Limited recently announced a program to accelerate the sale of efficient room ACs using bulk procurement, similar to their successful UJALAmore » light-emitting diode (LED) bulk procurement program. This report discusses some of the key considerations in designing a bulk procurement or financial incentive program for enhancing room AC efficiency in India. We draw upon our previous research to demonstrate the overall technical potential and price impact of room AC efficiency improvement and its technical feasibility in India. We also discuss the importance of using low global warming potential (GWP) refrigerants and smart AC equipment that is demand response (DR) ready.« less

  10. Environmental practices for biomedical research facilities.

    PubMed Central

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

  11. Expansion and improvements of the FORMA system for response and load analysis. Volume 1: Programming manual

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.

    1976-01-01

    Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.

  12. Execution models for mapping programs onto distributed memory parallel computers

    NASA Technical Reports Server (NTRS)

    Sussman, Alan

    1992-01-01

    The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.

  13. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  14. Energy Efficiency Potential in the U.S. Single-Family Housing Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J.; Christensen, Craig B.; Horowitz, Scott G.

    Typical approaches for assessing energy efficiency potential in buildings use a limited number of prototypes, and therefore suffer from inadequate resolution when pass-fail cost-effectiveness tests are applied, which can significantly underestimate or overestimate the economic potential of energy efficiency technologies. This analysis applies a new approach to large-scale residential energy analysis, combining the use of large public and private data sources, statistical sampling, detailed building simulations, and high-performance computing to achieve unprecedented granularity - and therefore accuracy - in modeling the diversity of the single-family housing stock. The result is a comprehensive set of maps, tables, and figures showing themore » technical and economic potential of 50 plus residential energy efficiency upgrades and packages for each state. Policymakers, program designers, and manufacturers can use these results to identify upgrades with the highest potential for cost-effective savings in a particular state or region, as well as help identify customer segments for targeted marketing and deployment. The primary finding of this analysis is that there is significant technical and economic potential to save electricity and on-site fuel use in the single-family housing stock. However, the economic potential is very sensitive to the cost-effectiveness criteria used for analysis. Additionally, the savings of particular energy efficiency upgrades is situation-specific within the housing stock (depending on climate, building vintage, heating fuel type, building physical characteristics, etc.).« less

  15. Annual report to the President and the Congress on the State Energy Conservation Program for calendar year 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Department is required by Section 365(c) of Title 3, Part C, of the Energy Policy and Conservation Act (EPCA), 42 U.S.C. 6321-6327, as amended by Title 4, Part B of the Energy Conservation and Production Act (ECPA), to report annually to the President and the Congress on the operation of the State Energy Conservation Program. The report is to include an estimate of the energy conservation achieved, and the degree of state participation and achievement as well as a description of innovative conservation programs undertaken by individual states. Together the EPCA and the ECPA constitute the State Energy Conservationmore » Program (SECP) which has provided the states (any one of the 50 states, the District of Columbia, Puerto Rico, and the Territories and possessions of the United States) with funding to help establish and maintain their capability to plan, design, implement and coordinate a variety of programs and initiatives designed to promote energy conservation and efficiency at state and local levels. All states have operational programs funded under EPCA (no monies have been appropriated under ECPA since FY 1981). In addition, the majority of states have augmented the SECP with oil overcharge funding they have received over the past several years. Each state is required to provide a twenty-percent match for the Federal funds received, and its Base Plan must include the following program measures: (1) mandatory lighting efficiency standards for state public buildings; (2) programs to promote the availability and use of carpool, vanpool, and public transportation; (3) mandatory standards and policies relating to energy efficiency to govern the state procurement practices; (4) mandatory thermal efficiency standards and insulation requirements for new and renovated buildings; and (5) a traffic law or regulation, which permits the operator of a motor vehicle to turn right at a red stop light after stopping. 6 tabs.« less

  16. Overview of building energy use and report of analyses - 1985: buildings and community systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnader, M.; Lamontagne, J.

    1985-10-01

    The US Department of Energy (DOE) Office of Buildings and Community Systems (BCS) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE's statutory responsibilities in the buildings area. This report summarizes the results of data development and analytical activities undertaken on behalf of BCS during 1985. It provides historical data on energy consumption patterns, prices, and building characteristics used in BCS's planning processes, documents BCS's detailed projections of energy use by end use and building type (the Disaggregate Projection),more » and compares this forecast to other forecasts. Summaries of selected recent BCS analyses are also provided.« less

  17. Increasing Capacity for Stewardship of Oceans and Coasts: Findings of the National Research Council Report

    NASA Astrophysics Data System (ADS)

    Roberts, S. J.; Feeley, M. H.

    2008-05-01

    With the increasing stress on ocean and coastal resources, ocean resource management will require greater capacity in terms of people, institutions, technology and tools. Successful capacity-building efforts address the needs of a specific locale or region and include plans to maintain and expand capacity after the project ends. In 2008, the US National Research Council published a report that assesses past and current capacity-building efforts to identify barriers to effective management of coastal and marine resources. The report recommends ways that governments and organizations can strengthen marine conservation and management capacity. Capacity building programs instill the tools, knowledge, skills, and attitudes that address: ecosystem function and change; processes of governance that influence societal and ecosystem change; and assembling and managing interdisciplinary teams. Programs require efforts beyond traditional sector-by-sector planning because marine ecosystems range from the open ocean to coastal waters and land use practices. Collaboration among sectors, scaling from local community-based management to international ocean policies, and ranging from inland to offshore areas, will be required to establish coordinated and efficient governance of ocean and coastal ecosystems. Barriers Most capacity building activities have been initiated to address particular issues such as overfishing or coral reef degradation, or they target a particular region or country facing threats to their marine resources. This fragmentation inhibits the sharing of information and experience and makes it more difficult to design and implement management approaches at appropriate scales. Additional barriers that have limited the effectiveness of capacity building programs include: lack of an adequate needs assessment prior to program design and implementation; exclusion of targeted populations in decision- making efforts; mismanagement, corruption, or both; incomplete or inappropriate evaluation procedures; and, lack of a coordinated and strategic approach among donors. A New Framework Improving ocean stewardship and ending the fragmentation of current capacity building programs will require a new, broadly adopted framework for capacity building that emphasizes cooperation, sustainability, and knowledge transfer within and among communities. The report identifies four specific features of capacity building that would increase the effectiveness and efficiency of future programs: 1. Regional action plans based on periodic program assessments to guide investments in capacity and set realistic milestones and performance measures. 2. Long-term support to establish self-sustaining programs. Sustained capacity building programs require a diversity of sources and coordinated investments from local, regional, and international donors. 3. Development of leadership and political will. One of the most commonly cited reasons for failure and lack of progress in ocean and coastal governance initiatives is lack of political will. One strategy for strengthening support is to identify, develop, mentor, and reward leaders. 4. Establishment of networks and mechanisms for regional collaboration. Networks bring together those working in the same or similar ecosystems with comparable management or governance challenges to share information, pool resources, and learn from one another. The report also recommends the establishment of regional centers to encourage and support collaboration among neighboring countries.

  18. INTEGRATING HEALTH INTO BUILDINGS OF THE FUTURE

    PubMed Central

    Heidari, Leila; Younger, Margalit; Chandler, George; Gooch, James; Schramm, Paul

    2018-01-01

    The health and wellbeing of building occupants should be a key priority in the design, building, and operation of new and existing buildings. Buildings can be designed, renovated, and constructed to promote healthy environments and behaviors and mitigate adverse health outcomes. This paper highlights health in terms of the relationship between occupants and buildings, as well as the relationship of buildings to the community. In the context of larger systems, smart buildings and green infrastructure strategies serve to support public health goals. At the level of the individual building, interventions that promote health can also enhance indoor environmental quality and provide opportunities for physical activity. Navigating the various programs that use metrics to measure a building’s health impacts reveals that there are multiple co-benefits of a “healthy building,” including those related to the economy, environment, society, transportation, planning, and energy efficiency. PMID:29375173

  19. Energy Engineering Analysis Program. Lighting Survey of Selected Buildings, Pine Bluff Arsenal, Pine Bluff, Arkansas. Volume 2A: Appendices

    DTIC Science & Technology

    1995-06-01

    Energy efficient, 30 and 40 watt ballasts are Rapid Start, thermally protected, automatic resetting. Class P, high or low power factor as required...BALLASTS Energy efficient, 30 ana 40 watt Rapic Start, thermally protected, automatic resetting. Class P. high power factor, CEM, sound rated A. unless...BALLASTS Energy efficient, 40 Watt Rapid Start, thermally protected, automatic resetting, Class P, high power factor, CBM, sound rated A, unless

  20. Whole Building Efficiency for Whole Foods: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, M.; Doebber, I.; Hirsch, A.

    2013-02-01

    The National Renewable Energy Laboratory partnered with Whole Foods Market under the Commercial Building Partnership (CBP) program to design and implement a new store in Raleigh, North Carolina. The result was a design with a predicted energy savings of 40% over ASHRAE Standard 90.1-2004, and 25% energy savings over their standard design. Measured performance of the as-built building showed that the building did not achieve the predicted performance. A detailed review of the project several months after opening revealed a series of several items in construction and controls items that were not implemented properly and were not fully corrected inmore » the commissioning process.« less

  1. Jackson Park Hospital Green Building Medical Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Dorsey; Nelson Vasquez

    2010-03-31

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital inmore » attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.« less

  2. JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings. [low cost solar array efficiency

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.

    1978-01-01

    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.

  3. Analysis of Installed Measures and Energy Savings for Single-Family Residential Better Buildings Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaney, M.; Polly, B.

    2015-04-30

    This report presents an analysis of data for residential single-family projects reported by 37 organizations that were awarded federal financial assistance (cooperative agreements or grants) by the U.S. Department of Energy’s Better Buildings Neighborhood Program.1 The report characterizes the energy-efficiency measures installed for single-family residential projects and analyzes energy savings and savings prediction accuracy for measures installed in a subset of those projects.

  4. Regency Centers Develops Leadership in Energy-Efficient Renovations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Regency Centers (Regency) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  5. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushman, Chris

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and themore » Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating, cooling, thermostat setting inefficiencies, powering computers, lighting, items linked to weatherization and numerous other items were encountered that can be mitigated with the energy conservation measures developed and specified during the course of this project.« less

  6. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors asmore » well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.« less

  7. A Conversation on Zero Net Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, Charles; Gupta, Smita; Torcellini, Paul

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute;more » Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.« less

  8. Up against the limit: Office building electrical overload and the user benefits of energy-efficient office equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kressner, A.

    1995-12-01

    The area of office technology is the fastest growing use of electricity in the fastest growing sector-the commercial sector. More than 10% of energy used by the commercial sector is being used in office technology. The U.S. Environmental Protection Agency`s Energy Star Program is a manufacturer`s voluntary program and is, in effect, non-regulatory compliance. Energy efficiency in office technology is the basis for many benefits that result because the equipment inherently is more efficient in terms of its energy use. The old 486 computer processors, as they increased in MHz, required bigger fans. In fact, some of the high-end 486-machinesmore » came with two fans. Energy efficiency reduces the amount of cooling required, which can potentially reduce the fan requirements, if that feature is properly incorporated into the design by the manufacturer. Because the equipment is more energy efficient, the components can be placed in the equipment more closely-there could be a higher density of components so that the box becomes smaller. On the desktop, that infrastructure is the most expensive real estate, so a small footprint could be a very valuable feature. Also, because it`s more efficient, it rejects less heat, a benefit customers would identify. An added benefit is that the equipment saves energy. Class B office buildings, which are office buildings built `long ago,` don`t have the fundamental energy facilitating infrastructure for information technology, and retrofitting that technology becomes increasingly more expensive. There have been enormous strides in improving energy use in lighting, a major component of energy use in commercial buildings. In fact, energy use has been reduced from 2.5 to 3 W/sq ft to 1.5 W/sq ft, and potentially to below 1 W/sq ft. The plug load typically had been in the 0.3 to 0.5 W/sq ft range and has increased to 1 W/sq ft. Great value has been achieved because of the plug load, so this technology creates value far in excess of its energy use.« less

  9. Energy data sourcebook for the US residential sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M.

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for newmore » and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.« less

  10. High Efficiency Solar Integrated Roof Membrane Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  11. The design of a solar energy collection system to augment heating and cooling for a commercial office building

    NASA Technical Reports Server (NTRS)

    Basford, R. C.

    1977-01-01

    Analytical studies supported by experimental testing indicate that solar energy can be utilized to heat and cool commercial buildings. In a 50,000 square foot one-story office building at the Langley Research Center, 15,000 square feet of solar collectors are designed to provide the energy required to supply 79 percent of the building heating needs and 52 percent of its cooling needs. The experience gained from the space program is providing the technology base for this project. Included are some of the analytical studies made to make the building design changes necessary to utilize solar energy, the basic solar collector design, collector efficiencies, and the integrated system design.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    After progressively incorporating ENERGY STAR for Homes Versions 1, 2, and 3 into its standard practices over the years, builder Brookside Development was seeking to build an even more sustainable product that would further increase energy efficiency, while also addressing indoor air quality, water conservation, renewable-ready, and resiliency. These objectives align with the framework of the U.S. Department of Energy Zero Energy Ready Home program, which builds upon the comprehensive building science requirements of ENERGY STAR for Homes Version 3 and proven Building America innovations and best practices. To meet this goal, Consortium for Advanced Residential Buildings partnered with Brooksidemore » Development to design and construct the first zero energy ready home in a development of seven new homes on the old Singer Estate in Derby, Connecticut.« less

  13. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory

    PubMed Central

    Barton, Carrie L.; Johnson, Eric W.

    2016-01-01

    Abstract The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility. PMID:26981844

  14. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    PubMed

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility.

  15. Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek

    2017-04-01

    There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.

  16. Analysis of alternative strategies for energy conservation in new buildings

    NASA Astrophysics Data System (ADS)

    Fang, J. M.; Tawil, J.

    1980-12-01

    The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.

  17. The Future of Air Conditioning for Buildings - Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, J.

    2016-07-01

    The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less

  18. Parallel processing for scientific computations

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.

  19. Materials and structures/ACEE

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Light weight composites made from graphite fibers, glass, or man made materials held in an epoxy matrix, and their application to airframe design are reviewed. The Aircraft Energy Efficiency program is discussed. Characteristics of composites, acceptable risks, building parts and confidence, and aeroelastic tailoring are considered.

  20. 10 CFR 430.52 - Requirements for applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Requirements for applications. 430.52 Section 430.52 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Small... Efficiency Standards, Assistant Secretary for Conservation and Renewable Energy, Forrestal Building, 1000...

  1. Achieving Energy Savings in Municipal Construction in Long Beach California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program. The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAEmore » baseline by about 45%.« less

  2. Energy Efficient Engine integrated core/low spool design and performance report

    NASA Technical Reports Server (NTRS)

    Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport aircraft engines. The E3 technology advancements were demonstrated to operate reliably and achieve goal performance in tests of the Integrated Core/Low Spool vehicle. The first build of this undeveloped technology research engine set a record for low fuel consumption. Its design and detailed test results are herein presented.

  3. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  4. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.« less

  5. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswanger, Robert C.

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.« less

  6. EnergyFit Nevada (formerly known as the Nevada Retrofit Initiative) final report and technical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvill, Anna; Bushman, Kate; Ellsworth, Amy

    2014-06-17

    The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with anmore » average energy reduction of 32% per home. Other achievements included: Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1 Achieved an overall conversation rate of 38.1%2 7,089,089 kWh of modeled energy savings3 Total annual homeowner energy savings of approximately $525,7523 Efficiency upgrades completed on 1,100,484 square feet of homes3 $139,992 granted in loans to homeowners for energy-efficiency upgrades 29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4 40 contractors trained in Nevada 37 contractors with Building Performance Institute (BPI) certification in Nevada 19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.« less

  7. Computer-aided design of biological circuits using TinkerCell

    PubMed Central

    Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. PMID:21327060

  8. Challenges and opportunities in building a sustainable rural primary care workforce in alignment with the Affordable Care Act: the WWAMI program as a case study.

    PubMed

    Allen, Suzanne M; Ballweg, Ruth A; Cosgrove, Ellen M; Engle, Kellie A; Robinson, Lawrence R; Rosenblatt, Roger A; Skillman, Susan M; Wenrich, Marjorie D

    2013-12-01

    The authors examine the potential impact of the Patient Protection and Affordable Care Act (ACA) on a large medical education program in the Northwest United States that builds the primary care workforce for its largely rural region. The 42-year-old Washington, Wyoming, Alaska, Montana, and Idaho (WWAMI) program, hosted by the University of Washington School of Medicine, is one of the nation's most successful models for rural health training. The program has expanded training and retention of primary care health professionals for the region through medical school education, graduate medical education, a physician assistant training program, and support for practicing health professionals.The ACA and resulting accountable care organizations (ACOs) present potential challenges for rural settings and health training programs like WWAMI that focus on building the health workforce for rural and underserved populations. As more Americans acquire health coverage, more health professionals will be needed, especially in primary care. Rural locations may face increased competition for these professionals. Medical schools are expanding their positions to meet the need, but limits on graduate medical education expansion may result in a bottleneck, with insufficient residency positions for graduating students. The development of ACOs may further challenge building a rural workforce by limiting training opportunities for health professionals because of competing demands and concerns about cost, efficiency, and safety associated with training. Medical education programs like WWAMI will need to increase efforts to train primary care physicians and increase their advocacy for student programs and additional graduate medical education for rural constituents.

  9. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goalmore » of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.« less

  10. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less

  11. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  12. Greenbelt Homes Pilot Energy Efficiency Program Phase 1 Summary. Existing Conditions and Baseline Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Del Bianco, M.; Wood, A.

    2013-02-01

    A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8” CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of othermore » systems like plumbing, mechanical equipment, and cladding.« less

  13. Greenbelt Homes Pilot Energy Efficiency Program Phase 1 Summary: Existing Conditions and Baseline Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Del Bianco, M.; Wood, A.

    2013-02-01

    A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8" CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of othermore » systems like plumbing, mechanical equipment, and cladding.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    HADLEY, S.W.

    This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's bestmore » interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all of these criteria. Executive Order 13123 directs federal facilities to use CHP when life-cycle costs indicate energy reduction goals will be met. FEMP can assist facilities to conduct this analysis. The model developed for this report estimates the magnitude of CHP that could be implemented under various performance and economic assumptions associated with different applications. This model may be useful for other energy technologies. It can be adapted to estimate the market potential in federal buildings for any energy system based on the cost and performance parameters that a user desires to assess. The model already incorporates a standard set of parameters based on available data for federal buildings including total building space, building type, energy use intensity, fuel costs, and the performance of many prime movers commonly used in CHP applications. These and other variables can be adjusted to meet user needs or updated in the future as new data become available.« less

  15. Safeguarding our energy future

    NASA Astrophysics Data System (ADS)

    1993-02-01

    Throughout the past several years, states have been receiving settlement monies distributed from escrow accounts maintained by the Department of Energy and various courts. These monies are paid by oil companies for alleged violations of the petroleum pricing regulations of the 1970's. These funds, commonly referred to as Petroleum Violation Escrow (PVE) or Oil Overcharge funds, have been an important tool in supporting energy efficiency programs and technologies at the state level. The aim of this publication is to highlight some of the many interesting, replicable projects funded with PVE monies and to serve as a resource for successful, energy efficiency programs in planning, technology application, and education. By capturing a number of these innovative state-level programs, this document will expand the information network on renewable energy and energy efficiency and serve as a point of departure for others pursuing similar goals. Projects referenced throughout this publication reflect some of the program areas in which the Department of Energy takes an active interest and fall into the following categories: (1) alternative fuels; (2) industrial efficiency and waste minimization; (3) electric power production from renewable resources; (4) building efficiency; (5) integrated resource planning; and (6) energy education.

  16. A state-based national network for effective wildlife conservation

    USGS Publications Warehouse

    Meretsky, Vicky J.; Maguire, Lynn A.; Davis, Frank W.; Stoms, David M.; Scott, J. Michael; Figg, Dennis; Goble, Dale D.; Griffith, Brad; Henke, Scott E.; Vaughn, Jacqueline; Yaffee, Steven L.

    2012-01-01

    State wildlife conservation programs provide a strong foundation for biodiversity conservation in the United States, building on state wildlife action plans. However, states may miss the species that are at the most risk at rangewide scales, and threats such as novel diseases and climate change increasingly act at regional and national levels. Regional collaborations among states and their partners have had impressive successes, and several federal programs now incorporate state priorities. However, regional collaborations are uneven across the country, and no national counterpart exists to support efforts at that scale. A national conservation-support program could fill this gap and could work across the conservation community to identify large-scale conservation needs and support efforts to meet them. By providing important information-sharing and capacity-building services, such a program would advance collaborative conservation among the states and their partners, thus increasing both the effectiveness and the efficiency of conservation in the United States.

  17. Achieving Energy Savings in Municipal Construction in Long Beach, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Kristen; Regnier, Cindy

    Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.3 The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAEmore » baseline by about 45%. The new 15,000-square foot (ft2) LBGO office building has two stories and houses private offices, open-plan cubicle offices, and a conference room and call center on the second floor. The building’s modular nature allowed LBGO to realize the cost benefits of fasttracked construction while saving substantial energy and reducing operational costs. The project was funded by the utility’s ratepayer revenue, which imposed a tight budget limit. The design process was a collaborative effort involving LBGO and its design-build team, Lawrence Berkeley National Laboratory (Berkeley Lab), and subcontractors Stantec (formerly Burt Hill) and LHB Inc. The team proposed efficiency measures based on computer modeling of the building in full compliance with ASHRAE 90.1-2007; in the modeled building, the lighting and cooling systems were the largest energy users, so increasing the efficiency of these systems was a top priority. Promising measures were modeled to estimate their energy performance, and each measure was evaluated for its feasibility within the budget.« less

  18. 10 CFR 431.15 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, Sixth.... (1) IEC 60034-1 Edition 12.0 2010-02, (“IEC 60034-1”), Rotating Electrical Machines, Part 1: Rating...

  19. Establishing a commercial building energy data framework for India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Maithili; Kumar, Satish; Mathew, Sangeeta

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The Unitedmore » States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.« less

  20. New FEDS Software Helps You Design for Maximum Energy Efficiency, Minimum Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.

    2003-01-30

    This article was written for the Partner Update a newsletter put out by Potomac Communications for DOE's Rebuild America program. The article describes the FEDS (Federal Energy Decision System) software, the official analytical tool of the Rebuild America program. This software, developed by PNNL with support from DOE, FEMP and Rebuild, helps government entities and contractors make informed decisions about which energy efficiency improvements are the most cost effective for their facilities. FEDS churns thru literally thousands of calculations accounting for energy uses, costs, and interactions from different types of HVAC systems, lighting types, insulation levels, building types, occupancy levelsmore » and times. FEDS crunchs the numbers so decision makers can get fast reliable answers on which alternatives are the best for their particular building. In this article, we're touting the improvements in the latest upgrade of FEDS, which is available free to Rebuild America partners. We tell partners what FEDS does, how to order it, and even where to get tech support and training.« less

  1. Greenbelt Homes Pilot Program: Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-01

    In the fall of 2010, a multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes in Greenbelt, Maryland. GHI established this pilot project to serve as a basis for decision making for the rollout of a decade-long community-wide upgrade program that will incorporate energy efficiency improvements to the building envelope and mechanical equipment. It presents a unique opportunity to evaluate and prioritize the wide-range of benefits of high-performance retrofits based on member experience with and acceptance of the retrofit measures implemented during the pilot project. Addressingmore » the complex interactions between benefits, trade-offs, construction methods, project management implications, realistic upfront costs, financing, and other considerations, serves as a case study for energy retrofit projects to include high-performance technologies based on the long-term value to the homeowner. The pilot project focused on identifying the added costs and energy savings benefits of improvements.« less

  2. Involvement of Individuals in the Development of Technical Solutions and Rules of Management for Building Renovation Projects: A Case Study of Latvia

    NASA Astrophysics Data System (ADS)

    Pukite, I.; Grekis, A.; Geipele, I.; Zeltins, N.

    2017-08-01

    In March 2016, the Latvian government approved a new support program for increasing energy efficiency in residential apartment buildings. For the support of renovation of apartment buildings in the period from 2016 to 2023, 166 470 588 EUR will be available. Different persons, such as energy auditors, designers, architects, project managers and builders, will be involved in the process of planning, development and implementation of building renovation. At the development stage of the building renovation project, special attention should be devoted to the first stage - energy audit and technical project development. The problem arises due to the fact that each of these individuals, during the development of technical building documentation, does not work as a completely unified system. The implementation of construction project planning and organisational management system is one of the most important factors to guarantee that the quality of building renovation project is ensured in accordance with the laws and regulatory standards. The paper studies mutual cooperation, professionalism and the role of information feedback of personnel involved in the planning stage of building renovation, which is an essential prerequisite for the renovation process in order to achieve high quality of work and reduce the energy performance indicator. The present research includes the analysis of different technical solutions and their impact on energy efficiency. Mutual harmonisation of technical specifications is also investigated.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This case study describes a unique vocational program at Lancaster County Career Technology Center in Mount Joy, PA, where high school students are gaining hands-on construction experience in building high performance homes with help from Building America team, Home Innovation Research Labs. This collaboration resulted in the Green Home 3, the third in a series of high performance homes for Apprentice Green. As one of LCCTC’s key educational strategies for gaining practical experience, students are involved in building real houses that incorporate state-of-the-art energy efficiency and green technologies. With two homes already completed, the Green Home 3 achieved a 44%more » whole-house energy savings over the Building America New Construction B10 Benchmark, DOE Zero Energy Ready Home (formerly Challenge Home) certification, and National Green Building Standard Gold-level certification.« less

  4. Avoided electricity subsidy payments can finance substantial appliance efficiency incentive programs: Case study of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventis, Greg; Gopal, Anand; Rue du Can, Stephane de la

    Numerous countries use taxpayer funds to subsidize residential electricity for a variety of socioeconomic objectives. These subsidies lower the value of energy efficiency to the consumer while raising it for the government. Further, while it would be especially helpful to have stringent Minimum Energy Performance Standards (MEPS) for appliances and buildings in this environment, they are hard to strengthen without imposing a cost on ratepayers. In this secondbest world, where the presence of subsidies limits the government’s ability to strengthen standards, we find that avoided subsidies are a readily available source of financing for energy efficiency incentive programs. Here, wemore » introduce the LBNL Energy Efficiency Revenue Analysis (LEERA) model to estimate the appliance efficiency improvements that can be achieved in Mexico by the revenue neutral financing of incentive programs from avoided subsidy payments. LEERA uses the detailed techno-economic analysis developed by LBNL for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative to calculate the incremental costs of appliance efficiency improvements. We analyze Mexico’s tariff structures and the long-run marginal cost of supply to calculate the marginal savings for the government from appliance efficiency. We find that avoided subsidy payments alone can finance incentive programs that cover the full incremental cost of refrigerators that are 27% more efficient and TVs that are 32% more efficient than baseline models. We find less substantial market transformation potential for room ACs primarily because AC energy savings occur at less subsidized tariffs.« less

  5. A High-Granularity Approach to Modeling Energy Consumption and Savings Potential in the U.S. Residential Building Stock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Building simulations are increasingly used in various applications related to energy efficient buildings. For individual buildings, applications include: design of new buildings, prediction of retrofit savings, ratings, performance path code compliance and qualification for incentives. Beyond individual building applications, larger scale applications (across the stock of buildings at various scales: national, regional and state) include: codes and standards development, utility program design, regional/state planning, and technology assessments. For these sorts of applications, a set of representative buildings are typically simulated to predict performance of the entire population of buildings. Focusing on the U.S. single-family residential building stock, this paper willmore » describe how multiple data sources for building characteristics are combined into a highly-granular database that preserves the important interdependencies of the characteristics. We will present the sampling technique used to generate a representative set of thousands (up to hundreds of thousands) of building models. We will also present results of detailed calibrations against building stock consumption data.« less

  6. Building an Ecosystem for a New Engineering Program

    NASA Astrophysics Data System (ADS)

    Grebski, Wieslaw; Grebski, Michalene Eva

    2018-06-01

    Penn State Hazleton has recently developed and implemented a new Engineering program with a focus on energy efficiency and energy sustainability. To accelerate the implementation cycle of the program, it was necessary to very rapidly create and establish the components of an ecosystem needed for the Engineering program to prosper and grow. This paper describes the individual components of the ecosystem as well as the methods used to establish them. The paper also discusses the different initiatives to increase enrollment as well as placement rates for graduates. Continuous quality improvement procedure applied to maintain the quality of the program is also being discussed.

  7. Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.

    The U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) develops official “benefits estimates” for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EERE’s budget request. These estimates are part of EERE’s budget request and are also used in the formulation of EERE’s performance measures. Two of EERE’s major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAEmore » by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAE’s Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Program’s internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.« less

  8. Performance Contracting and Energy Efficiency in the State Government Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenancemore » and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state government market is defined to include state offices, state universities, correctional facilities, and other state facilities. This study is part of a series of reports prepared by Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Services Companies (NAESCO) on the ESCO market and industry trends. The scope of previous reports was much broader: Goldman et al. (2002) analyzed ESCO project costs and savings in public and private sector facilities, Hopper et al. (2005) focused on ESCO project activity in all public and institutional sectors, while Hopper et al (2007) provided aggregate results of a comprehensive survey of ESCOs on current industry activity and future prospects. We decided to focus the current study on ESCO and energy efficiency activity and potential market barriers in the state government market because previous studies suggested that this institutional sector has significant remaining energy efficiency opportunities. Moreover, ESCO activity in the state government market has lagged behind other institutional markets (e.g., K-12 schools, local governments, and the federal market). Our primary objectives were as follows: (1) Assess existing state agency energy information and data sources that could be utilized to develop performance metrics to assess progress among ESPC programs in states; (2) Conduct a comparative review of the performance of selected state ESPC programs in reducing energy usage and costs in state government buildings; and (3) Delineate the extent to which state government sector facilities are implementing energy efficiency projects apart from ESPC programs using other strategies (e.g. utility ratepayer-funded energy efficiency programs, loan funds).« less

  9. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  10. Building a SEM Analytics Reporting Portfolio

    ERIC Educational Resources Information Center

    Goff, Jay W.; Williams, Brian G.; Kilgore, Wendy

    2016-01-01

    Effective strategic enrollment management (SEM) efforts require vast amounts of internal and external data to ensure that meaningful reporting and analysis systems can assist managers in decision making. A wide range of information is integral for leading effective and efficient student recruitment and retention programs. This article is designed…

  11. The School Facilities Children Are Forced to Attend.

    ERIC Educational Resources Information Center

    Hansen, Shirley J.

    1993-01-01

    As many as 25% of American school buildings are inadequate. However, many districts have reduced maintenance to pay utility bills. An active energy-management program can lower utility costs through efficient operation and maintenance practices and retrofits that pay back in less than three years. (MLF)

  12. University Extension and Urban Planning Programs: An Efficient Partnership.

    ERIC Educational Resources Information Center

    Kotval, Zenia

    2003-01-01

    The Urban Planning Practicum is a capstone course engaging Michigan State students in urban outreach, working with community organizations on neighborhood revitalization. It facilitates the experiential learning needs of urban planning students while assisting Extension staff in capacity building. Faculty-extension agent partnerships make it…

  13. 10 CFR 429.4 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, SW...) ANSI/AHAM DW-1-1992, American National Standard, Household Electric Dishwashers, approved February 6, 1992, IBR approved for § 429.19. (2) ANSI/AHAM DW-1-2010, Household Electric Dishwashers, (ANSI...

  14. 10 CFR 429.4 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor, 950 L'Enfant Plaza, SW...) ANSI/AHAM DW-1-1992, American National Standard, Household Electric Dishwashers, approved February 6, 1992, IBR approved for § 429.19. (2) ANSI/AHAM DW-1-2010, Household Electric Dishwashers, (ANSI...

  15. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qibing

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  16. City of Phoenix - Energize Phoenix Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloudakis, Dimitrios J.

    Energize Phoenix (EPHX) was designed as an ambitious, large-scale, three-year pilot program to provide energy efficiency upgrades in buildings, along Phoenix’s new Light Rail Corridor – part of a federal effort to reduce energy consumption and stimulate job growth, while simultaneously reducing the country’s carbon footprint and promoting a shift towards a green economy. The program was created through a 2010 competitive grant awarded to the City of Phoenix who managed the program in partnership with Arizona State University (ASU), the state’s largest university, and Arizona Public Service (APS), the state’s largest electricity provider. The U.S. Department of Energy (DOE)more » Better Buildings Neighborhood Program (BBNP) and the American Recovery and Reinvestment Act (ARRA) of 2009 provided $25M in funding for the EPHX program. The Light Rail Corridor runs through the heart of downtown Phoenix, making most high-rise and smaller commercial buildings eligible to participate in the EPHX program, along with a diverse mix of single and multi-family residential buildings. To ensure maximum impact and deeper market penetration, Energize Phoenix was subdivided into three unique parts: i. commercial rebate program, ii. commercial financing program, and iii. residential program Each component was managed by the City of Phoenix in partnership with APS. Phoenix was fortunate to partner with APS, which already operated robust commercial and residential rebate programs within its service territory. Phoenix tapped into the existing utility contractor network, provided specific training to over 100 contracting firms, and leveraged the APS rebate program structure (energy efficiency funding) to launch the EPHX commercial and residential rebate programs. The commercial finance program was coordinated and managed through a contract with National Bank of Arizona, NBAZ, which also provided project capital leveraging EPHX finance funds. Working in unison, approved contractors jointly produced more than 161,000 labor hours in pursuit of EPHX goals over the life of the project. Labor hours were spread among electricians, heating, ventilating and air-conditioning (HVAC) technicians, marketing professionals, engineers, sales, and administrative support staff across the approved contractor workforce. Program participants received both the utility rebate along with the EPHX rebate, and depending on project size and utility rebate structure some projects resulted in low to no-cost upgrades for customers. Phoenix also partnered with ASU, a grant sub-recipient, to leverage the institution’s expertise in research and data analysis. In this partnership, ASU accepted marketing responsibilities for the grant and partnered with DRA Communications (DRA), a Phoenix-based marketing firm, to create and communicate the message out to the marketplace. The EPHX program has completed its energy upgrade activities. A review of the work completed by ASU revealed that the EPHX program substantially exceeded the program’s stated goals by retrofitting/upgrading over 33 million sq ft of commercial space (30 million sq ft goal exceeded by 11%) and 2,014 residential units (1,700 unit goal exceeded by 18%) along the Light Rail Corridor. The program helped stimulate economic growth by adding $31million to the local economy and enhanced an already robust energy efficiency contractor network. This contractor network will continue to promote utility energy incentives to sustain energy efficiency upgrade activities in the future. Finally, EPHX helped reduce participants annual energy consumption by 135 million kilowatt-hour (kWh) translating into over $12.5 million of annual energy cost avoidance for the community. This also resulted in projected payback period of 4.5 years for total investment by all parties and reduced greenhouse gas emissions by over 95,000 metric tons of carbon dioxide equivalent (CO2e).« less

  17. Application of GIS in exploring spatial dimensions of Efficiency in Competitiveness of Regions

    NASA Astrophysics Data System (ADS)

    Rahmat, Shahid; Sen, Joy

    2017-04-01

    Infrastructure is an important component in building competitiveness of a region. Present global scenario of economic slowdown that is led by slump in demand of goods and services and decreasing capacity of government institutions in investing public infrastructure. Strategy of augmenting competitiveness of a region can be built around improving efficient distribution of public infrastructure in the region. This efficiency in the distribution of infrastructure will reduce the burden of government institution and improve the relative output of the region in relative lesser investment. A rigorous literature study followed by an expert opinion survey (RIDIT scores) reveals that Railway, Road, ICTs and Electricity infrastructure is very crucial for better competitiveness of a region. Discussion with Experts in ICTs, Railways and Electricity sectors were conducted to find the issues, hurdles and possible solution for the development of these sectors. In an underdeveloped country like India, there is a large constrain of financial resources, for investment in infrastructure sector. Judicious planning for allocation of resources for infrastructure provisions becomes very important for efficient and sustainable development. Data Envelopment Analysis (DEA) is the mathematical programming optimization tool that measure technical efficiency of the multiple-input and/or multiple-output case by constructing a relative technical efficiency score. This paper tries to utilize DEA to identify the efficiency at which present level of selected components of Infrastructure (Railway, Road, ICTs and Electricity) is utilized in order to build competitiveness of the region. This paper tries to identify a spatial pattern of efficiency of Infrastructure with the help of spatial auto-correlation and Hot-spot analysis in Arc GIS. This analysis leads to policy implications for efficient allocation of financial resources for the provision of infrastructure in the region and building a prerequisite to boost an efficient Regional Competitiveness.

  18. Investigating the Gap Between Estimated and Actual Energy Efficiency and Conservation Savings for Public Buildings Projects & Programs in United States

    NASA Astrophysics Data System (ADS)

    Qaddus, Muhammad Kamil

    The gap between estimated and actual savings in energy efficiency and conservation (EE&C) projects or programs forms the problem statement for the scope of public and government buildings. This gap has been analyzed first on impact and then on process-level. On the impact-level, the methodology leads to categorization of the gap as 'Realization Gap'. It then views the categorization of gap within the context of past and current narratives linked to realization gap. On process-level, the methodology leads to further analysis of realization gap on process evaluation basis. The process evaluation criterion, a product of this basis is then applied to two different programs (DESEU and NYC ACE) linked to the scope of this thesis. Utilizing the synergies of impact and process level analysis, it offers proposals on program development and its structure using our process evaluation criterion. Innovative financing and benefits distribution structure is thus developed and will remain part of the proposal. Restricted Stakeholder Crowd Financing and Risk-Free Incentivized return are the products of proposed financing and benefit distribution structure respectively. These products are then complimented by proposing an alternative approach in estimating EE&C savings. The approach advocates estimation based on range-allocation rather than currently utilized unique estimated savings approach. The Way Ahead section thus explores synergy between financial and engineering ranges of energy savings as a multi-discipline approach for future research. Moreover, it provides the proposed program structure with risk aversion and incentive allocation while dealing with uncertainty. This set of new approaches are believed to better fill the realization gap between estimated and actual energy efficiency savings.

  19. Multiprocessor smalltalk: Implementation, performance, and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallas, J.I.

    1990-01-01

    Multiprocessor Smalltalk demonstrates the value of object-oriented programming on a multiprocessor. Its implementation and analysis shed light on three areas: concurrent programming in an object oriented language without special extensions, implementation techniques for adapting to multiprocessors, and performance factors in the resulting system. Adding parallelism to Smalltalk code is easy, because programs already use control abstractions like iterators. Smalltalk's basic control and concurrency primitives (lambda expressions, processes and semaphores) can be used to build parallel control abstractions, including parallel iterators, parallel objects, atomic objects, and futures. Language extensions for concurrency are not required. This implementation demonstrates that it is possiblemore » to build an efficient parallel object-oriented programming system and illustrates techniques for doing so. Three modification tools-serialization, replication, and reorganization-adapted the Berkeley Smalltalk interpreter to the Firefly multiprocessor. Multiprocessor Smalltalk's performance shows that the combination of multiprocessing and object-oriented programming can be effective: speedups (relative to the original serial version) exceed 2.0 for five processors on all the benchmarks; the median efficiency is 48%. Analysis shows both where performance is lost and how to improve and generalize the experimental results. Changes in the interpreter to support concurrency add at most 12% overhead; better access to per-process variables could eliminate much of that. Changes in the user code to express concurrency add as much as 70% overhead; this overhead could be reduced to 54% if blocks (lambda expressions) were reentrant. Performance is also lost when the program cannot keep all five processors busy.« less

  20. A Mulit-State Model for Catalyzing the Home Energy Efficiency Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackmon, Glenn

    The RePower Kitsap partnership sought to jump-start the market for energy efficiency upgrades in Kitsap County, an underserved market on Puget Sound in Washington State. The Washington State Department of Commerce partnered with Washington State University (WSU) Energy Program to supplement and extend existing utility incentives offered by Puget Sound Energy (PSE) and Cascade Natural Gas and to offer energy efficiency finance options through the Kitsap Credit Union and Puget Sound Cooperative Credit Union (PSCCU). RePower Kitsap established a coordinated approach with a second Better Buildings Neighborhood Program project serving the two largest cities in the county – Bainbridge Islandmore » and Bremerton. These two projects shared both the “RePower” brand and implementation team (Conservation Services Group (CSG) and Earth Advantage).« less

  1. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendon, Vrushali V.; Taylor, Zachary T.

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype buildingmore » models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.« less

  2. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karman, Nathan

    2012-11-29

    The Forest County Potawatomi Community (FCPC or Community) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (SF) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the Concordia Trust Property). As part of thismore » project, which was conducted with assistance from the Department of Energy's Tribal Energy Program (TEP), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the building's natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a Catalytic Project for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmen-providing services to the Indian community and jobs to the neighborhood.« less

  3. Energy audits of boiler chiller plants, Energy Engineering Analysis Program, Fort Bragg, North Carolina, volume 1: Narrative report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-03-01

    This document constitutes the Pre-Final Submittal for Contract DACA21-84-C-0603, Energy Audits of Boiler/Chiller Plants, Ft. Bragg, North Carolina. The purpose of this report is to indicate the work accomplished to date, show samples of field data collected, illustrate the methods and justifications of the approaches taken, outline the present conditions, and make recommendations for the potential energy efficiency improvements to the central energy plants of Fort Bragg. The specific buildings analyzed are: (1) Building C-1432 82nd Heating Plant; (2) Building D-3529 JFK Heating Cooling Plant, and (3) Building C-6039 82nd Chiller Plant. The following buildings were part of the originalmore » scope of work, but were deleted for reasons explained further in Section 1.0 of this report: (1) Building C-7549 Standby Plant for C-1432; (2) Building N-6002 New EM Barracks Complex; and (3) Building H-6240 `H` Area Chiller Plant.« less

  4. 10 CFR 430.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th... Standard for Fluorescent Lamps-Instant-start and Cold-Cathode Types-Dimensional and Electrical...-1995 (“ANSI C78.20”), American National Standard for electric lamps—A, G, PS, and Similar Shapes with...

  5. Tourism Studies. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    This Alberta curriculum guide, focusing on tourism studies, defines competencies that: help students build daily living skills, investigate career options in the design and repair of motor vehicles, use technology in these fields effectively and efficiently, and prepare for entry into the workplace or related postsecondary programs. Section A…

  6. 10 CFR 420.15 - Minimum criteria for required program activities for plans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../vanpool matching and promotion campaign; (ii) Park-and-ride lots; (iii) Preferential traffic control for... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... efficiency standards for renovated buildings. (e) A traffic law or regulation which permits the operator of a...

  7. 10 CFR 420.15 - Minimum criteria for required program activities for plans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../vanpool matching and promotion campaign; (ii) Park-and-ride lots; (iii) Preferential traffic control for... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... efficiency standards for renovated buildings. (e) A traffic law or regulation which permits the operator of a...

  8. 10 CFR 420.15 - Minimum criteria for required program activities for plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../vanpool matching and promotion campaign; (ii) Park-and-ride lots; (iii) Preferential traffic control for... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... efficiency standards for renovated buildings. (e) A traffic law or regulation which permits the operator of a...

  9. Whole Foods Market Improves Energy Efficiency in New Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-03-01

    Whole Foods Market partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOE’s Commercial Building Partnership (CBP) program.

  10. 78 FR 43220 - Fiscal Year (FY) 2013 Funding Opportunity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Solutions, Inc. the current grantee for the National Suicide Prevention Lifeline. This is not a formal... efficient to supplement the existing grantee for the National Suicide Prevention Lifeline and to build on... agreement to manage the National Suicide Prevention Lifeline. The purpose of this program is to manage...

  11. 10 CFR 435.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...

  12. 10 CFR 435.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...

  13. 10 CFR 435.3 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 435.3 Section 435.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE... Renewable Energy, Building Technologies Program, Sixth Floor, 950 L'Enfant Plaza, SW., Washington, DC 20024...

  14. Green Schools.

    ERIC Educational Resources Information Center

    Kozlowski, David, Ed.

    1998-01-01

    Discusses "going green" concept in school-building design, its cost-savings benefits through more efficient energy use, and its use by the State University of New York at Buffalo as solution to an energy retrofit program. Examples are provided of how this concept can be used, even for small colleges without large capital budgets, and how…

  15. 10 CFR 431.323 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... National Standard for electric lamps: Single-Ended Metal Halide Lamps, approved May 5, 2004, IBR approved... (“NFPA 70”), National Electrical Code 2002 Edition, IBR approved for § 431.326; (2) [Reserved] (e) UL...

  16. 10 CFR 431.323 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, 6th Floor... National Standard for electric lamps: Single-Ended Metal Halide Lamps, approved May 5, 2004, IBR approved... (“NFPA 70”), National Electrical Code 2002 Edition, IBR approved for § 431.326; (2) [Reserved] (e) UL...

  17. Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, Susan A.; Sandusky, William F.

    2010-12-31

    Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stockmore » is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.« less

  18. SMART Scale An Innovative Program Accelerating the Energy Efficiency Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Colin; Aldridge, Mahlon; Higgins, Cathy

    Small business is a major component of the American economy. More than half of all private sector workers in this country are employed by small businesses and nearly two-thirds of the new jobs generated in the last ten years were created in this sector. Studies have shown that buildings of less than 50,000 square feet represent 94% of the commercial sector and half of all non-residential floor space in the United States. The future of the American economy relies on a vibrant, robust, and profitable small business community. Small and mid-sized businesses (SMB) can increase their profitability by reducing theirmore » operating costs through energy efficiency. The SMART Scale program delivers deep retrofits that maximize energy and cost savings for the SMB market and can be adapted throughout the country in markets of all sizes. For the past 14 years, Ecology Action has been perfecting a Direct Install (DI) program for the SMB market that offers this sector the type of sophisticated, comprehensive energy saving opportunities that were previously available only to large commercial and industrial customers. The DI 2.0 model that Ecology Action has administered for several public and investor-owned California utilities, and most recently for the Sacramento Municipal Utilities District (SMUD), provides the template for a successful retrofit program that can address the unique barriers faced by the SMB sector and achieve a greater impact than traditional DI programs. The impressive results produced by the DI 2.0 program prompted the US Department of Energy to award Ecology Action a $2 million grant in 2013 to create, demonstrate and roll out a replicable model for delivering deep retrofits to small commercial buildings. The grant enabled Ecology Action to build on the success of DI 2.0 by incorporating improvements into the model, market-testing it and designing a costeffective method of achieving significant energy savings for small businesses across the country.« less

  19. Guide to Operating and Maintaining EnergySmart Schools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through a commitment to high performance, school districts are discovering that smart energy choices can create lasting benefits for students, communities, and the environment. For example, an energy efficient school district with 4,000 students can save as much as $160,000 a year in energy costs. Over 10 years, those savings can reach $1.6 million, translating into the ability to hire more teachers, purchase more textbooks and computers, or invest in additional high performance facilities. Beyond these bottomline benefits, schools can better foster student health, decrease absenteeism, and serve as centers of community life. The U.S. Department of Energy's EnergySmart Schoolsmore » Program promotes a 30 percent improvement in existing school energy use. It also encourages the building of new schools that exceed code (ASHRAE 90.11999) by 50 percent or more. The program provides resources like this Guide to Operating and Maintaining EnergySmart Schools to assist school decisionmakers in planning, financing, operating, and maintaining energy efficient, high performance schools. It also offers education and training for building industry professionals. Operations and maintenance refer to all scheduled and unscheduled actions for preventing equipment failure or decline with the goal of increasing efficiency, reliability, and safety. A preventative maintenance program is the organized and planned performance of maintenance activities in order to prevent system or production problems or failures from occurring. In contrast, deferred maintenance or reactive maintenance (also called diagnostic or corrective maintenance) is conducted to address an existing problem. This guide is a primary resource for developing and implementing a districtor schoolwide operations and maintenance (O&M) program that focuses on energy efficiency. The EnergySmart Schools Solutions companion CD contains additional supporting information for design, renovation, and retrofit projects. The objective of this guide is to provide organizational and technical information for integrating energy and high performance facility management into existing O&M practices. The guide allows users to adapt and implement suggested O&M strategies to address specific energy efficiency goals. It recognizes and expands on existing tools and resources that are widely used throughout the high performance school industry. External resources are referenced throughout the guide and are also listed within the EnergySmart Schools O&M Resource List (Appendix J). While this guide emphasizes the impact of the energy efficiency component of O&M, it encourages taking a holistic approach to maintaining a high-performance school. This includes considering various environmental factors where energy plays an indirect or direct role. For example, indoor air quality, site selection, building orientation, and water efficiency should be considered. Resources to support these overlapping aspects will be cited throughout the guide.« less

  20. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), aboutmore » 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.« less

  1. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energymore » consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.« less

  2. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  3. Think 500, not 50! A scalable approach to student success in STEM.

    PubMed

    LaCourse, William R; Sutphin, Kathy Lee; Ott, Laura E; Maton, Kenneth I; McDermott, Patrice; Bieberich, Charles; Farabaugh, Philip; Rous, Philip

    2017-01-01

    UMBC, a diverse public research university, "builds" upon its reputation in producing highly capable undergraduate scholars to create a comprehensive new model, STEM BUILD at UMBC. This program is designed to help more students develop the skills, experience and motivation to excel in science, technology, engineering, and mathematics (STEM). This article provides an in-depth description of STEM BUILD at UMBC and provides the context of this initiative within UMBC's vision and mission. The STEM BUILD model targets promising STEM students who enter as freshmen or transfer students and do not qualify for significant university or other scholarship support. Of primary importance to this initiative are capacity, scalability, and institutional sustainability, as we distill the advantages and opportunities of UMBC's successful scholars programs and expand their application to more students. The general approach is to infuse the mentoring and training process into the fabric of the undergraduate experience while fostering community, scientific identity, and resilience. At the heart of STEM BUILD at UMBC is the development of BUILD Group Research (BGR), a sequence of experiences designed to overcome the challenges that undergraduates without programmatic support often encounter (e.g., limited internship opportunities, mentorships, and research positions for which top STEM students are favored). BUILD Training Program (BTP) Trainees serve as pioneers in this initiative, which is potentially a national model for universities as they address the call to retain and graduate more students in STEM disciplines - especially those from underrepresented groups. As such, BTP is a research study using random assignment trial methodology that focuses on the scalability and eventual incorporation of successful measures into the traditional format of the academy. Critical measures to transform institutional culture include establishing an extensive STEM Living and Learning Community to increase undergraduate retention, expanding the adoption of "active learning" pedagogies to increase the efficiency of learning, and developing programs to train researchers to effectively mentor a greater portion of the student population. The overarching goal of STEM BUILD at UMBC is to retain students in STEM majors and better prepare them for post baccalaureate, graduate, or professional programs as well as careers in biomedical and behavioral research.

  4. An object oriented Python interface for atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  5. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Spellman, K.

    2017-12-01

    A changing climate has impacted Alaska communities at unprecedented rates, and the need for efficient and effective climate change learning in the Boreal and Arctic regions is urgent. Learning programs that can both increase personal understanding and connection to climate change science and also inform large scale scientific research about climate change are an attractive option for building community adaptive capacity at multiple scales. Citizen science has emerged as a powerful tool for facilitating learning across scales, and for building partnerships across natural sciences research, education, and outreach disciplines. As an early career scientist and interdisciplinary researcher, citizen science has become the centerpiece of my work and has provided some of the most rewarding moments of my career. I will discuss my early career journey building a research and leadership portfolio integrating climate change research, learning research, and public outreach through citizen science. I will share key experiences from graduate student to early career PI that cultivated my leadership skills and ability to build partnerships necessary to create citizen science programs that emphasize synergy between climate change research and education.

  6. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  7. Computer-aided design of biological circuits using TinkerCell.

    PubMed

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience

  8. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of productionmore » builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.« less

  9. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    PubMed

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  10. GillesPy: A Python Package for Stochastic Model Building and Simulation

    PubMed Central

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2017-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888

  11. 75 FR 17700 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... February 8, 2010, titled the Energy Efficient Building Systems Regional Innovation Cluster Initiative. A...

  12. Lessons in Commercial PACE Leadership: The Path from Legislation to Launch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventis, G; Schwartz, LC; Kramer, C

    Nonresidential buildings are responsible for over a quarter of primary energy consumption in the United States. Efficiency improvements in these buildings could result in significant energy and utility bill savings. To unlock those potential savings, a number of market barriers to energy efficiency must be addressed. Commercial Property Assessed Clean Energy (C-PACE) financing programs can help overcome several of these barriers with minimal investment from state and local governments. With programs established or under development in 22 states, and at least $521 million in investments so far, other state and local governments are interested in bringing the benefits of C-PACEmore » to their jurisdictions. Lessons in Commercial PACE Leadership: The Path from Legislation to Launch, aims to fast track the set-up of C-PACE programs for state and local governments by capturing the lessons learned from leaders. The report examines the list of potential program design options and important decision points in setting up a C-PACE program, tradeoffs for available options, and experiences of stakeholders that have gone through (or are going through) the process. C-PACE uses a voluntary special property assessment to facilitate energy and other improvements in commercial buildings. For example: - Long financing terms under C-PACE can produce cash flow-positive -- projects to help overcome a focus on short paybacks. - Payment obligations can transfer to subsequent owners, mitigating concern about investing in improvements for a building that may be sold before the return on the investment is fully realized. - 100% of both hard and soft costs can be financed. To capture the benefits of C-PACE financing, state and local governments must navigate numerous decision points and engage with stakeholders to set-up or join a program. Researchers interviewed experts (including state and local sponsors, program administrators, capital providers and industry experts) on their lessons learned and arrived at the following key takeaways for state and local leaders: Enabling legislation: Carefully developed enabling legislation (which includes certain key provisions) and early stakeholder input can greatly improve the chances of program success. Options for program administrative structure: At least four program administrative structures are in use; certain administrative structures inherently result in more standardized product offerings and, potentially, economies of scale. Approaches to program and project capitalization: Two approaches to capitalization have been used. Bonding (project capital is raised through a bond sale) and direct funding (capital providers fund projects directly); programs can rely on one capital provider (a closed market) or allow multiple capital providers to participate (an open market). What and who qualifies for the program: Some programs require a minimum project savings-to-investment ratio; other programs encourage it or are indifferent. Estimating and documenting project energy cost saving: Estimating and documenting energy and cost savings can add costs to projects but also demonstrate C-PACE program value. Stakeholder engagement: Key stakeholder groups to engage include community leaders, local governments, building owners, contractors, utilities, capital providers and mortgage holders; stakeholder engagement should be tailored to each particular group. Start-up and ongoing costs: Understanding set-up and ongoing costs can help program sponsors plan for funding C-PACE programs and projects. The U.S. Department of Energy's Office of Weatherization and Intergovernmental Programs funded the report.« less

  13. Final Scientific Technical Report Crowder College MARET Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyt, Art; Eberle, Dan; Hudson, Pam

    Following decades of success in solar energy projects, the Missouri Legislature designated Crowder College in 1992 as the State's renewable energy education center. The resulting Missouri Alternative and Renewable Energy Technology (MARET) Center is recognized internationally for its contributions to the energy field. The mission of the MARET Center is to expand renewable energy throughout the region with education, applied research, and economic development. Educational programs include certification and transfer degrees encompassing green construction, solar thermal energy, solar electricity, and wind. The MARET Center also assists in new product development and other business support services in renewable energy. The Missourimore » Alternative and Renewable Energy Technology (MARET) Center at Crowder College hopes to eventually develop a 27,500 ft 2 facility as a living laboratory to support solar and other renewable and sustainable energy development through professional degrees, new product development and commercialization, renewable energy business incubation, and consumer education. The primary objective of the current project was to complete Stage One of this building, with solar, wind, and geothermal technologies installed to power its 9,216 ft 2 office, classroom, and research spaces. This MARET Center includes a modular roof structure that permits both solar module mounting and daylighting, PV/thermal hybrid modules pioneered in Crowder Solar Decathlon homes, modular electrical management subsystems; and modular delivery systems for heating and cooling the structure. The MARET Facility will operate as a Net Positive energy building, consistently producing surplus energy for distributed generation on the utility grid. The modular design of the energy systems within the building is to serve as a scalable and repeatable model for a wide variety of building applications and climate zones. As a living laboratory of renewable energy, exploring and validating new applications of solar and other renewable technologies, the MARET Facility will house a wide variety of programs which will advance implementation of renewable energy throughout the region. These program goals include; Curriculum in renewable energy for pre-engineering transfer programs; Certification and degree programs for technical degrees for Energy Efficiency, Wind, Photovoltaic and Solar Thermal professionals; Short courses and workshops for building management and design professionals; Public education and demonstration projects in renewable energy through conferences and K-12 educational outreach; Technical degree offering in building construction incorporating “best practices” for energy efficiency and renewables; and Business incubators for new renewable energy businesses and new product development The new MARET facility will support the mission of the US Department of Energy (DOE) Solar Program, “to improve America’s security, environmental quality, and economic prosperity through public-private partnerships that bring reliable and affordable solar energy technologies to the marketplace,” through a variety of educational and business assistance programs. Further, technical innovations planned for the MARET facility and its applied research activities will advance the Solar Program strategic goals to “reduce the cost of solar energy to the point it becomes competitive in relevant energy markets (e.g., buildings, power plants) and for solar technology to enable a sustainable solar industry.” Overarching Goals relative to program needs, future expansion, flexibility, quality of materials, and construction and operational costs:; Experimental: The structure and systems of the building operate as an educational resource. The systems are meant to be a source for data collection and study for building users and instructors; Educational: Part of the evolution of this building and its ongoing goals is to use the building as an educational tool, one where new ideas developed in the world and especially at Crowder can be tested further as part of MARET's curriculum; LEED Platinum: achieve highest level of LEED certification; Net Zero: The building will utilize existing wind and alternate energy sources on campus and add solar PVT panels and achieve as close as possible to a net zero energy usage; and Phase II: The phase II portion of this project will expand the Internet student area, additional classrooms, and labs, as well as an auditorium and exhibit area.« less

  14. Technical support documentation for the Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Automated Residential Energy Standard (ARES) program is designed to identify levels of thermal integrity (e.g., insulation levels, glazing layers, equipment efficiencies, etc.) that are cost effective for typical residential structures and to create a residential energy standard based on these levels. This document contains technical background the explains the data and the algorithms used by the program.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, D.; Sutherland, K.; Chasar, D.

    The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less

  16. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Shallow Retrofit Results, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-02-22

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.

  17. Building America Case Study: Pilot Demonstration of Phased Energy Efficiency Retrofits: Shallow Retrofit Results, Central and South Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Parker, K. Sutherland, D. Chasar, J. Montemurno, B. Amos, J. Kono

    2017-02-01

    The Florida Solar Energy Center (FSEC), in collaboration with Florida Power & Light (FPL), is pursuing a phased residential energy-efficiency retrofit program in Florida. Researchers are looking to establish the impacts of technologies of two retrofit packages -- shallow and deep -- on annual energy and peak energy reductions. Sixty homes have been instrumented to record total house power and detailed energy end-use data on all appliances as well as household interior temperature and relative humidity conditions.

  18. Energy and Mines. Guide to Standards and Implementation. Career & Technology Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    This Alberta curriculum guide defines competencies that help students build daily living skills, investigate career options in energy and mines, use technology in the fields of energy and mining effectively and efficiently, and prepare for entry into the workplace or related postsecondary programs in the field. The first section provides a program…

  19. Brain Gym[R]: Building Stronger Brains or Wishful Thinking?

    ERIC Educational Resources Information Center

    Hyatt, Keith J.

    2007-01-01

    As part of the accountability movement, schools are increasingly called upon to provide interventions that are based on sound scientific research and that provide measurable outcomes for children. Brain Gym[R] is a popular commercial program claiming that adherence to its regimen will result in more efficient learning in an almost miraculous…

  20. School Plant Management: Organizing the Maintenance Program. Bulletin, 1960, No. 15. OE-21002

    ERIC Educational Resources Information Center

    Finchum, R. N.

    1960-01-01

    Present capital outlay investments in elementary and secondary school buildings, sites, and equipment in the United States are being increased at the rate of about $3 billion annually. Maintenance and operational services, important aspects of property protection, educational progress, pupil safety, and plant efficiency, are being provided in…

  1. Tool to Prioritize Energy Efficiency Investments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, P.; Gelman, R.; Hendron, R.

    2012-08-01

    To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.

  2. 75 FR 7464 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... Energy Efficient Building Systems Regional Innovation Cluster Initiative. A single proposal submitted by... systems design. The DOE funded Energy Efficient Building Systems Design Hub (the ``Hub'') will serve as a...

  3. Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Gabe

    This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less

  4. International Review of Standards and Labeling Programs for Distribution Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie; Scholand, Michael; Carreño, Ana María

    Transmission and distribution (T&D) losses in electricity networks represent 8.5% of final energy consumption in the world. In Latin America, T&D losses range between 6% and 20% of final energy consumption, and represent 7% in Chile. Because approximately one-third of T&D losses take place in distribution transformers alone, there is significant potential to save energy and reduce costs and carbon emissions through policy intervention to increase distribution transformer efficiency. A large number of economies around the world have recognized the significant impact of addressing distribution losses and have implemented policies to support market transformation towards more efficient distribution transformers. Asmore » a result, there is considerable international experience to be shared and leveraged to inform countries interested in reducing distribution losses through policy intervention. The report builds upon past international studies of standards and labeling (S&L) programs for distribution transformers to present the current energy efficiency programs for distribution transformers around the world.« less

  5. Case Study of the Maplewood Park Multifamily Retrofit for Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Euy-Jin; Stephenson, Robert; Roberts, Sydney

    2012-12-01

    Maplewood Park (Maplewood), a 110-unit multifamily apartment complex in Union City, Georgia, completed major renovations under the guidance of a third-party green building certification program in October 2012. Oak Ridge National Laboratory (ORNL) partnered with Southface Energy Institute (Southface) to use this project as a case study of energy retrofits in low-rise, garden-style, multifamily buildings in the southeastern United States. This report provides a comprehensive profile of this project including the project economics, findings of the building audit, and results of the analysis of energy retrofit measures specific to this project. With a main focus of energy retrofits, this reportmore » aims to discuss other aspects of multifamily building retrofit that would benefit future projects in terms of improved building audit process, streamlined tasks, and higher energy savings in low-rise, garden-style apartments. Maplewood received Low Income Housing Tax Credit (LIHTC) financing via the 2010 Georgia Qualified Allocation Plan (QAP). To be eligible for QAP funds in Georgia, all major renovations must incorporate energy-efficiency measures and adopt a third-party green building certification. Because of the unique demands of this financing, including requirements for long-term ownership, property owners were also especially motivated to invest in upgrades that will increase durability and comfort while reducing the energy cost for the tenants.« less

  6. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    NASA Astrophysics Data System (ADS)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jon; Booten, Chuck

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity.more » The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.« less

  8. Portfolio-Scale Optimization of Customer Energy Efficiency Incentive and Marketing: Cooperative Research and Development Final Report, CRADA Number CRD-13-535

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brackney, Larry J.

    North East utility National Grid (NGrid) is developing a portfolio-scale application of OpenStudio designed to optimize incentive and marketing expenditures for their energy efficiency (EE) programs. NGrid wishes to leverage a combination of geographic information systems (GIS), public records, customer data, and content from the Building Component Library (BCL) to form a JavaScript Object Notation (JSON) input file that is consumed by an OpenStudio-based expert system for automated model generation. A baseline model for each customer building will be automatically tuned using electricity and gas consumption data, and a set of energy conservation measures (ECMs) associated with each NGrid incentivemore » program will be applied to the model. The simulated energy performance and return on investment (ROI) will be compared with customer hurdle rates and available incentives to A) optimize the incentive required to overcome the customer hurdle rate and B) determine if marketing activity associated with the specific ECM is warranted for that particular customer. Repeated across their portfolio, this process will enable NGrid to substantially optimize their marketing and incentive expenditures, targeting those customers that will likely adopt and benefit from specific EE programs.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Jeffrey W.

    The Tribe is working to reduce energy consumption and expense in Tribally-owned governmental buildings and low income housing sites. In 2009, the Tribe applied to the U. S. Department of Energy for funding to conduct energy audits of Tribally-owned governmental buildings. Findings from the energy audits would define the extent and types of energy efficiency improvements needed, establish a basis for energy priorities, strategies and action plans, and provide a benchmark for measuring improvements from energy efficiency implementations. In 2010, the DOE awarded a grant in the amount of $95,238 to the Tribe to fund the energy audits of ninemore » governmental buildings and to pay for travel expenses associated with attendance and participation at the DOE annual program reviews. In 2011, the Tribe applied for and was awarded a DOE grant in the amount of $75,509 to conduct energy audits of the remaining 30 Tribally-owned governmental buildings. Repeating mobilization steps performed during the first DOE energy audits grant, the Tribe initiated the second round of governmental building energy audits by completing energy auditor procurement. The selected energy auditor successfully passed DOE debarment and Sault Tribe background clearances. The energy audits contract was awarded to U. P. Engineers and Architects, Inc. of Sault Ste. Marie, Michigan. The Tribe continued mobilizing for the energy audits by providing the energy auditor with one year of electric, gas and water utility invoice copies per building, as well as supplemental building information, such as operating hours. The Tribe also contacted building occupants to coordinate scheduling for the on-site energy audit inspections and arranged for facilities management personnel to guide the energy auditor through the buildings and answer questions regarding building systems.« less

  10. RLUOB Celebration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Amy S.; Powell, Kimberly S.

    Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility Office Building (RLUOB), is also its first to achieve both the Leadership in Energy and Environmental Design (LEED) status and LEED Gold certification from the U.S. Green Building Council (USGBC). From its robust design to its advanced scientific equipment, RLUOB is essential to the Laboratory's national security mission in support of the National Nuclear Security Administration's (NNSA) nuclear weapons program. At more than 200,000 square feet, this building is the only radiological facility within the Department of Energy to have attained LEED Gold, which contributes to NNSA's achievement towards themore » high performance sustainable building goals outlined in Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance. 'As we celebrate RLUOB being completed almost one year ahead of schedule and having achieved LEED certification at the Gold level, we approach our plutonium mission at Los Alamos and NNSA with a great sense of achievement,' said Don Cook, NNSA's deputy administrator for defense programs. 'RLUOB adds a major component to NNSA's plutonium support capability and RLUOB demonstrates our commitment in helping to deliver President Obama's nuclear security agenda which includes ensuring the safety, security and effectiveness of the nuclear deterrent without testing.' The facility contains laboratories for analytical chemistry and materials characterization of special nuclear material, along with space for offices, training and emergency operations. Its multi-functional purpose makes RLUOB a unique project for which LEED certification was sought. 'LEED certification was a huge goal and one we sought from the very beginning of this project,' said Laboratory Director Charlie McMillan. 'It's an important step forward, allowing us to advance national security science in modern, safer, more efficient infrastructure.' The Laboratory's project team and its contractor partners, especially in coordination with Jacobs Engineering, focused on green design and construction in LEED categories, such as sustainable sites, water efficiency, energy and atmosphere, materials and resources, indoor environmental quality and innovation in design. RLUOB's features include: (1) Building envelope design (orientation, materials and insulation) yielded a 20 percent improvement in energy performance; (2) Incorporation of building materials with 24 percent recycled content; (3) Diversion of 72 percent of construction-generated materials through reuse, recycle and salvage; (4) Roofing comprised of 93 percent highly-reflective materials to reduce heat island effects; (5) High efficiency, gas-fired hot water boilers, air-cooled chillers, thermal storage systems and variable frequency drives for compressors, fans and pumps; (6) Energy efficient lighting for interiors, exteriors, process glove boxes and fume hoods; (7) Water efficient fixtures resulting in 30 percent reduction in usage; (8) Low emission paints and carpeting for improved indoor air quality; (9) Landscaping that doesn't require permanent irrigation; (10) Enhanced building system commissioning; and (11) Comprehensive transportation alternatives, including public transportation, bicycle storage and changing rooms, and a refueling station for government vehicles using alternative fuels. 'RLUOB's LEED certification demonstrates tremendous leadership in green building,' says Rick Fedrizzi, president and CEO of USGBC. 'The urgency of our mission has challenged the industry to move faster and reach further than ever before, and RLUOB serves as a prime example of just how much we can accomplish.'« less

  11. Use of T12 lighting systems in retrofit applications within New York Office of Mental Health Facilities - A case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C.P.; Marsh, E.J.

    1997-06-01

    In 1990, the Governor of New York State issued Executive Order No. 132, directing all state agencies to reduce energy consumption by 20% from the base year of 1988/89 by the year 2000. To assist in meeting this goal, the New York State Office of Mental Health (OMH) established the Lighting Revitalization Program in 1992. State facilities are divided into five regions, each served by existing Environmental Revitalization Teams. OMH supplemented these teams with lighting technicians in this new program. The program`s goal was to rehabilitate outdated, inefficient lighting systems throughout 28 OMH facilities, totaling 28 million square feet inmore » area. OMH requested the former Facility Development Corporation (FDC), now the Dormitory Authority of the State of New York (DASNY), to contract with Novus Engineering to evaluate the relative efficiency of T8 and T12 ballasts. Novus contracted an independent laboratory, Eastern Testing Laboratories (ETL), for performance testing. ETL tested four ballast/lamp configurations for light Output and input power, and Novus analyzed the results for relative efficiency and also calculated 25-year life cycle costs. The test results indicated that the efficiencies of the T12/34W and T8/32W ballast/lamp technologies were nearly identical. The input power and light output of these systems were similar. The lumens per Watt ratings for the two systems were nearly equal, with the T8 technology being only about two percent more efficient, generating more light with similar input power. The life cycle costs for the two systems were nearly identical, with the T12 system providing a slightly lower life cycle cost. Given the above considerations, the agency has been installing T12 electronic ballasts and 34W lamps in buildings where fluorescent fixtures warranted upgrading. This type of retrofit goes against current trends, but the use of T8 system could not be justified in buildings undergoing minor retrofitting.« less

  12. Healthcare Commercialization Programs: Improving the Efficiency of Translating Healthcare Innovations From Academia Into Practice.

    PubMed

    Collins, John M; Reizes, Ofer; Dempsey, Michael K

    2016-01-01

    Academic investigators are generating a plethora of insights and technologies that have the potential to significantly improve patient care. However, to address the imperative to improve the quality, cost and access to care with ever more constrained funding, the efficiency and the consistency with which they are translated into cost effective products and/or services need to improve. Healthcare commercialization programs (HCPs) are described and proposed as an option that institutions can add to their portfolio to improve translational research. In helping teams translate specific healthcare innovations into practice, HCPs expand the skillset of investigators and enhance an institution's innovation capacity. Lessons learned are shared from configuring and delivering HCPs, which build on the fundamentals of the National Science Foundation's Innovation Corps program, to address the unique challenges in supporting healthcare innovations and innovators.

  13. Can we build an efficient response to the prescription drug abuse epidemic? Assessing the cost effectiveness of universal prevention in the PROSPER trial.

    PubMed

    Crowley, D Max; Jones, Damon E; Coffman, Donna L; Greenberg, Mark T

    2014-05-01

    Prescription drug abuse has reached epidemic proportions. Nonmedical prescription opioid use carries increasingly high costs. Despite the need to cultivate efforts that are both effective and fiscally responsible, the cost-effectiveness of universal evidence-based-preventive-interventions (EBPIs) is rarely evaluated. This study explores the performance of these programs to reduce nonmedical prescription opioid use. Sixth graders from twenty-eight rural public school districts in Iowa and Pennsylvania were blocked by size and geographic location and then randomly assigned to experimental or control conditions (2002-2010). Within the intervention communities, prevention teams selected a universal family and school program from a menu of EBPIs. All families were offered a family-based program in the 6th grade and received one of three school-based programs in 7th-grade. The effectiveness and cost-effectiveness of each school program by itself and with an additional family-based program were assessed using propensity and marginal structural models. This work demonstrates that universal school-based EBPIs can efficiently reduce nonmedical prescription opioid use. Further, findings illustrate that family-based programs may be used to enhance the cost-effectiveness of school-based programs. Universal EBPIs can effectively and efficiently reduce nonmedical prescription opioid use. These programs should be further considered when developing comprehensive responses to this growing national crisis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Approaches to 30 Percent Energy Savings at the Community Scale in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas-Rees, S.; Beal, D.; Martin, E.

    2013-03-01

    BA-PIRC has worked with several community-scale builders within the hot humid climate zone to improve performance of production, or community scale, housing. Tommy Williams Homes (Gainesville, FL), Lifestyle Homes (Melbourne, FL), and Habitat for Humanity (various locations, FL) have all been continuous partners of the Building America program and are the subjects of this report to document achievement of the Building America goal of 30% whole house energy savings packages adopted at the community scale. Key aspects of this research include determining how to evolve existing energy efficiency packages to produce replicable target savings, identifying what builders' technical assistance needsmore » are for implementation and working with them to create sustainable quality assurance mechanisms, and documenting the commercial viability through neutral cost analysis and market acceptance. This report documents certain barriers builders overcame and the approaches they implemented in order to accomplish Building America (BA) Program goals that have not already been documented in previous reports.« less

  15. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  16. Energy Efficiency and Demand Response for Residential Applications

    NASA Astrophysics Data System (ADS)

    Wellons, Christopher J., II

    The purpose of this thesis is to analyze the costs, feasibility and benefits of implementing energy efficient devices and demand response programs to a residential consumer environment. Energy efficiency and demand response are important for many reasons, including grid stabilization. With energy demand increasing, as the years' pass, the drain on the grid is going up. There are two key solutions to this problem, increasing supply by building more power plants and decreasing demand during peak periods, by increasing participation in demand response programs and by upgrading residential and commercial customers to energy efficient devices, to lower demand throughout the day. This thesis focuses on utilizing demand response methods and energy efficient device to reduce demand. Four simulations were created to analyze these methods. These simulations show the importance of energy efficiency and demand response participation to help stabilize the grid, integrate more alternative energy resources, and reduce emissions from fossil fuel generating facilities. The results of these numerical analyses show that demand response and energy efficiency can be beneficial to consumers and utilities. With demand response being the most beneficial to the utility and energy efficiency, specifically LED lighting, providing the most benefits to the consumer.

  17. Physician efficiency and reimbursement: a case study.

    PubMed

    Cantrell, L E; Flick, J A

    1986-01-01

    Joint ventures between hospitals and doctors are being widely developed and reported as the most promising mechanism for building alliances, providing financial rewards, and accessing new markets. However, joint ventures cannot be structured to involve an entire medical staff directly. Likewise, they cannot motivate a medical staff to change medical practice patterns in order to improve a hospital's reimbursement efficiency. This article describes a system of physician economic efficiency criteria that is being used by one hospital in making medical staff reappointment decisions and has the effect of placing all physicians at risk individually for the hospital's reimbursement performance. Although somewhat controversial, this economic efficiency program has proven a remarkably effective tool for change.

  18. US DOE EECBG BBNP REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Brian; Conkey, Todd; Edgar, George

    2013-12-31

    The Wisconsin Energy Efficiency (WE2) Program delivered residential and commercial programming for the City of Milwaukee (Me2) and the City of Madison (Green Madison) as well as commercial only programming for the City of Racine (Re2). Direct incentives and loan products for homeowners and business owners were offered, with the goal to achieve at least 15 percent in energy savings. At the time of this report, there were more than 2,000 residential energy efficiency upgrades completed and more than 300 commercial energy efficiency upgrades completed. The average energy savings for the WE2 Program’s portfolio of residential and commercial projects exceedsmore » 15 percent and is closer to 30 percent energy savings. Combined energy savings of both residential and commercial activities were: 20,937,369 kWh; 1,018,907 Therms; and 31,655 gallons of heating oil; or at least 332,788 MMBTUs; or at least $3,444,828 in estimated energy costs saved. Conservative economic impact estimates include the employment of more than 100 residential auditors and contractors, more than 90 commercial contractors, and more than $41 million in total project costs expended in the targeted communities. WECC, along with the Partner Cities, attempted to create energy efficiency programming that helped to increase economic activity, increase workforce opportunities, and save energy in three of the largest communities in Wisconsin. Homeowners were assisted through the residential process by Energy Advocates, consultants, and contractors. Business owners were assisted through the commercial process by Program Advocates, contractors and trade allies. Contractors in both the residential and commercial programs were educated and trained by the many offerings provided by WECC. Together, all parties involved made the WE2 Program successful. The most prominent innovative approaches employed in the Me2 and Green Madison programs for residential retrofits were: use of a loan loss reserve approach to improve access to lower cost financing; a primary focus on “community-based” marketing and outreach through local organizations to attract program participants; use of Energy Advocates to facilitate homeowner understanding during participation of the retrofit process; increase in financial incentives, especially to achieve higher project savings; and additional building science and sales training for participating contractors, as well as the use of a Community Workforce Agreement (CWA). The most prominent innovative approaches used in the commercial building retrofit programs for the Me2, Green Madison and Re2 programs were: development and use of innovative customer financing through loan-loss reserves for small commercial building retrofits; cash collateral advance account for larger projects which mitigated the financial risk of lenders; and the ultimate development of a Commercial Property Assessed Clean Energy (C-PACE) program in the City of Milwaukee. Other approaches included: increased customer financial incentives, especially for small commercial projects, in excess of the incentives available from the Focus on Energy program. Each Partner City’s commercial program was built on existing Focus on Energy programming, which allowed the WE2 Program to leverage experience from Focus on Energy personnel to help promote participation, and encourage more extensive retrofits. Several legacy items will continue into the future, while there will be ongoing attempts to create a sustainable program. In the future, homeowners in Milwaukee and Madison will continue to have opportunities for incentives through the Focus on Energy program, as well as loan products being offered through Me2 and Green Madison. Similarly, business owners will continue to benefit from incentives through the Focus on Energy program, as well as loan products being offered through Me2 and Green Madison. Finally, the most recent development and implementation of C-PACE for large commercial building owners or business owners in Milwaukee may have substantial economic impacts. C-PACE may have similar impacts in Madison should they choose to implement the program in the near future. The WE2 Program’s immediate economic activity, workforce development, and energy savings coupled with long-term opportunities such as C-PACE provide a strong platform for the future, and could have only been created through meaningful collaboration.« less

  19. Economic and environmental analysis of standard, high efficiency, rainwater flushed, and composting toilets.

    PubMed

    Anand, C; Apul, D S

    2011-03-01

    The current sanitation technology in developed countries is based on diluting human excreta with large volumes of centrally provided potable water. This approach is a poor use of water resources and is also inefficient, expensive, and energy intensive. The goal of this study was to compare the standard sanitation technology (Scenario 1) with alternative technologies that require less or no potable water use in toilets. The alternative technologies considered were high efficiency toilets flushed with potable water (Scenario 2), standard toilets flushed with rainwater (Scenario 3), high efficiency toilets flushed with rainwater (Scenario 4), and composting toilets (Scenario 5). Cost, energy, and carbon implications of these five design scenarios were studied using two existing University of Toledo buildings. The results showed that alternative systems modeled in Scenarios 2, 4, and 5 were viable options both from an investment and an environmental performance perspective. High efficiency fixtures that use potable water (Scenario 2) is often the most preferred method in high efficiency buildings due to reduced water use and associated reductions in annual water and wastewater costs. However, the cost, energy, and CO(2)EE analyses all showed that Scenarios 4 and 5 were preferable over Scenario 2. Cost payback periods of scenarios 2, 4 and 5 were less than 10 years; in the future, increase in water and wastewater services would further decrease the payback periods. The centralized water and wastewater services have high carbon footprints; therefore if carbon footprint reduction is a primary goal of a building complex, alternative technologies that require less potable water and generate less wastewater can largely reduce the carbon footprint. High efficiency fixtures flushed with rainwater (Scenario 4) and composting toilets (Scenario 5) required considerably less energy than direct energy demands of buildings. However, the annual carbon footprint of these technologies was comparable to the annual carbon footprint from space heating. Similarly, the carbon savings that could be achieved from Scenario 4 or 5 were comparable to a recycling program that can be implemented in buildings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Energy-efficient building design in cold climates: Schools as a case study

    NASA Astrophysics Data System (ADS)

    Rangel Ruiz, Rocio

    Buildings account for great amounts of greenhouse gas emissions. In terms of energy, buildings account for one third of the total amount of energy used in the country every year! Schools account for 14 percent of the energy used annually in commercial and institutional buildings. Further, schools are one of the most commonly constructed building types in Canada and spaces such as classrooms are often duplicated. This makes them preferred candidates for the research that was undertaken where energy-efficient solutions that can be transferred to different school designs were derived. Throughout the study, the Commercial Building Incentive Program (CBIP) was used as a benchmark. The objectives of the study were to demonstrate energy-efficient concepts, provide a case study to evaluate solutions, develop typological models and provide an understanding of the innovation process. The technological and societal aspects of the energy-efficient design were addressed. With respect to the technological aspects, the first step was the analysis of conventional design using a school in Calgary as a case study. The optimization of conventional design was undertaken using computer modeling to identify best practice solutions. Aspects that were included in the studies were lighting design, envelope characteristics, HVAC systems and building plant systems. The inclusion of passive design included the analysis of daylighting and natural ventilation. Computer modeling was used to assess daylighting in classrooms with unilateral and bilateral daylighting. Illuminance levels, glare and light distribution were evaluated. The study of natural ventilation was undertaken using literature review. Airflow and outdoor temperatures were the focus to identify solutions that could be incorporated into the design of classrooms. It was concluded that achieving excellence in energy efficiency in schools could be achieved using readily available technologies. Energy savings of up to 63 percent better than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.

  1. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    NASA Astrophysics Data System (ADS)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24/28% HVAC energy savings in the winter/summer while also reducing thermal unacceptability; however, it is shown that the source of energy being saved must be considered in each case, as local heating options end up replacing cheaper, more carbon-friendly gas heating with expensive, emissions-heavy plug load electricity. The dissertation concludes with a summary of key outcomes and suggests how HABIT may be further developed in the future.

  2. Building the green way.

    PubMed

    Lockwood, Charles

    2006-06-01

    Just five or six years ago, the term "green building" evoked visions of barefoot, tie-dyed, granola-munching denizens. There's been a large shift in perception. Of course, green buildings are still known for conserving natural resources by, for example, minimizing on-site grading, using alternative materials, and recycling construction waste. But people now see the financial advantages as well. Well-designed green buildings yield lower utility costs, greater employee productivity, less absenteeism, and stronger attraction and retention of workers than standard buildings do. Green materials, mechanical systems, and furnishings have become more widely available and considerably less expensive than they used to be-often cheaper than their standard counterparts. So building green is no longer a pricey experiment; just about any company can do it on a standard budget by following the ten rules outlined by the author. Reliable building-rating systems like the U.S. Green Building Council's rigorous Leadership in Energy and Environmental Design (LEED) program have done much to underscore the benefits of green construction. LEED evaluates buildings and awards points in several areas, such as water efficiency and indoor environmental quality. Other rating programs include the UK's BREEAM (Building Research Establishment's Environmental Assessment Method) and Australia's Green Star. Green construction is not simply getting more respect; it is rapidly becoming a necessity as corporations push it fully into the mainstream over the next five to ten years. In fact, the author says, the owners of standard buildings face massive obsolescence. To avoid this problem, they should carry out green renovations. Corporations no longer have an excuse for eschewing environmental and economic sustainability. They have at their disposal tools proven to lower overhead costs, improve productivity, and strengthen the bottom line.

  3. Energy and Environment Division annual report, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camp, J.A.

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  4. Solar power satellite status report

    NASA Technical Reports Server (NTRS)

    Davis, H. P.

    1977-01-01

    The development of a solar power satellite program is considered. It is suggested that the solar power satellite is an engineering rather than a science program - that is, that no scientific breakthroughs are required before initiating the project. Available technology is examined, and several key questions are discussed: how efficient is microwave transfer of energy; how feasible is construction in space; and will the advantages of continuous insolation compensate for the costs of building a solar power plant in synchronous orbit 23,000 miles above the earth.

  5. The ac power system testbed

    NASA Technical Reports Server (NTRS)

    Mildice, J.; Sundberg, R.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.

  6. Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica

    2008-06-16

    It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the majormore » professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.« less

  7. Retrofit California Overview and Final Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choy, Howard; Rosales, Ana

    Energy efficiency retrofits (also called upgrades) are widely recognized as a critical component to achieving energy savings in the building sector to help lower greenhouse gas (GHG) emissions. To date, however, upgrades have accounted for only a small percentage of aggregate energy savings in building stock, both in California and nationally. Although the measures and technologies to retrofit a building to become energy efficient are readily deployed, establishing this model as a standard practice remains elusive. Retrofit California sought to develop and test new program models to increase participation in the energy upgrade market in California. The Program encompassed 24more » pilot projects, conducted between 2010 and mid-2013 and funded through a $30 million American Recovery and Reinvestment Act (ARRA) grant from the U.S. Department of Energy’s (DOE) Better Buildings Neighborhood Program (BBNP). The broad scope of the Program can be seen in the involvement of the following regionally based Grant Partners: Los Angeles County (as prime grantee); Association of Bay Area Governments (ABAG), consisting of: o StopWaste.org for Alameda County o Regional Climate Protection Authority (RCPA) for Sonoma County o SF Environment for the City and County of San Francisco o City of San Jose; California Center for Sustainable Energy (CCSE) for the San Diego region; Sacramento Municipal Utilities District (SMUD). Within these jurisdictions, nine different types of pilots were tested with the common goal of identifying, informing, and educating the people most likely to undertake energy upgrades (both homeowners and contractors), and to provide them with incentives and resources to facilitate the process. Despite its limited duration, Retrofit California undoubtedly succeeded in increasing awareness and education among home and property owners, as well as contractors, realtors, and community leaders. However, program results indicate that a longer timeframe will be needed to transform the market and establish energy retrofits as the new paradigm. Innovations such as Flex Path, which came about because of barriers encountered during the Program, have already shown promise and are enabling increased participation. Together, the pilots represent an unprecedented effort to identify and address market barriers to energy efficiency upgrades and to provide lessons learned to shape future program planning and implementation. The statistics reflects the scope of the marketing and outreach campaigns, which tested a variety of approaches to increase understanding of the benefits of energy upgrades to drive participation in the Program. More traditional methods such as TV and radio advertisements were complimented by innovative community based social marketing campaigns that sought to leverage the trusted status of neighborhood organizations and leaders in order to motivate their constituents to undertake retrofits. The remainder of this report provides an overview of Retrofit California including brief summaries of the pilots’ main components and highlights, followed by the major findings or takeaway lessons from the approaches that were tested. Eleven of the pilots will be continued, with modifications, under the ratepayer-funded Regional Energy Networks. Involvement in the RENS by many of the Retrofit California partners will ensure that early lessons learned are carried forward to guide future programs for energy upgrades in California.« less

  8. The Inheritance of Millenial Students: What They Will Inherit from Their Campus Experience--What Legacy Will They Leave

    ERIC Educational Resources Information Center

    Pagani, Freda

    2008-01-01

    Millennial students can be inspired to create a legacy for future generations by the recognizable actions of campus planners to create more sustainable campuses through smart growth planning, green buildings, transportation planning, and energy- and water-efficiency retrofits. This article describes policies, programs, and projects at The…

  9. Building the Community Nexus: A Community Centered Approach to Planning and Design

    ERIC Educational Resources Information Center

    Bingler, Steven

    2011-01-01

    Recent research indicates that the goals (of producing management efficiencies to deliver community programs and infrastructure and more graduates) can be better achieved through a holistic model that supports the whole family and child by providing better access to wrap around services. Nexus planning is a process through which these services can…

  10. Evaluating Different Green School Building Designs for Albania: Indoor Thermal Comfort, Energy Use Analysis with Solar Systems

    NASA Astrophysics Data System (ADS)

    Dalvi, Ambalika Rajendra

    Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively. The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.

  11. Demonstration of an efficient cooling approach for SBIRS-Low

    NASA Astrophysics Data System (ADS)

    Nieczkoski, S. J.; Myers, E. A.

    2002-05-01

    The Space Based Infrared System-Low (SBIRS-Low) segment is a near-term Air Force program for developing and deploying a constellation of low-earth orbiting observation satellites with gimbaled optics cooled to cryogenic temperatures. The optical system design and requirements present unique challenges that make conventional cooling approaches both complicated and risky. The Cryocooler Interface System (CIS) provides a remote, efficient, and interference-free means of cooling the SBIRS-Low optics. Technology Applications Inc. (TAI), through a two-phase Small Business Innovative Research (SBIR) program with Air Force Research Laboratory (AFRL), has taken the CIS from initial concept feasibility through the design, build, and test of a prototype system. This paper presents the development and demonstration testing of the prototype CIS. Prototype system testing has demonstrated the high efficiency of this cooling approach, making it an attractive option for SBIRS-Low and other sensitive optical and detector systems that require low-impact cryogenic cooling.

  12. Building Energy Asset Score for Building Owners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for building owners.

  13. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Huddle-coaching: a dynamic intervention for trainees and staff to support team-based care.

    PubMed

    Shunk, Rebecca; Dulay, Maya; Chou, Calvin L; Janson, Susan; O'Brien, Bridget C

    2014-02-01

    Many outpatient clinics where health professionals train will transition to a team-based medical home model over the next several years. Therefore, training programs need innovative approaches to prepare and incorporate trainees into team-based delivery systems. To address this need, educators at the San Francisco Veterans Affairs (VA) Medical Center included trainees in preclinic team "huddles," or briefing meetings to facilitate care coordination, and developed an interprofessional huddle-coaching program for nurse practitioner students and internal medicine residents who function as primary providers for patient panels in VA outpatient primary care clinics. The program aimed to support trainees' partnerships with staff and full participation in the VA's Patient Aligned Care Teams. The huddle-coaching program focuses on structuring the huddle process via scheduling, checklists, and designated huddle coaches; building relationships among team members through team-building activities; and teaching core skills to support collaborative practice. A multifaceted evaluation of the program showed positive results. Participants rated training sessions and team-building activities favorably. In interviews, trainees valued their team members and identified improvements in efficiency and quality of patient care as a result of the team-based approach. Huddle checklists and scores on the Team Development Measure indicated progress in team processes and relationships as the year progressed. These findings suggest that the huddle-coaching program was a worthwhile investment in trainee development that also supported the clinic's larger mission to deliver team-based, patient-aligned care. As more training sites shift to team-based care, the huddle-coaching program offers a strategy for successfully incorporating trainees.

  15. Healthcare Commercialization Programs: Improving the Efficiency of Translating Healthcare Innovations From Academia Into Practice

    PubMed Central

    Reizes, Ofer; Dempsey, Michael K.

    2016-01-01

    Academic investigators are generating a plethora of insights and technologies that have the potential to significantly improve patient care. However, to address the imperative to improve the quality, cost and access to care with ever more constrained funding, the efficiency and the consistency with which they are translated into cost effective products and/or services need to improve. Healthcare commercialization programs (HCPs) are described and proposed as an option that institutions can add to their portfolio to improve translational research. In helping teams translate specific healthcare innovations into practice, HCPs expand the skillset of investigators and enhance an institution’s innovation capacity. Lessons learned are shared from configuring and delivering HCPs, which build on the fundamentals of the National Science Foundation’s Innovation Corps program, to address the unique challenges in supporting healthcare innovations and innovators. PMID:27766188

  16. Applying Process Improvement Methods to Clinical and Translational Research: Conceptual Framework and Case Examples

    PubMed Central

    Selker, Harry P.; Leslie, Laurel K.

    2015-01-01

    Abstract There is growing appreciation that process improvement holds promise for improving quality and efficiency across the translational research continuum but frameworks for such programs are not often described. The purpose of this paper is to present a framework and case examples of a Research Process Improvement Program implemented at Tufts CTSI. To promote research process improvement, we developed online training seminars, workshops, and in‐person consultation models to describe core process improvement principles and methods, demonstrate the use of improvement tools, and illustrate the application of these methods in case examples. We implemented these methods, as well as relational coordination theory, with junior researchers, pilot funding awardees, our CTRC, and CTSI resource and service providers. The program focuses on capacity building to address common process problems and quality gaps that threaten the efficient, timely and successful completion of clinical and translational studies. PMID:26332869

  17. Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-02-01

    New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less

  18. Comparison of Building Energy Modeling Programs: Building Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Dandan; Hong, Tianzhen; Yan, Da

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In themore » fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to identify the differences in solution algorithms, modeling assumptions and simplifications. Identifying inputs of each program and their default values or algorithms for load simulation was a critical step. These tend to be overlooked by users, but can lead to large discrepancies in simulation results. As weather data was an important input, weather file formats and weather variables used by each program were summarized. Some common mistakes in the weather data conversion process were discussed. ASHRAE Standard 140-2007 tests were carried out to test the fundamental modeling capabilities of the load calculations of the three BEMPs, where inputs for each test case were strictly defined and specified. The tests indicated that the cooling and heating load results of the three BEMPs fell mostly within the range of spread of results from other programs. Based on ASHRAE 140-2007 test results, the finer differences between DeST and EnergyPlus were further analyzed by designing and conducting additional tests. Potential key influencing factors (such as internal gains, air infiltration, convection coefficients of windows and opaque surfaces) were added one at a time to a simple base case with an analytical solution, to compare their relative impacts on load calculation results. Finally, special tests were designed and conducted aiming to ascertain the potential limitations of each program to perform accurate load calculations. The heat balance module was tested for both single and double zone cases. Furthermore, cooling and heating load calculations were compared between the three programs by varying the heat transfer between adjacent zones, the occupancy of the building, and the air-conditioning schedule.« less

  19. Making Homes Part of the Climate Solution: Policy Options To Promote Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Dr. Marilyn Ann; Chandler, Jess; Lapsa, Melissa Voss

    In the area of energy efficiency, advanced technologies combined with best practices appear to afford not only large, but also cost-effective options to conserve energy and reduce greenhouse gas emissions (McKinsey & Company, 2007). In practice, however, the realization of this potential has often proven difficult. Progress appears to require large numbers of individuals to act knowledgeably, and each individual must often act with enabling assistance from others. Even when consumer education is effective and social norms are supportive, the actions of individuals and businesses can be impeded by a broad range of barriers, many of which are non-technical inmore » nature. Title XVI of the Energy Policy Act of 2005 included a mandate to examine barriers to progress and make recommendations in this regard. A detailed report on barriers as well as the National strategy for overcoming barriers met this requirement (Brown et al, 2008; CCCSTI, 2009). Following up on this mandate, the U.S. Climate Change Technology Program (CCTP) chose to focus next on the development of policy options to improve energy efficiency in residential buildings, with supporting analysis of pros and cons, informed in part by behavioral research. While this work is sponsored by CCTP, it has been undertaken in coordination with DOE's Building Technologies Program and Office of Electricity Delivery and Energy Reliability.« less

  20. Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.

    2008-06-17

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potentialmore » of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.« less

  1. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual greenhouse gas reductions of 1 ton CO2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors, technologies, and end uses targeted for intervention vary depending on policy objectives and constraints. The optimal efficiency investment strategy for some end uses varies significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Section 3 then evaluates the impact of rebound effects on modeled efficiency program outcomes. Differential rebound effects across end-uses can change the optimal program design strategy, i.e., the end-uses and technologies targeted for intervention. The rebound effect results suggest that rebound should be integral to effective efficiency program design. Section 4 evaluates the life cycle assessment costs and benefits of the widespread retrofit of green roofs in a typical urban mixed-use neighborhood. Shadow-cost analysis was used to evaluate the cost-effectiveness of green roofs' many benefits. Results suggest green roofs are currently not cost effective on a private cost basis, but multi-family and commercial building green roofs are competitive when social benefits are included. Multifamily and commercial green roofs are also competitive alternatives for reducing greenhouse gases and storm water run-off. However, green roofs are not competitive energy conservation techniques. GHG impacts are dominated by the material production and use phases. Energy impacts are dominated by the use phase, with urban heat island (UHI) impacts being an order of magnitude higher than direct building impacts. Results highlight the importance of clarifying sustainable infrastructure costs and benefits across many public and private organizations (e.g., private building owners, storm water agencies, efficiency stakeholders, and roofing contractors) to identify appropriate incentives and effective program design strategies. Section 5 synthesizes the work and provides guidance for local and state sustainability program administrators. Section 5 highlights the unrealized social benefits associated with sustainability and reflects upon the role of local and state governments in overcoming barriers to achieving more sustainable infrastructure. Section 5 encourages program administrators to consider their local markets for sustainability as influences by resource pricing, weather, infrastructure condition, jurisdiction, and other factors. The differences between sustainability programming and traditional municipal programming are highlighted, namely that sustainability programming often requires self-selection for participation and is subject to new sources of uncertain regarding user behavior, technology breadth and change, and the scope of costs and benefits. These characteristic issues of sustainable infrastructure opportunities provide new challenges to program administrators, requiring new paradigms and support resources. (Abstract shortened by UMI.)

  2. Power efficient optical communications for space applications

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1982-01-01

    Optical communications technology promises substantial size, weight and power consumption savings for space to space high data rate communications over presently used microwave technology. These benefits are further increased by making the most efficient use of the available optical signal energy. This presentation will describe the progress to date on a project to design, build and demonstrate in the laboratory an optical communication system capable of conveying 2.5 bits of information per effective received photon. Such high power efficiencies will reduce the need for photon collection at the receiver and will greatly reduce the requirements for optical pointing accuracy, both at the transmitter as well as the receiver. A longer range program to demonstrate even higher photon efficiencies will also be described.

  3. A Policy Framework for Joint Use: Enabling and Supporting Community Use of K-12 Public School Facilities

    ERIC Educational Resources Information Center

    Filardo, Mary; Vincent, Jeffrey M.

    2014-01-01

    Joint use of public school facilities is a complex but manageable approach to efficiently enhancing the services and programs available to students and supporting the community use of public schools. Building upon on our 2010 paper titled "Joint Use of Public Schools: A Framework for a New Social Contract," this paper identifies the…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    This fact sheet "Carrboro, North Carolina: Achieving Building Efficiencies for Low-Income Households" explains how the Town of Carrboro used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  5. DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Northwest National Laboratory

    Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.

  6. State University of New York Institute of Technology (SUNYIT) Visiting Scholars Program

    DTIC Science & Technology

    2013-05-01

    team members, and build the necessary backend metal interconnections. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 4 Baek-Young Choi...Cooperative and Opportunistic Mobile Cloud for Energy Efficient Positioning; Department of Computer Science Electrical Engineering, University of...Missouri - Kansas City The fast growing popularity of smartphones and tablets enables us the use of various intelligent mobile applications. As many of

  7. A Grant Project to Initiate School Counselors' Development of a Multi-Tiered System of Supports Based on Social-Emotional Data

    ERIC Educational Resources Information Center

    Harrington, Karen; Griffith, Catherine; Gray, Katharine; Greenspan, Scott

    2016-01-01

    This article provides an overview of a grant project designed to create a district-wide elementary school counseling program with a strong data-based decision-making process. Project goals included building data literacy skills among school counselors and developing the infrastructure to efficiently collect important social-emotional indicators…

  8. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumptionmore » saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.« less

  9. Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  10. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less

  11. Program Implementation Approaches to Build and Sustain Health Care Coordination for Type 2 Diabetes.

    PubMed

    Fitzgerald, Tania M; Williams, Pam A; Dodge, Julia A; Quinn, Martha; Heminger, Christina L; Moultrie, Rebecca; Taylor, Olivia; Nelson, Belinda W; Lewis, Megan A

    2017-03-01

    As more people enter the U.S. health care system under the Affordable Care Act (ACA), it is increasingly critical to deliver coordinated, high-quality health care. The ACA supports implementation and sustainability of efficient health care models, given expected limits in available resources. This article highlights implementation strategies to build and sustain care coordination, particularly ones consistent with and reinforced by the ACA. It focuses on disease self-management programs to improve the health of patients with type 2 diabetes, exemplified by grantees of the Alliance to Reduce Disparities in Diabetes. We conducted interviews with grantee program representatives throughout their 5-year programs and conducted a qualitative framework analysis of data to identify key themes related to care coordination. The most promising care coordination strategies that grantee programs described included establishing clinic-community collaborations, embedding community health workers within care management teams, and sharing electronic data. Establishing provider buy-in was crucial for these strategies to be effective. This article adds new insights into strategies promoting effective care coordination. The strategies that grantees implemented throughout the program align with ACA requirements, underscoring their relevance to the changing U.S. health care environment and the likelihood of further support for program sustainability.

  12. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    NASA Astrophysics Data System (ADS)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  13. Feasibility Study to Identify Potential Reductions in Energy Use in Tribal Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Willie

    Under this project, the Confederated Salish and Kootenai Tribes (CSKT) assessed the technical and economic feasibility of energy efficiency improvements to existing Tribally-owned buildings. The feasibility study followed a systematic approach in identifying, selecting, and ranking recommended measures, recognizing that the appropriateness of a measure would depend not only on technical issues but also on institutional and organizational issues, such as financing options and occupant requirements. The completed study provided the Tribes with the information needed to commit necessary resources to reduce the energy use and cost in approximately 40 Tribal buildings, including the changes that may be needed inmore » each facility’s operation and maintenance and personnel requirements. It also presented an economic analysis of energy-efficiency capital improvements and an annotated list of financing options and possible funding sources for implementation and an overall strategy for implementation. This project was located in various Tribal communities located throughout the Flathead Indian Reservation in Western Montana. Notice: The following is a compilation of Annual Program Review Presentations, Award Modifications, and Quarterly Progress Reports submitted to the Department of Energy’s (DOE) Office of Indian Energy Policy and Programs by the Confederated Salish and Kootenai Tribes under agreement DE-EE0005171. This report covers project activities from September 30, 2011 through December 31, 2014 and has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report which was not received by DOE from the project recipient.« less

  14. Report of the Terrestrial Bodies Science Working Group. Volume 9: Complementary research and development

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Kaula, W. M.; Mccord, T. B.; Trombka, J. L.

    1977-01-01

    Topics discussed include the need for: the conception and development of a wide spectrum of experiments, instruments, and vehicles in order to derive the proper return from an exploration program; the effective use of alternative methods of data acquisition involving ground-based, airborne and near Earth orbital techniques to supplement spacraft mission; and continued reduction and analysis of existing data including laboratory and theoretical studies in order to benefit fully from experiments and to build on the past programs toward a logical and efficient exploration of the solar system.

  15. A Linguistic Model in Component Oriented Programming

    NASA Astrophysics Data System (ADS)

    Crăciunean, Daniel Cristian; Crăciunean, Vasile

    2016-12-01

    It is a fact that the component-oriented programming, well organized, can bring a large increase in efficiency in the development of large software systems. This paper proposes a model for building software systems by assembling components that can operate independently of each other. The model is based on a computing environment that runs parallel and distributed applications. This paper introduces concepts as: abstract aggregation scheme and aggregation application. Basically, an aggregation application is an application that is obtained by combining corresponding components. In our model an aggregation application is a word in a language.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is one in an ongoing series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for all those who plan, design, and construct public and private-sector laboratory buildings. This study describes how the Nidus Center, a nonprofit incubator for life sciences and plan biotechnology established by Monsanto Company, employs daylighting, an energy-efficient mechanical system featuring energy recovery, and water conservation practices, among others, to save energy and money and help conserve natural resources.

  17. AC power system breadboard

    NASA Technical Reports Server (NTRS)

    Wappes, Loran J.; Sundberg, R.; Mildice, J.; Peterson, D.; Hushing, S.

    1987-01-01

    The object of this program was to design, build, test, and deliver a high-frequency (20-kHz) Power System Breadboard which would electrically approximate a pair of dual redundant power channels of an IOC Space Station. This report describes that program, including the technical background, and discusses the results, showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment has been completed and delivered to LeRC, where it is operating as a part of the Space Station Power System Test Facility.

  18. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, andmore » passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.« less

  19. The expanded role of computers in Space Station Freedom real-time operations

    NASA Technical Reports Server (NTRS)

    Crawford, R. Paul; Cannon, Kathleen V.

    1990-01-01

    The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.

  20. A Qualitative Exploration of Co-location as an Intervention to Strengthen Home Visiting Implementation in Addressing Maternal Child Health.

    PubMed

    Kellom, Katherine S; Matone, Meredith; Adejare, Aderinola; Barg, Frances K; Rubin, David M; Cronholm, Peter F

    2018-06-01

    Objectives The aim of this paper is to explore the process and impact of co-locating evidence-based maternal and child service models to inform future implementation efforts. Methods As part of a state-wide evaluation of maternal and child home visiting programs, we conducted semi-structured interviews with administrators and home visitors from home visiting agencies across Pennsylvania. We collected 33 interviews from 4 co-located agencies. We used the Consolidated Framework for Implementation Research (CFIR) to describe the key elements mitigating implementation of multiple home visiting models. Results A primary advantage of co-location described by participants was the ability to increase the agency's base of eligible clients through the implementation of a model with different program eligibility (e.g. income, child age) than the existing agency offering. Model differences related to curriculum (e.g. content or intensity/meeting frequency) enabled programs to more selectively match clients to models. To recruit eligible clients, new models were able to build upon the existing service networks of the initial program. Co-location provided organizational opportunities for shared trainings, enabling administrative efficiencies and collaborative staff learning. Programs implemented strategies to build synergies with complementary model features, for instance using the additional program option to serve waitlisted clients and to transition services after one model is completed. Conclusions for Practice Considerable benefits are experienced when home visiting models co-locate. This research builds on literature encouraging collaboration among community agencies and provides insight on a specific facilitative approach. This implementation strategy informs policy across the social services spectrum and competitive funding contexts.

  1. A National Framework for Energy Audit Ordinances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Cody; Costa, Marc; Long, Nicholas

    A handful of U.S. cities have begun to incorporate energy audits into their building energy performance policies. Cities are beginning to recognize an opportunity to use several information tools to bring to real estate markets both motivation to improve efficiency and actionable pointers on how to improve. Care is necessary to combine such tools as operational ratings, energy audits, asset ratings, and building retro-commissioning in an effective policy regime that maximizes market impact. In this paper, the authors focus on energy audits and consider both the needs of the policies' implementers in local governments and the emerging standards and federalmore » tools to improve data collection and practitioner engagement. Over the past two years, we have compared several related data formats such as New York City's existing audit reporting spreadsheet, ASHRAE guidance on building energy auditing, and the DOE Building Energy Asset Score, to identify a possible set of required and optional fields for energy audit reporting programs. Doing so revealed tensions between the ease of data collection and the value of more detailed information, which had implications for the effort and qualifications needed to complete the energy audit. The resulting list of data fields is now feeding back into the regulatory process in several cities currently working on implementing or developing audit policies. Using complementary policies and standardized tools for data transmission, the next generation of policies and programs will be tailored to local building stock and can more effectively target improvement opportunities through each building's life.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alastair; Regnier, Cindy; Settlemyre, Kevin

    Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray andmore » Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.« less

  3. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liping; Hong, Tianzhen

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensorsmore » used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.« less

  4. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, John; Greenberg, Steve; Rubinstein, Francis

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  5. A Micro grid design for a kind of household energy efficiency management system based on high permeability

    NASA Astrophysics Data System (ADS)

    Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang

    2017-05-01

    After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.

  6. Energy usage while maintaining thermal comfort: A case study of a UNT dormitory

    NASA Astrophysics Data System (ADS)

    Gambrell, Dusten

    Campus dormitories for the University of North Texas house over 5500 students per year; each one of them requires certain comfortable living conditions while they live there. There is an inherit amount of money required in order to achieve minimal comfort levels; the cost is mostly natural gas for water and room heating and electricity for cooling, lighting and peripherals. The US Department of Energy has developed several programs to aid in performing energy simulations to help those interested design more cost effective building designs. Energy-10 is such a program that allows users to conduct whole house evaluations by reviewing and altering a few parameters such as building materials, solar heating, energy efficient windows etc. The idea of this project was to recreate a campus dormitory and try to emulate existent energy consumption then try to find ways of lowering that usage while maintaining a high level of personal comfort.

  7. Improved Planning and Programming for Energy Efficient New Army Facilities

    DTIC Science & Technology

    1988-10-01

    setpoints to occupant comfort must be considered carefully. Cutting off the HVAC system to the bedrooms during the day produced only small savings...functions of a building and minimizing the energy usage through optimization . It includes thermostats, time switches, programmable con- trollers...microprocessor systems, computers, and sensing devices that are linked with control and power components to manage energy use. This system optimizes load

  8. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Treesearch

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  9. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    NASA Astrophysics Data System (ADS)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  10. The house of the future

    ScienceCinema

    None

    2017-12-09

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

  11. The house of the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house tomore » use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.« less

  12. End-use energy consumption estimates for US commercial buildings, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L.

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment.more » Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.« less

  13. Building Energy Asset Score for Architects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for architects.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for energy services companies, engineers and green building consultants.

  15. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE PAGES

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...

    2017-06-12

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  16. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  17. Building Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation’s total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%–50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in the United States more efficient, affordable, and comfortable.

  18. Review of Prior Commercial Building Energy Efficiency Retrofit Evaluation: A Report to Snohomish Public Utilities District

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Phillip N.

    2014-11-01

    Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced bymore » real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.« less

  19. SIMWEST - A simulation model for wind energy storage systems

    NASA Technical Reports Server (NTRS)

    Edsinger, R. W.; Warren, A. W.; Gordon, L. H.; Chang, G. C.

    1978-01-01

    This paper describes a comprehensive and efficient computer program for the modeling of wind energy systems with storage. The level of detail of SIMWEST (SImulation Model for Wind Energy STorage) is consistent with evaluating the economic feasibility as well as the general performance of wind energy systems with energy storage options. The software package consists of two basic programs and a library of system, environmental, and control components. The first program is a precompiler which allows the library components to be put together in building block form. The second program performs the technoeconomic system analysis with the required input/output, and the integration of system dynamics. An example of the application of the SIMWEST program to a current 100 kW wind energy storage system is given.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Andria; Cyr, Shirley

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands ofmore » home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.« less

  1. Introduction of Transplant Registry Unified Management Program 2 (TRUMP2): scripts for TRUMP data analyses, part I (variables other than HLA-related data).

    PubMed

    Atsuta, Yoshiko

    2016-01-01

    Collection and analysis of information on diseases and post-transplant courses of allogeneic hematopoietic stem cell transplant recipients have played important roles in improving therapeutic outcomes in hematopoietic stem cell transplantation. Efficient, high-quality data collection systems are essential. The introduction of the Second-Generation Transplant Registry Unified Management Program (TRUMP2) is intended to improve data quality and more efficient data management. The TRUMP2 system will also expand possible uses of data, as it is capable of building a more complex relational database. The construction of an accessible data utilization system for adequate data utilization by researchers would promote greater research activity. Study approval and management processes and authorship guidelines also need to be organized within this context. Quality control of processes for data manipulation and analysis will also affect study outcomes. Shared scripts have been introduced to define variables according to standard definitions for quality control and improving efficiency of registry studies using TRUMP data.

  2. 10 CFR 435.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.2 Definitions. For... building means a new Federal low-rise residential building that is otherwise identical to the proposed...

  3. Curriculum for Commissioning Energy Efficient Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Lia

    2012-12-27

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded projectmore » sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual lessons, followed by a 24 hour hands-on lab. Total time required is between 50 and 70 hours, depending on the pace of the independent learner. • Individual courses can be taken for continuing education credits. • Assessments are included for each course, and a score of at least 80% is required for completion. • Completion of Modules 1 through 3 is prerequisite for participating in the laboratory. More experienced participants have the option to test out of Modules 1 and 2 and complete Module 3 to progress to the laboratory.« less

  4. 2013 Building Technologies Office Program Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-11-01

    The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2–4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO’s Emerging Technologies Program, 20 from the Commercial Buildings Integration Program, 6 from the Residential Buildings Integration Program, and 4 from the Building Energy Codes Program. This report summarizes the scores and comments provided by the independent reviewers for each project.

  5. Building Energy Asset Score for Real Estate Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for real estate managers.

  6. NECAP 4.1: NASA's Energy-Cost Analysis Program input manual

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1982-01-01

    The computer program NECAP (NASA's Energy Cost Analysis Program) is described. The program is a versatile building design and energy analysis tool which has embodied within it state of the art techniques for performing thermal load calculations and energy use predictions. With the program, comparisons of building designs and operational alternatives for new or existing buildings can be made. The major feature of the program is the response factor technique for calculating the heat transfer through the building surfaces which accounts for the building's mass. The program expands the response factor technique into a space response factor to account for internal building temperature swings; this is extremely important in determining true building loads and energy consumption when internal temperatures are allowed to swing.

  7. Promoting country ownership and stewardship of health programs: The global fund experience.

    PubMed

    Atun, Rifat; Kazatchkine, Michel

    2009-11-01

    The Global Fund to Fight AIDS, Tuberculosis and Malaria was established in 2002 to provide large-scale financing to middle- and low-income countries to intensify the fight against the 3 diseases. Its model has enabled strengthening of local health leadership to improve governance of HIV programs in 5 ways. First, the Global Fund has encouraged development of local capacity to generate technically sound proposals reflecting country needs and priorities. Second, through dual-track financing-where countries are encouraged to nominate at least one government and one nongovernment principal recipient to lead program implementation-the Global Fund has enabled civil society and other nongovernmental organizations to play a critical role in the design, implementation, and oversight of HIV programs. Third, investments to strengthen community systems have enabled greater involvement of community leaders in effective mobilization of demand and scale-up for services to reach vulnerable groups. Fourth, capacity building outside the state sector has improved community participation in governance of public health. Finally, an emphasis on inclusiveness and diversity in planning, implementation, and oversight has broadly enhanced country coordination capacity. Strengthening local leadership capacity and governance are critical to building efficient and equitable health systems to deliver universal coverage of HIV services.

  8. Applying Process Improvement Methods to Clinical and Translational Research: Conceptual Framework and Case Examples.

    PubMed

    Daudelin, Denise H; Selker, Harry P; Leslie, Laurel K

    2015-12-01

    There is growing appreciation that process improvement holds promise for improving quality and efficiency across the translational research continuum but frameworks for such programs are not often described. The purpose of this paper is to present a framework and case examples of a Research Process Improvement Program implemented at Tufts CTSI. To promote research process improvement, we developed online training seminars, workshops, and in-person consultation models to describe core process improvement principles and methods, demonstrate the use of improvement tools, and illustrate the application of these methods in case examples. We implemented these methods, as well as relational coordination theory, with junior researchers, pilot funding awardees, our CTRC, and CTSI resource and service providers. The program focuses on capacity building to address common process problems and quality gaps that threaten the efficient, timely and successful completion of clinical and translational studies. © 2015 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc.

  9. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.

  10. Retrofit Audits and Cost Estimates. A Look at Quality and Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community-based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low-and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block bymore » Block program.« less

  11. Retrofit Audits and Cost Estimates: A Look at Quality and Consistency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, L.; Shapiro, C.; Fleischer, W.

    Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low- and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC:more » Block by Block program.« less

  12. Building America Case Study: Meeting DOE Challenge Home Program Certification, Chicago, Illinois; Denver, Colorado; Devens, Massachusetts (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this project was to evaluate integrated packages of advanced measures in individual test homes to assess their performance with respect to Building America Program goals, specifically compliance with the DOE Challenge Home Program. BSC consulted on the construction of five test houses by three Cold Climate production builders in three separate US cities. BSC worked with the builders to develop a design package tailored to the cost-related impacts for each builder. Therefore, the resulting design packages do vary from builder to builder. BSC provided support through this research project on the design, construction and performance testing ofmore » the five test homes. Overall, the builders have concluded that the energy related upgrades (either through the prescriptive or performance path) represent reasonable upgrades. The builders commented that while not every improvement in specification was cost effective (as in a reasonable payback period), many were improvements that could improve the marketability of the homes and serve to attract more energy efficiency discerning prospective homeowners. However, the builders did express reservations on the associated checklists and added certifications. An increase in administrative time was observed with all builders. The checklists and certifications also inherently increase cost due to: 1. Adding services to the scope of work for various trades, such as HERS Rater, HVAC contractor. 2. Increased material costs related to the checklists, especially the EPA Indoor airPLUS and EPA WaterSense Efficient Hot Water Distribution requirement.« less

  13. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.; Lowell, M.

    2012-05-01

    This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energymore » technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.« less

  14. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    NASA Astrophysics Data System (ADS)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  15. Sarment: Python modules for HMM analysis and partitioning of sequences.

    PubMed

    Guéguen, Laurent

    2005-08-15

    Sarment is a package of Python modules for easy building and manipulation of sequence segmentations. It provides efficient implementation of usual algorithms for hidden Markov Model computation, as well as for maximal predictive partitioning. Owing to its very large variety of criteria for computing segmentations, Sarment can handle many kinds of models. Because of object-oriented programming, the results of the segmentation are very easy tomanipulate.

  16. Implementation of equity in resource allocation for regional earthquake risk mitigation using two-stage stochastic programming.

    PubMed

    Zolfaghari, Mohammad R; Peyghaleh, Elnaz

    2015-03-01

    This article presents a new methodology to implement the concept of equity in regional earthquake risk mitigation programs using an optimization framework. It presents a framework that could be used by decisionmakers (government and authorities) to structure budget allocation strategy toward different seismic risk mitigation measures, i.e., structural retrofitting for different building structural types in different locations and planning horizons. A two-stage stochastic model is developed here to seek optimal mitigation measures based on minimizing mitigation expenditures, reconstruction expenditures, and especially large losses in highly seismically active countries. To consider fairness in the distribution of financial resources among different groups of people, the equity concept is incorporated using constraints in model formulation. These constraints limit inequity to the user-defined level to achieve the equity-efficiency tradeoff in the decision-making process. To present practical application of the proposed model, it is applied to a pilot area in Tehran, the capital city of Iran. Building stocks, structural vulnerability functions, and regional seismic hazard characteristics are incorporated to compile a probabilistic seismic risk model for the pilot area. Results illustrate the variation of mitigation expenditures by location and structural type for buildings. These expenditures are sensitive to the amount of available budget and equity consideration for the constant risk aversion. Most significantly, equity is more easily achieved if the budget is unlimited. Conversely, increasing equity where the budget is limited decreases the efficiency. The risk-return tradeoff, equity-reconstruction expenditures tradeoff, and variation of per-capita expected earthquake loss in different income classes are also presented. © 2015 Society for Risk Analysis.

  17. Commercial Cargo Derivative Study of the Advanced Hybrid Wing Body Configuration with Over-Wing Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Wick, Andrew T.; Hardin, Christopher J.

    2017-01-01

    LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development.

  18. Building Energy Asset Score for State and Local Governments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for state and local governments.

  19. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less

  20. MCPB.py: A Python Based Metal Center Parameter Builder.

    PubMed

    Li, Pengfei; Merz, Kenneth M

    2016-04-25

    MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling.

  1. 76 FR 77977 - U.S. Clean Energy and Energy Efficiency Trade Mission to Saudi Arabia Riyadh and Dhahran, Saudi...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... and smart grid; and green building in residential, commercial and industrial settings. This mission....S. companies in the green building and energy efficiency subsectors. Companies will have the... building technologies and services. Greenbuilding/Energy Efficiency: Saudi Arabia is among the highest per...

  2. A rule-based expert system applied to moisture durability of building envelopes

    DOE PAGES

    Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.; ...

    2018-01-09

    The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less

  3. A rule-based expert system applied to moisture durability of building envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.

    The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; sullivan, Douglas

    The HZEB research program aims to generate information needed to develop new science-based commercial building ventilation rate (VR) standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. This interim report describes the preliminary results from one HZEB field study on retail stores. The primary purpose of this study is to estimate the whole-building source strengths of contaminant of concerns (COCs). This information is needed to determine the VRs necessary to maintain indoor concentrations of COCs below applicable health guidelines.The goal of this study is to identify contaminants in retail stores that should bemore » controlled via ventilation, and to determine the minimum VRs that would satisfy the occupant health and odor criteria.« less

  5. High-rise construction in the Russian economy: modeling of management decisions

    NASA Astrophysics Data System (ADS)

    Miroshnikova, Tatyana; Taskaeva, Natalia

    2018-03-01

    The growth in the building industry, particularly in residential high-rise construction, is having considerable influence on the country's economic development. The scientific hypothesis of the research is that the execution of town-planning programs of high-rise construction depends to a large extent on the management of the provision of material resources for the construction of a millionth city, while the balance model is the most important tool for establishing and determining the ratio between supply and demand for material resources. In order to improve the efficiency of high-rise building management, it is proposed to develop a methodology for managing the provision of construction of large cities with material resources.

  6. Research and Development Opportunities for Joining Technologies in HVAC&R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, Jim

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less

  7. Energy efficiency of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  8. Estimating energy intensity and CO{sub 2} emission reduction potentials in the manufacturing sectors in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wangskarn, P.; Khummongkol, P.; Schrattenholzer, L.

    The final energy consumption in Thailand increased at about ten percent annually within the last 10 years. To slow the energy demand growth rate while maintaining the country`s economic advance and environmental sustainability, the Energy Conservation Promotion Act (ECPA) was adopted in 1992. With this Act, a comprehensive Energy Conservation Program (ENCON) was initiated. ENCON commits the government to promoting energy conservation, to developing appropriate regulations, and to providing financial and organizational resources for program implementation. Due to this existing ENCON program a great benefit is expected not only to reducing energy consumption, but also to decreasing GHGs emissions substantially.more » This study is a part of the ENCON research program which was supported by the German Federal Government under the program called Prompt-Start Measures to Implement the U.N. Framework Convention on Climate Change (FCCC). The basic activities carried out during the project included (1) An assessment of Thailand`s total and specific energy consumption in the industrial sectors and commercial buildings; (2) Identification of existing and candidate technologies for GHG emission reduction and energy efficiency improvements in specific factories and commercial buildings; and (3) Identification of individual factories and commercial buildings as candidates for detailed further study. Although the energy assessment had been carried out for the commercial buildings also, this paper will cover only the work on the manufacturing sector. On the basis of these steps, 14 factories were visited by the project team and preliminary energy audits were performed. As a result, concrete measures and investments were proposed and classified into two groups according to their economic characteristics. Those investments with a payback time of less than four years were considered together in a Moderate scenario, and those with longer payback times in an Intensive scenario.« less

  9. National Energy Audit Tool for Multifamily Buildings Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Mini; MacDonald, Michael; Accawi, Gina K

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) enables low-income families to reduce their energy costs by providing funds to make their homes more energy efficient. In addition, the program funds Weatherization Training and Technical Assistance (T and TA) activities to support a range of program operations. These activities include measuring and documenting performance, monitoring programs, promoting advanced techniques and collaborations to further improve program effectiveness, and training, including developing tools and information resources. The T and TA plan outlines the tasks, activities, and milestones to support the weatherization network with the program implementation ramp up efforts. Weatherizationmore » of multifamily buildings has been recognized as an effective way to ramp up weatherization efforts. To support this effort, the 2009 National Weatherization T and TA plan includes the task of expanding the functionality of the Weatherization Assistant, a DOE-sponsored family of energy audit computer programs, to perform audits for large and small multifamily buildings This report describes the planning effort for a new multifamily energy audit tool for DOE's WAP. The functionality of the Weatherization Assistant is being expanded to also perform energy audits of small multifamily and large multifamily buildings. The process covers an assessment of needs that includes input from national experts during two national Web conferences. The assessment of needs is then translated into capability and performance descriptions for the proposed new multifamily energy audit, with some description of what might or should be provided in the new tool. The assessment of needs is combined with our best judgment to lay out a strategy for development of the multifamily tool that proceeds in stages, with features of an initial tool (version 1) and a more capable version 2 handled with currently available resources. Additional development in the future is expected to be needed if more capabilities are to be added. A rough schedule for development of the version 1 tool is presented. The components and capabilities described in this plan will serve as the starting point for development of the proposed new multifamily energy audit tool for WAP.« less

  10. 75 FR 52671 - YouthBuild Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... required by green building and weatherization industries but are not yet standardized. A full list of the...Build Program AGENCY: Employment and Training Administration, Labor. ACTION: Notice of proposed...Build Transfer Act of 2006 (Transfer Act), which establishes the YouthBuild program in the Department...

  11. Lakeland Habitat for Humanity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.

    2009-03-30

    This is a case study of the Lakeland, FLorida, Habitat for Humanity affiliate, which has partnered with DOE's Building America program to homes that achieve energy savings of 30% or more over the Building America baseline home (a home built to the 1993 Model Energy Code). The article includes a description of the energy-efficiency features used. The Lakeland affiliate built several of its homes with ducts in conditioned space, which minimizes heat losses and gains. They also used high-efficiency SEER 14 air conditioners; radiant barriers in the roof to keep attics cooler; above-code high-performance dual-pane vinyl-framed low-emissivity windows; a passivemore » fresh air duct to the air handler; and duct blaster and blower door testing of every home to ensure the home's air tightness. This case study was also prepared as a flier titled "High Performance Builder Spotlight: Lakeland Habitat for Humanity, Lakeland, Florida,: which was cleared as PNNL-SA-59068 and distributed at the International Builders’ Show Feb 13-16, 2008, in Orlando, Florida.« less

  12. Driving Extreme Efficiency to Market

    NASA Astrophysics Data System (ADS)

    Garbesi, Karina

    2014-03-01

    The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.

  13. Streamlining the Design-to-Build Transition with Build-Optimization Software Tools.

    PubMed

    Oberortner, Ernst; Cheng, Jan-Fang; Hillson, Nathan J; Deutsch, Samuel

    2017-03-17

    Scaling-up capabilities for the design, build, and test of synthetic biology constructs holds great promise for the development of new applications in fuels, chemical production, or cellular-behavior engineering. Construct design is an essential component in this process; however, not every designed DNA sequence can be readily manufactured, even using state-of-the-art DNA synthesis methods. Current biological computer-aided design and manufacture tools (bioCAD/CAM) do not adequately consider the limitations of DNA synthesis technologies when generating their outputs. Designed sequences that violate DNA synthesis constraints may require substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in reducing DNA synthesis costs and timelines.

  14. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema

    Radocy, Rachel; Livingston, Brian; von Luhrte, Rich

    2018-05-18

    Technology — from sophisticated computer modeling to advanced windows that actually open — will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  15. 77 FR 22599 - Department of Housing and Urban Development Summary of Public Comments, Response to Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... build or rehabilitate to a recognized green building rating standard (see section I.B.2. of HUD's Fiscal... progress and requests funding to support energy efficiency and green building initiatives which will allow.... Response: HUD values energy efficiency and is committed to efficient, green, and healthy homes. Subgoal 4B...

  16. Energy Conservation Investment Program (ECIP), FY93 limited energy study, Milan Army Ammunition Plant, Milan, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-11

    In May 1994, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District US Army Corps of Engineers to perform a Limited Energy Study for Milan Army Ammunition Plant, Tennessee. The field survey of existing conditions was completed in June 1994. The results of this field survey were subsequently tabulated and used to generate single line building drawings on Autocad. Several alternative lighting models were examined to determine if a more efficient lighting system could be installed that would produce the same or better lumen levels at these facilities while reducing the buildings` electrical lighting energy consumption. This reportmore » summarizes the results obtained from this field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO`s). To develop the field data into various alternative ECO concepts or models, we utilized an `Excel` spreadsheet to tabulate and compare energy consumption, light output, installation and operating costs for various ECO`s at these buildings. These ECO`s were then analyzed for suitability for the Energy Conservation lnvestment Program (ECIP) using the govemmenrs software package called Life Cycle Cost in Design (LCCID).« less

  17. Energy conservation investment program FY93 limited energy study Milan Army Ammunition Plant Milan, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-11

    In May 1994, Affiliated Engineers SE, Inc. (AESE) was retained by the Mobile District U.S. Army Corps of Engineers to perform a Limited Energy Study for Milan Army Ammunition Plant, Tennessee. The field survey of existing conditions was completed in June 1994. The results of this field survey were subsequently tabulated and used to generate single line building drawings on Autocad. Several alternative lighting models were examined to determine if a more efficient lighting system could be installed that would produce the same or better lumen levels at these facilities while reducing the buildings` electrical lighting energy consumption. This reportmore » summarizes the results obtained from this field investigation and the analysis of various alternative Energy Conservation Opportunities (ECO`s). To develop the field data into various alternative ECO concepts or models, we utilized an `Excel` spreadsheet to tabulate and compare energy consumption, light output, installation and operating costs for various ECO`s at these buildings. These ECO`s were then analyzed for suitability for the Energy Conservation Investment Program (ECIP) using the government`s software package called Life Cycle Cost in Design (LCCID).« less

  18. 75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...

  19. Commercial Building Energy Asset Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less

  20. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  1. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less

  2. IPM: Integrated Pest Management Kit for Building Managers. How To Implement an Integrated Pest Management Program in Your Building(s).

    ERIC Educational Resources Information Center

    Mitchell, Brad

    This management kit introduces building managers to the concept of Integrated Pest Management (IPM), and provides the knowledge and tools needed to implement an IPM program in their buildings. It discusses the barriers to implementing an IPM program, why such a program should be used, and the general guidelines for its implementation. Managerial…

  3. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  4. 76 FR 71996 - Notice of Submission of Proposed Information Collection to OMB; Capacity Building for Sustainable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Proposed Information Collection to OMB; Capacity Building for Sustainable Communities Program AGENCY... proposal. The Capacity Building for Sustainable Communities Program (Program), through a Notice of Funding...: Title of Proposal: Capacity Building for Sustainable Communities Program OMB Approval Number: 2501-0026...

  5. All the coal in China.

    PubMed

    Lenssen, N

    1993-01-01

    China is emerging as a serious producer of carbon emissions from its burning of coal. China contributes 11% of global carbon emissions, which is still less than its population share. Economic reforms are likely to boost emissions. 33% of all fuel burned in China produces useful energy compared to 50-60% in the USA and Japan. Low prices encourage wasteful use. The Chinese government responds to energy shortages by investing scarce capital in building more mines, power plants, and oil wells. It is unlikely that investing in expanding conventional energy supplies will be a viable solution, regardless of the availability of capital to invest, because air pollution threatens life. Particulate suspension is 14 times greater in China than in the USA. 14% of the country is affected by acid rain. Global warming may be affecting the northern drought prone areas. The solutions must involve greater efficiency. Industrial consumption of energy is more than 66% of energy produced. Energy use for a typical steel or cement factory is 7-75% greater per ton than Western countries, i.e., 55-60% efficiency versus 80% in Europe. The inefficiency is due to poor maintenance and operating procedures and old or obsolete technology. The savings in building a compact, fluorescent light bulb factory is compared to the cost of building coal-fired power plants and transmission facilities. Conservation of heat in northern buildings could be accomplished with boiler improvements, insulation, and double- glazed windows. A $3 billion/year investment could yield a cut in energy demand by nearly 50%. The carbon emissions would be reduced from 1.4 billion tons to 1 billion tons in 2025. Between 1980 and 1985 the energy efficiency program was able to reduce growth in energy from 7% to 4% without slowing growth in industrial production. Since 1985, the government has directed expenditures toward expanding the energy supply, which reduced efficiency expenditures from 10% to 6% of total investment. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. International lending agencies must now shift their support to renewable resource development and efficiency improvement and education; an example from industrialized countries would also be very persuasive.

  6. Tolerant (parallel) Programming

    NASA Technical Reports Server (NTRS)

    DiNucci, David C.; Bailey, David H. (Technical Monitor)

    1997-01-01

    In order to be truly portable, a program must be tolerant of a wide range of development and execution environments, and a parallel program is just one which must be tolerant of a very wide range. This paper first defines the term "tolerant programming", then describes many layers of tools to accomplish it. The primary focus is on F-Nets, a formal model for expressing computation as a folded partial-ordering of operations, thereby providing an architecture-independent expression of tolerant parallel algorithms. For implementing F-Nets, Cooperative Data Sharing (CDS) is a subroutine package for implementing communication efficiently in a large number of environments (e.g. shared memory and message passing). Software Cabling (SC), a very-high-level graphical programming language for building large F-Nets, possesses many of the features normally expected from today's computer languages (e.g. data abstraction, array operations). Finally, L2(sup 3) is a CASE tool which facilitates the construction, compilation, execution, and debugging of SC programs.

  7. Assessment of Literature Related to Combustion Appliance Venting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, V. H.; Less, B. D.; Singer, B. C.

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents theirmore » technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.« less

  8. 1400876

    NASA Image and Video Library

    2014-08-18

    THE INTERIOR OF THE MARSHALL SPACE FLIGHT CENTER’S NEWLY OPENED BUILDING 4220, PRIMARILY HOME TO THE SPACE LAUNCH SYSTEM PROGRAM, REFLECTS A BLEND OF AESTHETICS, PRACTICALITY AND HIGH EFFICIENCY. THE COST-CONSCIOUS NEW FACILITY IS ENVIRONMENTALLY FRIENDLY ON ALL FRONTS, FEATURING STATE-OF-THE-ART GREEN TECHNOLOGIES AND ENERGY-CONSERVATION SYSTEMS THROUGHOUT THE BUILDING. THE ENTIRE STRUCTURE IS SPECIALLY INSULATED, WITH MUCH OF THE EXTERIOR COVERED IN LOW-EMISSIVITY GLASS THAT DEFLECTS HEAT TO REDUCE COOLING COSTS WITHIN. ROOFTOP SOLAR-POWER UNITS ABSORB ENERGY TO AUGMENT ELECTRICAL POWER, AND A 10,000-GALLON CISTERN COLLECTS STORMWATER TO IRRIGATE THE SURROUNDING GREENERY. EVEN THE FACILITY'S NEW PARKING LOT HAS A GREEN ELEMENT: RATHER THAN GUTTERS, IT INCLUDES A "BIOSWALE," A NATURAL, SOIL-AND-VEGETATION-BASED MEANS OF CAPTURING AND FILTERING STORMWATER RUNOFF, WHICH IS DIRECTED INTO A NEARBY COLLECTING POND. ONCE CERTIFICATION IS COMPLETE, BUILDING 4220 WILL BECOME THE SEVENTH LEED CERTIFIED MARSHALL STRUCTURE ON CAMPUS

  9. 1400877

    NASA Image and Video Library

    2014-08-18

    THE INTERIOR OF THE MARSHALL SPACE FLIGHT CENTER’S NEWLY OPENED BUILDING 4220, PRIMARILY HOME TO THE SPACE LAUNCH SYSTEM PROGRAM, REFLECTS A BLEND OF AESTHETICS, PRACTICALITY AND HIGH EFFICIENCY. THE COST-CONSCIOUS NEW FACILITY IS ENVIRONMENTALLY FRIENDLY ON ALL FRONTS, FEATURING STATE-OF-THE-ART GREEN TECHNOLOGIES AND ENERGY-CONSERVATION SYSTEMS THROUGHOUT THE BUILDING. THE ENTIRE STRUCTURE IS SPECIALLY INSULATED, WITH MUCH OF THE EXTERIOR COVERED IN LOW-EMISSIVITY GLASS THAT DEFLECTS HEAT TO REDUCE COOLING COSTS WITHIN. ROOFTOP SOLAR-POWER UNITS ABSORB ENERGY TO AUGMENT ELECTRICAL POWER, AND A 10,000-GALLON CISTERN COLLECTS STORMWATER TO IRRIGATE THE SURROUNDING GREENERY. EVEN THE FACILITY'S NEW PARKING LOT HAS A GREEN ELEMENT: RATHER THAN GUTTERS, IT INCLUDES A "BIOSWALE," A NATURAL, SOIL-AND-VEGETATION-BASED MEANS OF CAPTURING AND FILTERING STORMWATER RUNOFF, WHICH IS DIRECTED INTO A NEARBY COLLECTING POND. ONCE CERTIFICATION IS COMPLETE, BUILDING 4220 WILL BECOME THE SEVENTH LEED CERTIFIED MARSHALL STRUCTURE ON CAMPUS

  10. Building a Data Science capability for USGS water research and communication

    NASA Astrophysics Data System (ADS)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  11. Energy efficiency indicators for high electric-load buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, Rois; Hendron, Bob; Pless, Shanti

    Small buildings have been left behind in the energy efficiency marketplace because financial and technical resources have flowed to larger commercial buildings. DOE's Building Technologies Office works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in existing and new commercial buildings (DOE 2013). BTO recognizes the SBSP sector'spotential for significant energy savings and the need for investments in resources that are tailored to this sector's unique needs. The industry research and recommendations described in this report identify potential approaches and strategic priorities that BTO could explore over the next 3-5 years that willmore » support the implementation of high-potential energy efficiency opportunities for thisimportant sector. DOE is uniquely positioned to provide national leadership, objective information, and innovative tools, technologies, and services to support cost-effective energy savings in the fragmented and complex SBSP sector. Properly deployed, the DOE effort could enhance and complement current energy efficiency approaches. Small portfolios are loosely and qualitatively defined asportfolios of buildings that include only a small number of small buildings. This distinction is important because the report targets portfolio owners and managers who generally do not have staff and other resources to track energy use and pursue energy efficiency solutions.« less

  13. An empirical study on energy efficiency improvement through photovoltaic systems and a LED lighting control system

    NASA Astrophysics Data System (ADS)

    Choi, Young Kwan; Lee, Jae Hyeong

    2015-09-01

    In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.

  14. 77 FR 44655 - FY 2012 Notice of Funding Availability (NOFA) for Rural Capacity Building Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... Availability (NOFA) for Rural Capacity Building Program AGENCY: Office of the Chief Information Officer, HUD... with Rural Capacity Building program will allow CPD to accurately assess the experience, expertise, and... order to ensure the eligibility of Rural Capacity Building program applicants and proposals, to rate and...

  15. Improving Energy Efficiency of Buildings in the Urals

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).

  16. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Jane; Schumacher, Leon

    The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiencymore » to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings, and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: • Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. • Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resources’ Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU. Several hundred Missouri livestock producers were contacted during the MAESTRO project. Of the livestock producers, 254 invited the team to conduct a farm energy assessment which complied with ASABE 612. A total of 147 livestock farm upgrades were implemented, representing 57.5 percent of the farms for which a farm energy assessment was completed. This represented a statewide average annual savings of 1,088,324 kWh and 75,516 therms. The team also reviewed the condition of the livestock producer’s home(s). A total of 106 home energy assessments were completed and 48 individual homes implemented their recommended upgrades, representing 45 percent of the farm homes for which an energy assessment was completed. This represented a statewide average annual savings of 323,029 kWh, and 769.4 therms. More of these farmers likely would have updated their homes but the funding to incentivize them fell short. In spite of the shortfall in incentive funds, some farmers still updated their homes as they saw the value in making these changes to their home.« less

  17. Management Academy for Public Health: Creating Entrepreneurial Managers

    PubMed Central

    Orton, Stephen; Umble, Karl; Zelt, Sue; Porter, Janet; Johnson, Jim

    2007-01-01

    The Management Academy for Public Health develops public health managers’ management skills. Ultimately, the program aims to develop civic entrepreneurs who can improve the efficiency and the effectiveness of their organizations. With help from a coach, teams write public health business plans to meet needs in their communities. An external evaluation found that 119 teams trained during the first 3 years of the program generated more than $6 million in enhanced revenue—including grants, contracts, and fees through their business plans—from $2 million in program funding. Approximately 38% of the teams expected to generate revenue from an academy business plan or a spin-off plan. Action-learning methods can help midcareer managers transfer their training to the workplace and build entrepreneurial skills. PMID:17329658

  18. Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.; Antkowiak, M.; Butt, R.

    The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report ismore » the deliverable for these tasks.« less

  19. ARPA-E: Redefining the Problem to Fine New Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Patrick; Wang, Joseph; Kester, Robbie

    ARPA-E brings together experts from diverse disciplines and industries to frame new ways of looking at the energy challenge. By viewing the problem through a different lens, ARPA-E brings together new capabilities to develop new technology solutions. The DELTA and MONITOR programs illustrate this novel approach well. In this video, Associate Director of Technology Dr. Patrick McGrath discusses how ARPA-E has reframed the challenge of building efficiency with the DELTA program and methane leaks with the MONITOR program differently in order to yield “out of left field” technologies that can lead to transformational gains. The video features two projects –more » University of California San Diego’s DELTA project and Rebellion Photonics’ MONITOR project.« less

  20. Innovation Incubator: Whisker Labs Technical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany F.; Frank, Stephen M.; Earle, Lieko

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need tomore » open the panel and install current transducers (CTs) on the circuit wiring.« less

  1. Low-cost and no-cost practice to achieve energy efficiency of government office buildings: A case study in federal territory of Malaysia

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Ibrahim, Amlus

    2016-08-01

    This paper presents the findings of a case study to achieve energy-efficient performance of conventional office buildings in Malaysia. Two multi-storey office buildings in Federal Territory of Malaysia have been selected. The aim is to study building energy saving potential then to highlight the appropriate measures that can be implemented. Data was collected using benchmarking method by comparing the measured consumption to other similar office buildings and a series of preliminary audit which involves interviews, a brief review of utility and operating data as well as a walkthrough in the buildings. Additionally, in order to get a better understanding of major energy consumption in the selected buildings, general audit have been conducted to collect more detailed information about building operation. In the end, this study emphasized low-cost and no-cost practice to achieve energy efficiency with significant results in some cases.

  2. Smart Buildings: An Introduction to the Library of the Future.

    PubMed

    Hoy, Matthew B

    2016-01-01

    Advances in building technologies are combining energy efficiency, networked sensors, and data recording in exciting ways. Modern facilities can adjust lighting, heating, and cooling outputs to maximize efficiency, provide better physical security, improve wayfinding for occupants, and provide detailed reports of building use. This column will briefly explore the idea of "smart buildings," describe some of the technologies that are being developed for these buildings, and explore their implications for libraries. A brief listing of selected smart building technologies is also provided.

  3. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  4. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  5. Entanglement negativity bounds for fermionic Gaussian states

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  6. The Path to Savings: Understanding the Federal Purchase of Energy-Consuming Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Margaret; Fujita, K. Sydny

    Energy efficiency has been a federal procurement policy objective since at least 1992, with the origin of the Energy Efficient Product Procurement (EEPP) program within the larger Federal Energy Management Program (FEMP). Today, the EEPP program’s mandate is based on requirements that 95% of new contract actions, task orders, and delivery orders for products and services be energy and water efficient, as laid out in Executive Order 13514 in 2009. Facilitating full compliance with EO 13514 presents a significant strategic planning challenge to the FEMP EEPP program, given the size of the federal government, the range of missions of itsmore » many agencies, the mix of management approaches for its buildings, and the diverse set of roughly 80 energy efficient products which has been established through preceding legislation and executive orders. The goal of this report is to aid the program in prioritizing its resources by providing an overview of how the purchase of energy-consuming products occurs in today’s evolving federal procurement system, as well as identify likely intervention points and compliance review mechanisms. Through a synthesis of the literature on U.S. federal sector procurement and two dozen primary interviews, the report particularly focuses on the importance of price in determining the actor(s) responsible for any given purchase of an energy-consuming product. This identification is important, as the relevant actors are trained and reviewed in different ways that the FEMP EEPP program can prioritize for targeting, based on the decision criteria such as the potential energy savings associated with the actor’s purchases or the administrative ease of the intervention.« less

  7. Streamlining Building Efficiency Evaluation with DOE's Asset Score Preview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Supriya; Wang, Nora; Gonzalez, Juan

    2016-08-26

    Building Energy Asset Score (Asset Score), developed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE), is a tool to help building owners and managers assess the efficiency of a building's energy-related systems and encourage investment in cost-effective improvements. The Asset Score uses an EnergyPlus model to provide a quick assessment of building energy performance with minimum user inputs of building characteristics and identifies upgrade opportunities. Even with a reduced set of user inputs, data collection remains a challenge for wide-spread adoption, especially when evaluating a large number of buildings. To address this, Asset Scoremore » Preview was developed to allow users to enter as few as seven building characteristics to quickly assess their buildings before a more in-depth analysis. A streamlined assessment from Preview to full Asset Score provides an easy entry point and also enables users who manage a large number of buildings to screen and prioritize buildings that can benefit most from a more detailed evaluation and possible energy efficiency upgrades without intensive data collection.« less

  8. 10 CFR 435.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.1 Purpose... Federal low-rise residential buildings as required by section 305(a) of the Energy Conservation and...

  9. 10 CFR 435.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise Residential Buildings. § 435.1 Purpose... Federal low-rise residential buildings as required by section 305(a) of the Energy Conservation and...

  10. Building Sustainable Professional Development Programs: Applying Strategies From Implementation Science to Translate Evidence Into Practice.

    PubMed

    Baldwin, Constance D; Chandran, Latha; Gusic, Maryellen E

    2017-01-01

    Multisite and national professional development (PD) programs for educators are challenging to establish. Use of implementation science (IS) frameworks designed to convert evidence-based intervention methods into effective health care practice may help PD developers translate proven educational methods and models into successful, well-run programs. Implementation of the national Educational Scholars Program (ESP) is used to illustrate the value of the IS model. Four adaptable elements of IS are described: (1) replication of an evidence-based model, (2) systematic stages of implementation, (3) management of implementation using three implementation drivers, and (4) demonstration of program success through measures of fidelity to proven models and sustainability. Implementation of the ESP was grounded on five established principles and methods for successful PD. The process was conducted in four IS stages over 10 years: Exploration, Installation, Initial Implementation, and Full Implementation. To ensure effective and efficient processes, attention to IS implementation drivers helped to manage organizational relationships, build competence in faculty and scholars, and address leadership challenges. We describe the ESP's fidelity to evidence-based structures and methods, and offer three examples of sustainability efforts that enabled achievement of targeted program outcomes, including academic productivity, strong networking, and career advancement of scholars. Application of IS frameworks to program implementation may help other PD programs to translate evidence-based methods into interventions with enhanced impact. A PD program can follow systematic developmental stages and be operationalized by practical implementation drivers, thereby creating successful and sustainable interventions that promote the academic vitality of health professions educators.

  11. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, Jim

    2010-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  12. Energy and Environment Guide to Action - Chapter 4.3: Building Codes for Energy Efficiency

    EPA Pesticide Factsheets

    Provides guidance and recommendations for establishing, implementing, and evaluating state building codes for energy efficiency, which improve energy efficiency in new construction and major renovations. State success stories are included for reference.

  13. Austro-Hungarian Public Building Refurbishment and Energy Efficiency Measures - A Case Study on a Public Building in Sarajevo

    NASA Astrophysics Data System (ADS)

    Salihbegović, Amira; Čaušević, Amir; Rustempašić, Nerman; Avdić, Dženis; Smajlović, Esad

    2017-10-01

    Among other pieces of architectural historical heritage in Sarajevo, and Bosnia-Herzegovina in general, the Austro-Hungarian architecture has preserved its original architectural, artistic and engineering characteristics. Both residential and public representative urban blocks, streets and squares are of distinguishable ambience in the architectural and urban image of the city and are testifying about our architectural past. A number of buildings is valorised and protected by law in terms of their architectural, artistic and historical value. In addition, these buildings have a distinct functional, ambiental, historical, and even aesthetical value. To make them last longer, refurbishment of these buildings is challenging and presents potential and multiple benefits for the city, and beyond. Refurbishing built environment through functional reorganizing, redesign and energy efficiency measures applications could result in prolonged longevity, architectural identity preservation and interior comfort improvement. Besides, implemented measures for energy efficiency, through the refurbishment process, should optimize the needs for energy consumption in treated buildings. This paper defines options in comfort improvements and redesign, without implying risks to the building longevity, analyses interventions and energy efficiency measures which would enable potential energy saving assessment in the refurbishment process of masonry buildings. This paper also discusses the different techniques that can be adopted for conservation and preservation of historical masonry buildings from the Austro-Hungarian period dealing with energy efficiency. The works were preceded by historical research and on-site investigations. This paper describes a methodology to quantify their vulnerability. A scheme of structural retrofitting is suggested following the research conducted. Revitalization of the building consisted in the reconstruction of the old building structure, creating the inner courtyard and covering it with a glass roof.

  14. BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Craig; Horowitz, Scott; Maguire, Jeff

    2014-04-01

    This project targeted the development of a software tool, BEopt-CA (Ex) (Building Energy Optimization Tool for California Existing Homes), that aims to facilitate balanced integration of energy efficiency (EE), demand response (DR), and photovoltaics (PV) in the residential retrofit1 market. The intent is to provide utility program managers and contractors in the EE/DR/PV marketplace with a means of balancing the integration of EE, DR, and PV

  15. A Rewriting-Based Approach to Trace Analysis

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic (LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring red applications that only run for limited time periods. The presented algorithm is implemented in the Maude executable specification language and essentially consists of a set of equations establishing an executable semantics of LTL using a simple formula transforming approach. The algorithm is further improved to build automata on-the-fly from formulae, using memoization. The result is a very efficient and small Maude program that can be used to monitor program executions. We furthermore present an alternative algorithm for synthesizing probably minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze execution traces without the need for a rewriting system, and can hence be used by observers written in conventional programming languages. The presented work is part of an ambitious runtime verification and monitoring project at NASA Ames, called PATHEXPLORER, and demonstrates that rewriting can be a tractable and attractive means for experimenting and implementing program monitoring logics.

  16. Evaluation of U.S. Building Energy Benchmarking and Transparency Programs: Attributes, Impacts, and Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mims, Natalie; Schiller, Steven R.; Stuart, Elizabeth

    In the last decade, a new policy area has emerged to boost energy efficiency in buildings that focuses on the simple action of measuring energy use as compared to buildings of similar type and size, and making that data publicly available. These efforts, referred to as benchmarking and transparency (B&T) policies, seek to unlock new energy efficiency opportunities in the country’s existing buildings by promoting data-driven decision-making and creating stronger market signals. This report focuses on the 24 state and local jurisdictions that (as of December 31, 2016) require owners of privately owned commercial buildings, multifamily buildings, or both tomore » comply with a B&T policy. The report provides a summary of U.S. B&T policy design and implementation characteristics, reports results and impacts for jurisdictions with B&T policies, and discusses opportunities for increasing the efficacy of B&T policies, as well as suggested areas for further research. Among the findings, all but one of the B&T policy evaluation studies reviewed indicate some reduction (from 1.6% to 14%) in energy use, energy costs, or energy intensity over the two- to four-year period of the analyses. More specifically, most of the studies reviewed indicate 3% to 8% reductions in gross energy consumption or energy use intensity over a two- to four-year period of B&T policy implementation. Two additional evaluation studies indicate that there is a causal relationship between B&T policies and energy savings or energy cost savings. These documented impacts should be reviewed with some caution. While consistently showing energy savings benefits associated with B&T policies, these savings estimates should be considered preliminary because of the limited period of analyses and inconsistencies in analysis methods for the various studies. A nationally standardized method for data collection, reporting, and evaluation of B&T policies—developed with an advisory group of state and local jurisdictions, energy efficiency and evaluation experts, building owner and real estate associations, and other stakeholders—could improve the consistency and quality of B&T impact studies, providing policymakers and others with a more complete understanding of the present and future impacts of these policies.« less

  17. Comparison of Building Loads Analysis and System Thermodynamics (BLAST) Computer Program Simulations and Measured Energy Use for Army Buildings.

    DTIC Science & Technology

    1980-05-01

    engineering ,ZteNo D R RPTE16 research w 9 laboratory COMPARISON OF BUILDING LOADS ANALYSIS AND SYSTEM THERMODYNAMICS (BLAST) AD 0 5 5,0 3COMPUTER PROGRAM...Building Loads Analysis and System Thermodynamics (BLAST) computer program. A dental clinic and a battalion headquarters and classroom building were...Building and HVAC System Data Computer Simulation Comparison of Actual and Simulated Results ANALYSIS AND FINDINGS

  18. Guidelines for Building Science Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Cheryn E.; Rashkin, Samuel; Huelman, Pat

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part inmore » the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to building science education. This report summarizes the steps DOE has taken to develop guidance for building science education and outlines a path forward towards creating real change for an industry in need. The Guidelines for Building Science Education outlined in Appendix A of this report have been developed for external stakeholders to use to certify that their programs are incorporating the most important aspects of building science at the most appropriate proficiency level for their role. The guidelines are intended to be used primarily by training organizations, universities, and certification bodies. Each guideline can be printed or saved as a stand-alone document for ease-of-use by the respective stakeholder group. In 2015, DOE, with leadership from Pacific Northwest National Laboratory (PNNL), is launching a multi-year campaign to promote the adoption of the Guidelines for Building Science Education in a variety of training settings.« less

  19. Data on European non-residential buildings.

    PubMed

    D'Agostino, Delia; Cuniberti, Barbara; Bertoldi, Paolo

    2017-10-01

    This data article relates to the research paper Energy consumption and efficiency technology measures in European non-residential buildings (D'Agostino et al., 2017) [1]. The reported data have been collected in the framework of the Green Building Programme that ran from 2006 to 2014. The project has encouraged the adoption of efficiency measures to boost energy savings in European non-residential buildings. Data focus on the one-thousand buildings that joined the Programme allowing to save around 985 GWh/year. The main requirement to join the Programme was the reduction of at least 25% primary energy consumption in a new or retrofitted building. Energy consumption before and after the renovation are provided for retrofitted buildings while, in new constructions, a building had to be designed using at least 25% less energy than requested by the country's building codes. The following data are linked within this article: energy consumption, absolute and relative savings related to primary energy, saving percentages, implemented efficiency measures and renewables. Further information is given about each building in relation to geometry, envelope, materials, lighting and systems.

  20. 78 FR 27906 - Lead; Renovation, Repair, and Painting Program for Public and Commercial Buildings; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... construction (NAICS code 236), e.g., commercial building construction, industrial building construction, commercial and institutional building construction, building finishing contractors, drywall and insulation... Lead; Renovation, Repair, and Painting Program for Public and Commercial Buildings; Notice of Public...

Top