Science.gov

Sample records for efficient chemoselective synthesis

  1. Efficient, chemoselective synthesis of immunomicelles using single-domain antibodies with a C-terminal thioester

    PubMed Central

    Reulen, Sanne WA; van Baal, Ingrid; Raats, Jos MH; Merkx, Maarten

    2009-01-01

    Background Classical bioconjugation strategies for generating antibody-functionalized nanoparticles are non-specific and typically result in heterogeneous compounds that can be compromised in activity. Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester, providing a unique handle for site-specific conjugation using native chemical ligation (NCL). However, current methods to generate antibody fragments with C-terminal thioesters require cumbersome refolding procedures, effectively preventing application of NCL for antibody-mediated targeting and molecular imaging. Results Targeting to the periplasm of E. coli allowed efficient production of correctly-folded single-domain antibody (sdAb)-intein fusions proteins. On column purification and 2-mercapthoethanesulfonic acid (MESNA)-induced cleavage yielded single-domain antibodies with a reactive C-terminal MESNA thioester in good yields. These thioester-functionalized single-domain antibodies allowed synthesis of immunomicelles via native chemical ligation in a single step. Conclusion A novel procedure was developed to obtain soluble, well-folded single-domain antibodies with reactive C-terminal thioesters in good yields. These proteins are promising building blocks for the chemoselective functionalization via NCL of a broad range of nanoparticle scaffolds, including micelles, liposomes and dendrimers. PMID:19619333

  2. Chemoselective efficient synthesis of functionalized β-oxonitriles through cyanomethylation of Weinreb amides.

    PubMed

    Mamuye, Ashenafi Damtew; Castoldi, Laura; Azzena, Ugo; Holzer, Wolfgang; Pace, Vittorio

    2015-02-21

    A synthesis of β-oxonitriles is reported via the generation of R(1)R(2)CLiCN species followed by the trapping with variously decorated Weinreb amides. The optimization study revealed that lithiation of acetonitriles is best accomplished by deprotonation with MeLi-LiBr at low temperature. The protocol can be conveniently adapted to the synthesis of α-mono or α,α-disubstituted cyanoketones. (15)N- and (17)O-NMR data are reported for selected compounds.

  3. A chemoselective and continuous synthesis of m-sulfamoylbenzamide analogues

    PubMed Central

    Verlee, Arno; Heugebaert, Thomas; van der Meer, Tom; Kerchev, Pavel I; Van Breusegem, Frank

    2017-01-01

    For the synthesis of m-sulfamoylbenzamide analogues, small molecules which are known for their bioactivity, a chemoselective procedure has been developed starting from m-(chlorosulfonyl)benzoyl chloride. Although a chemoselective process in batch was already reported, a continuous-flow process reveals an increased selectivity at higher temperatures and without catalysts. In total, 15 analogues were synthesized, using similar conditions, with yields ranging between 65 and 99%. This is the first automated and chemoselective synthesis of m-sulfamoylbenzamide analogues. PMID:28326139

  4. Chemoselective Synthesis of Carbamates using CO2 as Carbon Source.

    PubMed

    Riemer, Daniel; Hirapara, Pradipbhai; Das, Shoubhik

    2016-08-09

    Synthesis of carbamates directly from amines using CO2 as the carbon source is a straightforward and sustainable approach. Herein, we describe a highly effective and chemoselective methodology for the synthesis of carbamates at room temperature and atmospheric pressure. This methodology can also be applied to protect the amino group in amino acids and peptides, and also to synthesize important pharmaceuticals.

  5. Mn(0)-mediated chemoselective reduction of aldehydes. Application to the synthesis of α-deuterioalcohols.

    PubMed

    Jiménez, Tania; Barea, Elisa; Oltra, J Enrique; Cuerva, Juan M; Justicia, José

    2010-10-15

    A mild, simple, safe, chemoselective reduction of different kinds of aldehydes to the corresponding alcohols mediated by the Mn dust/water system is described. In addition to this, the use of D(2)O leads to the synthesis of α-deuterated alcohols and constitutes an efficient, inexpensive alternative for the preparation of these compounds.

  6. Chemoselectivity: the mother of invention in total synthesis.

    PubMed

    Shenvi, Ryan A; O'Malley, Daniel P; Baran, Phil S

    2009-04-21

    IUPAC defines chemoselectivity as "the preferential reaction of a chemical reagent with one of two or more different functional groups", a definition that describes in rather understated terms the single greatest obstacle to complex molecule synthesis. Indeed, efforts to synthesize natural products often become case studies in the art and science of chemoselective control, a skill that nature has practiced deftly for billions of years but man has yet to master. Confrontation of one or perhaps a collection of functional groups that are either promiscuously reactive or stubbornly inert has the potential to unravel an entire strategic design. One could argue that the degree to which chemists can control chemoselectivity pales in comparison to the state of the art in stereocontrol. In this Account, we hope to illustrate how the combination of necessity and tenacity leads to the invention of chemoselective chemistry for the construction of complex molecules. In our laboratory, a premium is placed upon selecting targets that would be difficult or impossible to synthesize using traditional techniques. The successful total synthesis of such molecules demands a high degree of innovation, which in turn enables the discovery of new reactivity and principles for controlling chemoselectivity. In devising an approach to a difficult target, we choose bond disconnections that primarily maximize skeletal simplification, especially when the proposed chemistry is poorly precedented or completely unknown. By choosing such a strategy--rather than adapting an approach to fit known reactions--innovation and invention become the primary goal of the total synthesis. Delivery of the target molecule in a concise and convergent manner is the natural consequence of such endeavors, and invention becomes a prerequisite for success.

  7. A metal-organic framework-templated synthesis of γ-Fe2O3 nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds.

    PubMed

    Li, Yang; Zhou, Yu-Xiao; Ma, Xiao; Jiang, Hai-Long

    2016-03-18

    The γ-Fe2O3 nanoparticles well dispersed in porous carbon were fabricated via a Fe-based metal-organic framework-templated pyrolysis. The resultant product exhibits excellent catalytic activity, chemoselectivity and magnetic recyclability for the hydrogenation of diverse nitro compounds under mild conditions.

  8. Chemoselective intramolecular Wittig reactions for the synthesis of oxazoles and benzofurans.

    PubMed

    Fan, Yu-Shiou; Das, Utpal; Hsiao, Ming-Yu; Liu, Meng-Hsien; Lin, Wenwei

    2014-12-05

    A chemoselective approach was developed for the synthesis of highly functionalized oxazoles and benzofurans using an intramolecular Wittig reaction as the key step. By choosing proper trapping reagent or method of addition of reagents, chemoselectivity can be controlled toward either oxazole or benzofuran derivatives.

  9. Lanthanum(III) catalysts for highly efficient and chemoselective transesterification.

    PubMed

    Hatano, Manabu; Ishihara, Kazuaki

    2013-03-11

    A facile, atom-economical, and chemoselective esterification is crucial in modern organic synthesis, particularly in the areas of pharmaceutical, polymer, and material science. However, a truly practical catalytic transesterification of carboxylic esters with various alcohols has not yet been well established, since, with many conventional catalysts, the substrates are limited to 1°- and cyclic 2°-alcohols. In sharp contrast, if we take advantage of the high catalytic activities of La(Oi-Pr)(3), La(OTf)(3), and La(NO(3))(3) as ligand-free catalysts, ligand-assisted or additive-enhanced lanthanum(III) catalysts can be highly effective acid-base combined catalysts in transesterification. A highly active dinuclear La(III) catalyst, which is prepared in situ from lanthanum(III) isopropoxide and 2-(2-methoxyethoxy)ethanol, is effective for the practical transesterification of methyl carboxylates, ethyl acetate, weakly reactive dimethyl carbonate, and much less-reactive methyl carbamates with 1°-, 2°-, and 3°-alcohols. As the second generation, nearly neutral "lanthanum(III) nitrate alkoxide", namely La(OR)(m)(NO(3))(3-m), has been developed. This catalyst is prepared in situ from inexpensive, stable, low-toxic lanthanum(III) nitrate hydrate and methyltrioctylphosphonium methyl carbonate, and is highly useful in the non-epimerized transesterification of α-substituted chiral carboxylic esters, even under azeotropic reflux conditions. In these practical La(III)-catalyzed transesterifications, colorless esters can be obtained in small- to large-scale synthesis without the need for inconvenient work-up or careful purification procedures.

  10. An improved chemo-enzymatic synthesis of 1-beta-O-acyl glucuronides: highly chemoselective enzymatic removal of protecting groups from corresponding methyl acetyl derivatives.

    PubMed

    Baba, Akiko; Yoshioka, Tadao

    2007-12-07

    An improved and widely applicable chemo-enzymatic method for the synthesis of a series of 1-beta-O-acyl glucuronides 5a-f has been developed from the corresponding methyl acetyl derivatives 3a-f, which were stereospecifically synthesized from cesium salts of carboxylic acids 1a-f and methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-alpha-D-glucopyranuronate (2). Chemoselectivity of lipase AS Amano (LAS) in the hydrolytic removal of O-acetyl groups of 3a-f to provide methyl esters 4a-f was influenced by the nature of their 1-beta-O-acyl groups; high selectivity was evident only for 3b and 3f. Carboxylesterase from Streptomyces rochei (CSR), newly screened as an alternative to LAS, showed much greater chemoselectivity toward the O-acetyl groups than LAS; 3a, 3d, and 3e were chemoselectively hydrolyzed only by CSR. The combination of CSR with LAS yielded better results in the hydrolysis of 3c and 3f than did single usage of CSR. Final deprotection of the methyl ester groups of 4a-f to provide 5a-f was chemoselectively achieved by using lipase from Candida antarctica type B (CAL-B) as well as esterase from porcine liver (PLE), although CAL-B possessed higher chemoselectivity and catalytic efficiency than did PLE. CSR also exhibited high chemoselectivity in the synthesis of (S)-naproxen 1-beta-O-acyl glucopyranoside (7) from its 2,3,4,6-tetra-O-acetyl derivative 6.

  11. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    NASA Astrophysics Data System (ADS)

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-09-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes.

  12. Transfer hydrogenation using recyclable polyurea-encapsulated palladium: efficient and chemoselective reduction of aryl ketones.

    PubMed

    Yu, Jin-Quan; Wu, Hai-Chen; Ramarao, Chandrashekar; Spencer, Jonathan B; Ley, Steven V

    2003-03-21

    A robust and recyclable palladium catalyst [Pd0EnCat] has been prepared by ligand exchange of polyurea-encapsulated palladium(II) acetate with formic acid, resulting in deposition of Pd(0) in the support material; Pd0EnCat is shown to be a highly efficient transfer hydrogenation catalyst for chemoselective reduction of a wide range of aryl ketones to benzyl alcohols.

  13. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides

    PubMed Central

    Bertran-Vicente, Jordi; Penkert, Martin; Nieto-Garcia, Olaia; Jeckelmann, Jean-Marc; Schmieder, Peter; Krause, Eberhard; Hackenberger, Christian P. R.

    2016-01-01

    In contrast to protein O-phosphorylation, studying the function of the less frequent N- and S-phosphorylation events have lagged behind because they have chemical features that prevent their manipulation through standard synthetic and analytical methods. Here we report on the development of a chemoselective synthetic method to phosphorylate Cys side-chains in unprotected peptides. This approach makes use of a reaction between nucleophilic phosphites and electrophilic disulfides accessible by standard methods. We achieve the stereochemically defined phosphorylation of a Cys residue and verify the modification using electron-transfer higher-energy dissociation (EThcD) mass spectrometry. To demonstrate the use of the approach in resolving biological questions, we identify an endogenous Cys phosphorylation site in IICBGlc, which is known to be involved in the carbohydrate uptake from the bacterial phosphotransferase system (PTS). This new chemical and analytical approach finally allows further investigating the functions and significance of Cys phosphorylation in a wide range of crucial cellular processes. PMID:27586301

  14. Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides.

    PubMed

    Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho

    2016-10-13

    Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine, a number of bicyclic triazolium ionic liquids 1-3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1, 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.

  15. Metabolic synthesis of clickable glutathione for chemoselective detection of glutathionylation.

    PubMed

    Samarasinghe, Kusal T G; Munkanatta Godage, Dhanushka N P; VanHecke, Garrett C; Ahn, Young-Hoon

    2014-08-20

    Glutathionylation involves reversible protein cysteine modification that regulates the function of numerous proteins in response to redox stimuli, thereby altering cellular processes. Herein we developed a selective and versatile approach to identifying glutathionylation by using a mutant of glutathione synthetase (GS). GS wild-type catalyzes coupling of γGlu-Cys to Gly to form glutathione. We generated a GS mutant that catalyzes azido-Ala in place of Gly with high catalytic efficiency and selectivity. Transfection of this GS mutant (F152A/S151G) and incubation of azido-Ala in cells efficiently afford the azide-containing glutathione derivative, γGlu-Cys-azido-Ala. Upon H2O2 treatment, clickable glutathione allowed for selective and sensitive detection of glutathionylated proteins by Western blotting or fluorescence after click reaction with biotin-alkyne or rhodamine-alkyne. This approach affords the efficient metabolic tagging of intracellular glutathione with small clickable functionality, providing a versatile handle for characterizing glutathionylation.

  16. The Chemoselective Reduction of Isoxazoline γ-Lactams Through Iminium Aza-Diels-Alder Reactions: A Short-Cut Synthesis of Aminols as Valuable Intermediates towards Nucleoside Derivatives

    PubMed Central

    Memeo, Misal Giuseppe; Mella, Mariella; Quadrelli, Paolo

    2012-01-01

    Isoxazoline γ-lactams are prepared starting from the regioisomeric cycloadducts of benzonitrile oxide to the N-alkyl 2-azanorbornenes taking advantage of the efficient catalytic oxidation by RuO4. The reduction of the amide groups is easily conducted in the presence of LiAlH4 under mild conditions, which allowed for the chemoselective reduction of the amide moiety followed by ring opening to afford the desired conformationally locked isoxazoline-carbocyclic aminols, as valuable intermediates for nucleoside synthesis. PMID:22629174

  17. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn Ruth

    2011-12-13

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  18. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn

    2006-10-17

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  19. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn Ruth

    2010-11-23

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  20. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn

    2003-05-27

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  1. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn R.

    2010-02-23

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g. on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  2. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn R.

    2011-04-12

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  3. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn R.

    2011-05-10

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  4. Synthesis and chemoselective intramolecular crosslinking of a HER2-binding affibody.

    PubMed

    Ekblad, Torun; Tolmachev, Vladimir; Orlova, Anna; Lendel, Christofer; Abrahmsén, Lars; Karlström, Amelie Eriksson

    2009-01-01

    The human epidermal growth factor receptor HER2 has emerged as an important target for molecular imaging of breast cancer. This article presents the design and synthesis of a HER2-targeting affibody molecule with improved stability and tumor targeting capacity, and with potential use as an imaging agent. The 58 aa three-helix bundle protein was assembled using solid-phase peptide synthesis, and a chemoselective ligation strategy was used to establish an intramolecular thioether bond between the side chain thiol group of a cysteine residue, positioned in the loop between helices I and II, and a chloroacetyl group on the side chain amino group of the C-terminal lysine residue. The tethered protein offered an increased thermal stability, with a melting temperature of 64 degrees C, compared to 54 degrees C for the linear control. The ligation did not have a major influence on the HER2 binding affinity, which was 320 and 380 pM for the crosslinked and linear molecules, respectively. Biodistribution studies were performed both in normal and tumor-bearing mice to evaluate the impact of the crosslinking on the in vivo behavior and on the tumor targeting performance. The distribution pattern was characterized by a low uptake in all organs except kidney, and rapid clearance from blood and normal tissue. Crosslinking of the protein resulted in a significantly increased tumor accumulation, rendering the tethered HER2-binding affibody molecule a valuable lead in the development of superior HER2 imaging agents.

  5. Synthesis and reductive elimination of arylPd(ii) trifluoromethyl complexes: a remarkable concentration effect on chemoselectivity.

    PubMed

    Zhang, Song-Lin; Deng, Zhu-Qin

    2016-12-07

    Reductive elimination from Pd(ii) aryl trifluoromethyl complexes is a challenging and elusive step which is accompanied by a number of kinetically more favorable side reactions giving rising to a complex mixture. We report herein the synthesis and isolation of several arylPd(ii) trifluoromethyl complexes (2a-c) and study their electronic structures, photophysical properties and reductive elimination reactivities. A remarkable concentration effect on chemoselectivity is observed for thermal decomposition of (Xantphos)Pd(ii)(Ar)(CF3) (2c) that favors the formation of Ar-CF3 at lower concentrations, but gives increasingly more Ar-Ar homocoupling product to a dominant extent as the concentration of 2c increases. This is solid evidence for the involvement of an intermolecular Ar/CF3 ligand exchange/Ar-Ar reductive elimination mechanism that has been proposed based on DFT computational studies. The interplay between theory and experiment provides valuable insights into the mechanism and kinetics of the key elementary reaction of reductive elimination at Pd(ii), and may thus prompt the design of more efficient Pd-mediated nucleophilic trifluoromethylation reactions.

  6. Chemoselective Reductive Amination of Carbonyl Compounds for the Synthesis of Tertiary Amines Using SnCl2·2H2O/PMHS/MeOH.

    PubMed

    Nayal, Onkar S; Bhatt, Vinod; Sharma, Sushila; Kumar, Neeraj

    2015-06-05

    Stannous chloride catalyzed chemoselective reductive amination of a variety of carbonyl compounds with aromatic amines has been developed for the synthesis of a diverse range of tertiary amines using inexpensive polymethylhydrosiloxane as reducing agent in methanol. The present method is also applicable for the synthesis of secondary amines including heterocyclic ones.

  7. Synthesis of 2,4,5-trisubstituted thiazoles via Lawesson's reagent-mediated chemoselective thionation-cyclization of functionalized enamides.

    PubMed

    Kumar, S Vijay; Parameshwarappa, G; Ila, H

    2013-07-19

    An efficient route to 2-phenyl/(2-thienyl)-5-(het)aryl/(methylthio)-4-functionalized thiazoles via one-step chemoselective thionation-cyclization of highly functionalized enamides mediated by Lawesson's reagent is reported. These enamide precursors are obtained by nucleophilic ring-opening of 2-phenyl/(2-thienyl)-4-[bis(methylthio)/(methylthio)(het)arylmethylene]-5-oxazolones with alkoxides and a variety of primary aromatic/aliphatic amines or amino acid esters, leading to the introduction of an ester, an N-substituted carboxamide, or a peptide functionality in the 4-position of the product thiazoles.

  8. DualPhos: a versatile, chemoselective reagent for two-carbon aldehyde to latent (E)-alkenal homologation and application in the total synthesis of phomolide G

    PubMed Central

    McLeod, David

    2016-01-01

    Advances on the use of the 2-pinacolacetal-tripropylphosphonium salt DualPhos as a general reagent for the two-carbon aldehyde to alkenal homologation and a chemoselective iron (III) chloride mediated deprotection are described. The strategy allows isolation of the latent alkenal intermediates or direct hydrolysis to (E)-alkenals. The robust chemical stability of the latent alkenals is demonstrated in a total synthesis of the macrolactone phomolide G. PMID:28018615

  9. Studies in iridoid synthesis. Chemoselective transformations of cis-1,2,4,6-tetrahydrophthalic anhydride.

    PubMed

    Stevens, Anne T; Bull, James R; Chibale, Kelly

    2008-02-07

    In the course of synthetic studies towards the development of diastereoselective routes to secoiridoid aglycones, cis-1,2,4,6-tetrahydrophthalic anhydride was transformed into the corresponding lactone cis-3a,4,7,7a-tetrahydro-3H-isobenzofuran-1-one, which served as a key precursor for a variety of chemoselective synthetic manipulations. Unsuccessful formylation of an ester intermediate resulted in a (E/Z) mixture of vinyl alcohols which were protected as acetates and as a single p-methoxybenzyl (PMB) ether (E) isomer. Dihydroxylation of the cyclohexene motif using OsO(4) led to the unexpected deprotection of the PMB ether. On the other hand, successful formylation of a suitably silyl protected lactonised intermediate was achieved using tert-butoxybis(dimethylamino)methane, or Bredereck's reagent. Tetrabutylammonium fluoride (TBAF) deprotection of a methoxyethoxymethyl (MEM)-ether intermediate serendipitously afforded an approximately 1 : 1 mixture of pyrano-pyranones, which are products of a seldom encountered intramolecular Michael addition, using an oxygen donor, to the terminus of an alpha,beta-unsaturated system, followed by beta-elimination of the MEM moiety.

  10. AN EFFICIENT AND CHEMOSELECTIVE CBZ-PROTECTION OF AMINES USING SILICA-SULFURIC ACID AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple, facile, and chemoselective N-benzyloxycarbonylation of amines using silica-sulfuric acid that proceeds under solvent-free conditions at room temperature has been achieved. These reactions are applicable to a wide variety of primary (aliphatic, cyclic) secondary amines, ...

  11. Gram-scale, chemoselective synthesis of N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC)

    PubMed Central

    Setterholm, Noah A.; Boatright, Jeffrey H.; Iuvone, P. Michael

    2015-01-01

    N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) is a potent activator of the TrkB receptor in mammalian neurons and of interest because of its potential therapeutic uses. In the absence of a commercial supply of HIOC, we sought to produce several grams of material. However, a synthesis of HIOC has never been published. Herein we report the preparation of HIOC by the chemoselective N-acylation of serotonin, without using blocking groups in the key acylation step. PMID:26028783

  12. Synthesis of novel 2-deoxy-β-benzyl-C-glycosides by highly stereo- and chemoselective hydrogenation of exo-glycals.

    PubMed

    Díaz, Gisela; Ponzinibbio, Agustín; Bravo, Rodolfo Daniel

    2014-07-01

    Novel 2-deoxy-β-benzyl-C-glycosides were prepared in good yields and excellent stereoselectivity by a route involving the Wittig reaction of glycosyl phosphonium salts and reduction of exo-glycals as key steps. Hydrogenation of benzyl protected enol ethers was performed with Pd/C(en) as an effective chemoselective catalyst to afford exclusively β anomers.

  13. Studies toward labeling cytisine with [11C]phosgene: rapid synthesis of a delta-lactam involving a new chemoselective lithiation-annulation method.

    PubMed

    Rouden, Jacques; Seitz, Thomas; Lemoucheux, Laurent; Lasne, Marie-Claire

    2004-05-28

    With the aim of the radiolabeling of cytisine, a potent agonist of nicotinic receptors, with [(11)C]phosgene, the rapid synthesis of a lactam model of our target has been studied. The key step of the delta-lactam formation is a new chemoselective lithiation-annulation method, under high dilution, of a suitable piperidinylcarbamoyl chloride. This precursor was obtained from (2-hydroxyethyl)piperidine in a linear synthetic sequence involving a Corey-Fuchs olefination of the corresponding aldehyde, followed by a selective reduction, using a diimide equivalent, of an iodoalkyne into a (Z)-iodopropene piperidine. This alkene served as main precursor to study the cyclization according to several procedures using phosgene as the required carbonylating reagent.

  14. Chemoselective Hydroxyl Group Transformation: An Elusive Target‡

    PubMed Central

    Trader, Darci J.; Carlson, Erin E.

    2012-01-01

    The selective reaction of one functional group in the presence of others is not a trivial task. A noteworthy amount of research has been dedicated to the chemoselective reaction of the hydroxyl moiety. This group is prevalent in many biologically important molecules including natural products and proteins. However, targeting the hydroxyl group is difficult for many reasons including its relatively low nucleophilicity in comparison to other ubiquitous functional groups such as amines and thiols. Additionally, many of the developed chemoselective reactions cannot be used in the presence of water. Despite these complications, chemoselective transformation of the hydroxyl moiety has been utilized in the synthesis of complex natural product derivatives, the reaction of tyrosine residues in proteins, the isolation of natural products and is the mechanism of action of myriad drugs. Here, methods for selective targeting of this group, as well as applications of several devised methods, are described. PMID:22695722

  15. Chemoselective Attachment of Biologically Active Proteins to Surfaces by Native Chemical Ligation

    SciTech Connect

    Cheung, C L; de Yoreo, J J; Coleman, M; Camarero, J A

    2003-11-22

    The present work describes our ongoing efforts towards the creation of micro and nanoscaled ordered arrays of protein covalently attached to site-specific chemical linkers patterned by different microlithographic techniques. We present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto silicon-based surfaces. We show that these modified thiols can be used for creating nano- and micrometric chemical patterns by using different lithographic techniques. We show that these patterns can react chemoselectively with proteins which have been recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein to the surface.

  16. Assembly of Oriented Virus Arrays by Chemo-Selective Ligation Methods and Nanolithography Techniques

    SciTech Connect

    Camarero, J A; Cheung, C L; Lin, T; Johnson, J E; Weeks, B L; Noy, A; De Yoreo, J J

    2002-12-02

    The present work describes our ongoing efforts towards the creation of nano-scaled ordered arrays of protein/virus covalently attached to site-specific chemical linkers patterned by different nanolithograpy techniques. We will present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto gold and silicon-based surfaces. Furthermore, these modified thiols have been used to create nanometric patterns by using different nanolithography techniques. We will show that these patterns can react chemoselectively with proteins and/or virus which have been chemically or recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein or virus to the surface.

  17. Chemoselective Palladium-Catalyzed Deprotonative Arylation/[1,2]-Wittig Rearrangement of Pyridylmethyl Ethers

    PubMed Central

    Gao, Feng; Kim, Byeong-Seon

    2015-01-01

    Control of chemoselectivity is one of the most challenging problems facing chemists and is particularly important in the synthesis of bioactive compounds and medications. Herein, the first highly chemoselective tandem C(sp3)–H arylation/[1,2]-Wittig rearrangement of pyridylmethyl ethers is presented. The efficient and operationally simple protocols enable generation of either arylation products or tandem arylation/[1,2]-Wittig rearrangement products with remarkable selectivity and good to excellent yields (60–99%). Choice of base, solvent, and reaction temperature play a pivotal role in tuning the reactivity of intermediates and controlling the relative rates of competing processes. The novel arylation step is catalyzed by a Pd(OAc)2/NIXANTPHOS-based system via a deprotonative cross-coupling process. The method provides rapid access to skeletally diverse aryl(pyridyl)methanol core structures, which are central components of several medications. PMID:27014434

  18. Synthesis of NH-sulfoximines from sulfides by chemoselective one-pot N- and O-transfers.

    PubMed

    Tota, Arianna; Zenzola, Marina; Chawner, Stephen J; John-Campbell, Sahra St; Carlucci, Claudia; Romanazzi, Giuseppe; Degennaro, Leonardo; Bull, James A; Luisi, Renzo

    2016-12-22

    Direct synthesis of NH-sulfoximines from sulfides has been achieved through O and NH transfer in the same reaction, occurring with complete selectivity. The reaction is mediated by bisacetoxyiodobenzene under simple conditions and employs inexpensive N-sources. Preliminary studies indicate that NH-transfer is likely to be first, followed by oxidation, but the reaction proceeds successfully in either order. A wide range of functional groups and biologically relevant compounds are tolerated. The use of AcO(15)NH4 affords (15)N-labeled compounds.

  19. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    PubMed

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion.

  20. Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water.

    PubMed

    Saito, Fumito; Noda, Hidetoshi; Bode, Jeffrey W

    2015-04-17

    Chemoselective ligation reactions have contributed immensely to the development of organic synthesis and chemical biology. However, the ligation of stoichiometric amounts of large molecules for applications such as protein-protein conjugates is still challenging. Conjugation reactions need to be fast enough to proceed under dilute conditions and chemoselective in the presence of unprotected functional groups; the starting materials and products must be stable under the reaction conditions. To compare known ligation reactions for their suitability under these conditions, we determined the second-order rate constants of ligation reactions using peptide substrates with unprotected functional groups. The reaction conditions, the chemoselectivity of the reactions, and the stability of the starting materials and products were carefully evaluated. In some cases, the stability could be improved by modifying the substrate structure. These data obtained under the ligation conditions provide a useful guide to choose an appropriate ligation reaction for synthesis of large molecules by covalent ligation reactions of unprotected substrates in water.

  1. Chemoselective Reactions of Citral: Green Syntheses of Natural Perfumes for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Cunningham, Anna D.; Ham, Eun Y.; Vosburg, David A.

    2011-01-01

    Chemoselectivity is a central concept in organic synthesis and may be readily appreciated in the context of the fragrant, polyfunctional natural product citral. We describe three single-step reactions students may perform on citral to synthesize other natural perfumes: citronellal, geraniol, nerol, or epoxycitral. Each of the reactions uses a…

  2. Atom-economical chemoselective synthesis of 1,4-enynes from terminal alkenes and propargylic alcohols catalyzed by Cu(OTf)2.

    PubMed

    Huang, Guo-Bao; Wang, Xu; Pan, Ying-Ming; Wang, Heng-Shan; Yao, Gui-Yang; Zhang, Ye

    2013-03-15

    A novel and efficient Cu(OTf)2-catalyzed sp(3)-sp(2) C-C bond formation reaction through the direct coupling of propargylic alcohols with terminal alkenes has been realized under mild conditions. The reaction is tolerant to air and is atom-economical, in accordance with the concept of modern green chemistry. The present protocol provides an attractive approach to a diverse range of 1,4-enynes in high to excellent yields.

  3. Tactical Synthesis Of Efficient Global Search Algorithms

    NASA Technical Reports Server (NTRS)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2009-01-01

    Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.

  4. Efficient synthesis of highly substituted tetrahydroindazolone derivatives.

    PubMed

    Scala, Angela; Piperno, Anna; Risitano, Francesco; Cirmi, Santa; Navarra, Michele; Grassi, Giovanni

    2015-08-01

    A straightforward and efficient method for the synthesis of novel highly substituted and diversely functionalized indazolone derivatives has been developed. The transformation consists of a cyclocondensation of selected 1,3,3'-tricarbonyls with monosubstituted hydrazines. The starting β-triketones were prepared by an efficient chemo- and regioselective method under MW irradiation, exploiting the oxazolone chemistry. The reaction is easily accomplished under mild conditions and appears versatile, providing a synthetic diversification method with potential for drug-like compounds preparation.

  5. An efficient catalytic method for fulvene synthesis

    PubMed Central

    Coşkun, Necdet; Erden, Ihsan

    2011-01-01

    The effects of the nature and amount of base, substrate structure, amount of added water and solvent on the condensation of carbonyl compounds with cyclopentadiene in the presence of secondary amines were investigated. Based on these studies, a new efficient and green synthesis of fulvenes was developed. PMID:22021940

  6. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene.

    PubMed

    Zhang, Zhida; Feng, Shengyu; Zhang, Jie

    2016-02-01

    A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.

  7. Dearomatization Strategies in the Synthesis of Complex Natural Products

    PubMed Central

    Roche, Stéphane P.; Porco, John A.

    2014-01-01

    Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemo-selective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures. PMID:21506209

  8. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    NASA Astrophysics Data System (ADS)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  9. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  10. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    SciTech Connect

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  11. Efficient Biocatalytic Synthesis of Chiral Chemicals.

    PubMed

    Zhang, Zhi-Jun; Pan, Jiang; Ma, Bao-Di; Xu, Jian-He

    2016-01-01

    Chiral chemicals are a group of important chiral synthons for the synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past decades, a number of biocatalytic approaches have been developed for the green and effective synthesis of various chiral chemicals. However, the practical application of these biocatalytic processes is still hindered by the lack of highly efficient and robust biocatalysts, which usually results in the low volumetric productivity and high cost of the bioprocesses. Further step forward of biocatalysis in industrial application strongly requires the development of versatile and highly efficient biocatalysts, aiming to increase the process efficiency and facilitate the downstream processing. Recently, the fast growth of genome sequences in the database in post-genomic era offers great opportunities for accessing numerous biocatalysts with practical application potential, and the so-called genome mining approach provides time-effective and highly specific strategy for the fast identification of target enzymes with desired properties and outperforms the traditional screening of soil samples for microbial enzyme producers of interest. A number of biocatalytic processes with industrial application potential were developed thereafter. Further development of protein engineering strategies, process optimization, and cooperative work between biologists, organic chemists, and engineers is expected to make biocatalysis technology the first choice approach for the eco-friendly, highly efficient, and cost-effective synthesis of chiral chemicals in the near future.

  12. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  13. Chemoselective Alkylations with N- and C-Metalated Nitriles.

    PubMed

    Yang, Xun; Nath, Dinesh; Fleming, Fraser F

    2015-10-02

    Metalated nitriles exhibit complementary chemoselectivities in electrophilic alkylations. N-Lithiated or C-magnesiated nitriles can be prepared from the same nitrile precursor and selectively reacted with a 1:1 mixture of methyl cyanoformate and benzyl bromide or bifunctional electrophiles through chemoselective attack onto either an alkyl halide or a carbonyl electrophile. A mechanistic explanation for the chemoselectivity preferences is provided that rests on the structural and complexation differences between N- and C-metalated nitriles.

  14. Multicomponent linchpin couplings. Reaction of dithiane anions with terminal epoxides, epichlorohydrin, and vinyl epoxides: efficient, rapid, and stereocontrolled assembly of advanced fragments for complex molecule synthesis.

    PubMed

    Smith, Amos B; Pitram, Suresh M; Boldi, Armen M; Gaunt, Matthew J; Sfouggatakis, Chris; Moser, William H

    2003-11-26

    The development, application, and advantages of a one-flask multicomponent dithiane linchpin coupling protocol, over the more conventional stepwise addition of dithiane anions to electrophiles leading to the rapid, efficient, and stereocontrolled assembly of highly functionalized intermediates for complex molecule synthesis, are described. Competent electrophiles include terminal epoxides, epichlorohydrin, and vinyl epoxides. High chemoselectivity can be achieved with epichlorohydrin and vinyl epoxides. For vinyl epoxides, the steric nature of the dithiane anion is critical; sterically unencumbered dithiane anions afford S(N)2 adducts, whereas encumbered anions lead primarily to SN2' adducts. Mechanistic studies demonstrate that the SN2' process occurs via syn addition to the vinyl epoxide. Integration of the multicomponent tactic with epichlorohydrin and vinyl epoxides permits the higher-order union of four and five components.

  15. Efficient synthesis of benzamide riboside, a potential anticancer agent.

    PubMed

    Bonnac, Laurent F; Gao, Guang-Yao; Chen, Liqiang; Patterson, Steven E; Jayaram, Hiremagalur N; Pankiewicz, Krzysztof W

    2007-01-01

    An efficient five step synthesis of benzamide riboside (BR) amenable for a large scale synthesis has been developed. It allows for extensive pre-clinical studies of BR as a potential anticancer agent.

  16. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran.

    PubMed

    Duan, Zhang-Qun; Hu, Fei

    2013-01-10

    2-Methyltetrahydrofuran has recently been described as a promising and green solvent. Herein, it was successfully used as the reaction medium for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine with the aim of phosphatidylserine synthesis for the first time. Our results indicated that as high as 90% yield of phosphatidylserine could be achieved after 12 h combined with no byproduct (phosphatidic acid) forming. The present work accommodated a facilely and efficiently enzymatic strategy for preparing phosphatidylserine, which possessed obvious advantages over the reported processes in terms of high efficiency and environmental friendliness. This work is also a proof-of-concept opening the use of 2-methyltetrahydrofuran in biosynthesis as well.

  17. ZrCl4-mediated regio- and chemoselective Friedel-Crafts acylation of indole.

    PubMed

    Guchhait, Sankar K; Kashyap, Maneesh; Kamble, Harshad

    2011-06-03

    An efficient method for regio- and chemoselective Friedel-Crafts acylation of indole using acyl chlorides in the presence of ZrCl(4) has been discovered. It minimizes/eliminates common competing reactions that occur due to high and multiatom-nucleophilic character of indole. In this method, a wide range of aroyl, heteroaroyl alkenoyl, and alkanoyl chlorides undergo smooth acylation with various indoles without NH protection and afford 3-acylindoles in good to high yields.

  18. The Daphniphyllum Alkaloids: Total Synthesis of (−)-Calyciphylline N

    PubMed Central

    2016-01-01

    Presented here is a full account on the development of a strategy culminating in the first total synthesis of the architecturally complex daphniphyllum alkaloid, (−)-calyciphylline N. Highlights of the approach include a highly diastereoselective, intramolecular Diels–Alder reaction of a silicon-tethered acrylate; an efficient Stille carbonylation of a sterically encumbered vinyl triflate; a one-pot Nazarov cyclization/proto-desilylation sequence; and the chemoselective hydrogenation of a fully substituted diene ester. PMID:25756504

  19. Chemoselective aromatic azido reduction with concomitant aliphatic azide employing Al/Gd triflates/NaI and ESI-MS mechanistic studies.

    PubMed

    Kamal, Ahmed; Markandeya, Nagula; Shankaraiah, Nagula; Reddy, C Ratna; Prabhakar, S; Reddy, C Sanjeeva; Eberlin, Marcos N; Silva Santos, Leonardo

    2009-07-20

    Aluminium and gadolinium triflates catalyze the chemoselective reduction of aromatic azides to the corresponding amines in combination with sodium iodide. This mild chemoselective method has been applied to the synthesis of various aryl amines, C2-azido-substituted pyrrolo[2,1-c][1,4]benzodiazepines, and fused[2,1-b]quinazolinones by an intramolecular azido reduction tandem cyclization reaction. Interestingly, this methodology selectively reduces aryl azides with enhanced yields and proceeds in shorter reaction times than previous strategies. The mechanistic aspects have been investigated and the intermediates associated with this selective transformation have been intercepted and characterized by online monitoring of the reaction by ESI-MS.

  20. Chemoselective electrophilic oxidation of heteroatoms by hydroperoxy sultams.

    PubMed

    Gelalcha, Feyissa Gadissa; Schulze, Bärbel

    2002-11-29

    The synthesis of novel hydroperoxy sultams 1b-d and their potential as renewable chemoselective electrophilic oxidants for a wide range of nitrogen, sulfur, and phosphorus heteroatoms in nonaqueous media is described. Reactions of 1b,c with secondary amines 10f,g yielded the hydroxysultams 2b,c and nitrone 11f or radical 11g depending on the substrate and stoichiometry, while tertiary amines 10a-d gave amine oxides 11a-d. Compounds 1c,d oxidized various thioethers 12a-g to sulfoxides 13a-g smoothly that were isolated by chromatography in nearly quantitative yields. 1c was regenerated from 2c by treatment of the latter with acidified H2O2. Kinetic studies of the reaction of 1c with 1,4-thioxane 12f suggest that the reaction follows the second-order kinetics, first order in substrate and first order in oxidant with the second-order rate constant several orders of magnitude larger than that of the corresponding reaction with hydrogen peroxide and tert-butyl hydroperoxide without the need for any acid or heavy metal catalysts. The phosphines 14a,b were also oxidized by 1c to the respective phosphine oxides 15a,b readily in quantitative yields. The reactions may be conducted at ambient temperature or lower and appear to proceed via a nonradical mechanism. Reactions are sensitive to steric as well as electronic factors.

  1. Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation.

    PubMed

    Monguchi, Yasunari; Ichikawa, Tomohiro; Sajiki, Hironao

    2017-01-01

    This paper describes practical and selective hydrogenation methodologies using heterogeneous palladium catalysts. Chemoselectivity develops dependent on the catalyst activity based on the characteristic of the supports, derived from structural components, functional groups, and/or morphologies. We especially focus on our recent development of heterogeneous palladium catalysts supported on chelate resin, ceramic, and spherically shaped activated carbon. In addition, the application of flow technology for chemoselective hydrogenation using the palladium catalysts immobilized on molecular sieves 3A and boron nitride is outlined.

  2. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues.

    PubMed

    Tanimori, Shinji; Ohta, Takeshi; Kirihata, Mitsunori

    2002-04-22

    A simple and efficient synthesis of nicotinamide riboside (NAR) 1 and derivatives 4 and 5 via trimethylsilyl trifluoromethanesulfonate (TMSOTf)-mediated N-glycosilation followed by spontaneous deacetylation by treating with methanol is reported.

  3. Short and efficient synthesis of fluorinated δ-lactams.

    PubMed

    Cogswell, Thomas J; Donald, Craig S; Long, De-Liang; Marquez, Rodolfo

    2015-01-21

    The diastereoselective synthesis of fluorinated δ-lactams has been achieved through an efficient five step process. The route can tolerate a range of functionalities, and provides a quick route for the generation of new fluorinated medicinal building blocks.

  4. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  5. Chemoselective conversion of biologically sourced polyols into chiral synthons

    NASA Astrophysics Data System (ADS)

    Adduci, Laura L.; Bender, Trandon A.; Dabrowski, Jennifer A.; Gagné, Michel R.

    2015-07-01

    Crude oil currently provides much of the world's energy, but it is also the source of many feedstock chemicals. Methodology for the conversion of biomass into useful chemicals has often focused on either complete deoxygenation or the production of high-volume platform chemicals. Here, we describe the chemoselective partial reduction of silyl-protected C6O6-derived polyols to produce a diverse set of oxygen-functionalized chiral synthons. The combination of B(C6F5)3 and a tertiary silane efficiently generates a reactive equivalent of an electrophilic silylium ion (R3Si+) and a hydride (H-) reducing agent. The mechanism of oxygen loss does not involve a dehydrative elimination and thus avoids ablation of stereochemistry. Neighbouring group participation and the formation of cyclic intermediates is key to achieving selectivity in these reactions and, where both primary and secondary C-O bonds are present, the mechanism allows further control. The method provides—in one or two synthetic steps—highly improved syntheses of many C6On synthons as well as several previously undescribed products.

  6. An efficient synthesis of loline alkaloids

    NASA Astrophysics Data System (ADS)

    Cakmak, Mesut; Mayer, Peter; Trauner, Dirk

    2011-07-01

    Loline (1) is a small alkaloid that, in spite of its simple-looking structure, has posed surprising challenges to synthetic chemists. It has been known for more than a century and has been the subject of extensive biological investigations, but only two total syntheses have been achieved to date. Here, we report an asymmetric total synthesis of loline that, with less then ten steps, is remarkably short. Our synthesis incorporates a Sharpless epoxidation, a Grubbs olefin metathesis and an unprecedented transannular aminobromination, which converts an eight-membered cyclic carbamate into a bromopyrrolizidine. The synthesis is marked by a high degree of chemo- and stereoselectivity and gives access to several members of the loline alkaloid family. It delivers sufficient material to support a programme aimed at studying the complex interactions between plants, fungi, insects and bacteria brokered by loline alkaloids.

  7. 1-Azadienes as regio- and chemoselective dienophiles in aminocatalytic asymmetric Diels-Alder reaction.

    PubMed

    Ma, Chao; Gu, Jing; Teng, Bin; Zhou, Qing-Qing; Li, Rui; Chen, Ying-Chun

    2013-12-20

    Electron-deficient 1-aza-1,3-butadienes containing a 1,2-benzoisothiazole-1,1-dioxide or 1,2,3-benzoxathiazine-2,2-dioxide motif act as regio- and chemoselective dienophiles in normal-electron-demand Diels-Alder reactions with HOMO-raised trienamines, rather than typical 4π-participation in inverse-electron-demand versions. The enantioenriched cycloadducts could be efficiently converted to spiro or fused frameworks with high structural and stereogenic complexity by a sequential aza-benzoin reaction or other transformations.

  8. An Efficient Microscale Procedure for the Synthesis of Aspirin

    NASA Astrophysics Data System (ADS)

    Pandita, Sangeeta; Goyal, Samta

    1998-06-01

    The synthesis of aspirin is a part of many undergraduate organic synthesis labs and is frequently used in qualitative organic analysis laboratory for the identification of salicylic acid. We have found that aspirin can be synthesized on microscale by a simple and efficient procedure that eliminates the heating step employed in literature procedures and gives a pure, ferric-negative product (no purple color with alcoholic ferric chloride solution).

  9. Facile and efficient synthesis of isolongifolenone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient method for preparation of isolongifolenone by oxidation of isolongifolene in high yield with a short reaction time is described. Highly allylic oxidation selectivity was achieved by using tert-butyl hydroperoxide as the oxidant and chromium hexacarbonyl as the catalyst. The oxidative ...

  10. Efficient asymmetric synthesis of [7]helicene bisquinones.

    PubMed

    Carreño, M Carmen; González-López, Marcos; Urbano, Antonio

    2005-02-07

    The efficient one-pot six-step domino process which occurs when (SS)-2-(p-tolylsulfinyl)-1,4-benzoquinone (1) reacts with 3,6-divinyl-1,2,7,8-tetrahydrophenanthrenes 2a-c allowed enantioselective access to [7]helicene bisquinones 3a-c with excellent optical purities (96 to > 99% ee).

  11. Configuration Synthesis and Efficient Motion Programming of Robot Manipulators

    DTIC Science & Technology

    1991-03-15

    Efficient Motion Programming of Robot Manipulators P og DAAL 03-87-K-0041 6. AUTHOR(S) K.C. Gupta 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B...this research was to study the factors which influ- ence the design of robot arms and wrists (configuration synthesis). Another objective was to...develop efficient computational software tools for the manipulation of industrial robots . These software tools were to address the critical problems which

  12. Efficient view synthesis from uncalibrated stereo

    NASA Astrophysics Data System (ADS)

    Braspenning, Ralph; Op de Beeck, Marc

    2006-02-01

    For multiview auto-stereoscopic 3D displays, available stereo content needs to be converted to multiview content. In this paper we present a method to efficiently synthesize new views based on the two existing views from the stereo input. This method can be implemented in real-time and is also capable of handling uncalibrated stereo input. Good performance is shown compared to state-of-the-art disparity estimation algorithms and view rendering methods.

  13. Oxidative Palladium(II) Catalysis: A Highly Efficient and Chemoselective Cross-Coupling Method for Carbon-Carbon Bond Formation under Base-Free and Nitrogenous-Ligand Conditions

    PubMed Central

    Yoo, Kyung Soo; Yoon, Cheol Hwan; Jung, Kyung Woon

    2008-01-01

    We report herein the development of a general and mild protocol of oxygen promoted Pd(II) catalysis resulting in the selective cross-couplings of alkenyl- and arylboron compounds with various olefins. Unlike most cross-coupling reactions, this new methodology works well even in the absence of bases, consequently averting undesired homo-couplings. Nitrogen-based ligands including dimethyl-phenanathroline enhance reactivities and offer a highly efficient and stereoselective methodology to overcome challenging substrate limitations. For instance, oxidative palladium(II) catalysis is effective with highly substituted alkenes and cyclic alkenes, which are known to be incompatible with other known catalytic conditions. Most examined reactions progressed smoothly to completion at low temperatures and in short times. These interesting results provide mechanistic insights and utilities for a new paradigm of palladium catalytic cycles without bases. PMID:17165795

  14. PPh(3)·HBr-DMSO mediated expedient synthesis of γ-substituted β,γ-unsaturated α-ketomethylthioesters and α-bromo enals: application to the synthesis of 2-methylsulfanyl-3(2H)-furanones.

    PubMed

    Mal, Kanchan; Sharma, Abhinandan; Maulik, Prakas R; Das, Indrajit

    2014-01-13

    An efficient chemoselective general procedure for the synthesis of γ-substituted β,γ-unsaturated α-ketomethylthioesters from α,β-unsaturated ketones has been achieved through an unprecedented PPh3 ⋅HBr-DMSO mediated oxidative bromination and Kornblum oxidation sequence. The newly developed reagent system serves admirably for the synthesis of α-bromoenals from enals. Furthermore, AuCl3 -catalyzed efficient access to 3(2H)-furanones from the above intermediates under extremely mild conditions are described.

  15. Efficient synthesis of eudistomin U and evaluation of its cytotoxicity.

    PubMed

    Roggero, Chad M; Giulietti, Jennifer M; Mulcahy, Seann P

    2014-08-01

    Eudistomin U is a member of a subclass of naturally occurring indole alkaloids known as β-carbolines. These molecules are reported to have diverse biological activity and high binding affinity to DNA, which make them attractive targets for total synthesis. We describe an efficient, five-step synthesis of eudistomin U by employing two key reactions: a Bischler-Napieralski cyclization and a Suzuki cross coupling. We also describe the cytotoxicity of eudistomin U against various cancer cell lines and human pathogens, in which we observed potent antibacterial activity against Gram-positive bacteria.

  16. Hydroboration-oxidation: A chemoselective route to cellulose ω-hydroxyalkanoate esters.

    PubMed

    Meng, Xiangtao; York, Emily A; Liu, Shu; Edgar, Kevin J

    2015-11-20

    We describe the first synthesis of hydroxy-functionalized polysaccharide esters via chemoselective olefin hydroboration-oxidation in the presence of ester groups. Cellulose esters with terminally olefinic side chains were first synthesized by esterification of commercially available cellulose esters (e.g., cellulose acetate) with undec-10-enoyl chloride or pent-4-enoyl chloride. Subsequent two-step, one-pot hydroboration-oxidation reactions of the cellulose esters were performed, using 9-borabicyclo[3.3.1]nonane as hydroboration agent, followed by oxidizing the intermediate borane to a hydroxyl group using mildly alkaline H2O2. Sodium acetate was used as a weak base to catalyze the oxidation, thereby minimizing undesired ester hydrolysis. Characterization methods including FTIR, (1)H, and (13)C NMR proved the selectivity of the hydroboration-oxidation pathway, providing a family of novel cellulose ω-hydroxyalkanoyl esters that were previously difficult to access.

  17. Transition-metal-free Chemoselective Oxidative C-C Coupling of the sp(3) C-H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3-Aryl Oxindoles, and Benzofuro- and Indoloindoles.

    PubMed

    Sattar, Moh; Rathore, Vandana; Prasad, Ch Durga; Kumar, Sangit

    2017-04-04

    A transition-metal (TM)-free and halogen-free NaOtBu-mediated oxidative cross-coupling between the sp(3) C-H bond of oxindoles and sp(2) C-H bond of nitroarenes has been developed to access 3-aryl substituted and 3,3-aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp(3) C-H bond of oxindoles could also react with styrene under TM-free conditions for the practical synthesis of quaternary 3,3-disubstituted oxindoles. The synthesized 3-oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp(3) C-H bond of oxindole by tert-butoxide base in DMSO. The addition of nitrobenzene to the in-situ generated carbanion leads to the 3-(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3-(nitro-aryl) oxindole by DMSO.

  18. An efficient and sustainable synthesis of NHC gold complexes.

    PubMed

    Johnson, Alice; Gimeno, M Concepción

    2016-08-11

    A simple, efficient and sustainable method for the general synthesis of NHC gold(i) complexes is described. The reaction of imidazolium salts, of different electronic and steric requirements, with [AuX(tht)] (tht = tetrahydrothiophene) derivatives, in the presence of NBu4(acac), in air and at room temperature leads to the NHC gold species in good yields and with very short reaction times.

  19. Efficient chemoenzymatic synthesis of sialyl Tn-antigen and derivatives†

    PubMed Central

    Ding, Li; Yu, Hai; Lau, Kam; Li, Yanhong; Muthana, Saddam; Wang, Junru; Chen, Xi

    2011-01-01

    An N-terminal and C-terminal truncated recombinant α2–6-sialyltransferase cloned from Photobacterium sp. JH-ISH-224, Psp2,6ST(15–501)-His6, was shown to be an efficient catalyst for one-pot three-enzyme synthesis of sialyl Tn (STn) antigens and derivatives containing natural and non-natural sialic acid forms. PMID:21725542

  20. Chemoselective Intramolecular Carbonyl Ylide Formation through Electronically Differentiated Malonate Diesters.

    PubMed

    Nakhla, Mina C; Lee, Che-Wah; Wood, John L

    2015-12-04

    A method for chemoselective carbonyl ylide formation utilizing the Rh(II) catalyzed decomposition of electronically differentiated diazo malonates is disclosed. Treatment of ethyl, trifluoro ethyl diazo malonate with a Rh(II) catalyst selectively forms a carbonyl ylide from the relatively electron rich ethyl ester. This carbonyl ylide can be trapped by various alkynes giving highly functionalized oxabicyclic compounds in a chemo-, regio-, and diastereoselective fashion.

  1. Synthesis of antifungal glucan synthase inhibitors from enfumafungin.

    PubMed

    Zhong, Yong-Li; Gauthier, Donald R; Shi, Yao-Jun; McLaughlin, Mark; Chung, John Y L; Dagneau, Philippe; Marcune, Benjamin; Krska, Shane W; Ball, Richard G; Reamer, Robert A; Yasuda, Nobuyoshi

    2012-04-06

    An efficient, new, and scalable semisynthesis of glucan synthase inhibitors 1 and 2 from the fermentation product enfumafungin 3 is described. The highlights of the synthesis include a high-yielding ether bond-forming reaction between a bulky sulfamidate 17 and alcohol 4 and a remarkably chemoselective, improved palladium(II)-mediated Corey-Yu allylic oxidation at the highly congested C-12 position of the enfumafungin core. Multi-hundred gram quantities of the target drug candidates 1 and 2 were prepared, in 12 linear steps with 25% isolated yield and 13 linear steps with 22% isolated yield, respectively.

  2. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Ding, Lin; Yang, Min; Ju, Huangxian

    2015-06-01

    To elucidate the biological and pathological functions of sialyltransferases (STs), intracellular ST activity evaluation is necessary. Focusing on the lack of noninvasive methods for obtaining the dynamic activity information, this work designs a sensing platform for in situ FRET imaging of intracellular ST activity and tracing of sialylation process. The system uses tetramethylrhodamine isothiocyanate labeled asialofetuin (TRITC-AF) as a ST substrate and fluorescein isothiocyanate labeled 3-aminophenylboronic acid (FITC-APBA) as the chemoselective recognition probe of sialylation product, both of which are encapsulated in a liposome vesicle for cellular delivery. The recognition of FITC-APBA to sialylated TRITC-AF leads to the FRET signal that is analyzed by FRET efficiency images. This strategy has been used to evaluate the correlation of ST activity with malignancy and cell surface sialylation, and the sialylation inhibition activity of inhibitors. This work provides a powerful noninvasive tool for glycan biosynthesis mechanism research, cancer diagnostics and drug development.

  3. Highly Chemoselective Iridium Photoredox and Nickel Catalysis for the Cross-Coupling of Primary Aryl Amines with Aryl Halides.

    PubMed

    Oderinde, Martins S; Jones, Natalie H; Juneau, Antoine; Frenette, Mathieu; Aquila, Brian; Tentarelli, Sharon; Robbins, Daniel W; Johannes, Jeffrey W

    2016-10-10

    A visible-light-promoted iridium photoredox and nickel dual-catalyzed cross-coupling procedure for the formation C-N bonds has been developed. With this method, various aryl amines were chemoselectively cross-coupled with electronically and sterically diverse aryl iodides and bromides to forge the corresponding C-N bonds, which are of high interest to the pharmaceutical industries. Aryl iodides were found to be a more efficient electrophilic coupling partner. The coupling reactions were carried out at room temperature without the rigorous exclusion of molecular oxygen, thus making this newly developed Ir-photoredox/Ni dual-catalyzed procedure very mild and operationally simple.

  4. High Efficient Synthesis of Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    We have performed systematic investigations aimed at high efficient synthesis of the 1111 family iron-based superconductors. By using meta-stable reactive starting materials of LnAs and FeO, assisted by mechanical alloying and fast heating, high purity samples with Tconset greater than 50K can be made with sintering temperatures between 1433K-1073K, and sintering time from 20 min to 40 h. High purity phase with sintering temperature as low as 973K was demonstrated successfully although Tconset fall below 50K and weak grain boundary suppressed greatly the zero resistance temperature. Ultra fast microwave sintering brings the sintering time further down to 5 min. Samples prepared by the above high efficient methods typically posses submicron grain and very high upper critical field, indicating very high pinning power. Besides offering cost advantages, the developed methods may play important roles in the exploit of novel superconductors.

  5. Carboxy-directed asymmetric hydrogenation of α-alkyl-α-aryl terminal olefins: highly enantioselective and chemoselective access to a chiral benzylmethyl center.

    PubMed

    Yang, Shuang; Zhu, Shou-Fei; Guo, Na; Song, Song; Zhou, Qi-Lin

    2014-04-07

    A carboxy-directed asymmetric hydrogenation of α-alkyl-α-aryl terminal olefins was developed by using a chiral spiro iridium catalyst, providing a highly efficient approach to the compounds with a chiral benzylmethyl center. The carboxy-directed hydrogenation prohibited the isomerization of the terminal olefins, and realized the chemoselective hydrogenation of various dienes. The concise enantioselective syntheses of (S)-curcudiol and (S)-curcumene were achieved by using this catalytic asymmetric hydrogenation as a key step.

  6. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy.

    PubMed

    Pohling, Christoph; Buckup, Tiago; Pagenstecher, Axel; Motzkus, Marcus

    2011-08-01

    The fast and reliable characterization of pathological tissue is a debated topic in the application of vibrational spectroscopy in medicine. In the present work we apply multiplex coherent anti-Stokes Raman scattering (MCARS) to the investigation of fresh mouse brain tissue. The combination of imaginary part extraction followed by principal component analysis led to color contrast between grey and white matter as well as layers of granule and Purkinje cells. Additional quantitative information was obtained by using a decomposition algorithm. The results perfectly agree with HE stained references slides prepared separately making multiplex CARS an ideal approach for chemoselective imaging.

  7. Engineering the elongation factor Tu for efficient selenoprotein synthesis.

    PubMed

    Haruna, Ken-ichi; Alkazemi, Muhammad H; Liu, Yuchen; Söll, Dieter; Englert, Markus

    2014-09-01

    Selenocysteine (Sec) is naturally co-translationally incorporated into proteins by recoding the UGA opal codon with a specialized elongation factor (SelB in bacteria) and an RNA structural signal (SECIS element). We have recently developed a SECIS-free selenoprotein synthesis system that site-specifically--using the UAG amber codon--inserts Sec depending on the elongation factor Tu (EF-Tu). Here, we describe the engineering of EF-Tu for improved selenoprotein synthesis. A Sec-specific selection system was established by expression of human protein O(6)-alkylguanine-DNA alkyltransferase (hAGT), in which the active site cysteine codon has been replaced by the UAG amber codon. The formed hAGT selenoprotein repairs the DNA damage caused by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine, and thereby enables Escherichia coli to grow in the presence of this mutagen. An EF-Tu library was created in which codons specifying the amino acid binding pocket were randomized. Selection was carried out for enhanced Sec incorporation into hAGT; the resulting EF-Tu variants contained highly conserved amino acid changes within members of the library. The improved UTu-system with EF-Sel1 raises the efficiency of UAG-specific Sec incorporation to >90%, and also doubles the yield of selenoprotein production.

  8. Framework for efficient synthesis of spatially embedded morphologies

    NASA Astrophysics Data System (ADS)

    Vanherpe, Liesbeth; Kanari, Lida; Atenekeng, Guy; Palacios, Juan; Shillcock, Julian

    2016-08-01

    Many problems in science and engineering require the ability to grow tubular or polymeric structures up to large volume fractions within a bounded region of three-dimensional space. Examples range from the construction of fibrous materials and biological cells such as neurons, to the creation of initial configurations for molecular simulations. A common feature of these problems is the need for the growing structures to wind throughout space without intersecting. At any time, the growth of a morphology depends on the current state of all the others, as well as the environment it is growing in, which makes the problem computationally intensive. Neuron synthesis has the additional constraint that the morphologies should reliably resemble biological cells, which possess nonlocal structural correlations, exhibit high packing fractions, and whose growth responds to anatomical boundaries in the synthesis volume. We present a spatial framework for simultaneous growth of an arbitrary number of nonintersecting morphologies that presents the growing structures with information on anisotropic and inhomogeneous properties of the space. The framework is computationally efficient because intersection detection is linear in the mass of growing elements up to high volume fractions and versatile because it provides functionality for environmental growth cues to be accessed by the growing morphologies. We demonstrate the framework by growing morphologies of various complexity.

  9. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  10. Enantioselective palladium-catalyzed dearomative cyclization for the efficient synthesis of terpenes and steroids.

    PubMed

    Du, Kang; Guo, Pan; Chen, Yuan; Cao, Zhen; Wang, Zheng; Tang, Wenjun

    2015-03-02

    A novel enantioselective palladium-catalyzed dearomative cyclization has been developed for the efficient construction of a series of chiral phenanthrenone derivatives bearing an all-carbon quaternary center. The effectiveness of this method in the synthesis of terpenes and steroids was demonstrated by a highly efficient synthesis of a kaurene intermediate, the facile construction of the skeleton of the anabolic steroid boldenone, and the enantioselective total synthesis of the antimicrobial diterpene natural product (-)-totaradiol.

  11. Chemoselective reduction and oxidation of ketones in water through control of the electron transfer pathway

    PubMed Central

    Kim, Sun Min; Yoo, Ho Sung; Hosono, Hideo; Yang, Jung Woon; Kim, Sung Wng

    2015-01-01

    The selective synthesis of different products from the same starting materials in water, which is the most abundant solvent in nature, is a crucial issue as it maximizes the utilization of materials. Realizing such reactions for ketones is of considerable importance because numerous organic functionalities can be obtained via nucleophilic addition reactions. Herein, we report chemoselective reduction and oxidation reactions of 1,2-diketones in water, which initiates anionic electron transfer from the inorganic electride [Ca24Al28O64]4+·4e−, through controlling the pathway of the electrons to substrates. The generation of different radical species for transient intermediates was the key process required to control the reaction selectivity, which was achieved by reacting the anionic electrons with either diketones or O2, leading to the formation of ketyl dianion and superoxide radicals in the reduction and oxidation reactions, respectively. This methodology that utilizes electrides may provide an alternative to the pulse radiolysis of water in synthetic chemistry. PMID:26020413

  12. Harnessing chemoselective imine ligation for tethering bioactive molecules to platinum(IV) prodrugs.

    PubMed

    Wong, Daniel Yuan Qiang; Lau, Jia Yi; Ang, Wee Han

    2012-05-28

    Platinum(II) anticancer drugs are among the most effective and often used chemotherapeutic drugs. In recent years, there has been increasing interest in exploiting inert platinum(IV) scaffolds as a prodrug strategy to mitigate the limitations of platinum(II) anticancer complexes. In this prodrug strategy, the axial ligands are released concomitantly upon intracellular reduction to the active platinum(II) congener, offering the possibility of conjugating bioactive co-drugs which may synergistically enhance cytotoxicity on cancer cells. Existing techniques of tethering bioactive molecules to the axial positions of platinum(IV) prodrugs suffer from limited scope, poor yields and low reliability. This report explores the applications of current chemoselective ligation chemistries to platinum(IV) anticancer complexes with the aim of addressing the aforementioned limitations. Here, we describe the synthesis of a platinum(IV) complex bearing an aromatic aldehyde functionality and explored the scope of imine ligation with various hydrazide and aminooxy functionalized substrates. As a proof of concept, we tethered a six sequence long peptide mimetic (AMVSEF) of the anti-inflammatory protein, ANXA1.

  13. Sialidase specificity determined by chemoselective modification of complex sialylated glycans.

    PubMed

    Parker, Randy B; McCombs, Janet E; Kohler, Jennifer J

    2012-09-21

    Sialidases hydrolytically remove sialic acids from sialylated glycoproteins and glycolipids. Sialidases are widely distributed in nature and sialidase-mediated desialylation is implicated in normal and pathological processes. However, mechanisms by which sialidases exert their biological effects remain obscure, in part because sialidase substrate preferences are poorly defined. Here we report the design and implementation of a sialidase substrate specificity assay based on chemoselective labeling of sialosides. We show that this assay identifies components of glycosylated substrates that contribute to sialidase specificity. We demonstrate that specificity of sialidases can depend on structure of the underlying glycan, a characteristic difficult to discern using typical sialidase assays. Moreover, we discovered that Streptococcus pneumoniae sialidase NanC strongly prefers sialosides containing the Neu5Ac form of sialic acid versus those that contain Neu5Gc. We propose using this approach to evaluate sialidase preferences for diverse potential substrates.

  14. Gold-catalyzed oxidative ring expansion of 2-alkynyl-1,2-dihydropyridines or -quinolines: highly efficient synthesis of functionalized azepine or benzazepine scaffolds.

    PubMed

    Chen, Ming; Chen, Yifeng; Sun, Ning; Zhao, Jidong; Liu, Yuanhong; Li, Yuxue

    2015-01-19

    A gold-catalyzed highly regio- and chemoselective oxidative ring expansion of 2-alkynyl-1,2-dihydropyridines and its analogues using pyridine-N-oxide as the oxidant has been developed. Ring expansion proceeds through exclusive 1,2-migration of a vinyl or phenyl group, whereas no 1,2-H and 1,2-N migration take place. The reaction provides an efficient and attractive route to various types of medium-sized azepine derivatives in generally high to excellent yields with a broad functional group tolerance. DFT studies indicate that the reaction proceeds through the formation of a cyclopropyl gold intermediate, and no gold carbene species is involved.

  15. Vinyluridine as a Versatile Chemoselective Handle for the Posttranscriptional Chemical Functionalization of RNA.

    PubMed

    George, Jerrin Thomas; Srivatsan, Seergazhi G

    2017-04-13

    Development of modular and efficient methods to functionalize RNA with biophysical probes is very important to advance the understanding of the structural and functional relevance of RNA in various cellular events. Herein we demonstrate a two-step bioorthogonal chemical functionalization approach for the conjugation of multiple probes onto RNA transcripts using a 5-vinyl-modified uridine nucleotide analog (VUTP). VUTP, containing a structurally non-invasive and versatile chemoselective handle, was efficiently incorporated into RNA transcripts by in vitro transcription reactions. Further, we show for the first time the use of a palladium-mediated oxidative Heck reaction in functionalizing RNA with fluorogenic probes by reacting vinyl-labeled RNA transcripts with appropriate boronic acid substrates. The vinyl label also permitted the posttranscriptional functionalization of RNA by a reagent-free inverse electron demand Diels-Alder (IEDDA) reaction in the presence of tetrazine substrates. Collectively, our results demonstrate that the incorporation of VUTP provides newer possibilities for the modular functionalization of RNA with variety of reporters.

  16. Cyclic sulfamidates as lactam precursors. An efficient asymmetric synthesis of (-)-aphanorphine.

    PubMed

    Bower, John F; Szeto, Peter; Gallagher, Timothy

    2005-12-14

    A short and efficient enantioselective synthesis of (-)-aphanorphine is described based on the use of a cyclic sulfamidate to provide a suitably functionalised lactam that allows for construction of the tricyclic 3-benzazepine scaffold.

  17. A new and efficient procedure for the synthesis of hexahydropyrimidine-fused 1,4-naphthoquinones

    PubMed Central

    Reis, Marcelo Isidoro P; Campos, Vinícius R; Resende, Jackson A L C; Silva, Fernando C

    2015-01-01

    Summary A new and efficient method for the synthesis of hexahydropyrimidine-fused 1,4-naphthoquinones in one step with high yields from the reaction of lawsone with 1,3,5-triazinanes was developed. PMID:26425181

  18. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.

    PubMed

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej

    2009-10-21

    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  19. Iridium-Catalysed ortho-Directed Deuterium Labelling of Aromatic Esters--An Experimental and Theoretical Study on Directing Group Chemoselectivity.

    PubMed

    Devlin, Jennifer; Kerr, William J; Lindsay, David M; McCabe, Timothy J D; Reid, Marc; Tuttle, Tell

    2015-06-25

    Herein we report a combined experimental and theoretical study on the deuterium labelling of benzoate ester derivatives, utilizing our developed iridium N-heterocyclic carbene/phosphine catalysts. A range of benzoate esters were screened, including derivatives with electron-donating and -withdrawing groups in the para- position. The substrate scope, in terms of the alkoxy group, was studied and the nature of the catalyst counter-ion was shown to have a profound effect on the efficiency of isotope exchange. Finally, the observed chemoselectivity was rationalized by rate studies and theoretical calculations, and this insight was applied to the selective labelling of benzoate esters bearing a second directing group.

  20. [Efficient synthesis of multisubstituted aromatic compounds from phenol derivatives].

    PubMed

    Ikawa, Takashi

    2014-01-01

    Phenols are abundant in nature and diverse phenols are readily available commercially at low cost. Thus, phenols can be used as the raw materials for the synthesis of valuable multisubstituted aromatic compounds by the direct activation of phenolic hydroxyl groups (C-O bond activation), followed by substitutions with other substituents. Although the derivatization of phenolic hydroxyl groups to sulfonates, such as triflates, nonaflates, tosylates and mesylates, followed by the transition-metal-catalyzed coupling reactions has been extensively investigated for this purpose, the direct C-O bond activation of phenols for subsequent functional group transformation has been a long-standing challenge in modern organic synthesis. In this review, I have summarized my recent studies on the formal direct C-O bond activation of phenols using nonafluorobutanesulfonyl fluoride (NfF) for the synthesis of multisubstituted aromatics. I have focused on the dual use of NfF, a less expensive commercially available reagent, including the tentative formation of highly reactive nonaflates from phenols and the use of the liberated fluoride ion as a nucleophile to promote the reactions of nonaflates. The following four topics are discussed: 1) palladium-catalyzed coupling reactions of phenols, 2) novel preparation of benzynes from 2-silylphenols, 3) synthesis of fluorinated aromatic compounds via the formation of benzynes, and 4) Hiyama coupling of (tert-butyldimethylsilyl)arenes activated by internal phenolic hydroxyl groups.

  1. Stereocontrolled access to orthogonally protected anti,anti-4-aminopiperidine-3,5-diols through chemoselective reduction of enantiopure beta-lactam cyanohydrins.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Cabrero, Gema; Ruiz, M Pilar

    2007-10-12

    The cyanosilylation of enantiopure 4-oxoazetidine-2-carbaldehydes with tert-butyldimethylsilyl cyanide was promoted by either molecular sieves or catalytic amount of sodium carbonate to give O-silylated beta-lactam cyanohydrins with good yield and diastereoselectivity. In contrast, Lewis acids did not effectively promote the cyanosilylation under different experimental conditions, and instead hydrocyanation took place affording the corresponding free cyanohydrins in variable yield and selectivity. Starting from beta-lactam cyanohydrin hybrids, two concise, complementary stereocontrolled routes to optically pure orthogonally protected anti,anti-4-amino-3,5-piperidine diols were achieved. Key features of the first approach include chemoselective reductive opening of the beta-lactam ring with LiBH4 to a 3-amino-5-hydroxy pentanenitrile followed by reductive cyclization of a conveniently functionalized cyanomesylate derivative with NaBH4/NiCl2. The second approach involves LiAlH4 reduction of protected anti,anti-4-amino-3,5-dihydroxypiperidin-2-ones, which were easily obtained by chemoselective reduction of the cyano group in the beta-lactam cyanohydrin hybrids with NaBH4/NiCl2 and subsequent intramolecular rearrangement of the resulting amino beta-lactams. Both routes make use of an oxidative N-dearylation with diacetoxyiodobenzene of a 4-methoxyphenylamino group as a common synthetic step. Specifically, the utility of this novel reaction sequence has been demonstrated by the synthesis of fully orthogonally protected sialidase inhibitors.

  2. A Novel Implementation of Efficient Algorithms for Quantum Circuit Synthesis

    NASA Astrophysics Data System (ADS)

    Zeller, Luke

    In this project, we design and develop a computer program to effectively approximate arbitrary quantum gates using the discrete set of Clifford Gates together with the T gate (π/8 gate). Employing recent results from Mosca et. al. and Giles and Selinger, we implement a decomposition scheme that outputs a sequence of Clifford, T, and Tt gates that approximate the input to within a specified error range ɛ. Specifically, the given gate is first rounded to an element of Z[1/2, i] with a precision determined by ɛ, and then exact synthesis is employed to produce the resulting gate. It is known that this procedure is optimal in approximating an arbitrary single qubit gate. Our program, written in Matlab and Python, can complete both approximate and exact synthesis of qubits. It can be used to assist in the experimental implementation of an arbitrary fault-tolerant single qubit gate, for which direct implementation isn't feasible.

  3. Efficient synthesis of deuterium labeled hydroxyzine and aripiprazole.

    PubMed

    Vohra, Mohit; Sandbhor, Mahendra; Wozniak, Andrew

    2015-06-15

    Hydroxyzine and aripiprazole are active pharmaceutical ingredients that have been largely acknowledged for their antipsychotic properties. Deuterium labeled isotopes of hydroxyzine and aripiprazole are internal standards that can aid in the further research of non-isotopic forms via quantification analysis using HPLC-MS/MS. The synthesis of hydroxyzine-d8 was accomplished by coupling piperazine-d8 with 4-chlorobenzhydryl chloride followed by the reaction of the first intermediate with 2-(2-chloroethoxy) ethanol to afford 11.7% of hydroxyzine-d8 with 99.5% purity. The synthesis of aripiprazole-d8 was also achieved in two steps. 1,4-Dibromobutane-d8 reacted with 7-hydroxy-3,4-dihydro-2(1H)-quinolinone. The first intermediate was then coupled with 1-(2, 3-dichlorophenyl)piperazine hydrochloride to produce 33.4% of aripiprazole-d8 with 99.93% purity.

  4. Efficient enantio- and diastereodivergent synthesis of poison-frog alkaloids 251O and trans-223B.

    PubMed

    Toyooka, Naoki; Zhou, Dejun; Nemoto, Hideo; Tezuka, Yasuhiro; Kadota, Shigetoshi; Andriamaharavo, Nirina R; Garraffo, H Martin; Spande, Thomas F; Daly, John W

    2009-09-04

    An efficient and flexible synthesis of poison-frog alkaloids 251O and trans-223B has been achieved by using for both alkaloids an enantiodivergent process starting from the common lactam 1. The relative stereochemistry of 251O and trans-223B was determined to be 7 (R = n-C(7)H(15), R' = n-Pr) and 14 by the present enantioselective synthesis.

  5. Knowledge Based Synthesis of Efficient Structures for Concurrent Computation Using Fat-Trees and Pipelining.

    DTIC Science & Technology

    1986-12-31

    based on the proof is feasible. KES.U.86.11 AFO -Th, 87-0 791 Kestrel Institute Knowledge Based Synthesis of Efficient Structures for Concurrent...manner similar to an assembly line. The proof is a constructive one; a synthesis method based on the proof is feasible. 2 Chapter 2 Introduction This...These techniques are based on the use of closures as a device to schedule commu- nication, resulting from divide and conquer, between halves of a tree

  6. Efficient ytterbium triflate catalyzed microwave-assisted synthesis of 3-acylacrylic acid building blocks.

    PubMed

    Tolstoluzhsky, Nikita V; Gorobets, Nikolay Yu; Kolos, Nadezhda N; Desenko, Sergey M

    2008-01-01

    The derivatives of 4-(hetero)aryl-4-oxobut-2-enoic acid are useful as building blocks in the synthesis of biologically active compounds. An efficient general protocol for the synthesis of these building blocks was developed. This method combines microwave assistance and ytterbium triflate catalyst and allows the fast preparation of the target acids starting from different (hetero)aromatic ketones and glyoxylic acid monohydrate giving pure products in 52-75% isolated yields.

  7. An Efficient Synthesis of Dicycloalkylacetylenes: 1,2-Dicyclopropylethyne and (cyclopropylethynyl)cyclobutane (Preprint)

    DTIC Science & Technology

    2008-11-05

    difference in reactivity between triflate and bromide groups in the SN2 reaction with ω- bromoalkyl triflates led Chong et al. to synthesize...Page 3 of 14 chloroalkylalkynes. Taking advantage of chemoselectivity between the tosylate and chloro group in the SN2 reaction , ω-chloroalkyl...tetrabutylammonium iodide (Bu4I) in catalytic amounts (10 mol %) had a spectacular effect on the reaction of lithium acetylides with primary halides (X = Br or Cl

  8. Evolution of an Efficient and Scalable Nine-Step (LLS) Synthesis of Zincophorin Methyl Ester.

    PubMed

    Chen, Liang-An; Ashley, Melissa A; Leighton, James L

    2017-03-07

    Due both to their synthetically challenging and stereochemically complex structures and their wide range of often clinically relevant biological activities, non-aromatic polyketide natural products have for decades attracted an enormous amount of attention from synthetic chemists and played an important role in the development of modern asymmetric synthesis. Often, such compounds are not available in quantity from natural sources, rendering analog synthesis and drug development efforts extremely resource-intensive and time-consuming. In this arena, the quest for ever more step-economical and efficient methods and strategies - useful and important goals in their own right - takes on added importance and the most useful syntheses will combine high levels of step-economy with efficiency and scalability. The non-aromatic polyketide natural product zincophorin methyl ester has attracted significant attention from synthetic chemists due primarily to the historically synthetically challenging C(8)-C(12) all-anti stere-opentad. While great progress has been made in the development of new methodologies to more directly address this problem and as a result in the development of more highly step-economical syntheses, a synthesis that combines high levels of step economy with high levels of efficiency and scalability has remained elusive. To address this problem, we have devised a new synthesis of zincophorin methyl ester that proceeds in just nine steps in the longest linear sequence and proceeds in 10% overall yield. Addition-ally, the scalability and practicability of the route have been demonstrated by performing all of the steps on a meaningful scale. This synthesis thus represents by a significant margin the most step-economical, efficient, and practicable synthesis of this stereochemi-cally complex natural product reported to date, and is well suited to facilitate the synthesis of analogs and medicinal chemistry de-velopment efforts in a time- and resource-efficient

  9. Chemoselective C-benzylation of unprotected anilines with benzyl alcohols using Re2O7 catalyst.

    PubMed

    Nallagonda, Rajender; Rehan, Mohammad; Ghorai, Prasanta

    2014-04-04

    An unprecedented dehydrative C-C bond formation between unprotected anilines with benzyl alcohols is disclosed. Re2O7 catalyst (5 mol %) at elevated reaction temperature (80 °C) provided C-benzylanilines with high to excellent yields and with good chemoselectivities (over N-alkylation). A probable mechanism has been proposed based on mechanistic studies.

  10. An efficient one-pot four-segment condensation method for protein chemical synthesis.

    PubMed

    Tang, Shan; Si, Yan-Yan; Wang, Zhi-Peng; Mei, Kun-Rong; Chen, Xin; Cheng, Jing-Yuan; Zheng, Ji-Shen; Liu, Lei

    2015-05-04

    Successive peptide ligation using a one-pot method can improve the efficiency of protein chemical synthesis. Although one-pot three-segment ligation has enjoyed widespread application, a robust method for one-pot four-segment ligation had to date remained undeveloped. Herein we report a new one-pot multisegment peptide ligation method that can be used to condense up to four segments with operational simplicity and high efficiency. Its practicality is demonstrated by the one-pot four-segment synthesis of a plant protein, crambin, and a human chemokine, hCCL21.

  11. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  12. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  13. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  14. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate.

    PubMed

    Bernal, Claudia; Illanes, Andres; Wilson, Lorena

    2015-04-15

    Sugar esters are considered as surfactants due to its amphiphilic balance that can lower the surface tension in oil/water mixtures. Enzymatic syntheses of these compounds are interesting both from economic and environmental considerations. A study was carried out to evaluate the effect of four solvents, temperature, substrate molar ratio, biocatalyst source, and immobilization methodology on the yield and specific productivity of lactulose palmitate monoester synthesis. Lipases from Pseudomonas stutzeri (PsL) and Alcaligenes sp. (AsL), immobilized in porous silica functionalized with octyl groups (adsorption immobilization, OS) and with glyoxyl-octyl groups (both adsorption and covalent immobilization, OGS), were used. The highest lactulose palmitate yields were obtained at 47 °C in acetone, for all biocatalysts, while the best lactulose:palmitic acid molar ratio differed according to the immobilization methodology, being 1:1 for AsL-OGS biocatalyst (20.7 ± 3%) and 1:3 for the others (30-50%).

  15. Rapid and efficient synthesis of α(1-2)mannobiosides.

    PubMed

    Reina, José J; Di Maio, Antonio; Ramos-Soriano, Javier; Figueiredo, Rute C; Rojo, Javier

    2016-03-14

    α(1,2)mannobiosides with different substituents at the reducing end have been synthesized by a common strategy using benzoyls as the permanent protecting groups and an acetyl as the orthogonal protecting group at position C2 of the glycosyl acceptor. The new synthetic strategy has been performed remarkably reducing the number of purification steps, the time of synthesis (less than 72 hours) and improving the overall yield at least three times with respect to the best procedure described in the literature at the moment. Additionally, this protecting group strategy is compatible with the presence of azido groups and the use of Cu catalyzed azide alkyne cycloaddition (CuAAC) also called "click chemistry" for conjugating the α(1-2)mannobiosides to different scaffolds for the preparation of mannosyl multivalent systems.

  16. Dihydroxylation of 2-vinylaziridine: efficient synthesis of D-ribo-phytosphingosine.

    PubMed

    Yoon, Hyo Jae; Kim, Yong-Woo; Lee, Baeck Kyoung; Lee, Won Koo; Kim, Yongeun; Ha, Hyun-Joon

    2007-01-07

    An efficient and highly stereoselective synthesis of D-ribo-(2S,3S,4R)-phytosphingosine was accomplished in 62% overall yield starting from commercially available (2S)-hydroxymethylaziridine via osmium-catalyzed asymmetric dihydroxylation as a key step.

  17. ACCESS-2: Approximation Concepts Code for Efficient Structural Synthesis, user's guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1978-01-01

    A user's guide is presented for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure.

  18. An efficient and general enantioselective synthesis of sphingosine, phythosphingosine, and 4-substituted derivatives.

    PubMed

    Llaveria, Josep; Díaz, Yolanda; Matheu, M Isabel; Castillón, Sergio

    2009-01-01

    A general and efficient protocol for the enantioselective synthesis of sphingosine, phythosphingosine, and 4-substituted derivatives was established. These compounds were obtained from a common intermediate prepared from butadiene monoepoxide by a synthetic sequence involving enantioselective allylic substitution, cross-metathesis, and dihydroxylation.

  19. Novel and Efficient Synthesis of the Promising Drug Candidate Discodermolide

    DTIC Science & Technology

    2010-02-01

    preparation of the chiral allylic alcohol starting material 12. In the new two-step preparation of 12 (Scheme 6), we avoid the need to prepare a...CH3 OH 12 H2 5% Pd/CaCO3 Pb, quinoline cyclohexane Rather, a chiral propynylzinc reagent is prepared under neutral conditions. Then, a subsequent...that chiral syn, anti stereotriad building blocks may be efficiently accessed from inexpensive starting materials by elaborating a chiral allylic

  20. An efficient prebiotic synthesis of cytosine and uracil

    NASA Technical Reports Server (NTRS)

    Robertson, M. P.; Miller, S. L.

    1995-01-01

    In contrast to the purines, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyanoacetylene and cyanate; the former precursor is produced from a spark discharge in a CH4/N2 mixture and is an abundant interstellar molecule. But this reaction requires relatively high concentrations of cyanate (> 0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine. Here we show that in concentrated urea solution--such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth--cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world.

  1. A facile and chemoselective conjugate reduction using polymethylhydrosiloxane (PMHS) and catalytic B(C6F5)3.

    PubMed

    Chandrasekhar, Srivari; Chandrashekar, Gudise; Reddy, Marepally Srinivasa; Srihari, Pabbaraja

    2006-05-07

    A highly chemoselective conjugate reduction of electron-deficient Michael acceptors, including alpha,beta-unsaturated ketones, carboxylic esters, nitriles and nitro compounds with PMHS in the presence of catalytic B(C6F5)3 is described.

  2. Origin of chemoselectivity in N-heterocyclic carbene catalyzed cross-benzoin reactions: DFT and experimental insights.

    PubMed

    Langdon, Steven M; Legault, Claude Y; Gravel, Michel

    2015-04-03

    An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

  3. An Efficient, Optimized Synthesis of Fentanyl and Related Analogs

    PubMed Central

    Valdez, Carlos A.; Leif, Roald N.; Mayer, Brian P.

    2014-01-01

    The alternate and optimized syntheses of the parent opioid fentanyl and its analogs are described. The routes presented exhibit high-yielding transformations leading to these powerful analgesics after optimization studies were carried out for each synthetic step. The general three-step strategy produced a panel of four fentanyls in excellent yields (73–78%) along with their more commonly encountered hydrochloride and citric acid salts. The following strategy offers the opportunity for the gram-scale, efficient production of this interesting class of opioid alkaloids. PMID:25233364

  4. Energetic efficiency of milk synthesis in dual-purpose cows grazing tropical pastures.

    PubMed

    Aguilar-Pérez, Carlos Fernando; Ku-Vera, Juan Carlos; Magaña-Monforte, Juan Gabriel

    2011-04-01

    The aim of this study was to assess the energetic efficiency of milk synthesis by grazing dual-purpose cows with or without a starch-based supplement in tropical South Mexico. Forty-six Holstein × Zebu cows were used in a 2 × 2 × 2 factorial design. Factors analysed were diet (supplemented, unsupplemented), age (young: 1-2 calvings, mature: >3 calvings) and day of lactation (21 and 84 days post-calving). The supplement represented about 30% of estimated dry matter (DM) intake. Grass intake was measured using the n-alkane technique at 21 and 84 days post-calving when calculations of efficiency were performed. Efficiency for milk synthesis was reported as feed conversion efficiency (FCE, kilograms of milk per kilogram of DM intake), gross energetic efficiency (GEE, milk energy output/metabolisable energy (ME) intake) and efficiency of ME use for lactation (k(l), adjusted to zero energy balance). There were no interactions between factors. FCE and GEE were not different between diets, but supplemented cows had a lower (p < 0.01) k(l) value (0.62) than unsupplemented cows (0.67), suggesting a diverted partition of nutrients towards body tissue. Mature cows were more efficient (p < 0.001) than young cows in terms of FCE (1.13 vs 0.87) and GEE (0.34 vs 0.26), but equal in terms of k(l) (0.65). FCE (1.10 vs 0.90) and GEE (0.34 vs 0.27) were both higher on day 21 compared with day 84 post-calving, with a trend for a higher k(l) in early lactation. Dual-purpose cows used tropical grasses efficiently for milk synthesis, and higher milk yield observed in supplemented cows was due to a higher intake of nutrients rather than a higher energetic efficiency.

  5. Synthesis of energy-efficient counters implemented in PLD circuits

    NASA Astrophysics Data System (ADS)

    Kulisz, Józef; Nawrot, Radosław; Kania, Dariusz

    2016-12-01

    The paper presents a comparison of four methods of implementing sequential circuits in Programmable Logic Devices in respect of dissipated power. Objective of the research was to investigate influence of different methods of "disabling" the clock signal on the dynamic power consumed by the circuit. The comparison is carried out using simple counter circuits, i. e. circuits the algorithm of which is described by linear graphs. However, the presented considerations are general, and can be applied to any sequential circuit. Results of simulation tests show that the method based on clock gating is the most efficient one, and it leads to significant reduction of the dissipated dynamic power. The authors also propose a simple modification of global clock network structures, to facilitate clock gating.

  6. Robust and efficient inverse mask synthesis with basis function representation.

    PubMed

    Wu, Xiaofei; Liu, Shiyuan; Lv, Wen; Lam, Edmund Y

    2014-12-01

    Mask optimization is essential in the resolution scaling of optical lithography due to its strong ability to overcome the optical proximity effect. However, it often demands extensive computation in solving the nonlinear optimization problem with a large number of variables. In this paper, we use a set of basis functions to represent the mask patterns, and incorporate this representation into the mask optimization at both the nominal plane and various defocus conditions. The representation coefficients are updated according to the gradient to the coefficients, which can be easily obtained from the gradient to the pixel variables. To ease the computation of the gradient, we use an adaptive method that divides the optimization into two steps, in which a small number of kernels is used as the first step, and more kernels are used for fine optimization. Simulations performed on two test patterns demonstrate that this method can improve the optimization efficiency by several times, and the optimized patterns have better manufacturability compared with regular pixel-based representation.

  7. Information and Efficiency in the Nervous System—A Synthesis

    PubMed Central

    Sengupta, Biswa; Stemmler, Martin B.; Friston, Karl J.

    2013-01-01

    In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components—like genetic circuits, biochemical cascades, and ion channels, among others—enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode—with almost 20–60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma. PMID:23935475

  8. Chemoselective Reduction and Alkylation of Carbonyl Functions Using Phosphonium Salts as an in Situ Protecting Groups.

    PubMed

    Ohta, Reiya; Fujioka, Hiromichi

    2017-01-01

    Recent progress in the chemoselective reduction and alkylation of carbonyl functions using our in situ protection method is described. Methods that enable reversal or control of the reactivity of a carbonyl functional group are potentially useful. They open up new areas of synthetic organic chemistry and change the concept of retrosynthesis because they remove the need for complicated protection/deprotection sequences. In this account, we discuss the strategy and applications of our in situ protection method using phosphonium salts.

  9. Chemoselection of Allogeneic HSC After Murine Neonatal Transplantation Without Myeloablation or Post-transplant Immunosuppression

    PubMed Central

    Falahati, Rustom; Zhang, Jianqing; Flebbe-Rehwaldt, Linda; Shi, Yimin; Gerson, Stanton L; Gaensler, Karin ML

    2012-01-01

    The feasibility of allogeneic transplantation, without myeloablation or post-transplant immunosuppression, was tested using in vivo chemoselection of allogeneic hematopoietic stem cells (HSCs) after transduction with a novel tricistronic lentiviral vector (MGMTP140K-2A-GFP-IRES-TK (MAGIT)). This vector contains P140K-O6-methylguanine-methyltransferase (MGMTP140K), HSV-thymidine kinase (TKHSV), and enhanced green fluorescent protein (eGFP) enabling (i) in vivo chemoselection of HSC by conferring resistance to benzylguanine (BG), an inhibitor of endogenous MGMT, and to chloroethylating agents such as 1,3-bis(2-chloroethyl)nitrosourea (BCNU) and, (ii) depletion of proliferating cells such as malignant clones or transduced donor T cells mediating graft versus host disease (GVHD), by expression of the suicide gene TKHSV and Ganciclovir (GCV) administration. Non-myeloablative transplantation of transduced, syngeneic, lineage-depleted (Lin−) BM in neonates resulted in 0.67% GFP+ mononuclear cells in peripheral blood. BG/BCNU chemoselection, 4 and 8 weeks post-transplant, produced 50-fold donor cell enrichment. Transplantation and chemoselection of major histocompatibility complex (MHC)-mismatched MAGIT-transduced Lin− BM also produced similar expansion for >40 weeks. The efficacy of this allotransplant approach was validated in Hbbth3 heterozygous mice by correction of β-thalassemia intermedia, without toxicity or GVHD. Negative selection, by administration of GCV resulted in donor cell depletion without graft ablation, as re-expansion of donor cells was achieved with BG/BCNU treatment. These studies show promise for developing non-ablative allotransplant approaches using in vivo positive/negative selection. PMID:22871662

  10. Aqueous extract of the pericarp of Sapindus trifoliatus fruits: a novel 'green' catalyst for the aldimine synthesis.

    PubMed

    Pore, Santosh; Rashinkar, Gajanan; Mote, Kavita; Salunkhe, Rajeshri

    2010-07-01

    The catalytic efficiency in organic synthesis of the aqueous extract of the pericarp of Sapindus trifoliatus fruits was evaluated. The synthesis of a series of aldimines from aromatic aldehydes and amines was successfully catalyzed by the extract, whereas aromatic ketones and amines did not yield ketimines under comparable reaction conditions, indicating the chemoselective catalysis of the extract. The catalytic activity of the extract is due to saponins, which have a common structural skeleton containing a pentacyclic triterpenoid part substituted with different carbohydrate side chains. The mild conditions, high yields, and short reaction times not only make this protocol a valuable alternative to the conventional methods, but it also becomes significant under the roof of environmentally greener and safer processes.

  11. Efficient enzymatic synthesis of ampicillin by mutant Alcaligenes faecalis penicillin G acylase.

    PubMed

    Deng, Senwen; Su, Erzheng; Ma, Xiaoqiang; Yang, Shengli; Wei, Dongzhi

    2015-04-10

    Semi-synthetic β-lactam antibiotics (SSBAs) are one of the most important antibiotic families in the world market. Their enzymatic synthesis can be catalyzed by penicillin G acylases (PGAs). In this study, to improve enzymatic synthesis of ampicillin, site-saturating mutagenesis was performed on three conserved amino acid residues: βF24, αR146, and αF147 of thermo-stable penicillin G acylase from Alcaligenes faecalis (Af PGA). Four mutants βF24G, βF24A, βF24S, and βF24P were recovered by screening the mutant bank. Kinetic analysis of them showed up to 800-fold increased kcat/Km value for activated acyl donor D-phenylglycine methyl ester (D-PGME). When βF24G was used for ampicillin synthesis under kinetic control at industrially relevant conditions, 95% of nucleophile 6-aminopenicillanic acid (6-APA) was converted to ampicillin in aqueous medium at room temperature while 12% process time is needed to reach maximum product accumulation at 25% enzyme concentration compared with the wild-type Af PGA. Consequently, process productivity of enzymatic synthesis of ampicillin catalyzed by Af PGA was improved by more than 130 times, which indicated an enzyme viable for efficient SSBAs synthesis.

  12. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  13. Nano Clinoptilolite: Highly Efficient Catalyst for the Synthesis of Chromene Derivatives Under Solvent-Free Conditions.

    PubMed

    Hallajian, Sara; Khalilzadeh, Mohammad A; Tajbakhsh, Mahgol; Alipour, Eskandar; Safaei, Zahra

    2015-01-01

    An efficient and selective synthesis of substituted chromene derivatives via three-component reaction of 4-hydroxycoumarin or 1,3-dicarbonyl compounds, activated acetylenic compounds and N-nucleophiles is described. The reaction was conducted under solvent-free conditions at 70°C using potassium fluoride impregnated on natural zeolite as a cheap and available solid base. The procedure has several advantages involving selectivity, excellent yields and a convenient work-up method.

  14. ACCESS 1: Approximation Concepts Code for Efficient Structural Synthesis program documentation and user's guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1976-01-01

    The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.

  15. An efficient and convenient palladium catalyst system for the synthesis of amines from allylic alcohols.

    PubMed

    Banerjee, Debasis; Jagadeesh, Rajenahally V; Junge, Kathrin; Junge, Henrik; Beller, Matthias

    2012-10-01

    A novel catalyst system for efficient amination of allylic alcohols with aryl and alkyl amines is presented. By applying a convenient combination consisting of Pd(OAc)(2)/1,10-phenanthroline, a variety of allylic alcohols reacted smoothly to give the corresponding secondary and tertiary amines in good to excellent yields with high regioselectivity. The usefulness of our protocol is demonstrated in the one-step synthesis of the antifungal drug naftifine and the calcium channel blocker flunarizine.

  16. Efficient and convenient synthesis of indazol-3(2H)-ones and 2-aminobenzonitriles.

    PubMed

    Dou, Guolan; Shi, Daqing

    2009-01-01

    A mild, efficient, one-pot protocol for the synthesis of indazole-3(2H)-ones via cyclization of nitro-aryl substrates through low-valent titanium reagent has been described. The method used Triethylamine (TEA) to control pH. Particularly, 2-aminobenzonitriles were synthesized by one step easily. The mechanistic course of the reaction suggests the involvement of an anion leading to an intramolecular cyclization via N-N bond formation.

  17. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis.

    PubMed

    Zhu, Lin; Wu, Zhe; Jin, Jian-Ming; Tang, Shuang-Yan

    2016-07-01

    L-tert-Leucine and its derivatives are used as synthetic building blocks for pharmaceutical active ingredients, chiral auxiliaries, and ligands. Leucine dehydrogenase (LeuDH) is frequently used to prepare L-tert-leucine from the α-keto acid precursor trimethylpyruvate (TMP). In this study, a high-throughput screening method for the L-tert-leucine synthesis reaction based on a spectrophotometric approach was developed. Directed evolution strategy was applied to engineer LeuDH from Lysinibacillus sphaericus for improved efficiency of L-tert-leucine synthesis. After two rounds of random mutagenesis, the specific activity of LeuDH on the substrate TMP was enhanced by more than two-fold, compared with that of the wild-type enzyme, while the activity towards its natural substrate, leucine, decreased. The catalytic efficiencies (k cat/K m) of the best mutant enzyme, H6, on substrates TMP and NADH were all enhanced by more than five-fold as compared with that of the wild-type enzyme. The efficiency of L-tert-leucine synthesis by mutant H6 was significantly improved. A productivity of 1170 g/l/day was achieved for the mutant enzyme H6, compared with 666 g/l/day for the wild-type enzyme.

  18. A new structural analysis/synthesis capability - ACCESS. [Approximation Concepts Code for Efficient Structural Synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.; Miura, H.

    1975-01-01

    The creation of an efficient automated capability for minimum weight design of structures is reported. The ACCESS 1 computer program combines finite element analysis techniques and mathematical programming algorithms using an innovative collection of approximation concepts. Design variable linking, constraint deletion techniques and approximate analysis methods are used to generate a sequence of small explicit mathematical programming problems which retain the essential features of the design problem. Organization of the finite element analysis is carefully matched to the design optimization task. The efficiency of the ACCESS 1 program is demonstrated by giving results for several example problems.

  19. Simplified Application of Material Efficiency Green Metrics to Synthesis Plans: Pedagogical Case Studies Selected from "Organic Syntheses"

    ERIC Educational Resources Information Center

    Andraos, John

    2015-01-01

    This paper presents a simplified approach for the application of material efficiency metrics to linear and convergent synthesis plans encountered in organic synthesis courses. Computations are facilitated and automated using intuitively designed Microsoft Excel spreadsheets without invoking abstract mathematical formulas. The merits of this…

  20. Steric stabilization of Pickering emulsions for the efficient synthesis of polymeric microcapsules.

    PubMed

    Salari, Joris W O; van Heck, Jeroen; Klumperman, Bert

    2010-09-21

    It is commonly known that Pickering emulsions are extremely stable against coalescence and are, therefore, potentially interesting for the synthesis of new materials, such as colloidosomes, microcapsules, composite particles, foams, and so on. However, for the efficient synthesis of such materials, one also has to consider the colloidal stability against aggregation, which is often neglected. In this study, it is demonstrated that steric stabilization is provided to Pickering emulsion droplets by the adsorption of poly(styrene-block-ethylene-co-propylene) (pS-b-EP) and that it is a requirement for the efficient synthesis of polymeric microcapsules. Monodisperse polystyrene particles of 648 nm are synthesized by soap-free emulsion polymerization. A model Pickering emulsion is then formed by the addition of sodium chloride at a critical concentration of 325 mM and mixing it with either heptane or decane. Subsequently, pS-b-EP is added to the Pickering emulsion to provide steric stabilization. Size exclusion chromatography is used to prove and quantify the adsorption of pS-b-EP onto the Pickering emulsion droplets. A maximum surface coverage of 1.3 mg/m(2) is obtained after 2 h, which is approximately one-third of the adsorption on a pure pS surface. We believe that the presence of polar sulfate groups on the particle, which initially stabilized the particle in water, reduces the adsorption of pS-b-EP. Microcapsules are formed by heating the Pickering emulsion above the glass-transition temperature of the particles. Significant aggregation is observed, if no pS-b-EP is used. The adsorption of pS-b-EP provides steric stabilization to the Pickering emulsion droplets, reduces aggregation significantly, and ultimately leads to the successful and efficient synthesis of pS microcapsules.

  1. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method

    NASA Astrophysics Data System (ADS)

    Yu, Huitao; Zhang, Bangwen; Bulin, Chaoke; Li, Ruihong; Xing, Ruiguang

    2016-11-01

    As an important precursor and derivate of graphene, graphene oxide (GO) has received wide attention in recent years. However, the synthesis of GO in an economical and efficient way remains a great challenge. Here we reported an improved NaNO3-free Hummers method by partly replacing KMnO4 with K2FeO4 and controlling the amount of concentrated sulfuric acid. As compared to the existing NaNO3-free Hummers methods, this improved routine greatly reduces the reactant consumption while keeps a high yield. The obtained GO was characterized by various techniques, and its derived graphene aerogel was demonstrated as high-performance supercapacitor electrodes. This improved synthesis shows good prospects for scalable production and applications of GO and its derivatives.

  2. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    NASA Astrophysics Data System (ADS)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  3. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    PubMed

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  4. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method

    PubMed Central

    Yu, Huitao; Zhang, Bangwen; Bulin, Chaoke; Li, Ruihong; Xing, Ruiguang

    2016-01-01

    As an important precursor and derivate of graphene, graphene oxide (GO) has received wide attention in recent years. However, the synthesis of GO in an economical and efficient way remains a great challenge. Here we reported an improved NaNO3-free Hummers method by partly replacing KMnO4 with K2FeO4 and controlling the amount of concentrated sulfuric acid. As compared to the existing NaNO3-free Hummers methods, this improved routine greatly reduces the reactant consumption while keeps a high yield. The obtained GO was characterized by various techniques, and its derived graphene aerogel was demonstrated as high-performance supercapacitor electrodes. This improved synthesis shows good prospects for scalable production and applications of GO and its derivatives. PMID:27808164

  5. Aerobic dehydrogenation of cyclohexanone to cyclohexenone catalyzed by Pd(DMSO)2(TFA)2: evidence for ligand-controlled chemoselectivity.

    PubMed

    Diao, Tianning; Pun, Doris; Stahl, Shannon S

    2013-06-05

    The dehydrogenation of cyclohexanones affords cyclohexenones or phenols via removal of 1 or 2 equiv of H2, respectively. We recently reported several Pd(II) catalyst systems that effect aerobic dehydrogenation of cyclohexanones with different product selectivities. Pd(DMSO)2(TFA)2 is unique in its high chemoselectivity for the conversion of cyclohexanones to cyclohexenones, without promoting subsequent dehydrogenation of cyclohexenones to phenols. Kinetic and mechanistic studies of these reactions reveal the key role of the dimethylsulfoxide (DMSO) ligand in controlling this chemoselectivity. DMSO has minimal kinetic influence on the rate of Pd(TFA)2-catalyzed dehydrogenation of cyclohexanone to cyclohexenone, while it strongly inhibits the second dehydrogenation step, conversion of cyclohexenone to phenol. These contrasting kinetic effects of DMSO provide the basis for chemoselective formation of cyclohexenones.

  6. Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts.

    PubMed

    Qu, Yongquan; Liao, Lei; Cheng, Rui; Wang, Yue; Lin, Yung-Chen; Huang, Yu; Duan, Xiangfeng

    2010-05-12

    Photocatalysts are of significant interest in solar energy harvesting and conversion into chemical energy. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here we report the rational design of a new generation of freestanding photoelectric nanodevices as highly efficient and stable photocatalysts by integrating a nanoscale photodiode with two redox catalysts in a single nanowire heterostructure. We show that a platinum-silicon-silver nanowire heterostructure can be synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. We further demonstrated that the Schottky diodes exhibited a pronounced photovoltaic effect with nearly unity internal quantum efficiency and that the integrated nanowire heterostructures could be used as highly efficient photocatalysts for a wide range of thermodynamically downhill and uphill reactions including the photocatalytic degradation of organic dyes and the reduction of metal ions and carbon dioxide using visible light. Our studies for the first time demonstrated the integration of multiple distinct functional components into a single nanostructure to form a standalone active nanosystem and for the first time successfully realized a photoelectric nanodevice that is both highly efficient and highly stable throughout the entire solar spectrum. It thus opens a rational avenue to the design and synthesis of a new generation of photoelectric nanosystems with unprecedented efficiency and stability and will have a broad impact in areas including environmental remediation, artificial photosynthesis and solar fuel production.

  7. A Sustainable and Efficient Synthesis of Benzyl Phosphonates Using PEG/KI Catalytic System

    PubMed Central

    Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish N.; Gawande, Manoj B.

    2016-01-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI, and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations. PMID:27579301

  8. An efficient protocol for the solid-phase synthesis of glycopeptides under microwave irradiation.

    PubMed

    Garcia-Martin, Fayna; Hinou, Hiroshi; Matsushita, Takahiko; Hayakawa, Shun; Nishimura, Shin-Ichiro

    2012-02-28

    A standardized and smooth protocol for solid-phase glycopeptides synthesis under microwave irradiation was developed. Double activation system was proved to allow for highly efficient coupling of Tn-Ser/Thr and bulky core 2-Ser/Thr derivatives. Versatility and robustness of the present strategy was demonstrated by constructing a Mucine-1 (MUC1) fragment and glycosylated fragments of tau protein. The success of this approach relies on the combination of microwave energy, a resin consisting totally of polyethylene glycol, a low excess of sugar amino acid and the "double activation" method.

  9. ZnO Catalyzed Efficient Synthesis of Some New 2-Substituted-4,6-diarylpyrimidines

    PubMed Central

    Ameta, K. L.; Kumar, Biresh; Rathore, Nitu S.

    2012-01-01

    A simple and efficient protocol is developed for the synthesis of 2-substituted-4,6-diarylpyrimidines from one-pot three-component reaction of 4′-hydroxy-3′,5′-dinitro substituted chalcones, S-benzylthiouronium chloride (SBT), and heterocyclic secondary amines (morpholine/pyrrolidine/piperidine) in the presence of 15 mol% of ZnO as a heterogeneous catalyst. The present methodology offers several advantages such as being a simple procedure as well as providing excellent yields, and short reaction time. The catalyst is inexpensive, stable, and can be easily recycled and reused for several cycles with consistent activity. PMID:24052838

  10. A sustainable and efficient synthesis of benzyl phosphonates using PEG/KI catalytic system

    NASA Astrophysics Data System (ADS)

    Gawande, Manoj; Disale, Shamrao; Kale, Sandip; Abraham, George; Kahandal, Sandeep; Sawarkar, Ashish

    2016-08-01

    An efficient and expedient protocol for the synthesis of benzyl phosphonates using KI/K2CO3 as a catalytic system and PEG-400 as benign solvent has been developed. The reaction proceeds smoothly at room temperature achieving excellent selectivity and yield of the corresponding products. The combination of PEG-400, KI and K2CO3 in this reaction avoids the need of volatile/toxic organic solvents and reactive alkali metals or metal nanoparticles/hydrides. We believe that this benign combination (PEG-400 and KI) could be used for other related organic transformations.

  11. A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes

    PubMed Central

    2011-01-01

    SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield. The same reaction in water, at room temperature gave only the open chain analogue of 1,8-dioxo-octahydroxanthene. Use of eco-friendly green Lewis acid, readily available catalyst and easy isolation of the product makes this a convenient method for the synthesis of either of the products. PMID:22152051

  12. An efficient synthesis method targeted to marine alkaloids marinacarbolines A-D and their antitumor activities.

    PubMed

    Li, Jun; Tang, Yang; Jin, Hui-Juan; Cui, Yi-Di; Zhang, Li-Juan; Jiang, Tao

    2015-01-01

    Marinacarbolines A-D are a series of marine β-carboline alkaloids isolated from actinomycete Marinactinospora thermotolerans of the deep South China Sea with antiplasmodial activities. In inhibition assays of in vitro growth of Plasmodium falciparum, marinacarbolines exhibited antiplasmodial activity against drug-sensitive line 3D7 and drug-resistant line Dd2 of P. falciparum. However, approaches for the synthesis of such useful compounds are very limited. In this work, we reported a simple, efficient, and versatile process to synthesize marinacarbolines A-D (1-4). On the basis of that, the antitumor activities of marinacarbolines in a structure-dependent manner were allowed to be unveiled.

  13. An Efficient Synthesis of 2-Substituted Benzimidazoles via Photocatalytic Condensation of o-Phenylenediamines and Aldehydes.

    PubMed

    Kovvuri, Jeshma; Nagaraju, Burri; Kamal, Ahmed; Srivastava, Ajay K

    2016-10-10

    A photocatalytic method has been developed for the efficient synthesis of functionalized benzimidazoles. This protocol involves photocatalytic condensation of o-phenylenediamines with various aldehydes using the Rose Bengal as photocatalyst. The method was found to be general and was successfully employed for accessing pharmaceutically important benzimidazoles by the condensation of aromatic, heteroaromatic and aliphatic aldehydes with o-phenylenediamines, in good-to-excellent yields. Notably, the method was found to be effective for the condensation of less reactive heterocyclic aldehydes with o-phenylenediamines.

  14. Site specific chemoselective labelling of proteins with robust and highly sensitive Ru(II) bathophenanthroline complexes.

    PubMed

    Uzagare, Matthew C; Claussnitzer, Iris; Gerrits, Michael; Bannwarth, Willi

    2012-03-21

    The bioorthogonal and chemoselective fluorescence labelling of several cell-free synthesized proteins containing a site-specifically incorporated azido amino acid was possible using different alkyne-functionalized Ru(II) bathophenanthroline complexes. We were able to achieve a selective labelling even in complex mixtures of proteins despite the fact that ruthenium dyes normally show a high tendency for unspecific interactions with proteins and are commonly used for total staining of proteins. Since the employed Ru complexes are extremely robust, photo-stable and highly sensitive, the approach should be applicable to the production of labelled proteins for single molecule spectroscopy and fluorescence-based interaction studies.

  15. Chemoselective methylation of phenolic hydroxyl group prevents quinone methide formation and repolymerization during lignin depolymerization

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Walter, Eric D.; ...

    2017-03-22

    Chemoselective blocking of the phenolic hydroxyl (Ar–OH) group by methylation was found to suppress secondary repolymerization and charring during lignin depolymerization. Methylation of Ar–OH prevents formation of reactive quinone methide intermediates, which are partly responsible for undesirable secondary repolymerization reactions. Instead, this structurally modified lignin produces more relatively low molecular weight products from lignin depolymerization compared to unmodified lignin. This result demonstrates that structural modification of lignin is desirable for production of low molecular weight phenolic products. Finally, this approach could be directed toward alteration of natural lignification processes to produce biomass that is more amenable to chemical depolymerization.

  16. Tunable drug delivery using chemoselective functionalization of hydrogels.

    PubMed

    Mauri, Emanuele; Rossi, Filippo; Sacchetti, Alessandro

    2016-04-01

    In the last decades interests on cleavable linkers are growing due to the need to develop controlled drug delivery systems in biochemical and therapeutic applications. The synthesis of hydrogels as devices capable to maintain the drug level within a desired range for a long and sustained period of time is a leading strategy for this aim. However with respect to the good results obtained with antibodies and peptides there are a lot of problems related to the quick and uncontrolled diffusion of small molecules through hydrogel pores. In this work, we propose the functionalization of polyethylene glycol (PEG) chains with two different pH-sensitive linkers, ester and hydrazone, and their application as building blocks of microwave-assisted hydrogels for controlled delivery of small hydrophilic drugs. As drug mimetic we used Rhodamine B, a harmless fluorophore with steric hindrance and reactive groups similar to many small hydrophilic drugs. At physiological and low basic conditions, the cleavability of ester and hydrazone spacer evidenced the possibility to delay the release of drugs from the scaffold compared to hydrogels where drug was entrapped within the network only due to its steric hindrance. The obtained release profiles were compared, underlining the opportunity to tune the release rate using the synthesized hydrogels.

  17. Chemoselective hydroxylation of aliphatic sp3 C-H bonds using a ketone catalyst and aqueous H2O2.

    PubMed

    Pierce, Conor J; Hilinski, Michael K

    2014-12-19

    The first ketone-catalyzed method for the oxidation of aliphatic C-H bonds is reported. The reaction conditions employ aryl trifluoromethyl ketones in catalytic amounts and hydrogen peroxide as the terminal oxidant. Hydroxylation is stereospecific and chemoselective for tertiary over secondary C-H bonds. A catalytic cycle invoking a dioxirane as the active oxidant is proposed.

  18. Ternary Cd(Se,Te) alloy semiconductors - Synthesis, material characterization, and high-efficiency photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Levy-Clement, C.; Triboulet, R.; Rioux, J.; Etcheberry, A.; Licht, S.

    1985-12-01

    High-quality Cd(Se,Te) in two compositions was synthesized using the modified Bridgman technique. The Se-rich crystals had the hexagonal structure, while the Te-rich phase consisted of crystals with cubic packing. Their quality could be gauged from high-electron mobility and low resistivity, which suited the purpose of their synthesis, i.e., for high-efficiency photoelectrochemical cells. Photoelectrochemical etching was employed, which resulted in a heavily pitted surface with the density of the etch pits exceeding 10 to the 9th/sq cm. Quantum efficiency of the semiconductor/aqueous polysulfide interface increased considerably after photoetching. Solar-to-electrical conversion efficiencies in excess of 12 percent were obtained. Photoluminenscence spectrum was measured for the two crystals prior to and after photoetching. The emission maximum is near the calculated band gap. The decline in the luminescence intensity, after photoetching, is attributed to the corrugation of the surface and the reduced density of the donor state near the semiconductor surface, which increases the thickness of the space-charge layer (dead layer model).

  19. Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis

    NASA Astrophysics Data System (ADS)

    Wu, Xi-Lin; Wen, Tao; Guo, Hong-Li; Liu, Shoujie; Wang, Xiangke; Xu, An-Wu; Mezger, Markus

    2016-06-01

    The cost-efficient large-scale production of novel carbon nanostructure with high performance is still a challenge, restricting their applications in catalysis. Herein, we present a low-cost one-pot and one-step approach for the synthesis of both N-doped graphene (NG) and N-doped carbon nanotubes (NCNTs) from self-templated organic nanoplates. By varying the FeCl3 concentration in the precursor, we can control the formation of graphene or CNTs. To the best of our knowledge, this is the first example for the controllable synthesis of graphene or CNTs by varying the precursors’ compositions. This provides a simple and cost-effective route for the large-scale production of both NG and NCNTs for applications in catalysis. By example, we show how these unique structured nanocarbons can be applied in electrocatalysis for oxygen reduction reaction (ORR). The obtained NG and NCNTs show excellent ORR activities with long-term stability under alkaline conditions. The unique porous nanostructure, abundant defects, homogeneous N-doping and high N-content in the NG and NCNTs can provide abundant active sites, leading to the excellent ORR performance. This research not only displayed a simple and cost-effective approach for the large-scale production of novel carbon nanoarchitectures, but also revealed the exceptional application potential of these nanocarbons for electrocatalysis.

  20. Bioreaction Engineering Leading to Efficient Synthesis of L-Glyceraldehyd-3-Phosphate.

    PubMed

    Molla, Getachew S; Kinfu, Birhanu M; Chow, Jennifer; Streit, Wolfgang; Wohlgemuth, Roland; Liese, Andreas

    2017-03-01

    Enantiopure L-glyceraldehyde-3-phosphate (L-GAP) is a useful building block in natural biological and synthetic processes. A biocatalytic process using glycerol kinase from Cellulomonas sp. (EC 2.7.1.30) catalyzed phosphorylation of L-glyceraldehyde (L-GA) by ATP is used for the synthesis of L-GAP. L-GAP has a half-life of 6.86 h under reaction conditions. The activity of this enzyme depends on the Mg(2+) to ATP molar ratio showing maximum activity at the optimum molar ratio of 0.7. A kinetic model is developed and validated showing a 2D correlation of 99.9% between experimental and numerical data matrices. The enzyme exhibits inhibition by ADP, AMP, methylglyoxal and Ca(2+) , but not by L-GAP and inorganic orthophosphate. Moreover, equal amount of Ca(2+) exerts a different degree of inhibition relative to the activity without the addition of Ca(2+) depending on the Mg(2+) to ATP molar ratio. If the Mg(2+) to ATP molar ratio is set to be at the optimum value or less, inorganic hexametaphosphate (PPi6) suppresses the enzyme activity; otherwise PPi6 enhances the enzyme activity. Based on reaction engineering parameters such as conversion, selectivity and specific productivity, evaluation of different reactor types reveals that batchwise operation via stirred-tank reactor is the most efficient process for the synthesis of L-GAP.

  1. Improving the time efficiency of the Fourier synthesis method for slice selection in magnetic resonance imaging.

    PubMed

    Tahayori, B; Khaneja, N; Johnston, L A; Farrell, P M; Mareels, I M Y

    2016-01-01

    The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence.

  2. Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

  3. Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis.

    PubMed

    Wu, Xi-Lin; Wen, Tao; Guo, Hong-Li; Liu, Shoujie; Wang, Xiangke; Xu, An-Wu; Mezger, Markus

    2016-06-15

    The cost-efficient large-scale production of novel carbon nanostructure with high performance is still a challenge, restricting their applications in catalysis. Herein, we present a low-cost one-pot and one-step approach for the synthesis of both N-doped graphene (NG) and N-doped carbon nanotubes (NCNTs) from self-templated organic nanoplates. By varying the FeCl3 concentration in the precursor, we can control the formation of graphene or CNTs. To the best of our knowledge, this is the first example for the controllable synthesis of graphene or CNTs by varying the precursors' compositions. This provides a simple and cost-effective route for the large-scale production of both NG and NCNTs for applications in catalysis. By example, we show how these unique structured nanocarbons can be applied in electrocatalysis for oxygen reduction reaction (ORR). The obtained NG and NCNTs show excellent ORR activities with long-term stability under alkaline conditions. The unique porous nanostructure, abundant defects, homogeneous N-doping and high N-content in the NG and NCNTs can provide abundant active sites, leading to the excellent ORR performance. This research not only displayed a simple and cost-effective approach for the large-scale production of novel carbon nanoarchitectures, but also revealed the exceptional application potential of these nanocarbons for electrocatalysis.

  4. Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis

    PubMed Central

    Wu, Xi-Lin; Wen, Tao; Guo, Hong-Li; Liu, Shoujie; Wang, Xiangke; Xu, An-Wu; Mezger, Markus

    2016-01-01

    The cost-efficient large-scale production of novel carbon nanostructure with high performance is still a challenge, restricting their applications in catalysis. Herein, we present a low-cost one-pot and one-step approach for the synthesis of both N-doped graphene (NG) and N-doped carbon nanotubes (NCNTs) from self-templated organic nanoplates. By varying the FeCl3 concentration in the precursor, we can control the formation of graphene or CNTs. To the best of our knowledge, this is the first example for the controllable synthesis of graphene or CNTs by varying the precursors’ compositions. This provides a simple and cost-effective route for the large-scale production of both NG and NCNTs for applications in catalysis. By example, we show how these unique structured nanocarbons can be applied in electrocatalysis for oxygen reduction reaction (ORR). The obtained NG and NCNTs show excellent ORR activities with long-term stability under alkaline conditions. The unique porous nanostructure, abundant defects, homogeneous N-doping and high N-content in the NG and NCNTs can provide abundant active sites, leading to the excellent ORR performance. This research not only displayed a simple and cost-effective approach for the large-scale production of novel carbon nanoarchitectures, but also revealed the exceptional application potential of these nanocarbons for electrocatalysis. PMID:27301537

  5. Total synthesis of atropurpuran

    PubMed Central

    Gong, Jing; Chen, Huan; Liu, Xiao-Yu; Wang, Zhi-Xiu; Nie, Wei; Qin, Yong

    2016-01-01

    Due to their architectural intricacy and biological significance, the synthesis of polycyclic diterpenes and their biogenetically related alkaloids have been the subject of considerable interest over the last few decades, with progress including the impressive synthesis of several elusive targets. Despite tremendous efforts, conquering the unique structural types of this large natural product family remains a long-term challenge. The arcutane diterpenes and related alkaloids, bearing a congested tetracyclo[5.3.3.04,9.04,12]tridecane unit, are included in these unsolved enigmas. Here we report a concise approach to the construction of the core structure of these molecules and the first total synthesis of (±)-atropurpuran. Pivotal features of the synthesis include an oxidative dearomatization/intramolecular Diels-Alder cycloaddition cascade, sequential aldol and ketyl-olefin cyclizations to assemble the highly caged framework, and a chemoselective and stereoselective reduction to install the requisite allylic hydroxyl group in the target molecule. PMID:27387707

  6. An efficient one-pot synthesis, characterization and antibacterial activity of novel chromeno-pyrimidine derivatives

    NASA Astrophysics Data System (ADS)

    Suresh, Lingala; Kumar, P. Sagar Vijay; Chandramouli, G. V. P.

    2017-04-01

    A simple and efficient one-pot three component, green protocol was established for the synthesis of chromenopyrano[2,3-d]pyrimidine derivatives starting from 3-amino-pyrano[2,3-c]chromene-2-carbonitrile, N,N-dimethylformamide dimethylacetal and aromatic amines in the presence of 1-butyl-3-methylimidazolium hydrogen sulphate[Bmim]HSO4 ionic liquid. The present procedure offers a domino reaction strategy, cleaner conversion, short reaction times and high yields. Among the screened derivatives, the compounds 4g and 4h were identified as lead molecules which established promising antimicrobial towards Gram-positive bacterial strains such as Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS16 MTCC 2940 and Bacillus subtilis MTCC 121.

  7. ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide

    NASA Technical Reports Server (NTRS)

    Fleury, C.; Schmit, L. A., Jr.

    1980-01-01

    A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.

  8. Rearrangement of 5-trimethylsilylthebaine on treatment with L-selectride: an efficient synthesis of (+)-bractazonine.

    PubMed

    Chen, Weibin; Wu, Huifang; Bernard, Denzil; Metcalf, Matthew D; Deschamps, Jeffrey R; Flippen-Anderson, Judith L; MacKerell, Alexander D; Coop, Andrew

    2003-03-07

    Treatment of 5-trimethylsilylthebaine with L-Selectride gave rise to a rearrangement to 10-trimethylsilylbractazonine through migration of the phenyl group, whereas treatment of thebaine with strong Lewis acids is known to lead to a similar rearrangement through migration of the alkyl bridge to give, after reduction, (+)-neodihydrothebaine. It is suggested that the rearrangement of the alkyl group of thebaine is favored due to the formation of a tertiary benzylic cation. However, for 5-trimethylsilylthebaine, the lithium ion of L-Selectride acts as the Lewis acid and the beta-silyl effect dominates in the stabilization of any positive charge. This rearrangement provides a clear example of the greater relative migratory aptitude of phenyl groups over alkyl groups, and provides an efficient synthesis of (+)-bractazonine from thebaine.

  9. More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins.

    PubMed

    Schumacher, Dominik; Hackenberger, Christian P R

    2014-10-01

    The quest to enlarge the molecular space of functional biomolecules has led to the discovery of selective, mild and high-yielding chemical reactions for the modification of peptides and proteins. These conjugation methods have recently become even more advanced with the advent of modern biochemical techniques such as unnatural protein expression or enzymatic reactions that allow the site-specific modification of proteins. Within this overview, we will highlight recent examples that describe the site-specific functionalization of proteins. These examples go beyond the straightforward attachment of a given functional moiety to the protein backbone by employing either an innovative linker-design or by novel conjugation chemistry, where the modification reaction itself is responsible for the (altered) functional behaviour of the biomolecule. The examples covered herein include 'turn-on' probes for cellular imaging with low levels of background fluorescence, branched or cleavable polymer-protein conjugates of high stability within a cellular environment, the installation of natural occurring posttranslational modifications to help understand their role in complex cellular environments and finally the engineering of novel antibody drug conjugates to facilitate target specific drug release.

  10. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-05

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.

  11. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    PubMed Central

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-01-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications. PMID:25523276

  12. Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu

    2014-12-01

    Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.

  13. Chemoselective Immobilization of Proteins by Microcontact Printing and Bioorthogonal Click Reactions

    PubMed Central

    Tolstyka, Zachary P.; Richardson, Wade; Bat, Erhan; Stevens, Caitlin J.; Parra, Dayanara P.; Dozier, Jonathan K.; Distefano, Mark D.; Dunn, Bruce; Maynard, Heather D.

    2014-01-01

    Herein, a combination of microcontact printing of functionalized alkanethiols and site-specific modification of proteins is utilized to chemoselectively immobilize proteins onto gold surfaces either by oxime or copper catalyzed alkyne-azide click chemistry. Two molecules capable of click reactions, an aminooxy-functionalized alkanethiol and an azide-functionalized alkanethiol, were synthesized, and self-assembled monolayer (SAM) formation on gold was confirmed by IR spectroscopy. The alkanethiols were then individually patterned onto gold surfaces by microcontact printing. Site-specifically modified proteins, horse heart myoglobin (HHMb) containing an N-terminal α-oxoamide and a red-fluorescent protein (mCherry-CVIA) with a C-terminal alkyne, respectively were immobilized by incubation onto the stamped functionalized alkanethiol patterns. Pattern formation was confirmed by fluorescence microscopy. PMID:24166802

  14. Chemoselection: a paradigm for optimization of organ preservation in locally advanced larynx cancer.

    PubMed

    Vainshtein, Jeffrey M; Wu, Vivian F; Spector, Matthew E; Bradford, Carol R; Wolf, Gregory T; Worden, Francis P

    2013-09-01

    Definitive chemoradiation (CRT) and laryngectomy followed by postoperative radiotherapy (RT) are both considered standard-of-care options for the management of advanced laryngeal cancer. While organ preservation with chemoradiotherapy is often the preferred up-front approach for appropriately selected candidates, the functional benefits of organ preservation must be carefully balanced against the considerable morbidity of salvage laryngectomy in patients who fail primary chemoradiation. Up-front identification of patients who are likely to require surgical salvage, therefore, is an important aim of any organ preserving approach in order to minimize morbidity while maximizing organ preservation. To this end, a strategy of 'chemoselection', using the primary tumor's response after 1 cycle of induction chemotherapy as an in vivo method of selecting responders for definitive chemoradiation while reserving primary surgical management for non-responders, has been employed extensively at our institution. The rationale, treatment results and future directions of this approach are discussed.

  15. Chemoselective modifications for the traceless ligation of thioamide-containing peptides and proteins.

    PubMed

    Wang, Yanxin J; Szantai-Kis, D Miklos; Petersson, E James

    2016-07-14

    Thioamides are single-atom substitutions of canonical amide bonds, and have been proven to be versatile and minimally perturbing probes in protein folding studies. Previously, our group showed that thioamides can be incorporated into proteins by native chemical ligation (NCL) with Cys as a ligation handle. In this study, we report the expansion of this strategy into non-Cys ligation sites, utilizing radical initiated desulfurization to "erase" the side chain thiol after ligation. The reaction exhibited high chemoselectivity against thioamides, which can be further enhanced with thioacetamide as a sacrificial scavenger. As a proof-of-concept example, we demonstrated the incorporation of a thioamide probe into a 56 amino acid protein, the B1 domain of Protein G (GB1). Finally, we showed that the method can be extended to β-thiol amino acid analogs and selenocysteine.

  16. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  17. Strategies to control alkoxy radical-initiated relay cyclizations for the synthesis of oxygenated tetrahydrofuran motifs.

    PubMed

    Zhu, Hai; Leung, Joe C T; Sammis, Glenn M

    2015-01-16

    Radical relay cyclizations initiated by alkoxy radicals are a powerful tool for the rapid construction of substituted tetrahydrofurans. The scope of these relay cyclizations has been dramatically increased with the development of two strategies that utilize an oxygen atom in the substrate to accelerate the desired hydrogen atom transfer (HAT) over competing pathways. This has enabled a chemoselective 1,6-HAT over a competing 1,5-HAT. Furthermore, this allows for a chemoselective 1,5-HAT over competing direct cyclizations and β-fragmentations. Oxygen atom incorporation leads to a general increase in cyclization diastereoselectivity over carbon analogues. This chemoselective relay cyclization strategy was utilized in the improved synthesis of the tetrahydrofuran fragment in (−)-amphidinolide K.

  18. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    EPA Science Inventory

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  19. Aqueous hydrotrope: an efficient and reusable medium for a green one-pot, diversity-oriented synthesis of quinazolinone derivatives.

    PubMed

    Patil, Amol; Barge, Madhuri; Rashinkar, Gajanan; Salunkhe, Rajashri

    2015-08-01

    A library of quinazolinones was prepared by the one-pot three-component reaction of isatoic anhydride, ammonium salts/amines, and various electrophiles using aqueous hydrotropic solution as an efficient, economical, reusable, and green medium giving good to excellent yields of products in very short time. The method offers a versatile way for the development of diversity-oriented synthesis of quinazolinones.

  20. AN EFFICIENT AND SIMPLE AQUEOUS N-HETEROCYCLIZATION OF ANILINE DERIVATIVES: MICROWAVE-ASSISTED SYNTHESIS OF N-ARYL AZACYCLOALKANES

    EPA Science Inventory

    An efficient and clean synthesis of N-aryl azacycloalkanes from alkyl dihalides and aniline derivatives has been achieved using microwave irradiation in an aqueous potassium carbonate medium. The phase separation can simplify the product isolation and reduce usage of vol...

  1. Highly efficient heterogeneous gold-catalyzed direct synthesis of tertiary and secondary amines from alcohols and urea.

    PubMed

    He, Lin; Qian, Yue; Ding, Ran-Sheng; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2012-04-01

    Urea, the white gold: The efficient synthesis of tertiary and secondary amines is achieved by heterogeneous gold-catalyzed direct amination of stoichiometric alcohols with urea in good to excellent yields. Via a hydrogen autotransfer pathway, the reactions of primary alcohols with urea give tertiary amines exclusively, while secondary alcohols selectively afford secondary amines.

  2. An efficient one-pot three-component synthesis of fused 1,4-dihydropyridines using HY-zeolite.

    PubMed

    Nikpassand, Mohammad; Mamaghani, Manouchehr; Tabatabaeian, Khalil

    2009-04-08

    A facile and convenient protocol was developed for the fast (2.5-3.5 h) and high yielding (70-90%) synthesis of fused 1,4-dihydropyridines from dimedone in the presence of HY-zeolite as an efficient recyclable heterogeneous catalyst.

  3. Efficient synthesis and evaluation of bis-pyridinium/bis-quinolinium metallosalophens as antibiotic and antitumor candidates

    NASA Astrophysics Data System (ADS)

    Elshaarawy, Reda F. M.; Eldeen, Ibrahim M.; Hassan, Eman M.

    2017-01-01

    Inspired with the pharmacological diversity of salophens and in our endeavor to explore a new strategy which may conflict the invasion of drug resistance, we report herein efficient synthetic routes for the synthesis of new RO-salophen(Cl), pyridinium/quinolinium-based salophens (3a-e) and metallosalophens (4a-j). These new architectures have been structurally characterized by elemental and spectral analysis as well pharmacologically evaluated for their in vitro antimicrobial, against a common panel of pathogenic bacterial and fungal strains, and anticancer activities against human colon carcinoma (HCT-116) cell lines. Antimicrobial assay results revealed that all tested compounds exhibited moderate to superb broad-spectrum efficacy in comparison to the standard antibiotic with a preferential ability to perform as a fungicides than to act as bactericides. Noteworthy, VO(II)-salophens are more effective in reduction HCT-116 cell viability than Cu(II)-salophens. For example, VO(II)-salophen3 (4f) (IC50 = 2.13 μg/mL) was ca. 10-fold more efficient than Cu(II)-salophen3 (4e) (IC50 = 20.30 μg/mL).

  4. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed.

  5. Efficient Rhodium-Catalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines.

    PubMed

    Rubio-Pérez, Laura; Iglesias, Manuel; Munárriz, Julen; Polo, Victor; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-12-01

    [{Rh(μ-Cl)(H)2 (IPr)}2 ] (IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazole-2-ylidene) was found to be an efficient catalyst for the synthesis of novel propargylamines by a one-pot three-component reaction between primary arylamines, aliphatic aldehydes, and triisopropylsilylacetylene. This methodology offers an efficient synthetic pathway for the preparation of secondary propargylamines derived from aliphatic aldehydes. The reactivity of [{Rh(μ-Cl)(H)2 (IPr)}2 ] with amines and aldehydes was studied, leading to the identification of complexes [RhCl(CO)IPr(MesNH2 )] (MesNH2 = 2,4,6-trimethylaniline) and [RhCl(CO)2 IPr]. The latter shows a very low catalytic activity while the former brought about reaction rates similar to those obtained with [{Rh(μ-Cl)(H)2 (IPr)}2 ]. Besides, complex [RhCl(CO)IPr(MesNH2 )] reacts with an excess of amine and aldehyde to give [RhCl(CO)IPr{MesNCHCH2 CH(CH3 )2 }], which was postulated as the active species. A mechanism that clarifies the scarcely studied catalytic cycle of A3 -coupling reactions is proposed based on reactivity studies and DFT calculations.

  6. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction.

    PubMed

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-27

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials' high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  7. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    PubMed Central

    Janssen, Brian M. G.; van Ommeren, Sven P. F. I.; Merkx, Maarten

    2015-01-01

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established. PMID:26053396

  8. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  9. Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers.

    PubMed

    Le, Son Thai; Prilepsky, Jaroslaw E; Turitsyn, Sergei K

    2014-11-03

    In linear communication channels, spectral components (modes) defined by the Fourier transform of the signal propagate without interactions with each other. In certain nonlinear channels, such as the one modelled by the classical nonlinear Schrödinger equation, there are nonlinear modes (nonlinear signal spectrum) that also propagate without interacting with each other and without corresponding nonlinear cross talk, effectively, in a linear manner. Here, we describe in a constructive way how to introduce such nonlinear modes for a given input signal. We investigate the performance of the nonlinear inverse synthesis (NIS) method, in which the information is encoded directly onto the continuous part of the nonlinear signal spectrum. This transmission technique, combined with the appropriate distributed Raman amplification, can provide an effective eigenvalue division multiplexing with high spectral efficiency, thanks to highly suppressed channel cross talk. The proposed NIS approach can be integrated with any modulation formats. Here, we demonstrate numerically the feasibility of merging the NIS technique in a burst mode with high spectral efficiency methods, such as orthogonal frequency division multiplexing and Nyquist pulse shaping with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 4.5 dB, which is comparable to results achievable with multi-step per span digital back propagation.

  10. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation.

    PubMed

    Janssen, Brian M G; van Ommeren, Sven P F I; Merkx, Maarten

    2015-06-04

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  11. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    PubMed Central

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-01-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs). PMID:28240234

  12. Development of efficient, small particle size luminescent oxides using combustion synthesis

    NASA Astrophysics Data System (ADS)

    Shea, Lauren Elizabeth

    Luminescent materials (phosphors) find application in cathode-ray tubes (CRTs), medical and industrial equipment monitors, fluorescent lamps, xerography, and many types of flat panel displays. Many commercially available phosphors were optimized in the 1960s for high voltage (>10 kV) CRT applications. Recently, a great deal of emphasis has been placed on the development and improvement of phosphors for flat panel displays that operate at low voltages (<5 kV). In addition to high efficiency at low voltages, these displays demand high resolution phosphor screens which can only be realized using phosphors with smaller particle size (<3 mum). Conventional methods of preparing phosphors (e.g., high temperature solid-state reaction) cannot easily produce a homogeneous product with uniform, small particle size. In this work, a novel ceramic synthesis technique, combustion synthesis, was used for the first time to produce submicron-sized oxide phosphors more efficiently for use in flat panel displays. This technique exploits the exothermic redox reaction of metal nitrates (oxidizers) with an organic fuel (reducing agent). Typical fuels include urea (CHsb4Nsb2O), carbohydrazide (CHsb6Nsb4O), or glycine (Csb2Hsb5NOsb2). Resulting powders were well-crystallized, with a large surface area and small particle size. Phosphor powders were exposed to photoluminescence excitation by high energy (254 nm, E = 4.88 eV) and low energy photons (365 nm, E = 3.4 eV and 435 nm, E = 2.85 eV) and cathodoluminescence excitation by a low-voltage (100-1000 V) electron beam. Photoluminescence (PL) techniques resulted in the measurement of spectral energy distribution and relative intensities. Phosphor efficiencies in lumens per watt (lm/W) were obtained by low-voltage cathodoluminescence measurements. The effects of processing parameters such as type of fuel, fuel to oxidizer ratio, and heating rate were studied. The combustion process was optimized based on these processing parameters in order

  13. Pd/Cu-Catalyzed tandem head-to-tail dimerization/cycloisomerization of terminal ynamides for the synthesis of 5-vinyloxazolones.

    PubMed

    Tang, Luning; Huang, Hai; Xi, Yang; He, Guangke; Zhu, Hongjun

    2017-04-05

    An attractive and novel methodology involving Pd/Cu-catalyzed tandem head-to-tail dimerization/cycloisomerization of terminal ynamides for the synthesis of 3,5-disubstituted oxazolones was developed. Under Pd(PPh3)2Cl2/CuI cooperative catalyzed reaction conditions, it provided efficient access to 5-vinyloxazolones with exceptional functional group tolerance and good chemoselectivity. The control experiments demonstrated that Pd(PPh3)2Cl2 serves a key role in the dimerization of terminal ynamides and shows low catalytic activity in the intramolecular cyclization. Moreover, the hetero-Diels-Alder reaction of product 5-vinyloxazolones was also described, which provided polycyclic oxazolones in good yield.

  14. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance

    NASA Astrophysics Data System (ADS)

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B. Peter; Motkuri, Radha Kishan

    2016-06-01

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method.

  15. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance

    PubMed Central

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B. Peter; Motkuri, Radha Kishan

    2016-01-01

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method. PMID:27306598

  16. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance.

    PubMed

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B Peter; Motkuri, Radha Kishan

    2016-06-16

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method.

  17. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Fei, Jingyuan; Sun, Lixian; Zhou, Cuifeng; Ling, Huajuan; Yan, Feng; Zhong, Xia; Lu, Yuxiang; Shi, Jeffrey; Huang, Jun; Liu, Zongwen

    2017-01-01

    The liquid phase oxidation of benzyl alcohol is an important reaction for generating benzaldehyde and benzoic acid that are largely required in the perfumery and pharmaceutical industries. The current production systems suffer from either low conversion or over oxidation. From the viewpoint of economy efficiency and environmental demand, we are aiming to develop new high-performance and cost-effective catalysts based on manganese oxides that can allow the green aerobic oxidation of benzyl alcohol under mild conditions. It was found that the composition of the precursors has significant influence on the structure formation and surface property of the manganese oxide nanoparticles. In addition, the crystallinity of the resulting manganese nanoparticles was gradually improved upon increasing the calcination temperature; however, the specific surface area decreased obviously due to pore structure damage at higher calcination temperature. The sample calcined at the optimal temperature of 600 °C from the precursors without porogen was a Mn3O4-rich material with a small amount of Mn2O3, which could generate a significant amount of {O}_2- species on the surface that contributed to the high catalytic activity in the oxidation. Adding porogen with precursors during the synthesis, the obtained catalysts were mainly Mn2O3 crystalline, which showed relatively low activity in the oxidation. All prepared samples showed high selectivity for benzaldehyde and benzoic acid. The obtained catalysts are comparable to the commercial OMS-2 catalyst. The synthesis-structure-catalysis interaction has been addressed, which will help for the design of new high-performance selective oxidation catalysts.

  18. Tuning the Synthesis of Manganese Oxides Nanoparticles for Efficient Oxidation of Benzyl Alcohol.

    PubMed

    Fei, Jingyuan; Sun, Lixian; Zhou, Cuifeng; Ling, Huajuan; Yan, Feng; Zhong, Xia; Lu, Yuxiang; Shi, Jeffrey; Huang, Jun; Liu, Zongwen

    2017-12-01

    The liquid phase oxidation of benzyl alcohol is an important reaction for generating benzaldehyde and benzoic acid that are largely required in the perfumery and pharmaceutical industries. The current production systems suffer from either low conversion or over oxidation. From the viewpoint of economy efficiency and environmental demand, we are aiming to develop new high-performance and cost-effective catalysts based on manganese oxides that can allow the green aerobic oxidation of benzyl alcohol under mild conditions. It was found that the composition of the precursors has significant influence on the structure formation and surface property of the manganese oxide nanoparticles. In addition, the crystallinity of the resulting manganese nanoparticles was gradually improved upon increasing the calcination temperature; however, the specific surface area decreased obviously due to pore structure damage at higher calcination temperature. The sample calcined at the optimal temperature of 600 °C from the precursors without porogen was a Mn3O4-rich material with a small amount of Mn2O3, which could generate a significant amount of [Formula: see text] species on the surface that contributed to the high catalytic activity in the oxidation. Adding porogen with precursors during the synthesis, the obtained catalysts were mainly Mn2O3 crystalline, which showed relatively low activity in the oxidation. All prepared samples showed high selectivity for benzaldehyde and benzoic acid. The obtained catalysts are comparable to the commercial OMS-2 catalyst. The synthesis-structure-catalysis interaction has been addressed, which will help for the design of new high-performance selective oxidation catalysts.

  19. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Deng, Senwen; Ma, Xiaoqiang; Su, Erzheng; Wei, Dongzhi

    2016-02-10

    To avoid isolation and purification of the intermediate 6-aminopenicillanic acid (6-APA), a two-enzyme two-step cascade synthesis of ampicillin from penicillin G was established. In purely aqueous medium, penicillin G hydrolysis and ampicillin synthesis were catalyzed by immobilized wild-type and mutagenized penicillin G acylases from Alcaligenes faecalis (Af PGA), respectively (Fig. 1). The βF24 G mutant Af PGA (the 24th Phenylalanine of the β-subunit was replaced by Glycine) was employed for its superior performance in enzymatic synthesis of ampicillin. By optimizing the reaction conditions, including enzyme loading, temperature, initial pH and D-PGME/6-APA ratio, the conversion of the second step of ampicillin synthesis reached approximately 90% in 240 min and less than 1.7 mole D-PGME were required to produce 1 mole ampicillin. Overall, in a 285 min continuous two-step procedure, an ampicillin yield of 87% was achieved, demonstrating the possibility of improving the cascade synthesis of ampicillin by mutagenized PGA, providing an economically efficient and environmentally benign procedure for semi-synthetic penicillins antibiotics synthesis.

  20. Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition?

    NASA Astrophysics Data System (ADS)

    Wen, Kechun; He, Weidong

    2015-09-01

    One-dimensional (1D) nanocrystals, such as nanorods and nanowires, have received extensive attention in the nanomaterials field due to their large surface areas and 1D confined transport properties. Oriented attachment (OA) is now recognized as a major growth mechanism for efficiently synthesizing 1D nanocrystals. Recently, atomic layer deposition (ALD) has been modified to be a powerful vapor-phase technique with which to synthesize 1D OA nanorods/nanowires with high efficiency and quality by increasing the temperature and purging time. In this invited mini-review, we look into the advantages of OA and high-temperature ALD, and investigate the potential of employing the OA growth mechanism for the synthesis of 1D nanocrystals via modified ALD, aiming to provide guidance to researchers in the fields of both OA and ALD for efficient synthesis of 1D nanocrystals.

  1. Assessing translational efficiency by a reporter protein co-expressed in a cell-free synthesis system.

    PubMed

    Park, Yu Jin; Lee, Kyung-Ho; Kim, Dong-Myung

    2017-02-01

    We demonstrate the use of a cell-free protein synthesis system as a convenient tool for assessing the relative translational efficiencies of genes. When sfGFP was used as a common reporter gene and co-expressed with a series of target genes, the intensities of sfGFP fluorescence from the co-expression reactions were highly correlated with the individual expression levels of the co-expressed genes. The relative translational efficiencies of genes estimated by this method were reproducible when the same genes were expressed in transformed Escherichia coli, suggesting that this method could be used as a universal tool for prognostic assessment of translational efficiency.

  2. Ruthenium-Catalyzed Monoalkenylation of Aromatic Ketones by Cleavage of Carbon-Heteroatom Bonds with Unconventional Chemoselectivity.

    PubMed

    Kondo, Hikaru; Akiba, Nana; Kochi, Takuya; Kakiuchi, Fumitoshi

    2015-08-03

    Ruthenium-catalyzed selective monoalkenylation of ortho C-O or C-N bonds of aromatic ketones was achieved. The reaction allowed the direct comparison of the relative reactivities of the cleavage of different carbon-heteroatom bonds, thus suggesting an unconventional chemoselectivity, where smaller, more-electron-donating groups are more easily cleaved. Selective monofunctionalization of C-O bonds in the presence of ortho C-H bonds was also achieved.

  3. A Manganese Catalyst for Highly Reactive Yet Chemoselective Intramolecular C(sp3)—H Amination

    PubMed Central

    Paradine, Shauna M.; Griffin, Jennifer R.; Zhao, Jinpeng; Petronico, Aaron L.; Miller, Shannon M.; White, M. Christina

    2016-01-01

    C—H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp3)—H bonds while displaying chemoselectivity (i.e. tolerance of more oxidizable functionality) remains an unsolved problem. Herein, we describe a catalyst, manganese tert-butylphthalocyanine [Mn(tBuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp3)—H bonds intramolecularly, while displaying excellent chemoselectivity in the presence of π-functionality. Mechanistic studies indicate that [Mn(tBuPc)] transfers bound nitrenes to C(sp3)—H bonds via a pathway that lies between concerted C—H insertion, observed with reactive noble metals (e.g. rhodium), and stepwise radical C—H abstraction/rebound, observed with chemoselective base metals (e.g. iron). Rather than achieving a blending of effects, [Mn(tBuPc)] aminates even 1° aliphatic and propargylic C—H bonds, reactivity and selectivity unusual for previously known catalysts. PMID:26587714

  4. Efficient synthesis of tension modulation in strings and membranes based on energy estimation.

    PubMed

    Avanzini, Federico; Marogna, Riccardo; Bank, Balázs

    2012-01-01

    String and membrane vibrations cannot be considered as linear above a certain amplitude due to the variation in string or membrane tension. A relevant special case is when the tension is spatially constant and varies in time only in dependence of the overall string length or membrane surface. The most apparent perceptual effect of this tension modulation phenomenon is the exponential decay of pitch in time. Pitch glides due to tension modulation are an important timbral characteristic of several musical instruments, including the electric guitar and tom-tom drum, and many ethnic instruments. This paper presents a unified formulation to the tension modulation problem for one-dimensional (1-D) (string) and two-dimensional (2-D) (membrane) cases. In addition, it shows that the short-time average of the tension variation, which is responsible for pitch glides, is approximately proportional to the system energy. This proportionality allows the efficient physics-based sound synthesis of pitch glides. The proposed models require only slightly more computational resources than linear models as opposed to earlier tension-modulated models of higher complexity.

  5. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis

    PubMed Central

    Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun

    2015-01-01

    Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, CoxMn3−xO4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation–precipitation and insertion–crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn–air and Li–air batteries. PMID:26040417

  6. Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase.

    PubMed

    Sinha, Tanur; Ahmaruzzaman, M

    2015-12-01

    The present work reports the utilization of a common household waste material (fish scales of Labeo rohita) for the synthesis of copper nanoparticles. The method so developed was found to be green, environment-friendly, and economic. The fish scale extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates, and solvents. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of nanoparticles have also been presented. The synthesized copper nanoparticles formed were predominantly spherical in nature with an average size of nanoparticles in the range of 25-37 nm. The copper nanoparticles showed characteristic Bragg's reflection planes of fcc which was supported by both selected area electron diffraction and X-ray diffraction pattern and showed surface plasmon resonance at 580 nm. Moreover, the energy dispersive spectroscopy pattern also revealed the presence of only elemental copper in the copper nanoparticles. The prepared nanoparticles were used for the remediation of a carcinogenic and noxious textile dye, Methylene blue, from aqueous solution. Approximately, 96 % degradation of Methylene blue dye was observed within 135 min using copper nanoparticles. The probable mechanism for the degradation of the dye has been presented, and the degraded intermediates have been identified using the liquid chromatography-mass spectroscopy technique. The high efficiency of nanoparticles as photocatalysts has opened a promising application for the removal of hazardous dye from industrial effluents contributing indirectly to environmental cleanup process.

  7. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Chun; Han, Xiaopeng; Cheng, Fangyi; Hu, Yuxiang; Chen, Chengcheng; Chen, Jun

    2015-06-01

    Spinel-type oxides are technologically important in many fields, including electronics, magnetism, catalysis and electrochemical energy storage and conversion. Typically, these materials are prepared by conventional ceramic routes that are energy consuming and offer limited control over shape and size. Moreover, for mixed-metal oxide spinels (for example, CoxMn3-xO4), the crystallographic phase sensitively correlates with the metal ratio, posing great challenges to synthesize active product with simultaneously tuned phase and composition. Here we report a general synthesis of ultrasmall cobalt manganese spinels with tailored structural symmetry and composition through facile solution-based oxidation-precipitation and insertion-crystallization process at modest condition. As an example application, the nanocrystalline spinels catalyse the oxygen reduction/evolution reactions, showing phase and composition co-dependent performance. Furthermore, the mild synthetic strategy allows the formation of homogeneous and strongly coupled spinel/carbon nanocomposites, which exhibit comparable activity but superior durability to Pt/C and serve as efficient catalysts to build rechargeable Zn-air and Li-air batteries.

  8. Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors.

    PubMed

    Liu, Jia; Yang, Qihua; Li, Can

    2015-09-18

    Biocatalysis with immobilized enzymes as catalysts holds enormous promise in developing more efficient and sustainable processes for the synthesis of fine chemicals, chiral pharmaceuticals and biomass feedstocks. Despite the appealing potentials, nowadays the industrial-scale application of biocatalysts is still quite modest in comparison with that of traditional chemical catalysts. A critical issue is that the catalytic performance of enzymes, the sophisticated and vulnerable catalytic machineries, strongly depends on their intracellular working environment; however the working circumstances provided by the support matrix are radically different from those in cells. This often leads to various adverse consequences on enzyme conformation and dynamic properties, consequently decreasing the overall performance of immobilized enzymes with regard to their activity, selectivity and stability. Engineering enzyme catalysis in support nanopores by mimicking the physiological milieu of enzymes in vivo and investigating how the interior microenvironment of nanopores imposes an influence on enzyme behaviors in vitro are of paramount significance to modify and improve the catalytic functions of immobilized enzymes. In this feature article, we have summarized the recent advances in mimicking the working environment and working patterns of intracellular enzymes in nanopores of mesoporous silica-based supports. Especially, we have demonstrated that incorporation of polymers into silica nanopores could be a valuable approach to create the biomimetic microenvironment for enzymes in the immobilized state.

  9. Simple and efficient synthesis of 2-[(18)F]fluoroethyl triflate for high yield (18)fluoroethylation.

    PubMed

    Peters, Tanja; Vogg, Andreas; Oppel, Iris M; Schmaljohann, Jörn

    2014-12-01

    The [(18)F]fluoroethyl moiety has been widely utilized in the synthesis of (18)F-labelled compounds. The aim of this work was the reliable synthesis of [(18)F]FEtOTf with a novel strategy to increase the reactivity of the commonly used [(18)F]FEB and [(18)F]FEtOTos. [(18)F]FEtOTf and the intermediate [(18)F]FEtOH were synthesized in high RCY (78% and 85%, respectively) and purified by SPE. The high potency of [(18)F]FEtOTf was shown by the efficient alkylation of the deactivated nucleophile aniline under mild conditions, as well as by the synthesis of [(18)F]FEC.

  10. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro.

    PubMed

    Boguhn, J; Kluth, H; Rodehutscord, M

    2006-05-01

    The goal of this study was to identify dietary factors that affect fermentation and efficiency of microbial crude protein (CP(M)) synthesis in the rumen in vitro. We used 16 total mixed, dairy cow rations with known digestibilities that varied in ingredient composition and nutrient content. Each ration was incubated in a Rusitec (n = 3) for 15 d, and fermentation of different fractions was assessed. Observed extents of fermentation in 24 h were 35 to 47% for organic matter, 25 to 60% for crude protein, 3 to 28% for neutral detergent fiber, and 31 to 45% for gross energy. Organic matter fermentation depended on the content of crude protein and neutral detergent fiber in the ration. We studied net synthesis of CP(M) using an 15N dilution technique and found that 7 d of continuous 15N application are needed to achieve an 15N enrichment plateau in the N of isolated microbes in this type of study. The efficiency of CP(M) synthesis was 141 to 286 g/kg of fermented organic matter or 4.9 to 11.1 g/MJ of metabolizable energy, and these ranges agree with those found in the literature. Multiple regressions to predict the efficiency of CP(M) synthesis by diet data showed that crude protein was the only dietary chemical fraction that had a significant effect. Fat content and the inclusion rate of corn silage in the ration also tended to improve efficiency. We suggest that microbial need for preformed amino acids may explain the crude protein effect. A large part of the variation in efficiency of microbial activity still remains unexplained.

  11. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  12. An Efficient Solution-Phase Synthesis of 4,5,7-Trisubstituted Pyrrolo[3,2-d]pyrimidines

    PubMed Central

    Zhang, Weihe; Liu, Jing; Stashko, Michael A.; Wang, Xiaodong

    2013-01-01

    We have developed an efficient and robust route to synthesize 4,5,7-trisubstituted pyrrolo[3,2-d]pyrimidines as potent kinase inhibitors. This solution-phase synthesis features a SNAr substitution reaction, cross-coupling reaction, one-pot reduction/reductive amination and N-alkylation reaction. These reactions occur rapidly with high yields and have broad substrate scopes. A variety of groups can be selectively introduced into the N5 and C7 positions of 4,5,7-trisubstituted pyrrolopyrimidines at a late stage of the synthesis, thereby providing a highly efficient approach to explore the structure-activity relationships of pyrrolopyrimidine derivatives. Four synthetic analogs have been profiled against a panel of 48 kinases and a new and selective FLT3 inhibitor 9 is identified. PMID:23181516

  13. Ultrasonic irradiation assisted efficient regioselective synthesis of CF3-containing pyrazoles catalyzed by Cu(OTf)2/Et3N

    PubMed Central

    2013-01-01

    Background Most of the known approaches to the synthesis of CF3-containing organic compounds suffer from serious drawbacks. For example the starting materials required for these methods are rather difficult to obtain, or they are fairly toxic and inconvenient to work with and methods for direct fluorination and trifluoromethylation do not always allow the introduction of the CF3-group at the required position of a molecule. Results An efficient and attractive regioselective synthesis of a series of novel pyrazoles containing the trifluromethyl moiety was achieved using Cu(OTf)2/Et3N as an efficient catalytic system under ultrasonic irradiation. Conclusions Cu(OTf)2/Et3N catalyst showed a great advantage over all the investigated catalysts, and the ultrasonic irradiation method offered high yields of pyrazoles in short reaction time compared with classical conditions. gHMBC spectra of the product were used to rationalize the observed regioselectivity. PMID:23764261

  14. Time- and energy-efficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity.

    PubMed

    Thomas, Abegayl; Janáky, Csaba; Samu, Gergely F; Huda, Muhammad N; Sarker, Pranab; Liu, J Ping; van Nguyen, Vuong; Wang, Evelyn H; Schug, Kevin A; Rajeshwar, Krishnan

    2015-05-22

    In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursor's influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each sample's photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation.

  15. Efficient Synthesis of Poly(hydroxyethyl Methacrylate)-b-Poly(dimethylaminoethyl Methacrylate) Block Copolymer by Atom Transfer Radical Polymerization.

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Loo, Yueh-Lin

    2009-03-01

    Polymers containing hydroxyethyl methacrylate (HEMA) and dimethylaminoethyl methacrylate (DMAEMA) have found wide applications in areas such as bioseparation, tissue engineering and controlled drug delivery. The controlled synthesis of block copolymers of PDMAEMA-b-PHEMA from PDMAEMA macroinitiator by atom transfer radical polymerization (ATRP), however, has not been successful due to the loss of chain end functionality during polymerization. We report an ATRP system that affords efficient chain extension from PDMAEMA to HEMA using Cu(0)/1,1,4,7,10,10-hexamethyltriethylenetetramine as the catalyst, 2-chloropropionitrile as the initiator in methanol at room temperature. A clear peak shift in the gel permeation chromatography trace towards shorter elution times indicates chain growth on HEMA addition. The chain end functionalities of PDMAEMA are thus retained and can be used to efficiently initiate chain extension reaction of HEMA. This new synthetic route opens new possibilities for the synthesis of pH- and temperature-responsive systems containing DMAEMA.

  16. Regioselective reductive cleavage of bis-benzylidene acetal: stereoselective synthesis of anticancer agent OGT2378 and glycosidase inhibitor 1,4-dideoxy-1,4-imino-l-xylitol.

    PubMed

    Aravind, Appu; Sankar, Muthukumar Gomathi; Varghese, Babu; Baskaran, Sundarababu

    2009-04-03

    A highly regioselective reductive cleavage of the bis-benzylidene acetal of D-mannitol was performed using a BF(3) x Et(2)O/Et(3)SiH reagent system. A chiral intermediate 6 thus obtained was efficiently utilized in the stereoselective synthesis of the anticancer agent OGT2378 (3) and glycosidase inhibitor derivative N-tosyl 1,4-dideoxy-1,4-imino-L-xylitol (22). Chemoselective reduction of azido epoxide 10 followed by regioselective intramolecular cyclization of amino epoxide 11 resulted in the exclusive formation of deoxyidonojirimycin derivative 12. By changing the order of deprotection, the chiral intermediate 6 was readily transformed to glycosidase inhibitor derivative 22.

  17. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides.

    PubMed

    Chatterjee, Tanmay; Ranu, Brindaban C

    2013-07-19

    Alumina-supported Cu(II) efficiently catalyzes selenylation of aryl iodides and aryl bromides by diaryl, dialkyl, and diheteroaryl diselenides in water and PEG-600, respectively, leading to a general route toward synthesis of unsymmetrical diaryl, aryl-alkyl, aryl-heteroaryl, and diheteroaryl selenides. A sequential reaction of bromoiodobenzene with one diaryl/diheteroaryl/dialkyl diselenide in water and another diaryl/diheteroaryl/dialkyl diselenide in PEG-600 in the second step produces unsymmetrical diaryl, diheteroaryl, or aryl-alkyl bis-selanyl benzene. A library of functionalized organo mono- and bis-selenides, including a potent biologically active molecule and a couple of analogues of bioactive selenides, were obtained in high yields by this protocol. The reactions are chemoselective and high yielding. The Cu-Al2O3 catalyst is recycled for seven runs without any appreciable loss of activity.

  18. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles.

    PubMed

    Tang, Lin; Guo, Xuefeng; Yang, Yu; Zha, Zhenggen; Wang, Zhiyong

    2014-06-11

    A highly efficient and selective reaction for the synthesis of 2-substituted benzoxazoles and benzimidazoles catalyzed by Au/TiO2 has been developed via two hydrogen-transfer processes. This reaction has a good tolerance to air and water, a wide substrate scope, and represents a new avenue for practical C-N and C-O bond formation. More importantly, no additional additives, oxidants and reductants are required for the reaction and the catalyst can be recovered and reused readily.

  19. A new and efficient synthesis of 6-O-methylscutellarein, the major metabolite of the natural medicine scutellarin.

    PubMed

    Zhang, Wei; Dong, Ze-Xi; Gu, Ting; Li, Nian-Guang; Zhang, Peng-Xuan; Wu, Wen-Yu; Yu, Shao-Peng; Tang, Yu-Ping; Yang, Jian-Ping; Shi, Zhi-Hao

    2015-06-02

    In this paper, a new and efficient synthesis of 6-O-methylscutellarein (3), the major metabolite of the natural medicine scutellarin, is reported. Two hydroxyl groups at C-4' and C-7 in 2 were selectively protected by chloromethyl methyl ether after the reaction conditions were optimized, then 6-O-methyl-scutellarein (3) was produced in high yield after methylation of the hydroxyl group at C-6 and subsequent deprotection of the two methyl ether groups.

  20. Efficient asymmetric synthesis of novel gastrin receptor antagonist AG-041R via highly stereoselective alkylation of oxindole enolates.

    PubMed

    Emura, Takashi; Esaki, Toru; Tachibana, Kazutaka; Shimizu, Makoto

    2006-10-27

    An efficient method for asymmetric synthesis of the potent Gastrin/CCK-B receptor antagonist AG-041R was developed. Core oxindole stereochemistry was established by asymmetric alkylation of oxindole enolates with bromoacetic acid esters, using l-menthol as a chiral auxiliary. The key alkylation reaction of the oxindole enolates generated tetrasubstituted chiral intermediates with high diastereoselectivity. The stereoselective alkylation reactions are described in detail.

  1. An efficient total synthesis of a potent anti-inflammatory agent, benzocamphorin F, and its anti-inflammatory activity.

    PubMed

    Liao, Yu-Ren; Kuo, Ping-Chung; Liang, Jun-Weil; Shen, Yuh-Chiang; Wu, Tian-Shung

    2012-01-01

    A naturally occurring enynyl-benzenoid, benzocamphorin F (1), from the edible fungus Taiwanofungus camphoratus (Antrodia camphorata) was characterized by comprehensive spectral analysis. It displays anti-inflammatory bioactivity and is valuable for further biological studies. The present study is the first total synthesis of benzocamphorin F and the developed strategy described is a more efficient procedure that allowe the large-scale production of benzocamphorin F for further research of the biological activity both in vitro and in vivo.

  2. An Efficient Total Synthesis of a Potent Anti-Inflammatory Agent, Benzocamphorin F, and Its Anti-Inflammatory Activity

    PubMed Central

    Liao, Yu-Ren; Kuo, Ping-Chung; Liang, Jun-Weil; Shen, Yuh-Chiang; Wu, Tian-Shung

    2012-01-01

    A naturally occurring enynyl-benzenoid, benzocamphorin F (1), from the edible fungus Taiwanofungus camphoratus (Antrodia camphorata) was characterized by comprehensive spectral analysis. It displays anti-inflammatory bioactivity and is valuable for further biological studies. The present study is the first total synthesis of benzocamphorin F and the developed strategy described is a more efficient procedure that allowe the large-scale production of benzocamphorin F for further research of the biological activity both in vitro and in vivo. PMID:22949872

  3. A modular synthesis of functionalised phenols enabled by controlled boron speciation.

    PubMed

    Molloy, John J; Law, Robert P; Fyfe, James W B; Seath, Ciaran P; Hirst, David J; Watson, Allan J B

    2015-03-14

    A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling.

  4. Lewis Acid Promoted Oxonium Ion Driven Carboamination of Alkynes for the Synthesis of 4-Alkoxy Quinolines.

    PubMed

    Gharpure, Santosh J; Nanda, Santosh K; Adate, Priyanka A; Shelke, Yogesh G

    2017-02-17

    Lewis acid mediated multisegment coupling cascade is designed for the synthesis of densely substituted 4-alkoxy quinolines via an oxonium ion triggered alkyne carboamination sequence involving C-C and C-N bond formations. Cyclic ether fused-quinolines could also be accessed using this fast, operationally simple, high yielding, chemoselective and functional group tolerant method. Versatility and utility of this methodology is demonstrated by postfunctionalization of products obtained and its use in synthesis of potent drug molecules.

  5. Organocatalytic Synthesis of Higher‐Carbon Sugars: Efficient Protocol for the Synthesis of Natural Sedoheptulose and d‐Glycero‐l‐galacto‐oct‐2‐ulose†

    PubMed Central

    Popik, Oskar; Pasternak‐Suder, Monika; Baś, Sebastian

    2015-01-01

    Abstract Herein we report a short and efficient protocol for the synthesis of naturally occurring higher‐carbon sugars—sedoheptulose (d‐altro‐hept‐2‐ulose) and d‐glycero‐l‐galacto‐oct‐2‐ulose—from readily available sugar aldehydes and dihydroxyacetone (DHA). The key step includes a diastereoselective organocatalytic syn‐selective aldol reaction of DHA with d‐erythrose and d‐xylose, respectively. The methodology presented can be expanded to the synthesis of various higher sugars by means of syn‐selective carbon–carbon‐bond‐forming aldol reactions promoted by primary‐based organocatalysts. For example, this methodology provided useful access to d‐glycero‐d‐galacto‐oct‐2‐ulose and 1‐deoxy‐d‐glycero‐d‐galacto‐oct‐2‐ulose from d‐arabinose in high yield (85 and 74 %, respectively) and high stereoselectivity (99:1). PMID:27308197

  6. Clean and efficient synthesis of O-silylcarbamates and ureas in supercritical carbon dioxide.

    PubMed

    Fuchter, Matthew J; Smith, Catherine J; Tsang, Melanie W S; Boyer, Alistair; Saubern, Simon; Ryan, John H; Holmes, Andrew B

    2008-05-14

    The synthesis of a family of O-silylcarbamates from the corresponding silylamines has been achieved simply by heating the silylamine in supercritical carbon dioxide (scCO2), and these O-silylcarbamates have been shown to be effective precursors for the synthesis of a range of symmetrical and unsymmetrical ureas.

  7. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion.

    PubMed

    Crawford, D E; Wright, L A; James, S L; Abbott, A P

    2016-03-18

    Mechanochemical synthesis has been applied to the rapid synthesis of Deep Eutectic Solvents (DESs), including Reline 200 (choline chloride : urea, 1 : 2), in a continuous flow methodology by Twin Screw Extrusion (TSE). This gave products in higher purity and with Space Time Yields (STYs), four orders of magnitude greater than for batch methods.

  8. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Kumar, Sumeet; Ojha, Animesh K.; Donfack, P.; Materny, A.

    2017-03-01

    In this work, we have performed a facile and controlled synthesis of WO3 nanorods and sheets in different crystal phases (triclinic, orthorhombic and monoclinic) of WO3 using the sol-gel method. The detailed structures of the synthesized materials were examined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy measurements. The shapes and crystal phases of the WO3 nanostructures were found to be highly dependent on the calcination temperature. The variation in crystalline phases and shapes is modified the electronic structure of the samples, which causes a variation in the value of optical band gap. The value of the Raman line intensity ratio I264/I320 has been successfully used to identify the structural transition from the triclinic to the orthorhombic phase of WO3. The PL spectra of the synthesized products excited at wavelengths 380, 400, and 420 nm exhibit intense emission peaks that cover the complete visible range (blue-green-red). The emission peaks at 460 and 486 nm were caused by the near band-edge and band to band transition, respectively. The peaks in spectral range 500-600 nm might be originated from the presence of oxygen vacancies lying within the energy band gap. The synthesized WO3 nanostructures showed improved photocatalytic activity for the photodegradation of MB dye. The enhanced photocatalytic activity of WO3 nanosheets compared to WO3 nanorods for photodegradation of methylene blue (MB) dye could be due to the shape of the nanostructured WO3. The sheet type of structure provides more active surface for the interaction of dye molecules compared to the rods, which results in a more efficient degradation of the dye molecules.

  9. Synthesis of a platform to access bistramides and their analogues.

    PubMed

    Commandeur, Malgorzata; Commandeur, Claude; Cossy, Janine

    2011-11-18

    The platform C14-C40, which can be used to prepare bistramide C and 39-oxobistramide K, was synthesized in 19 steps with an overall yield of 6.2%. Furthermore, the chemoselective reduction of the ketone at C-39 was performed giving an easy access to bistramides A, B, D, K, and L. Finally, the versatility of the synthesis of the C14-C40 fragment can allow the preparation of a large variety of stereoisomers to produce bistramide analogues.

  10. A practical and general synthesis of unsymmetrical terphenyls.

    PubMed

    Miguez, Jose M Antelo; Adrio, Luis Angel; Sousa-Pedrares, Antonio; Vila, Jose M; Hii, King Kuok Mimi

    2007-09-28

    A synthetic procedure was developed that enables sequential chemoselective Suzuki-Miyaura cross-coupling of chlorobromobenzene with arylboronic acids. The first coupling is achieved at room temperature using a ligandless palladium catalyst. The chlorobiaryl product can then be subjected directly to the second coupling, facilitated by the SPhos ligand. Using this methodology, parallel synthesis of 32 unsymmetrical o-, m-, and p-terphenyl compounds was accomplished in good to excellent overall yields.

  11. Asymmetric synthesis of dihydropyranones from ynones by sequential copper(I)-catalyzed direct aldol and silver(I)-catalyzed oxy-Michael reactions.

    PubMed

    Shi, Shi-Liang; Kanai, Motomu; Shibasaki, Masakatsu

    2012-04-16

    Ynones as diene surrogates: the asymmetric synthesis of enantiomerically enriched substituted dihydropyranones is described. The products are obtained in two steps by a copper(I)-catalyzed direct aldol reaction of ynones followed by a silver-catalyzed oxy-Michael reaction. This easy method is compatible with both aromatic and aliphatic substrates, and provides excellent chemoselectivity under mild reaction conditions.

  12. A practical approach to the synthesis of hairpin polyamide-peptide conjugates through the use of a safety-catch linker.

    PubMed

    Fattori, Daniela; Kinzel, Olaf; Ingallinella, Paolo; Bianchi, Elisabetta; Pessi, Antonello

    2002-04-22

    Hairpin polyamides are high-affinity, sequence selective DNA binders. The use of a safety-catch linker for the solid phase synthesis of hairpin polyamides allows for easy preparation of derivatives ready for chemoselective ligation with unprotected peptides. Examples of ligations reported include thioether bond formation and thioester-mediated amide bond formation ('Native Chemical Ligation').

  13. Rapid (∼10 min) synthesis of single-crystalline, nanorice TiO2 mesoparticles with a high photovoltaic efficiency of above 8%.

    PubMed

    Parmar, K P S; Ramasamy, Easwaramoorthi; Lee, Jinwoo; Lee, Jae Sung

    2011-08-14

    A novel rapid (∼10 min) microwave-hydrothermal synthesis is demonstrated for nanorice TiO(2) mesoparticles as an anode of a dye-sensitized solar cell with an excellent photovoltaic efficiency of above 8%.

  14. Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

    PubMed Central

    2015-01-01

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d−π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes. PMID:25379606

  15. Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development.

    PubMed

    Yu, Yanhao; Li, Zhaodong; Wang, Yunming; Gong, Shaoqin; Wang, Xudong

    2015-09-02

    Doping polymer with AlOx via sequential infiltration synthesis enables bulk modification of triboelectric polymers with tunable electric or dielectric properties, which broadens the material selection and achieves a durable performance gain of triboelectric nanogenerators.

  16. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  17. Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing.

    PubMed

    Kim, Heejin; Min, Kyoung-Ik; Inoue, Keita; Im, Do Jin; Kim, Dong-Pyo; Yoshida, Jun-ichi

    2016-05-06

    In chemical synthesis, rapid intramolecular rearrangements often foil attempts at site-selective bimolecular functionalization. We developed a microfluidic technique that outpaces the very rapid anionic Fries rearrangement to chemoselectively functionalize iodophenyl carbamates at the ortho position. Central to the technique is a chip microreactor of our design, which can deliver a reaction time in the submillisecond range even at cryogenic temperatures. The microreactor was applied to the synthesis of afesal, a bioactive molecule exhibiting anthelmintic activity, to demonstrate its potential for practical synthesis and production.

  18. Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - A green approach.

    PubMed

    Ganapathi, M; Jayaseelan, D; Guhanathan, S

    2015-11-01

    A conventional and microwave assisted efficient synthesis of diphenyl substituted pyrazole using PEG 600 as green solvent has been described. A relatively shorter reaction time with excellent yield of the piperidine mediated protocol has been attracted economically attractive and eco-friendly. All newly synthesized compounds were characterized by standard spectroscopic techniques viz., UV-visible, FT-IR, (1)H-NMR and Mass spectra. The anti-microbial activities of compounds have also been tested using Minimum Inhibitory Concentration (MIC) method with two different microorganisms Staphylococcus aureus (MTCC3381) and Escherichia coli (MTCC739). The results of the antimicrobial activity revealed that the diphenyl substituted pyrazole derivatives have nice inhibiting nature against both types of bacteria of present investigation than corresponding chalcones. Since, the work has been focused on green chemical approach towards the synthesis, this protocol may be recommended for eco-friendly applications.

  19. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.

    PubMed

    Melton, D A; Krieg, P A; Rebagliati, M R; Maniatis, T; Zinn, K; Green, M R

    1984-09-25

    A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).

  20. A green and efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using heteropolyanion-based ionic liquids: as a recyclable solid catalyst.

    PubMed

    Vahdat, Seyed Mohammad; Baghery, Saeed

    2013-09-01

    In this paper, we introduce two nonconventional ionic liquid compounds which are composed of propane sulfonate functionalized organic cations and heteropolyanions as green solid acid catalysts for the highly efficient and green synthesis of 2,3-disubstitutedquinoxaline derivatives. These ionic liquids are in the solid state at room temperature and the synthesis is carried out via the one-pot condensation reaction of various o-phenylenediamine with 1,2-diketone derivatives. Benzoxazole and benzimidazole derivatives were also synthesized by these novel catalysts via the one-pot condensation from reaction orthoester with o-aminophenol (synthesis of benzoxazole derivatives) and ophenylenediamine (synthesis of benzimidazole derivatives). All experiments successfully resulted in the desired products. The described novel synthesis method has several advantages of safety, mild condition, high yields, short reaction times, simplicity and easy workup compared to the traditional method of synthesis.

  1. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure

    SciTech Connect

    Li, Gao; Jiang, Deen; Kumar, Santosh; Chen, Yuxiang; Jin, Rongchao

    2014-01-01

    We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

  2. Modular and Stereodivergent Approach to Unbranched 1,5,9,n-Polyenes: Total Synthesis of Chatenaytrienin-4.

    PubMed

    Adrian, Juliane; Stark, Christian B W

    2016-09-16

    An iterative strategy for the stereodivergent synthesis of unbranched 1,5,9,n-polyenes (and -polyynes) was investigated. Starting from a terminal alkyne the iteration cycle consists of a C3 extension (allylation), a chemoselective hydroboration, an alkyne reduction, and an oxidation of the associated alcohol with subsequent C1 homologation. Double bond geometry is controlled using stereoselective alkyne reductions, employing either the Lindlar hydrogenation protocol or an aluminum hydride reduction. In a model sequence it was demonstrated that the strategy is applicable to the synthesis of 1,5,9,n-polyenes with any possible double bond configuration accessible in equally high efficiency and selectivity. It is worth noting that our approach does not require any protecting group chemistry. Furthermore, using the same strategy, the first total synthesis of chatenaytrienin-4, the proposed unsaturated biosynthetic precursor of the bis-THF acetogenin membranacin, was examined. Thus, the all-cis 1,5,9-triene natural product was prepared in 15 steps from commercially available starting materials in 6% overall yield.

  3. Enzymatic resolution of racemates with a 'remote' stereogenic center as an efficient tool in drug, flavor and vitamin synthesis.

    PubMed

    Alfaro Blasco, Maria; Gröger, Harald

    2014-10-15

    The enantioselective recognition of 'remote' stereogenic centers represents a scientific task in organic chemistry being also of current interest in the pharmaceutical industry. This is due to a range of pharmaceutically relevant molecules or intermediates thereof bearing a stereogenic center, which is separated from the functional group by a larger non-chiral moiety such as, for example, a longer sequence of bonds of at least three carbon or hetero-atoms or by a planar aromatic moiety. Notably, biocatalysis turned out to provide an excellent solution for a range of challenging syntheses in this field. For example, efficient enzymatic resolution processes of racemates with such a 'remote' stereogenic center were developed for the synthesis of pelitrexol, lasofoxifene and (S)-monastrol. In general, good yields accompanied by high enantioselectivities were obtained, thus underlining the tremendous potential of enzymes to recognize and enantioselectively transform enantiomers of racemates with 'remote' stereogenic centers. Such or similar types of stereoselective recognitions of 'remote' stereogenic centers by means of enzymes have been also reported in the field of flavor and vitamin synthesis. Thus, biocatalysis represents a promising solution for the efficient approach to enantiomerically pure complex chiral molecules with stereogenic centers being located apart from the functional group, and it can be expected that enzymatic resolution will be increasingly applied when searching for an efficient and also technically feasible process for also novel complex chiral molecules bearing a 'remote' stereogenic center.

  4. Screening Complex Biological Samples with Peptide Microarrays: The Favorable Impact of Probe Orientation via Chemoselective Immobilization Strategies on Clickable Polymeric Coatings.

    PubMed

    Gori, Alessandro; Sola, Laura; Gagni, Paola; Bruni, Giulia; Liprino, Marta; Peri, Claudio; Colombo, Giorgio; Cretich, Marina; Chiari, Marcella

    2016-11-16

    The generation of robust analytical data using microarray platforms strictly relies on optimal ligand-target interaction at the sensor surface, which, in turn, is inherently bound to the correct immobilization scheme of the interrogated bioprobes. In the present work, we performed a rigorous comparative analysis of the impact of peptide ligands immobilization strategy in the screening of Burkholderia cepacia complex (BCC) infections in patients affected by cystic fibrosis (CF). We generated arrays of previously validated Burkholderia derived peptide probes that were selectively oriented on polymeric coatings by means of different click-type reactions including thiol maleimide, copper-catalyzed azide-alkyne cycloaddition (CuAAC), and strain-promoted azide-alkyne cycloaddition (SPAAC). We compared immobilization efficiency among the different chemoselective reactions, and we evaluated diagnostic performances at a statistically significant level, also in contrast to random immobilization strategies. Our findings clearly support the favorable role of correct bioprobe orientation in discriminating seronegative from infected individuals and, in the last analysis, in generating more-reliable and more-reproducible data. Spacing biomolecules from the sensor surface by means of small hydrophilic linkers also positively affects the analytical performance and leads to increased statistical significance of data. Overall, all of the click immobilization strategies that were considered displayed a good efficiency. Interestingly, SPAAC-mediated conjugation using DBCO cyclooctyne for some peptides resulted in sequence-dependent autofluorescence in the Cy5 emission range wavelength, which could be circumvented by using a different fluorescence detection channel. On the basis of our results, we critically discuss the immobilization parameters that need to be carefully considered for peptide ligand immobilization purposes.

  5. Regioselective de novo synthesis of cyanohydroxypyridines with a concerted cycloaddition mechanism.

    PubMed

    Lu, Jin-Yong; Keith, John A; Shen, Wei-Zheng; Schürmann, Markus; Preut, Hans; Jacob, Timo; Arndt, Hans-Dieter

    2008-10-08

    An efficient cycloaddition reaction of 1-alkoxy-1-azadienes with alpha,alpha-dicyanoalkenes is described, which gives facile access to highly substituted 3-hydroxypyridines in very good yields and with complete regiocontrol and chemoselectivity. The reaction path was investigated in detail by quantum mechanics calculations, reporting that a concerted cycloaddition mechanism and thermodynamic control synergistically contribute to the observed selectivity.

  6. Short and Efficient Synthesis of Alkyl- and Aryl-Ortho-Hydroxy-Anilides and their Antibiotic Activity

    PubMed Central

    Krauß, Jürgen; Plesch, Eva; Clausen, Sabine; Bracher, Franz

    2014-01-01

    Abstract Ortho-hydroxy-anilides are part of natural products like the new antibiotics platencin (A) and platensimycin (B). An important step in the total synthesis of these antibiotics or their derivatives is the preparation of the o-hydroxy-anilide partial structure. The presented method allows the preparation of o-hydroxy-anilides and o-dihydroxy-anilides from 2-nitrophenol esters in a one-step synthesis without protecting the hydroxy group. Aryl- and alkyl-anilides were prepared following this method as simple analogues of platensimycin (A). The resulting compounds were tested in an agar diffusion assay for their antibiotic potency. PMID:25853064

  7. Efficient room temperature aqueous Sb2S3 synthesis for inorganic-organic sensitized solar cells with 5.1% efficiencies.

    PubMed

    Gödel, Karl C; Choi, Yong Chan; Roose, Bart; Sadhanala, Aditya; Snaith, Henry J; Seok, Sang Il; Steiner, Ullrich; Pathak, Sandeep K

    2015-05-21

    Sb2S3 sensitized solar cells are a promising alternative to devices employing organic dyes. The manufacture of Sb2S3 absorber layers is however slow and cumbersome. Here, we report the modified aqueous chemical bath synthesis of Sb2S3 absorber layers for sensitized solar cells. Our method is based on the hydrolysis of SbCl3 to complex antimony ions decelerating the reaction at ambient conditions, in contrast to the usual low temperature deposition protocol. This simplified deposition route allows the manufacture of sensitized mesoporous-TiO2 solar cells with power conversion efficiencies up to η = 5.1%. Photothermal deflection spectroscopy shows that the sub-bandgap trap-state density is lower in Sb2S3 films deposited with this method, compared to standard deposition protocols.

  8. Tailor Made Synthesis of T-Shaped and π-STACKED Dimers in the Gas Phase: Concept for Efficient Drug Design and Material Synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Das, Aloke

    2013-06-01

    Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.

  9. Fast and efficient synthesis of microporous polymer nanomembranes via light-induced click reaction

    PubMed Central

    An, Qi; Hassan, Youssef; Yan, Xiaotong; Krolla-Sidenstein, Peter; Mohammed, Tawheed; Lang, Mathias; Bräse, Stefan

    2017-01-01

    Conjugated microporous polymers (CMPs) are materials of low density and high intrinsic porosity. This is due to the use of rigid building blocks consisting only of lightweight elements. These materials are usually stable up to temperatures of 400 °C and are chemically inert, since the networks are highly crosslinked via strong covalent bonds, making them ideal candidates for demanding applications in hostile environments. However, the high stability and chemical inertness pose problems in the processing of the CMP materials and their integration in functional devices. Especially the application of these materials for membrane separation has been limited due to their insoluble nature when synthesized as bulk material. To make full use of the beneficial properties of CMPs for membrane applications, their synthesis and functionalization on surfaces become increasingly important. In this respect, we recently introduced the solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed azide–alkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we present the synthesis of surface grown CMP thin films and nanomembranes via light induced thiol–yne click reaction. Using this reaction, we could greatly enhance the CMP nanomembrane synthesis and further broaden the variability of the LbL approach.

  10. Selective synthesis of vitamin K3 over mesoporous NbSBA-15 catalysts synthesized by an efficient hydrothermal method.

    PubMed

    Selvaraj, M; Park, D-W; Kim, I; Kawi, S; Ha, C S

    2012-08-28

    Well hexagonally ordered NbSBA-15 catalysts synthesized by an efficient hydrothermal method were used, for the first time, for the selective synthesis of vitamin K(3) by liquid-phase oxidation of 2-methyl-1-naphthol (2MN1-OH) under various reaction conditions. The recyclable NbSBA-15 catalysts were also reused to find their catalytic activities. To investigate the leaching of non-framework niobium species on the surface of silica networks, the results of original and recyclable NbSBA-15 catalysts were correlated and compared. To find an optimum condition for the selective synthesis of vitamin K(3), the washed NbSBA-15(2.2pH) was extensively used in this reaction with various reaction parameters such as temperature, time and ratios of reactant (2M1N-OH to H(2)O(2)), and the obtained results were also demonstrated. Additionally, the liquid-phase oxidation of 2M1N-OH was carried out with different solvents to find the best solvent with a good catalytic activity. Based on the all catalytic studies, the vitamin K(3) selectivity (97.3%) is higher in NbSBA-15(2.2pH) than that of other NbSBA-15 catalysts, and the NbSBA-15(2.2pH) is found to be a highly active and eco-friendly heterogeneous catalyst for the selective synthesis of vitamin K(3).

  11. Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal.

    PubMed

    Xu, Jiaxing; Sun, Honglin; He, Xuejun; Bai, Zhongzhong; He, Bingfang

    2013-02-01

    An efficient enzymatic synthesis of endomorphin-2 (EM-2) was achieved using organic solvent stable proteases in nonaqeous media, based on thermodynamic control and an in situ product removal methodology. The high stability of biocatalysts in organic solvents enabled the aleatoric modulation of the nonaqueous reaction media to shift thermodynamic equilibrium toward synthesis. Peptide Boc-Phe-Phe-NH2 was synthesized with a high yield of 96% by the solvent stable protease WQ9-2 in monophase medium with an economical molar ratio of the substrate of 1:1. The tetrapeptide Boc-Tyr-Pro-Phe-Phe-NH2 was synthesized with a yield of 88% by another organic solvent tolerant protease PT121 from Boc-Tyr-Pro-OH and Phe-Phe-NH2 in an organic-aqueous biphasic system. The reaction-separation coupling in both enzymatic processes provides "driving forces" for the synthetic reactions and gives a high yield and high productivity without purification of the intermediate, thereby making the synthesis more amenable to scale-up.

  12. Efficient Cu(OTf)2-catalyzed synthesis of novel and diverse 2,3-dihydroquinazolin-4(1H)-ones.

    PubMed

    Zhu, Xiaoyan; Kang, So Rang; Xia, Likai; Lee, Jihye; Basavegowda, Nagaraj; Lee, Yong Rok

    2015-02-01

    An efficient one-pot synthesis of various 2,3-dihydroquinazolin-4(1H)-one derivatives was accomplished using Cu(OTf)2-catalyzed multi-component reactions between isatoic anhydride, ketones, and amines. The method has several significant advantages; mild reaction conditions, easy handling, and efficiency of catalyst.

  13. Highly efficient coupling of beta-substituted aminoethane sulfonyl azides with thio acids, toward a new chemical ligation reaction.

    PubMed

    Merkx, Remco; Brouwer, Arwin J; Rijkers, Dirk T S; Liskamp, Rob M J

    2005-03-17

    [reaction: see text] A highly efficient coupling of protected beta-substituted aminoethane sulfonyl azides with thio acids is reported. In the case of peptide thio acids, this method encompasses a new chemoselective ligation method. Furthermore, the resulting alpha-amino acyl sulfonamides can be alkylated with suitable electrophiles to obtain densely functionalized sulfonamide scaffolds.

  14. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions.

    PubMed

    Cheong, Seokjung; Clomburg, James M; Gonzalez, Ramon

    2016-05-01

    Anabolic metabolism can produce an array of small molecules, but yields and productivities are low owing to carbon and energy inefficiencies and slow kinetics. Catabolic and fermentative pathways, on the other hand, are carbon and energy efficient but support only a limited product range. We used carbon- and energy-efficient non-decarboxylative Claisen condensation reactions and subsequent β-reduction reactions, which can accept a variety of functionalized primers and functionalized extender units and operate in an iterative manner, to synthesize functionalized small molecules. Using different ω- and ω-1-functionalized primers and α-functionalized extender units in combination with various termination pathways, we demonstrate the synthesis of 18 products from 10 classes, including ω-phenylalkanoic, α,ω-dicarboxylic, ω-hydroxy, ω-1-oxo, ω-1-methyl, 2-methyl, 2-methyl-2-enolic and 2,3-dihydroxy acids, β-hydroxy-ω-lactones, and ω-1-methyl alcohols.

  15. Continuous-Flow Microwave Synthesis of Metal-Organic Frameworks: A Highly Efficient Method for Large-Scale Production.

    PubMed

    Taddei, Marco; Steitz, Daniel Antti; van Bokhoven, Jeroen Anton; Ranocchiari, Marco

    2016-03-01

    Metal-organic frameworks are having a tremendous impact on novel strategic applications, with prospective employment in industrially relevant processes. The development of such processes is strictly dependent on the ability to generate materials with high yield efficiency and production rate. We report a versatile and highly efficient method for synthesis of metal-organic frameworks in large quantities using continuous flow processing under microwave irradiation. Benchmark materials such as UiO-66, MIL-53(Al), and HKUST-1 were obtained with remarkable mass, space-time yields, and often using stoichiometric amounts of reactants. In the case of UiO-66 and MIL-53(Al), we attained unprecedented space-time yields far greater than those reported previously. All of the syntheses were successfully extended to multi-gram high quality products in a matter of minutes, proving the effectiveness of continuous flow microwave technology for the large scale production of metal-organic frameworks.

  16. Total synthesis of the thiopeptide antibiotic amythiamicin D.

    PubMed

    Hughes, Rachael A; Thompson, Stewart P; Alcaraz, Lilian; Moody, Christopher J

    2005-11-09

    The thiopeptide (or thiostrepton) antibiotics are a class of sulfur containing highly modified cyclic peptides with interesting biological properties, including reported activity against MRSA and malaria. Described herein is the total synthesis of the thiopeptide natural product amythiamicin D, which utilizes a biosynthesis-inspired hetero-Diels-Alder route to the pyridine core of the antibiotic as a key step. Preliminary studies using a range of serine-derived 1-ethoxy-2-azadienes established that hetero-Diels-Alder reaction with N-acetylenamines proceeded efficiently under microwave irradiation to give 2,3,6-trisubstituted pyridines. The thiazole building blocks of the antibiotic were obtained by either classical Hantzsch reactions or by dirhodium(II)-catalyzed chemoselective carbene N-H insertion followed by thionation, and were combined to give the bis-thiazole that forms the left-hand fragment of the antibiotic. The key Diels-Alder reaction of a tris-thiazolyl azadiene with benzyl 2-(1-acetylaminoethenyl)thiazole-4-carboxylate gave the core tetrathiazolyl pyridine, which was elaborated into the natural product by successive incorporation of glycine and bis-thiazole fragments followed by macrocyclization.

  17. Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans.

    PubMed

    Huang, Wei; Li, Cishan; Li, Bing; Umekawa, Midori; Yamamoto, Kenji; Zhang, Xinyu; Wang, Lai-Xi

    2009-02-18

    Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-beta-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprotein synthesis, but the wild-type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. In this article, we report studies of two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness in constructing homogeneous N-glycoproteins carrying natural N-glycans. The oligosaccharide oxazoline corresponding to the biantennary complex-type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex-type glycan oxazoline to a GlcNAc peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A mutant did not recognize the complex-type N-glycan oxazoline but could efficiently use the high-mannose-type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man(9)GlcNAc oxazoline and the product as well as to its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a highly efficient synthesis of homogeneous natural N-glycoproteins.

  18. Glycosynthases Enable a Highly Efficient Chemoenzymatic Synthesis of N-Glycoproteins Carrying Intact Natural N-Glycans

    PubMed Central

    Huang, Wei; Li, Cishan; Li, Bing; Umekawa, Midori; Yamamoto, Kenji; Zhang, Xinyu; Wang, Lai-Xi

    2009-01-01

    Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-β-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds a great potential for glycoprotein synthesis, but the wild type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. We report in this article the studies on two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness for constructing homogeneous N-glycoproteins carrying natural N-glycans. Oligosaccharide oxazoline corresponding to the bi-antennary complex type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex type glycan oxazoline to a GlcNAc-peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A did not recognize complex type N-glycan oxazoline but could efficient use the high-mannose type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man9GlcNAc oxazoline and the product, as well as its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a high efficient synthesis of homogeneous natural N-glycoproteins. PMID:19199609

  19. Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh(111)

    NASA Astrophysics Data System (ADS)

    Gibson, K. D.; Viste, M.; Sibener, S. J.

    2006-10-01

    Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh(111) catalytic substrate, CH4+(1/2)O2→CO +2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than ˜1.3eV. Comparison with a simplified model of the methane-Rh(111) reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO +2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions.

  20. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor.

    PubMed

    Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin

    2015-01-01

    Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy.

  1. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice.

    PubMed

    Shi, Yanyun; Liu, Xiangling; Li, Rui; Gao, Yaping; Xu, Zuopeng; Zhang, Baocai; Zhou, Yihua

    2014-07-01

    The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency.

  2. Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide.

    PubMed

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-08-20

    High quality graphene oxide (GO) with low layer number (less than five layers) and large inter-layer space was produced via a new and efficient method using environmentally friendly, fast and economic ultrasonic radiation. The ultrasonic method neither generated any toxic gas nor required any NaNO3, which have been the main drawbacks of the Hummers methods. The major obstacles of the recently reported improved Hummers method for GO synthesis, such as high reaction temperature (50°C) and long reaction time (12h), were successfully solved using a low intensity-ultrasonic bath for 45min at 30°C, which significantly reduced the reaction time and energy consumption for GO synthesis. Furthermore, ultrasonic GO exhibited higher surface area, higher crystallinity and higher oxidation efficiency with many hydrophilic groups, fewer sheets with higher spaces between them, a higher sp(3)/sp(2) ratio, and more uniform size distribution than classically prepared GO. Therefore, the new ultrasonic method could be applicable for the sustainable and large-scale production of GO. The production yield of the ultrasonic-assisted GO was 1.25-fold greater than the GO synthesized with the improved Hummers method. Furthermore, the required production cost based on total energy consumption for ultrasonic GO was only 6.5% of that for classical GO.

  3. Scalable Synthesis of Cortistatin A and Related Structures

    PubMed Central

    Shi, Jun; Manolikakes, Georg; Yeh, Chien-Hung; Guerrero, Carlos A.; Shenvi, Ryan A.; Shigehisa, Hiroki

    2011-01-01

    Full details are provided for an improved synthesis of cortistatin A and related structures as well as the underlying logic and evolution of strategy. The highly functionalized cortistatin A-ring embedded with a key heteroadamantane was synthesized by a simple and scalable 5-step sequence. A chemoselective, tandem geminal dihalogenation of an unactivated methyl group, a reductive fragmentation/trapping/elimination of a bromocyclopropane, and a facile chemoselective etherification reaction afforded the cortistatin A core, dubbed “cortistatinone”. A selective Δ16-alkene reduction with Raney Ni provided cortistatin A. With this scalable and practical route, copious quantities of cortistatinone, Δ16-cortistatin A-the equipotent direct precursor to cortistatin A, and its related analogs were prepared for further biological studies. PMID:21539314

  4. Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor.

    PubMed

    Pandey, Sadanand; Goswami, Gopal K; Nanda, Karuna K

    2013-04-15

    A low cost eco-friendly method for the synthesis of gold nanoparticles (AuNPs) using guar gum (GG) as a reducing agent is reported. The nanoparticles obtained are characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on these results, a potential mechanism for this method of AuNPs synthesis is discussed. GG/AuNPs nanocomposite (GG/AuNPs NC) was exploited for optical sensor for detection of aqueous ammonia based on surface plasmon resonance (SPR). It was found to have good reproducibility, response times of ∼10 s and excellent sensitivity with a detection limit of 1ppb (parts-per-billion). This system allows the rapid production of an ultra-low-cost GG/AuNPs NC-based aqueous ammonia sensor.

  5. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  6. Remarkable effect of 2,2'-bipyridyl: mild and highly chemoselective deprotection of methoxymethyl (MOM) ethers in combination with TMSOTf (TESOTf)-2,2'-bipyridyl.

    PubMed

    Fujioka, Hiromichi; Kubo, Ozora; Senami, Kento; Minamitsuji, Yutaka; Maegawa, Tomohiro

    2009-08-07

    The remarkable effect of 2,2'-bipyridyl led to the successful development of the mild and highly chemoselective deprotection method of methoxymethyl (MOM) ethers using the combination of TMSOTf (or TESOTf) and 2,2'-bipyridyl; this method can be applied to the direct conversion of the MOM group to other ethereal protective groups (e.g. benzyloxymethyl) with the corresponding alcohols.

  7. Chemoselectivity in Chemical Biology: Acyl Transfer Reactions with Sulfur and Selenium

    PubMed Central

    2012-01-01

    form an amide. We first reported this chemical ligation method, which leaves no residual atoms in the product, in 2000. Our progress in effecting the reaction in water, without an organic cosolvent, was an important step in the expansion of its utility. Moreover, we have developed the traceless Staudinger reaction as a means for immobilizing proteins on a solid support, providing a general method of fabricating microarrays that display proteins in a uniform orientation. Along with NCL and EPL, the traceless Staudinger ligation has made proteins more readily accessible targets for chemical synthesis and semisynthesis. The underlying acyl transfer reactions with sulfur and selenium provide an efficient means to synthesize, remodel, and immobilize proteins, and they have enabled us to interrogate biological systems. PMID:21639109

  8. Pd/Cu cooperative catalysis: an efficient synthesis of (3-isoindazolyl)allenes via cross-coupling of 2-alkynyl azobenzenes and terminal alkynes.

    PubMed

    Zhu, Chuan; Feng, Chao; Yamane, Motoki

    2017-02-23

    An efficient synthesis of (3-isoindazolyl)allenes from 2-alkynyl azobenzenes and terminal alkynes via cooperative Pd(PPh3)2Cl2/CuI-catalyzed cross-coupling has been developed. By making use of this approach, (3-isoindazolyl)allenes with various substituents can be synthesized in good to excellent yields. A rapid synthesis of biologically active indazolo[2,3-a]quinoline was also achieved using this method as the key step.

  9. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    SciTech Connect

    Nelson, Nicholas Cole

    2013-01-01

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni⊂SiO2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni⊂SiO2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs

  10. Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas Cole

    The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni⊂SiO2) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni0 nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni⊂SiO2 nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline

  11. Scalable and chromatography-free synthesis of 2-(2-formylalkyl)arenecarboxylic acid derivatives through the supramolecularly controlled hydroformylation of vinylarene-2-carboxylic acids.

    PubMed

    Dydio, Paweł; Reek, Joost N H

    2014-05-01

    This protocol describes how to prepare 2-(2-formylalkyl)-arenecarboxylic acid derivatives, common building blocks for the synthesis of various valuable chemicals (e.g., anti-obesity and Alzheimer's disease treatment pharmaceuticals), by using the fully regioselective hydroformylation of vinyl arene derivatives. This catalytic reaction proceeds cleanly with 100% regioselectivity and chemoselectivity. The procedure is reliably scalable and can be efficiently conducted on a multigram scale. The analytically pure product is easily isolated with a nearly quantitative yield by using a simple acid-base extraction workup and avoids any tedious chromatography. This protocol details the synthesis of a bisphosphite ligand (L1) that is a pivotal element of the catalytic system used, Rh(acac)(CO)2 with ligand L1, starting from commercial building blocks. The protocol also describes a general procedure for the preparative hydroformylation of vinylarene-2-carboxylic acid derivatives to 2-formylalkylarene products, providing a representative example for the hydroformylation of 2-vinylbenzoic acid (1a) to 2-(3-oxopropane)-benzoic acid (2a). The synthesis of L1 (six chemical reactions) uses 2-nitrophenylhydrazine, 4-benzyloxybenzoylchloride and (S)-binol, and takes 5-7 working days. The actual hydroformylation reaction of each vinyl arene derivative takes ∼4 h of active effort over a period of 1-3 d.

  12. A novel and efficient samarium iodide-mediated synthesis of neoflavonoids (4-arycloumarins)

    SciTech Connect

    Nagasawa, Kazuo; Ryohke, Hirosi; Ohnishi, Makoto; Ito, Keiichi

    1995-12-31

    Bioactive 4-arylcoumarins (4-aryl-2H-1-benzopyran-2-ones) have been recently isolated from the plants belonging to the families like Leguminosae, Guttiferae, and Compositae, some of which are still used as the traditional folk medicine. Despite many methods reported so far, there appears to be of limited success or of no success in some cases (II{sub b-g}) and, therefore, a simpler and more reliable one remains to be highly desired. Thus, a new and sterling protocol is now presented for the synthesis of neoflavonoids, which involves the intramolecular Reformatsky-type reaction via a one electron transfer process with samarium diiodide as a key step.

  13. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D. V. S.; Sharma, Rohit K.

    2014-10-01

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  14. Simple, general, and efficient synthesis of meso-substituted borondipyrromethenes from a single platform.

    PubMed

    Peña-Cabrera, Eduardo; Aguilar-Aguilar, Angélica; Gonzalez-Domínguez, Martha; Lager, Erik; Zamudio-Vazquez, Rubí; Godoy-Vargas, Jazmín; Villanueva-García, Fabian

    2007-09-27

    An unprecedented synthesis of 8-substituted-borondipyrromethenes is described starting from 8-thiomethylbodipy 1. Aryl, heteroaryl, alkenyl, and organometallic boronic acids smoothly reacted with 1 in the presence of a catalytic amount of Pd(0) and a stoichiometric amount of Cu(I)-2-thienylcarboxylate under neutral conditions to give the corresponding Bodipy analogues in good to quantitative yields (20 examples). A remarkable reactivity was observed in some cases, e.g., ferrocenylboronic acid gave the product in 98% isolated yield after only 10 min at 55 degrees C.

  15. KF/Clinoptilolite: an efficient promoter for the synthesis of thioethers.

    PubMed

    Salmanpour, Sadegh; Khalilzadeh, Mohammad A; Hosseini, Abolfazl

    2013-06-01

    Potassium fluoride impregnated on natural zeolite as a new solid base system effectively catalyzes the coupling of thiophenols with electron-deficient fluoro-, chloro- and bromo-arenes in DMSO. This versatile and efficient solid base has been demonstrated to afford the corresponding desired products in good to excellent yields. This procedure provides a convenient, efficient and practical method for the preparation of diaryl thioethers.

  16. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    PubMed

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  17. Efficient Synthesis of Nicotinamide-1-15N for Ultrafast NMR Hyperpolarization Using Parahydrogen

    PubMed Central

    2016-01-01

    Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-15N with an excellent isotopic purity (98%) and good yield (55%). 15N nuclear spin label in nicotinamide-1-15N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20 000-fold for nicotinamide-1-15N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc.2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-15N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of 15N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies. PMID:26999571

  18. Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

    PubMed Central

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio

    2015-01-01

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  19. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR.

  20. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation

    PubMed Central

    KAWASHIMA, NAGAKO; QU, HUANHUAN; LOBATON, MARLIN; ZHU, ZHENYUAN; SOLLOGOUB, MATTHIEU; CAVENEE, WEBSTER K.; HANDA, KAZUKO; HAKOMORI, SEN-ITIROH; ZHANG, YONGMIN

    2014-01-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([3H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2–7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR. PMID:24944646

  1. Efficient synthesis of chloro-derivatives of sialosyllactosylceramide, and their enhanced inhibitory effect on epidermal growth factor receptor activation.

    PubMed

    Kawashima, Nagako; Qu, Huanhuan; Lobaton, Marlin; Zhu, Zhenyuan; Sollogoub, Matthieu; Cavenee, Webster K; Handa, Kazuko; Hakomori, Sen-Itiroh; Zhang, Yongmin

    2014-04-01

    Glycosphingolipids are components of essentially all mammalian cell membranes and are involved in a variety of significant cellular functions, including proliferation, adhesion, motility and differentiation. Sialosyllactosylceramide (GM3) is known to inhibit the activation of epidermal growth factor receptor (EGFR). In the present study, an efficient method for the total chemical synthesis of monochloro- and dichloro-derivatives of the sialosyl residue of GM3 was developed. The structures of the synthesized compounds were fully characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In analyses of EGFR autophosphorylation and cell proliferation ([(3)H]-thymidine incorporation) in human epidermoid carcinoma A431 cells, two chloro-derivatives exhibited stronger inhibitory effects than GM3 on EGFR activity. Monochloro-GM3, but not GM3 or dichloro-GM3, showed a significant inhibitory effect on ΔEGFR, a splicing variant of EGFR that lacks exons 2-7 and is often found in human glioblastomas. The chemical synthesis of other GM3 derivatives using approaches similar to those described in the present study, has the potential to create more potent EGFR inhibitors to block cell growth or motility of a variety of types of cancer that express either wild-type EGFR or ΔEGFR.

  2. Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-γ-lactamase as a catalyst.

    PubMed

    Gao, Shuaihua; Zhu, Shaozhou; Huang, Rong; Lu, Yingxiu; Zheng, Guojun

    2015-09-15

    The enantiomers of 2-azabicyclo[2.2.1]hept-5-en-3-one (γ-lactam) are key chiral synthons in the synthesis of antiviral drugs such as carbovir and abacavir. (+)-γ-Lactamase can be used as a catalyst in the enzymatic preparation of optically pure (-)-γ-lactam. Here, a (+)-γ-lactamase discovered from Bradyrhizobium japonicum USDA 6 by sequence-structure guided genome mining was cloned, purified and characterized. The enzyme possesses a significant catalytic activity towards γ-lactam. The active site of the (+)-γ-lactamase was studied by homologous modeling and molecular docking, and the accuracy of the prediction was confirmed by site-specific mutagenesis. The (+)-γ-lactamase reveals the great practical potential as an enzymatic method for the efficient production of carbocyclic nucleosides of pharmaceutical interest.

  3. Synthesis of TiO2 microspheres building on the etherification and its application for high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Shi-Dong; Ren, Ying-Ke; Zhou, Zheng; Chen, Wang-Chao; Li, Zhao-Qian; Guo, Fu-Ling; Mo, Li-E.; Wu, Ji-Huai; Hu, Lin-Hua; Dai, Song-Yuan

    2016-10-01

    This paper describes a facile solvothermal method to synthesize TiO2 microspheres by employing ethylene glycol monomethyl ether and ethylene glycol as solvent. By analyzing the resulted supernatant after reaction, it was proved that the etherification reaction of glycol monomethyl ether and the ligand exchange between ethylene glycol and tetra-n-butyl titanate played a key role in synthesis of TiO2 microspheres. These as-obtained TiO2 microspheres exhibited high specific surface area up to 113.24 m2 g-1 and have a narrow pore size distribution (6.94 nm). When applied to the photoanode, the TiO2 microsphere-based dye-sensitized solar cells achieved a high power conversion efficiency up to 10.25%.

  4. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  5. Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae.

    PubMed

    Giordano, Mario; Palmucci, Matteo; Raven, John A

    2015-11-01

    The growth rate hypothesis (GRH) predicts a positive correlation between growth rate and RNA content because growth depends upon the protein synthesis machinery. The application of this hypothesis to photoautotrophic organisms has been questioned. We tested the GRH on one prasinophycean, Tetraselmis suecica, and one chlorophycean, Dunaliella salina, grown at three sulphate concentrations. Sulphate was chosen because its concentration in the oceans increased through geological time and apparently had a role in the evolutionary trajectories of phytoplankton. Cell protein content and P quota were positively related to the RNA content (r = 0.62 and r = 0.74, respectively). The correlation of the RNA content with growth rates (r = 0.95) indicates that the GRH was valid for these species when growth rates were below 0.82 d(-1) .

  6. Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts.

    SciTech Connect

    Wang, C.; Chi, M.; Li, D.; van der Vliet, D.; Wang, G.; Lin, Q.; Mitchell, J.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R.

    2011-01-01

    Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt{sub 3}M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt{sub 3}M nanocatalysts validated the volcano curve established on extended surfaces, with Pt{sub 3}Co being the most active alloy.

  7. Fast and efficient MCR-based synthesis of clickable rhodamine tags for protein profiling.

    PubMed

    Brauch, Sebastian; Henze, Michael; Osswald, Bianca; Naumann, Kai; Wessjohann, Ludger A; van Berkel, Sander S; Westermann, Bernhard

    2012-02-07

    Protein profiling probes are important tools for studying the composition of the proteome and as such have contributed greatly to the understanding of various complex biological processes in higher organisms. For this purpose the application of fluorescently labeled activity or affinity probes is highly desirable. Especially for in vivo detection of low abundant target proteins, otherwise difficult to analyse by standard blotting techniques, fluorescently labeled profiling probes are of high value. Here, a one-pot protocol for the synthesis of activated fluorescent labels (i.e. azide, alkynyl or NHS), based on the Ugi-4-component reaction (Ugi-4CR), is presented. As a result of the peptoidic structure formed, the fluorescent properties of the products are pH insensitive. Moreover, the applicability of these probes, as exemplified by the labeling of model protein BSA, will be discussed.

  8. An efficient green synthesis of 2-arylbenzothiazole analogues as potent antibacterial and anticancer agents.

    PubMed

    Chhabra, Mohit; Sinha, Sohini; Banerjee, Swagata; Paira, Priyankar

    2016-01-01

    We have demonstrated a novel and green approach for the synthesis of 2-substituted benzothiazole analogues. A number of 2-aryl and heteroaryl benzothiazole scaffolds were synthesized using Amberlite IR-120 resin under microwave irradiation. The catalytic role and reusability of the resin was well established here. 2-Substituted benzothiazole analogues (3a-l) were also tested against several bacterial strains (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Salmonella) and cancer cell lines (MCF-7 and HeLa). The stability of compound 2-phenyl benzothiazole (3a) and 2-pyridin-2-yl-benzothiazole (3k) in GSH (0.01mM dissolved in DMSO) was measured by UV-Vis spectroscopy. Compound 3k also shows remarkable fluorescence in MeOH.

  9. Efficient Synthesis of Dimethyl Ether from Methanol in a Bifunctional Zeolite Membrane Reactor.

    PubMed

    Zhou, Chen; Wang, Nanyi; Qian, Yanan; Liu, Xiaoxing; Caro, Jürgen; Huang, Aisheng

    2016-10-04

    A sandwich FAU-LTA zeolite dual-layer membrane has been developed and used as a catalytic membrane reactor for the synthesis of dimethyl ether (DME). In the top H-FAU layer with mild acidity, methanol is dehydrated to DME. The other reaction product, water, is removed in situ through a hydrophilic Na-LTA layer, which is located between the porous alumina support and the H-FAU top layer. The combination of mild acidity with the continuous removal of water results in high methanol conversion (90.9 % at 310 °C) and essentially 100 % DME selectivity. Furthermore, owing to the selective and continuous removal of water through the Na-LTA membrane, catalyst deactivation can be effectively suppressed.

  10. Exploiting Deep Eutectic Solvents and Organolithium Reagent Partnerships: Chemoselective Ultrafast Addition to Imines and Quinolines Under Aerobic Ambient Temperature Conditions.

    PubMed

    Vidal, Cristian; García-Álvarez, Joaquín; Hernán-Gómez, Alberto; Kennedy, Alan R; Hevia, Eva

    2016-12-23

    Shattering the long-held dogma that organolithium chemistry needs to be performed under inert atmospheres in toxic organic solvents, chemoselective addition of organolithium reagents to non-activated imines and quinolines has been accomplished in green, biorenewable deep eutectic solvents (DESs) at room temperature and in the presence of air, establishing a novel and sustainable access to amines. Improving on existing methods, this approach proceeds in the absence of additives; occurs without competitive enolization, reduction or coupling processes; and reactions were completed in seconds. Comparing RLi reactivities in DESs with those observed in pure glycerol or THF suggests a kinetic anionic activation of the alkylating reagents occurs, favoring nucleophilic addition over competitive hydrolysis.

  11. Chemoselective Nitro Group Reduction and Reductive Dechlorination Initiate Degradation of 2-Chloro-5-Nitrophenol by Ralstonia eutropha JMP134

    PubMed Central

    Schenzle, Andreas; Lenke, Hiltrud; Spain, Jim C.; Knackmuss, Hans-Joachim

    1999-01-01

    Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134. 2-Chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene. PMID:10347008

  12. Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134

    SciTech Connect

    Schenzle, A.; Lenke, H.; Knackmuss, H.J.; Spain, J.C.

    1999-06-01

    Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134, 2-chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene.

  13. Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Szura, Dominika

    2016-12-01

    Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.

  14. Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic.

    PubMed

    Misawa, Takashi; Tanaka, Katsuya; Demizu, Yosuke; Kurihara, Masaaki

    2017-03-24

    Steroids are important components of cell membranes and are involved in several physiological functions. A diphenylmethane (DPM) skeleton has recently been suggested to act as a mimetic of the steroid skeleton. However, difficulties are associated with efficiently introducing different substituents between two phenyl rings of the DPM skeleton, and, thus, further structural development based on the DPM skeleton has been limited. We herein developed an efficient synthetic method for introducing different substituents into two phenyl rings of the DPM skeleton. We also synthesized DPM-based estrogen receptor (ER) modulators using our synthetic method and evaluated their ER transcriptional activities.

  15. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.

    PubMed

    Hino, Mami; Kataoka, Masatoshi; Kajimoto, Kazuaki; Yamamoto, Takenori; Kido, Jun-Ichi; Shinohara, Yasuo; Baba, Yoshinobu

    2008-01-20

    The efficiency of protein synthesis for glyceraldehyde-3-phosphate dehydrogenase (G3PDH) was examined with several in vitro coupled transcription/translation protein synthesis systems based on Escherichia coli lysate, wheat germ, or reticulocyte lysate, and an in vitro translation system based on wheat germ extract. A significant amount of protein synthesis was observed only in systems based on E. coli using pET/G3PDH as the expression vector. A remarkable increase of protein synthesis was obtained in wheat germ using a pT(N)T expression vector which contains a 5'-globin leader sequence and a synthetic poly(A)(30) tail instead of pET. A significant difference of T7 RNA polymerase presence by Western blot analysis was not observed in the first four systems, and the difference of total RNA presence in each reaction mixture by Northern blot analysis seemed unrelated to protein synthesis. Although a small amount of protein was synthesized using RNA-encoding G3PDH transcribed in vitro with pET/G3PDH by an in vitro translation system, an extreme increase was observed using transcribed RNA with pEU/G3PDH, which contains T7 RNA promoter and a translation enhancer, Omega sequence. These results suggest that the presence of an enhancer sequence for translation is one of the critical steps for protein synthesis by a eukaryotic cell-free protein synthesis system.

  16. An Efficient Synthesis of 5-Amido-3-Hydroxy-4-Pyrones as Inhibitors of Matrix Metalloproteinases

    PubMed Central

    Yan, Yi-Long; Cohen, Seth M.

    2008-01-01

    3-Hydroxy-4-pyrones are a class of important metal chelators with versatile medicinal applications. An efficient pathway for the preparation of new 5-amido-3-hydroxy-4-pyrone derivatives has been developed. The synthesized 5-amido-3-hydroxy-4-pyrones have been evaluated as inhibitors of matrix metalloproteinases. PMID:17521196

  17. Highly efficient synthesis of phenols by copper-catalyzed hydroxylation of aryl iodides, bromides, and chlorides.

    PubMed

    Yang, Kai; Li, Zheng; Wang, Zhaoyang; Yao, Zhiyi; Jiang, Sheng

    2011-08-19

    8-Hydroxyquinolin-N-oxide was found to be a very efficient ligand for the copper-catalyzed hydroxylation of aryl iodides, aryl bromides, or aryl chlorides under mild reaction conditions. This methodology provides a direct transformation of aryl halides to phenols and to alkyl aryl ethers. The inexpensive catalytic system showed great functional group tolerance and excellent selectivity.

  18. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  19. Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%.

    PubMed

    Shi, Yantao; Wang, Kai; Du, Yi; Zhang, Hong; Gu, Junfu; Zhu, Chao; Wang, Lin; Guo, Wei; Hagfeldt, Anders; Wang, Ning; Ma, Tingli

    2013-08-27

    Solid-state synthesis of ZnO nanostructured building blocks is presented in this work for the fabrication of high efficiency quasi-solid dye-sensitized solar cells (DSSCs). The sponge-like photoanode has high optical density and better connections. Baking the photoanode at low temperature, photoconversion efficiencies of up to 6.46% are yielded by the quasi-solid DSSCs. Furthermore, we demonstrate better stability of our ZnO quasi-solid DSSCs.

  20. Caesium fluoride-promoted Stille coupling reaction: an efficient synthesis of 9Z-retinoic acid and its analogues using a practical building block.

    PubMed

    Okitsu, Takashi; Iwatsuka, Kinya; Wada, Akimori

    2008-12-21

    A highly efficient and rapid total synthesis of 9Z-retinoic acid was accomplished by caesium fluoride-promoted Stille coupling reaction; using a common building block, 9Z-retinoic acid analogues were also prepared by the same method without isomerisation of the Z-double bond.

  1. An efficient and highly stereoselective synthesis of new P-chiral 1,5-diphosphanylferrocene ligands and their use in enantioselective hydrogenation.

    PubMed

    Chen, Weiping; Roberts, J Stanley M; Whittall, John; Steiner, Alexander

    2006-07-21

    An efficient and highly stereoselective synthesis of P-chiral 1,5-diphosphanylferrocene ligands has been developed, and the introduction of P-chirality in ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding catalyst when matching of the planar chirality, the chirality at carbon and the chirality at phosphorus occurs.

  2. Efficient traceless solid-phase synthesis of 3,4-dihydropyrazino[1,2-b]indazoles and their 6-oxides.

    PubMed

    Pudelová, Nadezda; Krchnák, Viktor

    2009-01-01

    A highly efficient novel traceless solid-phase synthesis of 3,4-dihydropyrazino[1,2-b]indazoles and their 6-oxides was developed by using commercially available building blocks, diamines, 2-nitrobenzenesulfonyl chlorides, and bromoketones/bromoacetates. Mild reaction conditions, diversely substituted building blocks, and high purity of crude products enabled effective combinatorial syntheses of libraries.

  3. Facile mesoporous template-assisted hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Lu, Qingshan; Li, Qiang; Zhang, Jingjing; Li, Jingfeng; Lu, Jinhua

    2016-01-01

    Mesoporous materials with unique structure as well as special morphology have potential applications in pollutant adsorption. In this work, using mesoporous silica SBA-15 filled with carbon (C@SBA-15) as both silicon source and assisted template, the ordered mesoporous magnesium silicate (Mg3Si4O9(OH)4) has been fabricated at 140 °C by a novel and facile hydrothermal method. During the hydrothermal process, the magnesium silicate grew along the silica walls at the expense of consuming silica and deposited on the carbon surface of the C@SBA-15. Meanwhile, the rigid carbon inside the pores of the SBA-15 supported the magnesium silicate as mesoporous walls under hydrothermal condition. The obtained magnesium silicate possessed ordered mesoporous structure, high specific surface area of 446 m2/g, large pore volume of 0.84 cm3/g, and hierarchical structure assembled with ultrathin nanosheets of 15 nm in thickness. These characteristics endow the ordered mesoporous magnesium silicate with the fast adsorption rate and high adsorption capacity of 382 mg/g for methylene blue. In addition, this synthesis method opens a new approach to fabricate other ordered mesoporous silicates.

  4. Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides.

    PubMed

    Zhu, Zhen-Yuan; Cui, Di; Gao, Hui; Dong, Feng-Ying; Liu, Xiao-cui; Liu, Fei; Chen, Lu; Zhang, Yong-min

    2016-05-23

    Lactulose is considered as a prebiotic because it promotes the intestinal proliferation of Lactobacillus acidophilus which is added to various milk products. Moreover, lactulose is used in pharmaceuticals as a gentle laxative and to treat hyperammonemia. This study was aimed at the total synthesis of two Lactulose-derived oligosaccharides: one is 3-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,3-glycosidic bound, the other is 1-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,1-glycosidic bound, which were accomplished in seven steps from d-fructose and β-d-galactose and every step of yield above 75%. This synthetic route provided a practical and effective synthetic strategy for galactooligosaccharides, starting from commercially available monosaccharides. Then we evaluated on their prebiotic properties in the search for potential agents of regulating and improving the intestinal flora of human. The result showed that the prebiotic properties of Lactulose-derived oligosaccharides was much better than Lactulose. Among them, 3-O-β-d-galactopyranosyl-d-fructose displayed the most potent activity of proliferation of L. acidophilus.

  5. Efficient MW-Assisted Synthesis, Spectroscopic Characterization, X-ray and Antioxidant Properties of Indazole Derivatives.

    PubMed

    Polo, Efrain; Trilleras, Jorge; Ramos, Juan; Galdámez, Antonio; Quiroga, Jairo; Gutierrez, Margarita

    2016-07-09

    A small series of tetrahydroindazoles was prepared, starting from 2-acetylcyclohexanone and different hydrazines using reflux and a focused microwave reactor. Microwave irradiation (MW) favored the formation of the desired products with improved yields and shortened reaction times. This is a simple and green method for the synthesis of substituted tetrahydroindazole derivatives. The in vitro antioxidant activity was evaluated using the DPPH and ABTS methods. In these assays, 2-(4-fluorophenyl)-3-methyl-4,5,6,7-tetrahydro-2H-indazole (3f) showed moderate DPPH decoloring activity, while 3-methyl-4,5,6,7-tetrahydro-1H-indazole (3a), 3-methyl-2-phenyl-4,5,6,7-tetrahydro-2H-indazole (3b) and 2-(4-fluorophenyl)-3-methyl-4,5,6,7-tetrahydro-2H-indazole (3f) were the most active in the ABTS assay. All compounds were well characterized by IR, ¹H-, (13)C-NMR and GC-MS spectroscopy and physical data, while the structure of 4-(3-methyl-4,5,6,7-tetrahydro-2H-indazol-2-yl)benzoic acid (3e) was also determined by single crystal X-ray analysis.

  6. The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing.

    PubMed

    Taylor, Rupert G D; Bezzu, C Grazia; Carta, Mariolino; Msayib, Kadhum J; Walker, Jonathan; Short, Rhys; Kariuki, Benson M; McKeown, Neil B

    2016-02-12

    Efficient reactions between fluorine-functionalised biphenyl and terphenyl derivatives with catechol-functionalised terminal groups provide a route to large, discrete organic molecules of intrinsic microporosity (OMIMs) that provide porous solids solely by their inefficient packing. By altering the size and substituent bulk of the terminal groups, a number of soluble compounds with apparent BET surface areas in excess of 600 m(2)  g(-1) are produced. The efficiency of OMIM structural units for generating microporosity is in the order: propellane>triptycene>hexaphenylbenzene>spirobifluorene>naphthyl=phenyl. The introduction of bulky hydrocarbon substituents significantly enhances microporosity by further reducing packing efficiency. These results are consistent with findings from previously reported packing simulation studies. The introduction of methyl groups at the bridgehead position of triptycene units reduces intrinsic microporosity. This is presumably due to their internal position within the OMIM structure so that they occupy space, but unlike peripheral substituents they do not contribute to the generation of free volume by inefficient packing.

  7. Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Mondal, Sanjoy; Malik, Sudip

    2016-10-01

    A facile room temperature and surfactant free synthesis of platinum nanoparticles (Pt-NPs) on benzene tetra-carboxylic acid doped polyaniline (BDP) tube has been successfully demonstrated by solution dipping method. Preparation of Pt-NPs has been done through a red-ox reaction between BDP tubes and Pt-salt, as BDP itself acts as nontoxic reducing agent as well as template cum stabilizer for Pt-NPs. In BDP@Pt composites, ∼2.5 ± 0.5 nm spherical shaped Pt-NPs as observed from TEM studies are nicely decorated on the surface of BDP. The population or the loading density of Pt-NPs on BDP tube is greatly controlled by changing the w/w ratio of BDP to H2PtCl6. Synthesized BDP@Pt composites are subsequently employed as an efficient electro-catalyst for methanol oxidation reaction (MOR) in acidic medium. Furthermore, the observed catalytic activity is consequently ∼12 times higher than that of commercially available Pt/C catalyst. Depending on the loading density of Pt-NPs on BDP tubes, the efficiency and carbon monoxide (CO) tolerance ability of composites have been explored.

  8. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    PubMed

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu7 S4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu7 S4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu7 S4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%.

  9. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters.

    PubMed

    Romdhane, Ines Belhaj-Ben; Frikha, Fakher; Maalej-Achouri, Inès; Gargouri, Ali; Belghith, Hafedh

    2012-02-15

    A genomic bank from Talaromyces thermophilus fungus was constructed and screened using a previously isolated fragment lipase gene as probe. From several clones isolated, the nucleotide sequence of the lipase gene (TTL gene) was completed and sequenced. The TTL coding gene consists of an open reading frame (ORF) of 1083bp encoding a protein of 269 Aa with an estimated molecular mass of 30kDa. The TTL belongs to the same gene family as Thermomyces lanuginosus lipase (TLL, Lipolase®), a well known lipase with multiple applications. The promoter sequence of the TTL gene showed the conservation of known consensus sequences PacC, CreA, Hap2-3-4 and the existence of a particular sequence like the binding sites of Oleate Response Element (ORE) and Fatty acids Responsis Element (FARE) which are similar to that already found to be specific of lipolytic genes in Candida and Fusarium, respectively. Northern blot analysis showed that the TTL expression was much higher on wheat bran than on olive oil as sole carbon source. Compared to the Lipolase®, this enzyme was found to be more efficient for the hydrolysis and the synthesis of esters; and its synthetic efficiency even reached 91.6% from Waste Cooking Oil triglycerides.

  10. Efficient Lewis acid ionic liquid-catalyzed synthesis of the key intermediate of coenzyme Q10 under microwave irradiation.

    PubMed

    Chen, Yue; Zu, Yuangang; Fu, Yujie; Zhang, Xuan; Yu, Ping; Sun, Guoyong; Efferth, Thomas

    2010-12-22

    An efficient synthesis of a valuable intermediate of coenzyme Q(10) by microwave-assisted Lewis acidic ionic liquid (IL)-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF(4)-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF(4)-AlCl(3). The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF(4)-ZnCl(2) showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds). This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ(10) on an industrial scale.

  11. Synthesis of Bismuth-Nanoparticle-Enriched Nanoporous Carbon on Graphene for Efficient Electrochemical Analysis of Heavy-Metal Ions.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-08-03

    A BiNPs@NPCGS nanocomposite was designed for highly efficient detection of multiple heavy-metal ions by in situ synthesis of bismuth-nanoparticle (BiNP)-enriched nanoporous carbon (NPS) on graphene sheet (GS). The NPCGS was prepared by pyrolysis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals deposited on graphene oxide and displayed a high surface area of 1251 m(2)  g(-1) and a pore size of 3.4 nm. BiNPs were deposited on NPCGS in situ by chemical reduction of Bi(3+) with NaBH4 . Due to the restrictive effect of the pore/surface structure of NPCGS, the BiNPs were uniform and well dispersed on the NPCGS. The BiNPs@NPCGS showed good conductivity and high effective area, and the presence of BiNPs allowed it to act as an efficient material for anodic-stripping voltammetric detection of heavy-metal ions. Under optimized conditions, the BiNPs@NPCGS-based sensor could simultaneously determine Pb(2+) and Cd(2+) with detection limits of 3.2 and 4.1 nM, respectively. Moreover, the proposed sensor could also differentiate Tl(+) from Pb(2+) and Cd(2+). Owing to its advantages of simple preparation, environmental friendliness, high surface area, and fast electron-transfer ability, BiNPs@NPCGS showed promise for practical application in sensing heavy-metal ions.

  12. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    SciTech Connect

    Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia E-mail: grchen@ecust.edu.cn; Chen, Guorong E-mail: grchen@ecust.edu.cn; Zhang, Bo

    2014-05-21

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  13. Controllable synthesis of α-sulfur spheres with hierarchical nanostructures for efficient visible-light-driven photocatalytic ability

    NASA Astrophysics Data System (ADS)

    Dang, Xueming; Zhang, Xiufang; Zhang, Weiqiang; Dong, Xiaoli; Wang, Guowen; Ma, Hongchao

    2015-08-01

    Visible-light-active α-sulfur spheres with hierarchical nanostructures were fabricated by simple solution-phase synthesis with PVP as the template for enhanced photocatalytic ability. The α-sulfur hierarchical spheres with an ultrahigh specific surface area can controllable synthesized by changing the addition quantity of PVP. The obtained products are systematically studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption spectroscopy (DRS), Fluorescence (FL) and Brunauer-Emmett-Teller (BET). The photocatalytic activity of the as-prepared samples is evaluated by photocatalytic degradation of Rhodamine B (RhB) aqueous solution under visible light illumination. The results indicate that the morphology, specific surface area, photo absorbance ability, the separation efficiency of photogenerated carriers and the reactant adsorption performance can be controlled by varying the addition quantity of PVP. When 200 mg PVP is added, α-sulfur hierarchical spheres with uniform particle size about 1 μm and ultrahigh specific surface area of 67.1 m2/g is obtained, and its photocatalytic activity reaches a maximum value, which can be attributed to the combined effects of photo absorbance ability, the separation efficiency of photogenerated carriers and the reactant adsorption performance.

  14. Functionalization of mesoporous carbon with superbasic MgO nanoparticles for the efficient synthesis of sulfinamides.

    PubMed

    Chakravarti, Rajashree; Mano, Ajayan; Iwai, Hideo; Aldeyab, Salem S; Kumar, R Pradeep; Kantam, M Lakshmi; Vinu, Ajayan

    2011-06-06

    Highly basic MgO nanoparticles with different sizes have been successfully immobilized over mesoporous carbon with different pore diameters by a simple wet-impregnation method. The prepared catalysts have been characterized by various sophisticated techniques, such as XRD, nitrogen adsorption, electron energy loss spectroscopy, high-resolution TEM, X-ray photoelectron spectroscopy, and the temperature-programmed desorption of CO(2). XRD results reveal that the mesostructure of the support is retained even after the huge loading of MgO nanoparticles inside the mesochannels of the support. It is also demonstrated that the particle size and dispersion of the MgO nanoparticles on the support can be finely controlled by the simple adjustment of the textural parameters of the supports. Among the support materials studied, mesoporous carbon with the largest pore diameter and large pore volume offered highly crystalline small-size cubic-phase MgO nanoparticles with a high dispersion. The basicity of the MgO-supported mesoporous carbons can also be controlled by simply changing the loading of the MgO and the pore diameter of the support. These materials have been employed as heterogeneous catalysts for the first time in the selective synthesis of sulfinamides. Among the catalysts investigated, the support with the large pore diameter and high loading of MgO showed the highest activity with an excellent yield of sulfinamides. The catalyst also showed much higher activity than the pristine MgO nanoparticles. The effects of the reaction parameters, including the solvents and reaction temperature, and textural parameters of the supports in the activity of the catalyst have also been demonstrated. Most importantly, the catalyst was found to be highly stable, showing excellent activity even after the third cycle of reaction.

  15. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples.

    PubMed

    Sivakumar, Mani; Sakthivel, Mani; Chen, Shen-Ming

    2017-03-15

    Well-defined CoS nanorods (NR) were synthesized using a simple hydrothermal method, and were tested as an electrode material for electro-oxidation of vanillin. The NR material was characterized with regard to morphology, crystallinity, and electro-activity by use of appropriate analytical techniques. The resulting CoS NR@Nafion modified glassy carbon electrode (GCE) exhibited efficient electro-oxidation of vanillin with a considerable linear range of current-vs-concentration (0.5-56μM vanillin) and a detection limit of 0.07μM. Also, food samples containing vanillin were studied to test suitability for commercial applications.

  16. Simple, Efficient and Controllable Synthesis of Iodo/Di-iodoarenes via Ipsoiododecarboxylation/Consecutive Iodination Strategy

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Zhang, Lijuan; Deng, Guo-Jun; Gong, Hang

    2017-01-01

    A practical, efficient, and operationally simple strategy for the ipsoiododecarboxylation and di-iodination of aromatic carboxylic acids using the low-cost commercial reagent succinimide (NIS) as iodine source is reported. This iodination or di-iodination process can be easily controlled through reaction conditions, thereby providing corresponding iodination or di-iodination products with high yields. Furthermore, these two reactions can be easily scaled up to gram-scale by using palladium catalyst (0.66 mol%), which provides high isolated yield.

  17. Simple, Efficient and Controllable Synthesis of Iodo/Di-iodoarenes via Ipsoiododecarboxylation/Consecutive Iodination Strategy

    PubMed Central

    Yang, Yun; Zhang, Lijuan; Deng, Guo-Jun; Gong, Hang

    2017-01-01

    A practical, efficient, and operationally simple strategy for the ipsoiododecarboxylation and di-iodination of aromatic carboxylic acids using the low-cost commercial reagent succinimide (NIS) as iodine source is reported. This iodination or di-iodination process can be easily controlled through reaction conditions, thereby providing corresponding iodination or di-iodination products with high yields. Furthermore, these two reactions can be easily scaled up to gram-scale by using palladium catalyst (0.66 mol%), which provides high isolated yield. PMID:28091536

  18. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.

    PubMed

    Coughlin, Jessica E; Henson, Zachary B; Welch, Gregory C; Bazan, Guillermo C

    2014-01-21

    Organic semiconductors incorporated into solar cells using a bulk heterojunction (BHJ) construction show promise as a cleaner answer to increasing energy needs throughout the world. Organic solar cells based on the BHJ architecture have steadily increased in their device performance over the past two decades, with power conversion efficiencies reaching 10%. Much of this success has come with conjugated polymer/fullerene combinations, where optimized polymer design strategies, synthetic protocols, device fabrication procedures, and characterization methods have provided significant advancements in the technology. More recently, chemists have been paying particular attention to well-defined molecular donor systems due to their ease of functionalization, amenability to standard organic purification and characterization methods, and reduced batch-to-batch variability compared to polymer counterparts. There are several critical properties for efficient small molecule donors. First, broad optical absorption needs to extend towards the near-IR region to achieve spectral overlap with the solar spectrum. Second, the low lying highest occupied molecular orbital (HOMO) energy levels need to be between -5.2 and -5.5 eV to ensure acceptable device open circuit voltages. Third, the structures need to be relatively planar to ensure close intermolecular contacts and high charge carrier mobilities. And last, the small molecule donors need to be sufficiently soluble in organic solvents (≥10 mg/mL) to facilitate solution deposition of thin films of appropriate uniformity and thickness. Ideally, these molecules should be constructed from cost-effective, sustainable building blocks using established, high yielding reactions in as few steps as possible. The structures should also be easy to functionalize to maximize tunability for desired properties. In this Account, we present a chronological description of our thought process and design strategies used in the development of highly

  19. Efficient synthesis and reaction kinetics of readily water soluble esters containing sulfonic groups.

    PubMed

    Idzik, Krzysztof R; Nödler, Karsten; Maier, Friedrich; Licha, Tobias

    2014-12-15

    A series of various readily water soluble esters were synthesized by a very efficient procedure. These compounds can be useful as thermosensitive tracers for studying the cooling progress in a low enthalpy georeservoir exploitable by double flash geothermal power plant systems. The kinetics of their hydrolysis was investigated. Acylation of primary alcohols or phenols was carried out by a method based on a single-phase solvent system consisting of ethyl acetate acting as an organic solvent and triethylamine acting as a catalyst. Products were characterized by 1H-NMR, and 13C-NMR.

  20. An efficient algorithm for antenna synthesis updating following null-constraint changes

    NASA Astrophysics Data System (ADS)

    Magdy, M. A.; Paoloni, F. J.; Cheah, J. Y. C.

    1985-08-01

    The procedure to maximize the array signal to noise ratio with null constraints involves an optimization problem that can be solved efficiently using a modified Cholesky decomposition (UD) technique. Following changes in the main lobe and/or null positions, the optimal element weight vector can be updated without the need for a new complete matrix inversion. Some properties of the UD technique can be utilized such that the updating algorithm reprocesses only a part of the unit triangular matrix U. Proper ordering of matrix entries can minimize the dimension of the updated part.

  1. A High Performance Platform Based on cDNA Display for Efficient Synthesis of Protein Fusions and Accelerated Directed Evolution.

    PubMed

    Naimuddin, Mohammed; Kubo, Tai

    2016-02-08

    We describe a high performance platform based on cDNA display technology by developing a new modified puromycin linker-oligonucleotide. The linker consists of four major characteristics: a "ligation site" for hybridization and ligation of mRNA by T4 RNA ligase, a "puromycin arm" for covalent linkage of the protein, a "polyadenosine site" for a longer puromycin arm and purification of protein fusions (optional) using oligo-dT matrices, and a "reverse transcription site" for the formation of stable cDNA protein fusions whose cDNA is covalently linked to its encoded protein. The linker was synthesized by a novel branching strategy and provided >8-fold higher yield than previous linkers. This linker enables rapid and highly efficient ligation of mRNA (>90%) and synthesis of protein fusions (∼ 50-95%) in various cell-free expression systems. Overall, this new cDNA display method provides 10-200 fold higher end-usage fusions than previous methods and benefits higher diversity libraries crucial for directed protein/peptide evolution. With the increased efficiency, this system was able to reduce the time for one selection cycle to <8 h and is potentially amenable to high-throughput systems. We demonstrate the efficiency of this system for higher throughput selections of various biomolecular interactions and achieved 30-40-fold enrichment per selection cycle. Furthermore, a 4-fold higher enrichment of Flag-tag was obtained from a doped mixture compared with that of the previous cDNA display method. A three-finger protein library was evolved to isolate superior nanomolar range binding candidates for vascular endothelial growth factor. This method is expected to provide a beneficial impact to accelerated drug discovery and proteome analysis.

  2. Rapid Room‐Temperature, Chemoselective Csp2 −Csp2 Coupling of Poly(pseudo)halogenated Arenes Enabled by Palladium(I) Catalysis in Air

    PubMed Central

    Kalvet, Indrek; Magnin, Guillaume

    2016-01-01

    Abstract While chemoselectivities in Pd0‐catalyzed coupling reactions are frequently non‐intuitive and a result of a complex interplay of ligand/catalyst, substrate, and reaction conditions, we herein report a general method based on PdI that allows for an a priori predictable chemoselective Csp2 −Csp2 coupling at C−Br in preference to C−OTf and C−Cl bonds, regardless of the electronic or steric bias of the substrate. The C−C bond formations are extremely rapid (<5 min at RT) and are catalyzed by an air‐ and moisture‐stable PdI dimer under open‐flask conditions. PMID:28032945

  3. Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

    NASA Astrophysics Data System (ADS)

    Si, Weili; Zhang, Xuan; Lu, Shirong; Yasuda, Takeshi; Asao, Naoki; Han, Liyuan; Yamamoto, Yoshinori; Jin, Tienan

    2015-09-01

    Discovery of an efficient, practical, and flexible synthetic method to produce various important electron acceptors for low-cost organic photovoltaics (OPVs) is highly desirable. Although the most commonly used acceptor materials, such as PC61BM, PC71BM, IC60BA, bisPC61BM have been proved to be promising for the OPVs, they are still very expensive mainly due to their low production yields and limited synthetic methods. Herein, we report an unprecedented and innovative synthetic method of a variety of fullerene mono- and biscycloadducts by using manganese powder as a promotor. The reaction of fullerenes with various dibromides proceeds efficiently and selectively under very mild conditions to give the corresponding cycloadducts in good to excellent yields. The combination of manganese power with DMSO additive is crucial for the successful implementation of the present cycloaddition. Notably, the standard OPV acceptors, such as PCBMs, have been obtained in extraordinarily high yields, which cannot be achieved under the previously reported methods.

  4. Efficient synthesis of poly(2-vinylpyridine)-silica colloidal nanocomposite particles using a cationic azo initiator.

    PubMed

    Dupin, Damien; Schmid, Andreas; Balmer, Jennifer A; Armes, Steven P

    2007-11-06

    Colloidal poly(2-vinylpyridine)-silica nanocomposite particles can be efficiently prepared by emulsion polymerization at 60 degrees C using a commercial 20 nm aqueous silica sol as the sole stabilizing agent. Unlike previously reported colloidal nanocomposite syntheses, transmission electron microscopy studies indicate very high silica aggregation efficiencies (88-99%). The key to success is simply the selection of a suitable cationic azo initiator. In contrast, the use of an anionic persulfate initiator leads to substantial contamination of the nanocomposite particles with excess silica sol. The cationic azo initiator is electrostatically adsorbed onto the anionic silica sol at submonolayer coverage, which suggests that surface polymerization may be important for successful nanocomposite formation. Moreover, the 2-vinylpyridine can be partially replaced with either styrene or methacrylic comonomers to produce a range of copolymer-silica nanocomposite particles. The poly(2-vinylpyridine)-silica nanocomposite particles have a well-defined core-shell morphology, with poly(2-vinylpyridine) cores and silica shells; mean diameters typically vary from 180 to 220 nm, and mean silica contents range from 27 to 35% by mass.

  5. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows

    NASA Astrophysics Data System (ADS)

    Batista, Carlos; Ribeiro, Ricardo M.; Teixeira, Vasco

    2011-12-01

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

  6. Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows.

    PubMed

    Batista, Carlos; Ribeiro, Ricardo M; Teixeira, Vasco

    2011-04-07

    Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

  7. Direct Synthesis of α-Allenols from TMS-Protected Alkynes and Aldehydes Mediated by Tetrabutylammonium Fluoride.

    PubMed

    Huang, Xiaojun; Bugarin, Alejandro

    2016-08-26

    A unique chemoselective synthesis of α-allenic alcohols is presented. Tetrabutylammonium fluoride (TBAF) mediated this transformation under mild reaction conditions. A range of functional groups is well-tolerated in this reaction, while affording adducts in moderate to excellent yields (48-96 %, average 76 %). Mechanistic studies, including the use of tetrabutylammonium hydroxide (TBAH), revealed that the hydroxide ion can be the responsible for the observed rearrangement.

  8. Synthesis of Natural Homoisoflavonoids Having Either 5,7-Dihydroxy-6-methoxy or 7-Hydroxy-5,6-dimethoxy Groups

    PubMed Central

    Lee, Hyungjun; Yuan, Yue; Rhee, Inmoo; Corson, Timothy W.; Seo, Seung-Yong

    2016-01-01

    Naturally occurring homoisoflavonoids containing either 5,7-dihydroxy-6-methoxy or 7-hydroxy-5,6-dimethoxy groups such as the antiangiogenic homoisoflavanone, cremastranone, were synthesized via three or four linear steps from the known 4-chromenone. This facile synthesis includes chemoselective 1,4-reduction of 4-chromenone and selective deprotection of 3-benzylidene-4-chromanone a containing C7-benzyloxy group. PMID:27529212

  9. The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones.

    PubMed

    Chen, Qiang; Tanaka, Shinya; Fujita, Takeshi; Chen, Luyang; Minato, Taketoshi; Ishikawa, Yoshifumi; Chen, Mingwei; Asao, Naoki; Yamamoto, Yoshinori; Jin, Tienan

    2014-03-28

    The nanoporous AuPd (AuPdNPore) alloy catalyst showed superior chemoselectivity and high catalytic activity for the direct 1,4-hydrosilylation of the conjugated cyclic enones with hydrosilane in comparison with the monometallic nanoporous Au and Pd catalysts. The enhanced catalytic properties of AuPdNPore arise mainly from the nanoporous structure and the synergistic effect of the AuPd alloy.

  10. Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH

    PubMed Central

    Wu, Qinglong; Tun, Hein Min; Law, Yee-Song; Khafipour, Ehsan; Shah, Nagendra P.

    2017-01-01

    Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5–6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis. PMID:28261168

  11. Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH.

    PubMed

    Wu, Qinglong; Tun, Hein Min; Law, Yee-Song; Khafipour, Ehsan; Shah, Nagendra P

    2017-01-01

    Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5-6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis.

  12. A facile synthesis of highly stable modified carbon nanotubes as efficient oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Stenmark, Theodore Axel

    Proton Exchange Membrane Fuel Cell (PEMFC) technology is an exciting alternative energy prospect, especially in the field of transportation. PEMFCs are three times as efficient as internal combustion (IC) engines and emit only water as a byproduct. The latter point is especially important in a day and age when climate change is upon us. However, platinum required to catalyze the sluggish oxygen reduction reaction (ORR) which takes place on the cathode of the PEMFC has rendered fuel cell automobiles economically unviable. Therefore, the pursuit of an inexpensive replacement for platinum has become an active research area. Herein, a facile synthetic process for modified carbon nanotubes for ORR catalysis is described. These nanotubes display catalytic activity via rotating disc electrode (RDE) analysis which, in some cases, equals that of a Pt/C standard.

  13. Renewable rigid diamines: efficient, stereospecific synthesis of high purity isohexide diamines.

    PubMed

    Thiyagarajan, Shanmugam; Gootjes, Linda; Vogelzang, Willem; van Haveren, Jacco; Lutz, Martin; van Es, Daan S

    2011-12-16

    We report an efficient three-step strategy for synthesizing rigid, chiral isohexide diamines derived from 1,4:3,6-dianhydrohexitols. These biobased chiral building blocks are presently the subject of several investigations (in our and several other groups) because of their application in high-performance biobased polymers, such as polyamides and polyurethanes. Among the three possible stereo-isomers, dideoxy-diamino isoidide and dideoxy-diamino isosorbide can be synthesized from isomannide and isosorbide respectively in high yield with absolute stereo control. Furthermore, by using this methodology dideoxy-amino isomannide-a tricyclic adduct-was obtained starting from isoidide in high yield. Our improved synthetic route is a valuable advance towards meeting scale and purity demands for evaluating the properties of new biobased performance materials, which will benefit the development of these plastics.

  14. Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor.

    PubMed

    Losantos, Raúl; Funes-Ardoiz, Ignacio; Aguilera, José; Herrera-Ceballos, Enrique; García-Iriepa, Cristina; Campos, Pedro J; Sampedro, Diego

    2017-03-01

    Skin cancer incidence has been increasing in the last decades, but most of the commercial formulations used as sunscreens are designed to protect only against solar erythema. Many of the active components present in sunscreens show critical weaknesses, such as low stability and toxicity. Thus, the development of more efficient components is an urgent health necessity and an attractive industrial target. We have rationally designed core moieties with increased photoprotective capacities and a new energy dissipation mechanism. Using these scaffolds, we have synthesized a series of compounds with tunable properties suitable for their use in sunscreens, and enhanced properties in terms of stability, light energy dissipation, and toxicity. Moreover, some representative compounds were included in final sunscreen formulations and a relevant solar protection factor boost was measured.

  15. Practical and Efficient Synthesis of α-Aminophosphonic Acids Containing 1,2,3,4-Tetrahydroquinoline or 1,2,3,4-Tetrahydroisoquinoline Heterocycles.

    PubMed

    Ordóñez, Mario; Arizpe, Alicia; Sayago, Fracisco J; Jiménez, Ana I; Cativiela, Carlos

    2016-08-31

    We report here a practical and efficient synthesis of α-aminophosphonic acid incorporated into 1,2,3,4-tetrahydroquinoline and 1,2,3,4-tetrahydroisoquinoline heterocycles, which could be considered to be conformationally constrained analogues of pipecolic acid. The principal contribution of this synthesis is the introduction of the phosphonate group in the N-acyliminium ion intermediates, obtained from activation of the quinoline and isoquinoline heterocycles or from the appropriate δ-lactam with benzyl chloroformate. Finally, the hydrolysis of phosphonate moiety with simultaneous cleavage of the carbamate afforded the target compounds.

  16. Efficient Synthesis of β-Aryl-γ-lactams and Their Resolution with (S)-Naproxen: Preparation of (R)- and (S)-Baclofen.

    PubMed

    Montoya-Balbás, Iris J; Valentín-Guevara, Berenice; López-Mendoza, Estefanía; Linzaga-Elizalde, Irma; Ordoñez, Mario; Román-Bravo, Perla

    2015-12-10

    An efficient synthesis of enantiomerically-pure β-aryl-γ-lactams is described. The principal feature of this synthesis is the practical resolution of β-aryl-γ-lactams with (S)-Naproxen. The procedure is based on the Michael addition of nitromethane to benzylidenemalonates, which was easily obtained, followed by the reduction of the γ-nitroester in the presence of Raney nickel and the subsequent saponification/decarboxylation reaction. The utility of this methodology was highlighted by the preparation of enantiomerically-pure (R)- and (S)-Baclofen hydrochloride.

  17. Concise Total Synthesis of Trichodermamides A, B and C Enabled by an Efficient Construction of the 1,2-Oxazadecaline Core

    PubMed Central

    Mfuh, Adelphe M.; Zhang, Yu; Stephens, David E.; Vo, Anh X. T.; Arman, Hadi D.; Larionov, Oleg V.

    2016-01-01

    We report herein a facile and efficient method of the construction of the cis-1,2-oxazadecaline system, distinctive of (pre)trichodermamides, aspergillazine A, gliovirin and FA-2097. The formation of the 1,2-oxazadecaline core was accomplished by a 1,2-addition of an αC-lithiated O-silyl ethyl pyruvate oxime to benzoquinone, that is followed by an oxa-Michael ring-closure. The method was successfully applied to the concise total synthesis of trichodermamide A (in gram quantities), trichodermamide B, as well as the first synthesis of trichodermamide C. PMID:26084356

  18. Cobalt(II) Porphyrin-Catalyzed Intramolecular Cyclopropanation of N-Alkyl Indoles/Pyrroles with Alkylcarbene: Efficient Synthesis of Polycyclic N-Heterocycles.

    PubMed

    Reddy, Annapureddy Rajasekar; Hao, Fei; Wu, Kai; Zhou, Cong-Ying; Che, Chi-Ming

    2016-01-26

    A protocol on chemoselective cobalt(II) porphyrin-catalyzed intramolecular cyclopropanation of N-alkyl indoles/pyrroles with alkylcarbenes has been developed. The reaction enables the rapid construction of a range of nitrogen-containing polycyclic compounds in moderate to high yields from readily accessible materials. These N-containing polycyclic compounds can be converted into a variety of N-heterocycles with potential synthetic and biological interest. Compared to their N-tosylhydrazone counterparts, the use of bulky N-2,4,6-triisopropylbenzenesulfonyl hydrazones as carbene precursors allows cyclopropanation to occur under milder reaction conditions.

  19. Enantioselective biotransformations of nitriles in organic synthesis.

    PubMed

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  20. Synthesis of a New Series of Sialylated Homo‐ and Heterovalent Glycoclusters by using Orthogonal Ligations†

    PubMed Central

    Daskhan, Gour Chand; Pifferi, Carlo

    2016-01-01

    Abstract The synthesis of heteroglycoclusters (hGCs) is being subjected to rising interest, owing to their potential applications in glycobiology. In this paper, we report an efficient and straightforward convergent protocol based on orthogonal chemoselective ligations to prepare structurally well‐defined cyclopeptide‐based homo‐ and heterovalent glycoconjugates displaying 5‐N‐acetyl‐neuraminic acid (Neu5Ac), galactose (Gal), and/or N‐acetyl glucosamine (GlcNAc). We first used copper‐catalyzed azide–alkyne cycloaddition and/or thiol‐ene coupling to conjugate propargylated α‐sialic acid 3, β‐GlcNAc thiol 5, and β‐Gal thiol 6 onto cyclopeptide scaffolds 7–9 to prepare tetravalent homoglycoclusters (10–12) and hGCs (13–14) with 2:2 combinations of sugars. In addition, we have demonstrated that 1,2‐diethoxycyclobutene‐3,4‐dione can be used as a bivalent linker to prepare various octavalent hGCs (16, 19, and 20) in a controlled manner from these tetravalent structures. PMID:27777841

  1. Synthesis, structure, and reactivity of N-benzoyl iminophosphoranes ortho lithiated at the benzoyl group.

    PubMed

    Aguilar, David; Fernández, Ignacio; Cuesta, Luciano; Yañez-Rodríguez, Víctor; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P; López Ortiz, Fernando

    2010-10-01

    Ortho lithiation of N-benzamido-P,P,P-triaryliminophosphoranes through deprotonation with alkyllithium bases was achieved with ortho-C═O and ortho-P═N chemoselectivity. However, the synthetic scope of these processes was rather limited. Ortho-lithiated N-benzamido-P,P,P-triphenyliminophosphorane 8 was efficiently prepared via lithium/halogen exchange of the corresponding ortho-brominated precursor with s-BuLi in THF at -90 °C. The reaction of 8 with a variety of electrophiles provides an easy and mild method for the regioselective synthesis of ortho-modified iminophosphoranes via C-C (alkylation and hydroxyalkylation) and C-X (X = I, Si, P, Sn, and Hg) bond-forming reactions. NMR characterization of 8 in THF solution showed that 8 exists as an equilibrium mixture of one monomer and two dimers. The Li atoms of these species become members of five-membered rings through chelation by the ortho-metalated carbon and the carbonyl oxygen. The dimers differ in the relative orientation of the two chelates with respect to the plane defined by the C(2)Li(2) core. The equilibrium between all species is established by splitting the dimers into monomers and subsequent recombination with formation of a different dimer.

  2. Y(IO₃)₃ as a novel photocatalyst: synthesis, characterization, and highly efficient photocatalytic activity.

    PubMed

    Huang, Hongwei; He, Ying; He, Ran; Lin, Zheshuai; Zhang, Yihe; Wang, Shichao

    2014-08-04

    Nonbonding layer-structured Y(IO3)3 was successfully prepared by a simple hydrothermal route and investigated as a novel photocatalyst for the first time. Its crystal structure was characterized by X-ray diffraction, high-resolution transmission electron microscopy, and scanning electron microscopy. The optical absorption edge and band gap of Y(IO3)3 have been determined by UV-vis diffuse reflectance spectra. Theoretical calculations of the electronic structure of Y(IO3)3 confirmed its direct optical transition property near the absorption edge region, and the orbital components of the conduction band and valence band (VB) were also analyzed. The photocatalytic performance of Y(IO3)3 was evaluated by photooxidative decomposition of rhodamine B under ultraviolet light irradiation. It demonstrated that Y(IO3)3 exhibits highly efficient photocatalytic activity, which is much better than those of commercial TiO2 (P25) and important UV photocatalysts BiOCl and BiIO4. The origin of the excellent photocatalytic performance of Y(IO3)3 was investigated by electron spin resonance and terephthalic acid photoluminescence techniques. The results revealed that the highly strong photooxidation ability that resulted from its very positive VB position should be responsible for the excellent photocatalytic performance.

  3. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    PubMed

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-03-27

    LiZn ferrite ceramics with high saturation magnetization (4πMs) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li0.415Zn0.27Mn0.06Ti0.1Fe2.155O4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πMs and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  4. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

    PubMed Central

    Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.

    2015-01-01

    A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g−1), excellent magnetic response (14.89 emu g−1), and large mesopore volume (0.09 cm3 g−1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π–π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g−1 at an initial MB concentration of 30 mg L−1, which increased to 245 mg g−1 when the initial MB concentration was 300 mg L−1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818

  5. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Altintas Yildirim, Ozlem; Arslan, Hanife; Sönmezoǧlu, Savaş

    2016-12-01

    Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol-gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co2+ ions were observed to be substitutionally incorporated into Zn2+ sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  6. Efficient synthesis and characterization of ergosterol laurate in a solvent-free system.

    PubMed

    He, Wen-Sen; Yin, Ji; Xu, Han-Shan; Qian, Qiu-Ying; Jia, Cheng-Sheng; Ma, Hai-Le; Feng, Biao

    2014-12-03

    Ergosterol and its derivatives have attracted much attention for a variety of health benefits, such as anti-inflammatory and antioxidant activities. However, ergosterol esters are advantageous because this compound has better solubility than the free ergosterol. In this work, ergosterol laurate was efficiently synthesized for the first time by direct esterification in a solvent-free system. The desired product was purified, characterized by Fourier transform infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance, and finally confirmed to be ergosterol laurate. Meanwhile, the effect of various catalysts, catalyst dose, reaction temperature, substrate molar ratio, and reaction time were studied. Both the conversion of ergosterol and the selectivity of the desired product can reach above 89% under the selected conditions: sodium dodecyl sulfate + hydrochloric acid as the catalyst, 2:1 molar ratio of lauric acid/ergosterol, catalyst dose of 4% (w/w), 120 °C, and 2 h. The oil solubility of ergosterol and its laurate was also compared. The results showed that the solubility of ergosterol in oil was significantly improved by direct esterification with lauric acid, thus greatly facilitating the incorporation into a variety of oil-based systems.

  7. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution.

    PubMed

    Sivashankar, R; Sathya, A B; Krishnakumar, Uma; Sivasubramanian, V

    2015-11-01

    A novel magnetic biocomposite was synthesized using metal chlorides and aquatic macrophytes by co-precipitation method. The resulting product, magnetic biocomposite was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). The adsorption performance of the magnetic biocomposite was tested with removal of Metanil Yellow dye from aqueous solution. The effect of influencing parameters such as initial dye concentration, solution pH and agitation were investigated. The equilibrium isotherm was well described by the Langmuir model with the with maximum adsorption capacity of 90.91mg/g. Adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the magnetic biocomposite could efficiently adsorb the azo dyes from aqueous solution, and the spent adsorbents could be recovered completely by magnetic separation process. Therefore, the prepared magnetic biocomposite could thus be used as promising adsorbent for the removal of azo dyes from polluted water.

  8. Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes

    NASA Astrophysics Data System (ADS)

    Surendra Dilip, C.; Siva Kumar, V.; John Venison, S.; Vetha potheher, I.; Rajalaxmi (a) Subahashini, D.

    2013-05-01

    Mixed ligand complexes were synthesised using nicotinamide as the primary ligand and nitrite as the secondary ligand were characterised by FT-IR, UV-Vis, 1H NMR, TG-DTA-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesised complexes a general formula of [M(ONO)2(NA)2] where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) and [Cr2(ONO)6(NA)2] with a distorted octahedral structure were proposed. Thermal analyses show that the complexes lose molecules of hydration initially and subsequently expel anionic and organic ligands in continuous steps. The kinetic parameter values, such as, E*, ΔH*, ΔS* and ΔG* illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficacy of the ligand and its complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to posses efficient antimicrobial properties compared to nicotinamide and a few of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. The intercalating interaction of Cu(II) complex with CT-DNA was inspected by absorption spectral and viscosity studies, thermal denaturation and electro-analytical experiments.

  9. Synthesis and characterization of chitosan tripolyphosphate nanoparticles and its encapsulation efficiency containing Russell's viper snake venom.

    PubMed

    Venkatesan, C; Vimal, S; Hameed, A S Sahul

    2013-08-01

    Chitosan Tripolyphosphate (CS/TPP) nanoparticle is a biodegradable and nontoxic polysaccharide, used as a carrier for drug delivery. The morphology and particle-size measurements of the nanoparticles were studied by field emission scanning electron microscopy and Fourier Transform Infrared Spectroscopy (FTIR). This study aims to evaluate the impact of Russell's viper venom encapsulation on various factors and loading capacity, in addition to explore the physicochemical structure of nanoparticles. FTIR confirmed that tripolyphosphoric groups of TPP linked with ammonium groups of CS in the nanoparticles. Our results showed that CS can react with TPP to form stable cationic nanoparticles. The results also showed that encapsulation efficiency of venom at different concentrations of 20, 40, 60, 500, and 1000 µg/mL were achieved for CS/TPP nanoparticles at different concentrations of 1.5, 2, and 3 mg/mL. The cytotoxicity of CS/TPP nanoparticles was evaluated by MTT (-3 (4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a tetrazole) assay.

  10. Self-templated synthesis of TiO2 hierarchical structure photocatalyst with high efficiency and good sedimentation property

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoning; Sang, Yuanhua; Yu, Xin; Liu, Baishan; Liu, Hong

    2016-10-01

    The balance between highly efficient photocatalysis and a good emulsion/water extraction property is crucial for the practical application of TiO2 photocatalysts. The TiO2 hierarchical structure was synthesized via a hydrothermal treatment of H2Ti3O7 nanobelts with TiF4. The hydrolysis of TiF4 supplies the TiO2 nucleus, and HF, which is derived from the hydrolysis process, acts as a corrosive to etch the H2Ti3O7 nanobelt, resulting in a dynamic dissolution and precipitation process. The etching process resulted in self-generated TiF4 and initiated hydrolysis to generate new TiO2 primary particles. Induced by F etching process, Ti3+ defects were formed in the hierarchical structures, which was beneficial to the photocatalytic property. This hydrolysis-etching-hydrolysis process allows for template dissolution and self-assembly of anatase TiO2 nanobelts to form the TiO2 hierarchical structures. This process balances the nanominiaturization and sedimentation property requirements by the photocatalytic and emulsion/water extraction properties. This simple hydrolysis-etching-hydrolysis process can be applied to the synthesis of many other hierarchical structures.

  11. Inspired by efficient cellulose-dissolving system: Facile one-pot synthesis of biomass-based hydrothermal magnetic carbonaceous materials.

    PubMed

    Ma, Jian-Feng; Xing, Jian-Xiong; Wang, Kun; Yang, Hai-Yan; Fei, Ben-Hua; Liu, Xing-E

    2017-05-15

    The core-shell structure of carbon encapsulated magnetic nanoparticles (CEMNs) displays unique properties. Enhancing the magnetization of iron core, in parallel, improving the encapsulation of carbon shell are the two major challenges in the synthesis of CEMNs. Inspired by efficient cellulose-dissolving system, carbon encapsulated magnetic nano-Fe3O4 particles (Fe3O4@C) with ∼10.0nm Fe3O4 cores and 1.9-3.3nm carbon shell, were successfully one-pot synthesized via a novel hydrothermal carbonization (HTC) process. The dissolving process in ionic liquids ([Emim]Ac and [Amim]Cl) completely cleaved the intra- and intermolecular H-bonds in cellulose, and favored the incorporation of Fe3O4 nanoparticles into the cellulose H-bonds systems during the regeneration process. Some stable linkages were formed in Fe3O4@C, taking Fe3O4 nanoparticles as a structure guiding agent. The morphology and properties of Fe3O4@C depended strongly on the type of carbon precursors and pyrolysis temperature. Well encapsulated nanostructure was obtained at HTC temperature 280°C, when [Emim]Ac-treated holocellulose was used as the carbon source. Meanwhile, the thickness of the amorphous shell and magnetization increased with HTC temperature. More importantly, a novel elements for understanding the growth mechanism for the Fe3O4@C composite under HTC conditions was proposed.

  12. Solution-Phase Perfluoroalkylation of C60 Leads to Efficient and Selective Synthesis of Bis-Perfluoroalkylated Fullerenes

    PubMed Central

    Kuvychko, Igor V.; Strauss, Steven H.; Boltalina, Olga V.

    2012-01-01

    A solution-phase perfluoroalkylation of C60 with a series of RFI reagents was studied. The effects of molar ratio of the reagents, reaction time, and presence of copper metal promoter on fullerene conversion and product composition were evaluated. Ten aliphatic and aromatic RFI reagents were investigated (CF3I, C2F5I, n-C3F7I, i-C3F7I, n-C4F9I, (CF3)(C2F5)CFI, n-C8F17I, C6F5CF2I, C6F5I, and 1,3-(CF3)2C6F3I) and eight of them (except for C6F5I and 1,3-(CF3)2C6F3I) were found to add the respective RF groups to C60 in solution. Efficient and selective synthesis of C60(RF)2 derivatives was developed. PMID:25843973

  13. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production

    PubMed Central

    Zhu, Xiaoyu; Tao, Yong; Liang, Cheng; Li, Xiangzhen; Wei, Na; Zhang, Wenjie; Zhou, Yan; Yang, Yanfei; Bo, Tao

    2015-01-01

    A unique microbiome that metabolizes lactate rather than ethanol for n-caproate production was obtained from a fermentation pit used for the production of Chinese strong-flavour liquor (CSFL). The microbiome was able to produce n-caproate at concentrations as high as 23.41 g/L at a maximum rate of 2.97 g/L/d in batch trials without in-line extraction. Compared with previous work using ethanol as the electron donor, the n-caproate concentration increased by 82.89%. High-throughput sequencing analysis showed that the microbiome was dominated by a Clostridium cluster IV, which accounted for 79.07% of total reads. A new process for n-caproate production was proposed, lactate oxidation coupled to chain elongation, which revealed new insight into the well-studied lactate conversion and carbon chain elongation. In addition, these findings indicated a new synthesis mechanism of n-caproate in CSFL. We believe that this efficient process will provide a promising opportunity for the innovation of waste recovery as well as for n-caproate biosynthesis. PMID:26403516

  14. One-pot synthesis of a ceria-graphene oxide composite for the efficient removal of arsenic species.

    PubMed

    Sakthivel, Tamil S; Das, Soumen; Pratt, Cameron J; Seal, Sudipta

    2017-03-09

    Arsenic contamination has posed a health risk to millions of people around the world. In this study, we describe a simple and facile one-step hydrothermal synthesis of a ceria-graphene oxide (ceria-GO) composite for the efficient removal of arsenic species. The prepared ceria-GO composite materials exhibited almost complete (over 99.99%) and quick removal of both arsenic species within 0.1 mg L(-1) of the initial concentration. The calculated adsorption capacities were 185 mg g(-1) for As(iii) and 212 mg g(-1) for As(v). It was found that Ce(3+) is an active site and continuously adsorbs arsenic species; there is a concomitant change from Ce(4+) to Ce(3+) due to the solution redox environment. This increase in the Ce(3+) concentration further facilitates the complete removal of arsenic species in solution. Thus our approach offers a promising potential for the treatment of arsenic-contaminated drinking water.

  15. Synthesis and ECL performance of highly efficient bimetallic ruthenium tris-bipyridyl complexes.

    PubMed

    Sun, Shiguo; Li, Fusheng; Liu, Fengyu; Yang, Xue; Fan, Jiangli; Song, Fengling; Sun, Licheng; Peng, Xiaojun

    2012-10-28

    In order to find the ideal carbon chain linkage number n for achieving the highest ECL in bimetallic ruthenium tris-bipyridyl complexes, a series of novel complexes [(bpy)(2)Ru(bpy')(CH(2))(n)(bpy')Ru(bpy)(2)](4+) (, where bpy is 2,2'-bipyridyl, n = 10, 12, 14) for a coreactant electrochemiluminescence (ECL) system have been synthesized. Their ECL properties at a Au electrode have been studied in 0.1 M phosphate buffer by using tripropylamine (TPrA), 2-(dibutylamino)ethanol (DBAE) and melamine as the coreactant, to compare with that of the previously reported bimetallic ruthenium analogous complex [(bpy)(2)Ru(bpy')(CH(2))(8)(bpy')Ru(bpy)(2)](4+). The results demonstrate that the ECL intensity depends largely on the length of the saturated carbon chain linkage number n. The highest ECL is reached when n = 10, suggesting that a synergistic effect on ECL enhancement co-exists between the two intramolecular linked ruthenium activating centers. Density functional theory (DFT) calculation demonstrated that the optimized bond distances between Ru and N(bpy') are the longest both in the ground and the excited triplet states in the case of n = 10, while those for Ru and N(bpy) are the shortest in the excited triplet states. All these factors may be responsible for the above mentioned results. This study provided a methodology to further improve and tune ECL efficiency by using bimetallic ruthenium complexes linked by a flexible saturated carbon chain.

  16. Graphene oxide based Pt-TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency.

    PubMed

    Neppolian, Bernaurdshaw; Bruno, Andrea; Bianchi, Claudia L; Ashokkumar, Muthupandian

    2012-01-01

    An ultrasound-assisted method was used for synthesizing nanosized Pt-graphene oxide (GO)-TiO2 photocatalyst. The Pt-GO-TiO2 nanoparticles were characterized by diffused reflectance spectroscopy, X-ray diffraction, N2 BET adsorption-desorption measurements, atomic force microscopy and transmission electron microscopy. The photocatalytic and sonophotocatalytic degradation of a commonly used anionic surfactant, dodecylbenzenesulfonate (DBS), in aqueous solution was carried out using Pt-GO-TiO2 nanoparticles in order to evaluate the photocatalytic efficiency. For comparison purpose, sonolytic degradation of DBS was carried out. The Pt-GO-TiO2 catalyst degraded DBS at a higher rate than P-25 (TiO2), prepared TiO2 or GO-TiO2 photocatalysts. The mineralization of DBS was enhanced by a factor of 3 using Pt-GO-TiO2 compared to the P-25 (TiO2). In the presence of GO, an enhanced rate of DBS oxidation was observed and, when doped with platinum, mineralization of DBS was further enhanced. The Pt-GO-TiO2 catalyst also showed a considerable amount of degradation of DBS under visible light irradiation. The initial solution pH had an effect on the rate of photocatalytic oxidation of DBS, whereas no such effect of initial pH was observed in the sonochemical or sonophotocatalytic oxidation of DBS. The intermediate products formed during the degradation of DBS were monitored using electrospray mass spectrometry. The ability of GO to serve as a solid support to anchor platinum particles on GO-TiO2 is useful in developing new photocatalysts.

  17. Effective/efficient mental health programs for school-age children: a synthesis of reviews.

    PubMed

    Browne, Gina; Gafni, Amiram; Roberts, Jacqueline; Byrne, Carolyn; Majumdar, Basanti

    2004-04-01

    The prevalence of mental health problems, some of which seem to be occurring among younger cohorts, leads researchers and policy-makers to search for practical solutions to reduce the burden of suffering on children and their families, and the costs to society both immediate and long term. Numerous programs are in place to reduce or alleviate problem behaviour or disorders and/or assist positive youth development. Evaluated results are dispersed throughout the literature. To assess findings and determine common elements of effective children's services, a literature search was undertaken for evidence-based evaluations of non-clinical programs for school-age children. Prescriptive comments aim to inform service-providers, policy-makers and families about best practices for effective services such as: early, long-term intervention including reinforcement, follow-up and an ecological focus with family and community sector involvement; consistent adult staffing; and interactive, non-didactic programming adapted to gender, age and cultural needs. Gaps are identified in our understanding of efficiencies that result from effective programs. Policy implications include the need to develop strategies for intersectoral interventions, including: new financing arrangements to encourage (not penalize) interagency cooperation and, to ensure services reach appropriate segments of the population; replication of best practices; and publicizing information about benefits and cost savings. In many jurisdictions legislative changes could create incentives for services to collaborate on service delivery. Joint decision-making would require intersectoral governance, pooling of some funding, and policy changes to retain savings at the local level. Savings could finance expansion of services for additional youth.

  18. Olive Recombinant Hydroperoxide Lyase, an Efficient Biocatalyst for Synthesis of Green Leaf Volatiles.

    PubMed

    Jacopini, Sabrina; Mariani, Magali; de Caraffa, Virginie Brunini-Bronzini; Gambotti, Claude; Vincenti, Sophie; Desjobert, Jean-Marie; Muselli, Alain; Costa, Jean; Berti, Liliane; Maury, Jacques

    2016-06-01

    Volatile C6-aldehydes are the main contributors to the characteristic odor of plants known as "green note" and are widely used by the flavor industry. Biotechnological processes were developed to fulfill the high demand in C6-aldehydes in natural flavorants and odorants. Recombinant hydroperoxide lyases (HPLs) constitute an interesting alternative to overcome drawbacks arising from the use of HPL from plant extracts. Thus, olive recombinant 13-HPL was assayed as biocatalysts to produce C6-aldehydes. Firstly, a cDNA encoding for olive HPL of Leccino variety was isolated and cloned in pQE-30 expression vector. In order to improve the enzyme solubility, its chloroplast transit peptide was deleted. Both enzymes (HPL wild type and HPL deleted) were expressed into Escherichia coli strain M15, purified, characterized, and then used for bioconversion of 13-hydroperoxides of linoleic and linolenic acids. Aldehydes produced were extracted, then identified and quantified using gas chromatography and mass spectrometry. Recombinant HPL wild type (HPLwt) allowed producing 5.61 mM of hexanal and 4.39 mM of 3Z-hexenal, corresponding to high conversion yields of 93.5 and 73 %, respectively. Using HPL deleted (HPLdel) instead of HPLwt failed to obtain greater quantities of hexanal or 3Z-hexenal. No undesirable products were formed, and no isomerization of 3Z-hexenal in 2E-hexenal occurred. The olive recombinant HPLwt appears to be a promising efficient biocatalyst for the production of C6-aldehydes.

  19. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    SciTech Connect

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  20. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    PubMed

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  1. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    SciTech Connect

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B. Peter; Motkuri, Radha Kishan

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  2. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  3. An efficient and recyclable catalyst for the cleavage of tert-butyldiphenylsilyl ethers.

    PubMed

    Yan, Shiqiang; Ding, Ning; Zhang, Wei; Wang, Peng; Li, Yingxia; Li, Ming

    2012-06-01

    An efficient, chemoselective, and environment-friendly method for the deprotection of tert-butyldiphenylsilyl ethers mediated by triflic acid supported on silica gel is reported. A wide range of tert-butyldiphenylsilyl ethers derived from carbohydrate and saponin residues can be smoothly cleaved in the presence of various types of other protecting groups in good to excellent yields in acetonitrile. This heterogeneous reaction does not require aqueous workup, and the supported catalyst can be readily recycled.

  4. Application of serine- and threonine-derived cyclic sulfamidates for the preparation of S-linked glycosyl amino acids in solution- and solid-phase peptide synthesis.

    PubMed

    Cohen, Scott B; Halcomb, Randall L

    2002-03-20

    Cyclic sulfamidates were synthesized in 60% yield from L-serine and allo-L-threonine, respectively. These sulfamidates reacted with a variety of unprotected 1-thio sugars in aqueous bicarbonate buffer (pH 8) to afford the corresponding S-linked serine- and threonine-glycosyl amino acids with good diastereoselectivity (> or =97%) after hydrolysis of the N-sulfates. The serine-derived sulfamidate was incorporated into a simple dipeptide to generate a reactive dipeptide substrate that underwent chemoselective ligation with a 1-thio sugar to afford an S-linked glycopeptide. This sulfamidate was also incorporated into a peptide on a solid support in conjunction with solid-phase peptide synthesis. Chemoselective ligation of a 1-thio sugar with the cyclic sulfamidate was achieved on the solid support, followed by removal of the N-sulfate. Finally, the peptide chain of the resulting support-bound S-linked glycopeptide was extended using standard peptide synthesis procedures.

  5. Acid-promoted chemoselective introduction of amide functionality onto aromatic compounds mediated by an isocyanate cation generated from carbamate.

    PubMed

    Sumita, Akinari; Kurouchi, Hiroaki; Otani, Yuko; Ohwada, Tomohiko

    2014-10-01

    Carbamates have been used as precursors of isocyanates, but heating in the presence of strong acids is required because cleavage of the C-O bond in carbamates is energy-demanding even in acid media. Direct amidation of aromatic compounds by isocyanate cations generated at room temperature from carbamoyl salicylates in trifluoromethanesulfonic acid (TfOH) was examined. Carbamates with ortho-salicylate as an ether group (carbamoyl salicylates) showed dramatically accelerated O-C bond dissociation in TfOH, which resulted in facile generation of the isocyanate cation. These chemoselective intermolecular aromatic amidation reactions proceeded even at room temperature and showed good compatibility with other electrophilic functionalities and high discrimination between N-monosubstituted carbamate and N,N-disubstituted carbamate. The reaction rates of secondary and tertiary amide formation were markedly different, and this difference was utilized to achieve successive (tandem) amidation reactions of molecules with an N-monosubstituted carbamate and an N,N-disubstituted carbamate with two kinds of aromatic compounds.

  6. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption.

    PubMed

    Costa, Fabíola M T A; Maia, Sílvia R; Gomes, Paula A C; Martins, M Cristina L

    2015-06-01

    Bacterial colonization and subsequent biofilm formation is still one of the major problems associated with medical devices. Antimicrobial peptides (AMP) immobilization onto biomaterials surface is a promising strategy to avoid bacterial colonization. However, a correct peptide orientation and exposure from the surface is essential to maintain AMP antimicrobial activity. This work aims to evaluate the effect of the immobilization on antibacterial activity of Dhvar5 (LLLFLLKKRKKRKY), an AMP with a head-to-tail amphipathicity. Dhvar5 was linked to thin chitosan coatings in i) a controlled orientation and exposure, testing covalent immobilization of its N- or C-terminus and using spacers with different lengths and flexibilities or in ii) a random orientation by physical adsorption. Chitosan coating was chosen due to its antimicrobial properties and readiness to be functionalized. Surface characterization demonstrated the chemoselective immobilization of the peptide with different spacers in a similar concentration (∼2 ng/cm2). Efficacy assays demonstrated that covalent immobilization of Dhvar5 exposing its cationic end, improves the chitosan coating antimicrobial effect by decreasing Methicillin-resistant Staphylococcus aureus (MRSA) colonization. This effect was enhanced when longer spacers were used independently of their flexibility. In opposite, immobilized Dhvar5 exposing its hydrophobic end has no effect on bacterial adhesion to chitosan, and when adsorbed in a random orientation even induces bacterial adhesion to chitosan coating.

  7. Brønsted Acid Catalyzed Addition of Enamides to ortho-Quinone Methide Imines-An Efficient and Highly Enantioselective Synthesis of Chiral Tetrahydroacridines.

    PubMed

    Kretzschmar, Martin; Hodík, Tomáš; Schneider, Christoph

    2016-08-08

    The direct and highly enantioselective synthesis of tetrahydroacridines was achieved through the phosphoric acid catalyzed addition of enamides to in situ generated ortho-quinone methide imines and subsequent elimination. This novel one-step process constitutes a very efficient, elegant, and selective synthetic approach to valuable N-heterocycles with a 1,4-dihydroquinoline motif. By subsequent highly diastereoselective hydrogenation and N-deprotection the reaction products were easily converted into free hexahydroacridines with a total of three new stereogenic centers.

  8. Efficient synthesis of 1-azadienes derived from alpha-aminoesters. Regioselective preparation of alpha-dehydroamino acids, vinylglycines, and alpha-amino acids.

    PubMed

    Palacios, Francisco; Vicario, Javier; Aparicio, Domitila

    2006-09-29

    An efficient synthesis of 1-azadienes derived from alpha-aminoesters is achieved through an aza-Wittig reaction of phosphazenes with beta,gamma-unsaturated alpha-ketoesters. Regioselective 1,2-reduction of these functionalized 1-azadienes affords vinylglycine derivatives, while conjugative 1,4-reduction gives alpha-dehydroamino acid compounds. Reduction of both the carbon-carbon and the imine-carbon-nitrogen double bonds leads to the formation of alpha-amino acid derivatives.

  9. Witting Reaction Using a Stabilized Phosphorus Ylid: An Efficient and Stereoselective Synthesis of Ethyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.

    2004-01-01

    An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…

  10. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent.

  11. Template-Engaged Solid-State Synthesis of Barium Magnesium Silicate Yolk@Shell Particles and Their High Photoluminescence Efficiency.

    PubMed

    Chen, Xuncai; Kim, Woo-Sik

    2016-05-17

    This study presents a new synthetic method for fabricating yolk@shell-structured barium magnesium silicate (BMS) particles through a template-engaged solid-state reaction. First, as the core template, (BaMg)CO3 spherical particles were prepared based on the coprecipitation of Ba(2+) and Mg(2+) . These core particles were then uniformly shelled with silica (SiO2 ) by using CTAB as the structure-directing template to form (BaMg)CO3 @SiO2 particles with a core@shell structure. The (BaMg)CO3 @SiO2 particles were then converted to yolk@shell barium magnesium silicate (BMS) particles by an interfacial solid-state reaction between the (BaMg)CO3 (core) and the SiO2 (shell) at 750 °C. During this interfacial solid-state reaction, Kirkendall diffusion contributed to the formation of yolk@shell BMS particles. Thus, the synthetic temperature for the (BaMg)SiO4 :Eu(3+) phosphor is significantly reduced from 1200 °C with the conventional method to 750 °C with the proposed method. In addition, the photoluminescence intensity of the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor was found to be 9.8 times higher than that of the conventional (BaMg)SiO4 :Eu(3+) phosphor. The higher absorption of excitation light by the structure of the yolk@shell phosphor is induced by multiple light-reflection and -scattering events in the interstitial void between the yolk and the shell. When preparing the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor, a hydrogen environment for the solid-state reaction results in higher photoluminescence efficiency than nitrogen and air environments. The proposed synthetic method can be easily extended to the synthesis of other yolk@shell multicomponent metal silicates.

  12. Synthesis of Sr2Si5N8:Ce3+ phosphors for white LEDs via an efficient chemical deposition

    PubMed Central

    Yang, Che-Yuan; Som, Sudipta; Das, Subrata; Lu, Chung-Hsin

    2017-01-01

    Novel chemical vapor deposition (CVD) process was successfully developed for the growth of Sr2Si5N8:Ce3+ phosphors with elevated luminescent properties. Metallic strontium was used as a vapor source for producing Sr3N2 vapor to react with Si3N4 powder via a homogeneous gas-solid reaction. The phosphors prepared via the CVD process showed high crystallinity, homogeneous particle size ranging from 8 to 10 μm, and high luminescence properties. In contrast, the phosphors prepared via the conventional solid-state reaction process exhibited relative low crystallinity, non-uniform particle size in the range of 0.5–5 μm and relatively lower luminescent properties than the phosphors synthesized via the CVD process. Upon the blue light excitation, Sr2−xCexSi5N8 phosphors exhibited a broad yellow band. A red shift of the emission band from 535 to 556 nm was observed with the increment in the doping amount of Ce3+ ions from x = 0.02 to x = 0.10. The maximum emission was observed at x = 0.06, and the external and internal quantum efficiencies were calculated to be 51% and 71%, respectively. Furthermore, the CVD derived optimum Sr1.94Ce0.06Si5N8 phosphor exhibited sufficient thermal stability for blue-LEDs and the activation energy was calculated to be 0.33 eV. The results demonstrate a potential synthesis process for nitride phosphors suitable for light emitting diodes. PMID:28361999

  13. Trypsin-catalyzed multicomponent reaction: A novel and efficient one-pot synthesis of thiazole-2-imine derivatives.

    PubMed

    Zhou, Junbin; Huang, Xingtian; Zhang, Zhuan; Song, Ping; Li, Yiqun

    2017-01-10

    The first Trypsin from porcine pancreas catalyzed a novel one-pot three-component reaction of α-bromoketone, primary alkylamines, and phenylisothiocyanate for the synthesis of thiazole-imine derivatives with high yields (up to 98%) in a short time under mild conditions. The results revealed that Trypsin exhibited excellent catalytic activity and great tolerance for broad substrates. This Trypsin-catalyzed three component convergent method provides a novel strategy for the synthesis of thiazole-2-imine derivatives and expands the promiscuous functions of enzymes in organic synthesis.

  14. Efficient, Traceless Semi-Synthesis of α-Synuclein Labeled with a Fluorophore/Thioamide FRET Pair

    PubMed Central

    Wissner, Rebecca F.; Wagner, Anne M.; Warner, John B.; Petersson, E. James

    2015-01-01

    We have shown that thioamides can be incorporated into proteins through semi-synthesis and used as probes to monitor structural changes. To date, our methods have required the presence of a cysteine at the peptide ligation site, which may not be present in the native peptide sequence. Here, we present a strategy for the semi-synthesis of thioproteins using homocysteine as a ligation point with subsequent masking as methionine, making the ligation “traceless.” PMID:26893537

  15. Water-soluble aminocurdlan derivatives by chemoselective azide reduction using NaBH4.

    PubMed

    Zhang, Ruoran; Edgar, Kevin J

    2015-05-20

    Water-solubility can often enhance the utility of polysaccharide derivatives, for example in pharmaceutical and biomedical applications. Synthesis of water-soluble aminopolysaccharides, particularly those bearing other sensitive functional groups, can be a challenging endeavor. Curdlan is a bioactive β-1,3-glucan with considerable promise for biomedical applications. Aminocurdlans are intriguing target molecules for study of, for example, their interactions with the proteins that form tight junctions between enterocytes. Herein we report the preparation of two water-soluble 6-aminocurdlans starting from 6-bromo-6-deoxycurdlan. The 6-bromide was first displaced by nucleophilic substitution with sodium azide in dimethyl sulfoxide. The O-2 groups were acylated with hydrophilic oligo (ethylene oxide) esters, so as to enhance aqueous solubility. The resultant 6-azido-6-deoxy-2,4-di-O-trioxadecanoylcurdlan was then treated with excess sodium borohydride to reduce the azide; unexpectedly, the water-soluble product proved to be the amide, 6-trioxadecanamido-6-deoxycurdlan. Regioselectivity and degree of substitution (DS) of those derivatives were characterized by means of (1)H NMR, (13)C NMR and FTIR-spectroscopy, elemental analysis, and titration. Alternatively, direct borohydride reduction of the parent 6-azido-6-deoxycurdlan afforded 6-amino-6-deoxycurdlan that was also water-soluble.

  16. Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots.

    PubMed

    Prasuhn, Duane E; Blanco-Canosa, Juan B; Vora, Gary J; Delehanty, James B; Susumu, Kimihiro; Mei, Bing C; Dawson, Philip E; Medintz, Igor L

    2010-01-26

    One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD--bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Forster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (K(M)) and the maximum proteolytic activity (V(max)). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide--DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials.

  17. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(β-amino ester) for highly efficient gene delivery of minicircle DNA.

    PubMed

    Zhao, Jing; Yang, Lei; Huang, Ping; Wang, ZhiYong; Tan, Yan; Liu, Hong; Pan, JiaJia; He, Cheng-Yi; Chen, Zhi-Ying

    2016-02-01

    Gene therapy has held great promise for treating specific acquired and inherited diseases. However, the lack of safe and efficient gene delivery systems remains as the major challenge. Poly(β-amino ester)s (PBAEs) have attracted much attention due to their outstanding properties in biosafety, DNA delivery efficiency and convenience in synthesis. In this paper, we reported the further enhancement of the PBAE functions by increasing its positive charge through conjugating with low molecular weight polyethylenimine (LPEI). The resulted LPEI-PBAE polymer was able to condense minicircle DNA (mcDNA) forming nanoparticles with a diameter of 50-200nm. Furthermore, as compared to parental PBAE and a commercial transfection reagent very common in laboratory application, the LPEI-PBAE demonstrated significantly higher transfection efficiency with little cytotoxicity. These results suggested LPEI-PBAEs are worthy of further optimization for gene therapy applications.

  18. One-Pot controlled synthesis of spongelike CuInS(2) microspheres for efficient counter electrode with graphene assistance in dye-sensitized solar cells.

    PubMed

    Liu, Mingyang; Li, Guang; Chen, Xiaoshuang

    2014-02-26

    Spongelike CuInS2 3D microspheres were synthesized through a solvothermal method employing CuCl, InCl3, and thiourea as Cu, In, and S sources, respectively, and PVP as surfactant. The as-prepared products have regular spherical shapes with diameters of 0.8-3.7 μm, the spheres consisted of small nanosheets, which are composed of small nanoparticles. As an important solar cell material, its photovoltaic property was also tested and the results showed a solar energy conversion efficiency of 3.31%. With the help of reduced graphene, its conversion efficiency could be further increased to 6.18%. Compared with conventional Pt material used in counter electrodes of solar cells, this new material has an advantages of low-cost, facile synthesis and high efficiency with graphene assistance.

  19. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Shen, Chao; Xie, Keyu; Wei, Bingqing

    2016-02-01

    A simple one-step and low-temperature synthesis approach has been developed to grow hierarchical NiCo2S4 ultrathin nanosheets (2-3 nm in thickness) on Ni foam. Owing to the unique nanoarchitecture, the NiCo2S4 nanosheets not only offer abundant electro-active sites for energy storage, but also have good electrical and mechanical connections to the conductive Ni foam for enhancing reaction kinetics and improving electrode integrity. When used as anodes for Li-ion batteries, the NiCo2S4 nanosheets demonstrate exceptional energy storage performance in terms of high specific capacity, excellent rate capability, and good cycling stability. The mild-solution synthesis of NiCo2S4 nanostructures and the outstanding electrochemical performance enable the novel electrodes to hold great potential for high-efficient energy storage systems.

  20. ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for Four-Component One-Pot Green Synthesis of Pyranopyrazole Derivatives in Water

    PubMed Central

    Sachdeva, Harshita; Saroj, Rekha

    2013-01-01

    An extremely efficient catalytic protocol for the synthesis of a series of pyranopyrazole derivatives developed in a one-pot four-component approach in the presence of ZnO nanoparticles as heterogeneous catalyst using water as a green solvent is reported. Greenness of the process is well instituted as water is exploited both as reaction media and medium for synthesis of catalyst. The ZnO nanoparticles exhibited excellent catalytic activity, and the proposed methodology is capable of providing the desired products in good yield (85–90%) and short reaction time. After reaction course, ZnO nanoparticles can be recycled and reused without any apparent loss of activity which makes this process cost effective and hence ecofriendly. All the synthesized compounds have been characterized on the basis of elemental analysis, IR, 1H NMR, and 13C NMR spectral studies. PMID:24282386

  1. Water as a green solvent for efficient synthesis of isocoumarins through microwave-accelerated and Rh/Cu-catalyzed C-H/O-H bond functionalization

    SciTech Connect

    Li, Qiu; Yan, Yunnan; Wang, Xiaowei; Gong, Binwei; Tang, Xiaobo; Shi, JingJing; Xu, H. Eric; Yi, Wei

    2014-08-14

    Green chemistry that uses water as a solvent has recently received great attention in organic synthesis. Here we report an efficient synthesis of biologically important isocoumarins through direct cleavage of C–H/O–H bonds by microwave-accelerated and Rh/Cu-catalyzed oxidative annulation of various substituted benzoic acids, where water is used as the only solvent in the reactions. The remarkable features of this “green” methodology include high product yields, wide tolerance of various functional groups as substrates, and excellent region-/site-specificities, thus rendering this methodology a highly versatile and eco-friendly alternative to the existing methods for synthesizing isocoumarins and other biologically important derivatives such as isoquinolones.

  2. Rational design and synthesis of efficient Carbon and/or Silica functional nanomaterials for electrocatalysis and nanomedicine

    NASA Astrophysics Data System (ADS)

    Da Silva, Rafael

    In nanomaterials there is a strong correlation between structure and properties. Thus, the design and synthesis of nanomaterials with well-defined structures and morphology is essential in order to produce materials with not only unique but also tailorable properties. The unique properties of nanomaterials in turn can be taken advantage of to create materials and nanoscale devices that can help address important societal issues, such as meeting renewable energy sources and efficient therapeutic and diagnostic methods to cure a range of diseases. In this thesis, the different synthetic approaches I have developed to produce functional nanomaterials composed of earth-abundant elements (mainly carbon and silica) at low cost in a very sustainable manner are discussed. In Chapter 1, the fundamental properties of nanomaterials and their properties and potential applications in many areas are introduced. In chapter 2, a novel synthetic method that allows polymerization of polyaniline (PANI), a conducting polymer, inside cylindrical channel pores of nanoporous silica (SBA-15) is discussed. In addition, the properties of the III resulting conducting polymer in the confined nanochannel spaces of SBA-15, and more importantly, experimental demonstration of the use of the resulting hybrid material (PANI/SBA-15 material) as electocatalyst for electrooxidation reactions with good overpotential, close to zero, are detailed. In chapter 3, the synthetic approach discussed in Chapter 2 is further extended to afford nitrogen- and oxygen-doped mesoporous carbons. This is possible by pyrolysis of the PANI/SBA-15 composite materials under inert atmosphere, followed by etching away their silica framework. The high catalytic activity of resulting carbon-based materials towards oxygen reduction reaction despite they do not possess any metal dopants is also included. The potential uses of nanomaterials in areas such as nanomedicine need deep understanding of the biocompatibility/ toxicity of

  3. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B.

    PubMed

    Bhargava, Arpit; Jain, Navin; Khan, Mohd Azeem; Pareek, Vikram; Dilip, R Venkataramana; Panwar, Jitendra

    2016-12-01

    In recent years, the surging demand of nanomaterials has boosted unprecedented expansion of research for the development of high yielding and sustainable synthesis methods which can deliver nanomaterials with desired characteristics. Unlike the well-established physico-chemical methods which have various limitations, biological methods inspired by mimicking natural biomineralization processes have great potential for nanoparticle synthesis. An eco-friendly and sustainable biological method that deliver particles with well-defined shape, size and compositions can be developed by selecting a proficient organism followed by fine tuning of various process parameter. The present study revealed high metal tolerance ability of a soil fungus Cladosporium oxysporum AJP03 and its potential for extracellular synthesis of gold nanoparticles. The morphology, composition and crystallinity of nanoparticles were confirmed using standard techniques. The synthesized particles were quasi-spherical in shape with fcc packing and an average particle size of 72.32 ± 21.80 nm. A series of experiments were conducted to study the effect of different process parameters on particle size and yield. Biomass: water ratio of 1:5 and 1 mM precursor salt concentration at physiological pH (7.0) favoured the synthesis of well-defined gold nanoparticles with maximum yield. The as-synthesized nanoparticles showed excellent catalytic efficiency towards sodium borohydride mediated reduction of rhodamine B (2.5 × 10(-5) M) within 7 min of reaction time under experimental conditions. Presence of proteins as capping material on the nanoparticle surface was found to be responsible for this remarkable catalytic efficiency. The present approach can be extrapolated to develop controlled and up-scalable process for mycosynthesis of nanoparticles for diverse applications.

  4. Efficient routes to carbon-silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles.

    PubMed

    Min, Geanna K; Hernández, Dácil; Skrydstrup, Troels

    2013-02-19

    Silasubstitution, where silicon is substituted for carbon at specific sites of the substrate, has become a growing practice in medicinal chemistry. Introducing silicon into bioactive compounds provides slight physical and electronic alterations to the parent compound, which in certain instances could make the substrate a more viable candidate for a drug target. One application is in the field of protease inhibition. Various silane diol isosteres can act as potent inhibitors of aspartic and metalloproteases because of their ability to mimic the high-energy tetrahedral intermediate in peptide bond hydrolysis. In particular, since 1998, the Sieburth group has prepared a number of functionalized peptide silane diol isosteres. In a seminal study, they demonstrated that these molecules can bind to the active site of the enzymes. Inspired by these results, we initiated a study to develop a concise and straightforward route to access highly functionalized silicon diol based peptidomimetic analogs, which we describe in this Account. The synthesis of such analogs is challenging because the dipeptide mimics require the formation of two carbon-silicon bonds as well as two chiral carbon centers. Our first strategy was to assemble the two C-Si bonds from diphenylsilane through an initial regioselective hydrosilylation step of a terminal alkene, followed by lithiation of the formed alkyldiphenylsilane by a simple lithium metal reduction. Subsequent diastereoselective addition of this silyllithium species to a tert-butylsulfinimine provided a rapid method to assemble the dipeptide mimic with stereochemical control at the new chiral carbon center adjacent to the silicon. This strategy worked with a wide range of functional groups. However, there were some limitations with the more elaborate targets. In particular, we needed to exchange the phenyl groups of the diphenylsilane with aryl groups that were more labile under acidic conditions in order to introduce Si-O bonds in the end

  5. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  6. p-Sulfonic Acid Calix[4]arene as an Efficient Catalyst for One-Pot Synthesis of Pharmaceutically Significant Coumarin Derivatives under Solvent-Free Condition

    PubMed Central

    Tashakkorian, Hamed; Lakouraj, Moslem Mansour; Rouhi, Mona

    2015-01-01

    One-pot and efficient protocol for preparation of some potent pharmaceutically valuable coumarin derivatives under solvent-free condition via direct coupling using biologically nontoxic organocatalyst, calix[4]arene tetrasulfonic acid (CSA), was introduced. Calix[4]arene sulfonic acid has been incorporated lately as a magnificent and recyclable organocatalyst for the synthesis of some organic compounds. Nontoxicity, solvent-free conditions, good-to-excellent yields for pharmaceutically significant structures, and especially ease of catalyst recovery make this procedure valuable and environmentally benign. PMID:26798517

  7. An “Aprotic” Tamao Oxidation/syn-Selective Tautomerization Reaction for the Efficient Synthesis of the C(1)–C(9) Fragment of Fludelone

    PubMed Central

    Harrison, Tyler J.; Rabbat, Philippe M. A.; Leighton, James L.

    2012-01-01

    An efficient synthesis of the C(1)–C(9) fragment of fludelone has been developed. The key step is a tandem silylformylation-crotylsilylation/Tamao oxidation sequence that establishes the C(5) ketone, the C(6), C(7), and C(8) stereocenters, and the C(9) alkene in a single operation from a readily accessed starting material. The stereochemical outcome at C(6) depends critically on the development of an “aprotic” Tamao oxidation, which leads to a reversal in the intrinsic diastereoselectivity observed using “standard” Tamao oxidation conditions. PMID:22950417

  8. Titanocene(III)-catalyzed 6-exo versus 7-endo cyclizations of epoxypolyprenes: efficient control and synthesis of versatile terpenic building blocks.

    PubMed

    Justicia, José; Jiménez, Tania; Miguel, Delia; Contreras-Montoya, Rafael; Chahboun, Rachid; Alvarez-Manzaneda, Enrique; Collado-Sanz, Daniel; Cárdenas, Diego J; Cuerva, Juan M

    2013-10-18

    In this article, a complete study on the selectivity of titanocene(III) cyclization of epoxypolyprenes is presented. The requirements for the formation of six- or seven-membered rings during these cyclizations are determined, taking into account the different substitution pattern in the epoxypolyprene precursor. Thus, a complete selectivity to 6-exo or 7-endo cyclization process has been achieved, yielding mono-, bi-, and even tricyclic compounds, constituting a new and efficient access to this type of derivative. Additionally, this procedure opens the possibility to prepare excellent building blocks for the synthesis of polycyclic compounds with a trisubstituted oxygenated function, which is present in several natural terpenes.

  9. Copper ferrite nanoparticles: an efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spirooxindoles in water.

    PubMed

    Bazgir, Ayoob; Hosseini, Ghaffar; Ghahremanzadeh, Ramin

    2013-10-14

    A green reaction of isatins, active cyanomethanes, and cyclic 1,3-dicarbonyl derivatives for the efficient and simple one-pot three-component synthesis of spirooxindole fused heterocycles in refluxing water by use of magnetically recoverable and reusable catalyst is reported. The features of this procedure are, the use of magnetically recoverable and reusable catalyst, mild reaction conditions, high to excellent product yields, operational simplicity, and easy workup procedures. Most importantly of all, easy magnetic separation of the catalyst eliminates the requirement of catalyst filtration after completion of the reaction. Furthermore, the catalyst remained highly active even after 5 repeated uses.

  10. Synthetic study on carbocyclic analogs of cyclic ADP-ribose, a novel second messenger: an efficient synthesis of cyclic IDP-carbocyclic-ribose.

    PubMed

    Fukuoka, M; Shuto, S; Minakawa, N; Ueno, Y; Matsuda, A

    1999-01-01

    An efficient synthesis of cyclic IDP-carbocyclic-ribose, as a stable mimic for cyclic ADP-ribose, was achieved. 8-Bromo-N1-carbocyclic-ribosylinosine derivative 10, prepared from N1-(2,4-dinitrophenyl)inosine derivative 5 and an optically active carbocyclic amine 6, was converted to 8-bromo-N1-carbocyclic-ribosylinosine bisphosphate derivative 15. Treatment of 15 with I2 in the presence of molecular sieves in pyridine gave the desired cyclic product 16 quantitatively, which was deprotected and reductively debrominated to give the target cyclic IDP-carbocyclic-ribose (3).

  11. An efficient synthesis of an exo-enone analogue of LL-Z1640-2 and evaluation of its protein kinase inhibitory activities.

    PubMed

    Wang, Stephanie Q; Goh, Shermin S; Chai, Christina L L; Chen, Anqi

    2016-01-14

    An efficient synthesis of an exo-enone analogue (5) of resorcylic acid lactone (RAL), natural product LL-Z1640-2 (1), has been achieved using a Ni-catalysed regioselective reductive coupling macrocyclisation of an alkyne-aldehyde as a key step. The synthetic route is significantly shorter than those for the natural product and avoids the isomerisation problem of the cis-double bond in the molecule. The preliminary biological evaluation showed that the exo-enone analogue is a potent inhibitor of several important kinases relevant to cancer drug development.

  12. Schwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater.

    PubMed

    Liu, Fenwu; Zhou, Jun; Zhang, Shasha; Liu, Lanlan; Zhou, Lixiang; Fan, Wenhua

    2015-01-01

    Schwertmannite-mediated removal of arsenic from contaminated water has attracted increasing attention. However, schwertmannite chemical synthesis behavior under different H2O2 supply rates for ferrous ions oxidation is unclear. This study investigated pH, ferrous ions oxidation efficiency, and total iron precipitation efficiency during schwertmannite synthesis by adding H2O2 into FeSO4 · 7H2O solution at different supply rates. Specific surface area and arsenic (III) removal capacity of schwertmannite have also been studied. Results showed that pH decreased from ~3.48 to ~1.96, ~2.06, ~2.12, ~2.14, or ~2.17 after 60 h reaction when the ferrous ions solution received the following corresponding amounts of H2O2: 1.80 mL at 2 h (treatment 1); 0.90 mL at 2 h and 14 h (treatment 2); 0.60 mL at 2, 14, and 26 h (treatment 3); 0.45 mL at 2, 14, 26, and 38 h (treatment 4), or 0.36 mL at 2, 14, 26, 38, and 50 h (treatment 5). Slow H2O2 supply significantly inhibited the total iron precipitation efficiency but improved the specific surface area or arsenic (III) removal capacity of schwertmannite. For the initial 50.0 μg/L arsenic (III)-contaminated water under pH ~7.0 and using 0.25 g/L schwertmannite as an adsorbent, the total iron precipitation efficiency, specific surface area of the harvested schwertmannite, and schwertmannite arsenic(III) removal efficiency were 29.3%, 2.06 m2/g, and 81.1%, respectively, in treatment 1. However, the above parameters correspondingly changed to 17.3%, 16.30 m2/g, and 96.5%, respectively, in treatment 5.

  13. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  14. Solid-Phase Synthesis of ɤ-Lactone and 1,2-Oxazine Derivatives and Their Efficient Chiral Analysis

    PubMed Central

    Krupkova, Sona; Aguete, Gonzalo Pazos; Kocmanova, Leona; Volna, Tereza; Grepl, Martin; Novakova, Lucie; Miller, Marvin John; Hlavac, Jan

    2016-01-01

    Derivatives of 3-methyl-3,6-dihydro-2H-1,2-oxazine-6-carboxylic acid prepared by regioselective hetero Diels-Alder reaction of arylnitroso compounds with sorbic acid were used for solid-phase synthesis of a library of derivatives that included modification of carboxylic group, dihydroxylation of double bond and cleavage of N-O bond. Derivatives of 2,3,4-trihydroxyhexanoic acid obtained from 3,6-dihydro-2H-1,2-oxazines after double bond dihydroxylation and N-O cleavage were used for simple and stereoselective formation of chiral lactones derived from 3,4-dihydroxydihydrofuran-2(3H)-one. The final compounds obtained as a mixture of stereoisomers were analyzed with use of chiral HPLC and SFC. HPLC analyses were not successful for all derivatives or required lengthy chromatography. On the other hand SFC afforded much shorter analyses and was effective for all studied derivatives. The method of synthesis and analysis is thus suitable for future study of stereoselective synthesis of lactones and other derivatives from single oxazine derivatives and application of high-throughput synthesis on solid-support and combinatorial chemistry. PMID:27893812

  15. A functional heat shock protein 90 chaperone is essential for efficient flock house virus RNA polymerase synthesis in Drosophila cells.

    PubMed

    Castorena, Kathryn M; Weeks, Spencer A; Stapleford, Kenneth A; Cadwallader, Amy M; Miller, David J

    2007-08-01

    The molecular chaperone heat shock protein 90 (Hsp90) is involved in multiple cellular processes including protein maturation, complex assembly and disassembly, and intracellular transport. We have recently shown that a disruption of Hsp90 activity in cultured Drosophila melanogaster cells suppresses Flock House virus (FHV) replication and the accumulation of protein A, the FHV RNA-dependent RNA polymerase. In the present study, we investigated whether the defect in FHV RNA polymerase accumulation induced by Hsp90 suppression was secondary to an effect on protein A synthesis, degradation, or intracellular membrane association. Treatment with the Hsp90-specific inhibitor geldanamycin selectively reduced FHV RNA polymerase synthesis by 80% in Drosophila S2 cells stably transfected with an inducible protein A expression plasmid. The suppressive effect of geldanamycin on protein A synthesis was not attenuated by proteasome inhibition, nor was it sensitive to changes in either the mRNA untranslated regions or protein A intracellular membrane localization. Furthermore, geldanamycin did not promote premature protein A degradation, nor did it alter the extremely rapid kinetics of protein A membrane association. These results identify a novel role for Hsp90 in facilitating viral RNA polymerase synthesis in Drosophila cells and suggest that FHV subverts normal cellular pathways to assemble functional replication complexes.

  16. Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage

    DOE PAGES

    Yen, Hung-Ju; Tsai, Hsinhan; Zhou, Ming; ...

    2016-10-10

    In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g-1), three times higher than that of the graphite anode (372 mAh g-1).

  17. Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1.

    PubMed

    Kalidindi, Suresh Babu; Wiktor, Christian; Ramakrishnan, Ayyappan; Weßing, Jana; Schneemann, Andreas; Van Tendeloo, Gustaaf; Fischer, Roland A

    2013-01-18

    N-Lewis base mediated room temperature synthesis of covalent organic frameworks (COFs) starting from a solution of building blocks instead of partially soluble building blocks was developed. This protocol shifts COF synthetic chemistry from sealed tubes to open beakers. Non-conventional inclusion compounds of COF-1 were obtained by vapor phase infiltration of ferrocene and azobenzene, and solvation like effects were established.

  18. Eco-efficient synthesis of highly-porous CoCO3 anodes for Li+ and Na+ storage using supercritical CO2 precursors.

    PubMed

    Li, Hui-Ying; Tseng, Chuan-Ming; Yang, Cheng-Hsien; Lee, Tai-Chou; Su, Ching-Yuan; Hsieh, Chien-Te; Chang, Jeng-Kuei

    2017-03-20

    An eco-efficient synthesis route of high-performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (SCCO2) as the precursor, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (~20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g-1, the proposed CoCO3/GNS anode shows an excellent rate capability, as it is able to deliver 745 mAh g-1 in 7.5 min. More than 98% of the initial capacity can be retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3-based electrodes for Li+ storage, indicating the merit of our SCCO2 synthesis, which is facile, green, and easily scaled up for mass production.

  19. Microwave-assisted synthesis: A fast and efficient route to produce LaMO{sub 3} (M = Al, Cr, Mn, Fe, Co) perovskite materials

    SciTech Connect

    Prado-Gonjal, J.; Arevalo-Lopez, A.M.; Moran, E.

    2011-02-15

    Research highlights: {yields} Lanthanum perovskites can be prepared by microwave irradiation in a domestic set-up. {yields} Microwave-assisted synthesis yields well crystallized and pure materials, sometimes nanosized. {yields} Rietveld analysis has been performed to refine the structures. {yields} Magnetic and electric measurements are similar to those previously reported. {yields} Microwave-assisted synthesis is a fast and efficient method for the synthesis of lanthanum perovskites. -- Abstract: A series of lanthanum perovskites, LaMO{sub 3} (M = Al, Cr, Mn, Fe, Co), having important technological applications, have been successfully prepared by a very fast, inexpensive, reproducible, environment-friendly method: the microwave irradiation of the corresponding mixtures of nitrates. Worth to note, the microwave source is a domestic microwave oven. In some cases the reaction takes place in a single step, while sometimes further annealings are necessary. For doped materials the method has to be combined with others such as sol-gel. Usually, nanopowders are produced which yield high density pellets after sintering. Rietveld analysis, oxygen stoichiometry, microstructure and magnetic measurements are presented.

  20. An Efficient Method for the Synthesis of Peptoids with Mixed Lysine-type/Arginine-type Monomers and Evaluation of Their Anti-leishmanial Activity

    PubMed Central

    Bolt, Hannah L.; Denny, Paul W.; Cobb, Steven L.

    2016-01-01

    This protocol describes the manual solid-phase synthesis of linear peptoids that contain two differently functionalized cationic monomers. In this procedure amino functionalized 'lysine' and guanido functionalized 'arginine' peptoid monomers can be included within the same peptoid sequence. This procedure uses on-resin (N-(1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl) or Dde protection, orthogonal conditions to the Boc protection of lysine monomers. Subsequent deprotection allows an efficient on-resin guanidinylation reaction to form the arginine residues. The procedure is compatible with the commonly used submonomer method of peptoid synthesis, allowing simple peptoids to be made using common laboratory equipment and commercially available reagents. The representative synthesis, purification and characterization of two mixed peptoids is described. The evaluation of these compounds as potential anti-infectives in screening assays against Leishmania mexicana is also described. The protozoan parasite L. mexicana is a causative agent of cutaneous leishmaniasis, a neglected tropical disease that affects up to 12 million people worldwide. PMID:27842365

  1. Efficient and Regioselective Synthesis of β-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating β-N-Acetylhexosaminidase from Bifidobacterium bifidum

    PubMed Central

    Chen, Xiaodi; Xu, Li; Jin, Lan; Sun, Bin; Gu, Guofeng

    2016-01-01

    ABSTRACT β-N-Acetylhexosaminidases have attracted interest particularly for oligosaccharide synthesis, but their use remains limited by the rarity of enzyme sources , low efficiency, and relaxed regioselectivity of transglycosylation. In this work, genes of 13 β-N-acetylhexosaminidases, including 5 from Bacteroides fragilis ATCC 25285, 5 from Clostridium perfringens ATCC 13124, and 3 from Bifidobacterium bifidum JCM 1254, were cloned and heterogeneously expressed in Escherichia coli. The resulting recombinant enzymes were purified and screened for transglycosylation activity. A β-N-acetylhexosaminidase named BbhI, which belongs to glycoside hydrolase family 20 and was obtained from B. bifidum JCM 1254, possesses the bifunctional property of efficiently transferring both GalNAc and GlcNAc residues through β1-3 linkage to the Gal residue of lactose. The effects of initial substrate concentration, pH, temperature, and reaction time on transglycosylation activities of BbhI were studied in detail. With the use of 10 mM pNP-β-GalNAc or 20 mM pNP-β-GlcNAc as the donor and 400 mM lactose as the acceptor in phosphate buffer (pH 5.8), BbhI synthesized GalNAcβ1-3Galβ1-4Glc and GlcNAcβ1-3Galβ1-4Glc at maximal yields of 55.4% at 45°C and 4 h and 44.9% at 55°C and 1.5 h, respectively. The model docking of BbhI with lactose showed the possible molecular basis of strict regioselectivity of β1-3 linkage in β-N-acetylhexosaminyl lactose synthesis. IMPORTANCE Oligosaccharides play a crucial role in many biological events and therefore are promising potential therapeutic agents. However, their use is limited because large-scale production of oligosaccharides is difficult. The chemical synthesis requires multiple protecting group manipulations to control the regio- and stereoselectivity of glycosidic bonds. In comparison, enzymatic synthesis can produce oligosaccharides in one step by using glycosyltransferases and glycosidases. Given the lower price of their glycosyl

  2. Novel Protocol for the Chemical Synthesis of Crustacean Hyperglycemic Hormone Analogues — An Efficient Experimental Tool for Studying Their Functions

    PubMed Central

    Mosco, Alessandro; Zlatev, Vientsislav; Guarnaccia, Corrado; Pongor, Sándor; Campanella, Antonella; Zahariev, Sotir; Giulianini, Piero G.

    2012-01-01

    The crustacean Hyperglycemic Hormone (cHH) is present in many decapods in different isoforms, whose specific biological functions are still poorly understood. Here we report on the first chemical synthesis of three distinct isoforms of the cHH of Astacus leptodactylus carried out by solid phase peptide synthesis coupled to native chemical ligation. The synthetic 72 amino acid long peptide amides, containing L- or D-Phe3 and (Glp1, D-Phe3) were tested for their biological activity by means of homologous in vivo bioassays. The hyperglycemic activity of the D-isoforms was significantly higher than that of the L-isoform, while the presence of the N-terminal Glp residue had no influence on the peptide activity. The results show that the presence of D-Phe3 modifies the cHH functionality, contributing to the diversification of the hormone pool. PMID:22253873

  3. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    PubMed

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years.

  4. Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage

    SciTech Connect

    Yen, Hung-Ju; Tsai, Hsinhan; Zhou, Ming; Holby, Edward F.; Choudhury, Samrat; Chen, Aiping; Adamska, Lyudmyla; Tretiak, Sergei; Sanchez, Timothy; Iyer, Srinivas; Zhang, Hanguang; Zhu, Lingxiang; Lin, Haiqing; Dai, Liming; Wu, Gang; Wang, Hsing-Lin

    2016-10-10

    In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g-1), three times higher than that of the graphite anode (372 mAh g-1).

  5. Novel and efficient one-pot tandem synthesis of 2-styryl-substituted 4(3H)-quinazolinones.

    PubMed

    Dabiri, Minoo; Baghbanzadeh, Mostafa; Delbari, Akram Sadat

    2008-01-01

    A novel one-pot tandem synthesis of 2-styryl-4(3 H)-quinazolinones in an acidic ionic liquid is reported. In this procedure isatoic anhydride, a primary aniline or ammonium acetate, and triethylorthoacetate are reacted in the presence of imidazolium trifluoroacetate [Hmim]TFA. Subsequently an aromatic aldehyde is added to the mixture to afford the title compounds in high to excellent yields.

  6. Palladium-catalyzed through-space C(sp(3))-H and C(sp(2))-H bond activation by 1,4-palladium migration: efficient synthesis of [3,4]-fused oxindoles.

    PubMed

    Piou, Tiffany; Bunescu, Ala; Wang, Qian; Neuville, Luc; Zhu, Jieping

    2013-11-18

    Palladium two step: Linear anilides were converted into the title compounds in good to excellent yields through a palladium-catalyzed domino carbopalladation/1,4-palladium shift sequence. The C(sp(3) )-H activation involves a seven-membered palladacycle, and is chemoselective in the presence of competitive C(sp(2) )H bonds. DMA=N,N-dimethylacetamide, OPiv=pivalate.

  7. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    DOE PAGES

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; ...

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymersmore » that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.« less

  8. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    SciTech Connect

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; Braunecker, W. A.; Larsen, R. E.; Ratcliff, E. L.; Olson, D. C.

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymers that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.

  9. Chemical Synthesis of a Hyaluronic Acid Decasaccharide

    PubMed Central

    Lu, Xiaowei; Kamat, Medha N.; Huang, Lijun; Huang, Xuefei

    2009-01-01

    The chemical synthesis of a hyaluronic acid decasaccharide using the pre-activation based chemoselective glycosylation strategy is described. Assembly of large oligosaccharides is generally challenging due to the increased difficulties in both glycosylation and deprotection. Indeed, the same building blocks previously employed for hyaluronic acid hexasaccharide syntheses failed to yield the desired decasaccharide. After extensive experimentation, the decasaccharide backbone was successfully constructed with an overall yield of 37% from disaccharide building blocks. The trichloroacetyl group was used as the nitrogen protective group for the glucosamine units and the addition of TMSOTf was found to be crucial to suppress the formation of trichloromethyl oxazoline side-product and enable high glycosylation yield. For deprotections, the combination of a mild basic condition and the monitoring methodology using 1H-NMR allowed the removal of all base-labile protective groups, which facilitated the generation of the fully deprotected HA decasaccharide. PMID:19764799

  10. Organocatalysis in heterocyclic synthesis: DABCO as a mild and efficient catalytic system for the synthesis of a novel class of quinazoline, thiazolo [3,2-a]quinazoline and thiazolo[2,3-b] quinazoline derivatives

    PubMed Central

    2013-01-01

    Background There are only limited publications devoted to the synthesis of especially thiazolo[3,2-a]quinazoline which involved reaction of 2-mercaptopropargyl quinazolin-4-one with various aryl iodides catalyzed by Pd-Cu or by condensation of 2-mercapto-4-oxoquinazoline with chloroacetic acid, inspite of this procedure was also reported in the literature to afford the thiazolo [2,3-b] quinazoline. So the multistep synthesis of the thiazolo[3,2-a]- quinazoline suffered from some flaws and in this study we have synthesized a novel class of thiazoloquinazolines by a simple and convenient method involving catalysis by 1,4-diazabicyclo[2.2.2]octane (DABCO). Results A new and convenient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a-i was established through the reaction between methyl-2-(2-thio-cyanatoacetamido)benzoate (4) and a variety of arylidene malononitriles 8a-i in the presence of DABCO as a mild and efficient catalytic system via a Michael type addition reaction and a mechanism for formation of the products observed is proposed. Moreover 4 was converted to ethyl-2-[(4-oxo-3,4-dihydroquinazolin-2-yl)thio]acetate (10) upon reflux in ethanol containing DABCO as catalyst. The latter was reacted with aromatic aldehydes and dimethylformamide dimethylacetal (DMF-DMA) to afford a mixture of two regioselectively products with identical percentage yield, these two products were identified as thiazolo[3,2-a]quinazoline 9,13 and thiazolo[2,3-b]quinazoline 11,12 derivatives respectively. The structure of the compounds prepared in this study was elucidated by different spectroscopic tools of analyses also the X-ray single crystal technique was employed in this study for structure elucidation, Z/E potential isomerism configuration determination and to determine the regioselectivity of the reactions. Conclusion A simple and efficient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a

  11. Efficient Catalyst One-Pot Synthesis of 7-(Aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione Derivatives Complemented by Antibacterial Activity

    PubMed Central

    Al-Majedy, Yasameen K.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2016-01-01

    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity. PMID:27563671

  12. An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature Using Recyclable Alumina-Supported Heteropolyoxometalates

    PubMed Central

    Ruiz, Diego M.; Autino, Juan C.; Quaranta, Nancy; Vázquez, Patricia G.; Romanelli, Gustavo P.

    2012-01-01

    We report a suitable quinoxaline synthesis using molybdophosphovanadates supported on commercial alumina cylinders as catalysts. These catalysts were prepared by incipient wetness impregnation. The catalytic test was performed under different reaction conditions in order to know the performance of the synthesized catalysts. The method shows high yields of quinoxaline derivatives under heterogeneous conditions. Quinoxaline formation was obtained using benzyl, o-phenylenediamine, and toluene as reaction solvent at room temperature. The CuH2PMo11VO40 supported on alumina showed higher activity in the tested reaction. Finally, various quinoxalines were prepared under mild conditions and with excellent yields. PMID:22536123

  13. Efficient FeCl3/SiO2 as heterogeneous nanocatalysis for the synthesis of benzimidazoles under mild conditions

    NASA Astrophysics Data System (ADS)

    Taher, Mohammad Ali; Karami, Changiz; Arabi, Mehdi Sheikh; Ahmadian, Hossein; Karami, Yasaman

    2016-11-01

    Iron(III) supported on nano silica as a new catalyst has been synthesized. Structural properties of this complex have been studied by TEM, SEM and EDX. The average crystalline size of Iron(III) supported on nano silica is 30-50 nm. Catalytic activity of this catalyst has been investigated by synthesis of benzimidazoles from 1, 2-diaminobenzene and aromatic aldehydes, and also the other variables investigated such as the amount of catalyst, reaction temperature and the effect of various solvents are also studied. The present procedure offers several advantages such as short reaction time, simple workup, recovery and reusability of the catalyst.

  14. Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and related tetrahydroquinoline analogs

    PubMed Central

    Burai, Ritwik; Ramesh, Chinnasamy; Shorty, Marvin; Curpan, Ramona; Bologa, Cristian; Sklar, Larry A.; Oprea, Tudor; Prossnitz, Eric R.

    2010-01-01

    The GPR30 agonist probe G-1 and structural analogs were efficiently synthesized using multicomponent or stepwise Sc(III)-catalyzed aza-Diels Alder cyclization. Optimization of solvent and reaction temperature provided enhanced endo-diastereoselectivity. PMID:20401403

  15. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    PubMed

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N-hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  16. Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery.

    PubMed

    Goswami, Lalit N; Houston, Zachary H; Sarma, Saurav J; Jalisatgi, Satish S; Hawthorne, M Frederick

    2013-02-21

    Herein we describe the sequential synthesis of a variety of azide-alkyne click chemistry-compatible heterobifunctional oligo(ethylene glycol) (OEG) linkers for bioconjugation chemistry applications. Synthesis of these bioorthogonal linkers was accomplished through desymmetrization of OEGs by conversion of one of the hydroxyl groups to either an alkyne or azido functionality. The remaining distal hydroxyl group on the OEGs was activated by either a 4-nitrophenyl carbonate or a mesylate (-OMs) group. The -OMs functional group served as a useful precursor to form a variety of heterobifunctionalized OEG linkers containing different highly reactive end groups, e.g., iodo, -NH(2), -SH and maleimido, that were orthogonal to the alkyne or azido functional group. Also, the alkyne- and azide-terminated OEGs are useful for generating larger discrete poly(ethylene glycol) (PEG) linkers (e.g., PEG(16) and PEG(24)) by employing a Cu(I)-catalyzed 1,3-dipolar cycloaddition click reaction. The utility of these clickable heterobifunctional OEGs in bioconjugation chemistry was demonstrated by attachment of the integrin (α(v)β(3)) receptor targeting peptide, cyclo-(Arg-Gly-Asp-D-Phe-Lys) (cRGfKD) and to the fluorescent probe sulfo-rhodamine B. The synthetic methodology presented herein is suitable for the large scale production of several novel heterobifunctionalized OEGs from readily available and inexpensive starting materials.

  17. Methanobactin-Mediated Synthesis of Gold Nanoparticles Supported over Al2O3 toward an Efficient Catalyst for Glucose Oxidation

    PubMed Central

    Xin, Jia-Ying; Lin, Kai; Wang, Yan; Xia, Chun-Gu

    2014-01-01

    Methanobactin (Mb) is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III) to Au(0). In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w). The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles. PMID:25429424

  18. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    PubMed

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint.

  19. Chemoselective Catalytic Oxidation of 1,2-Diols to α-Hydroxy Acids Controlled by TEMPO-ClO2 Charge-Transfer Complex.

    PubMed

    Furukawa, Keisuke; Shibuya, Masatoshi; Yamamoto, Yoshihiko

    2015-05-01

    Chemoselective catalytic oxidation from 1,2-diols to α-hydroxy acids in a cat. TEMPO/cat. NaOCl/NaClO2 system has been achieved. The use of a two-phase condition consisting of hydrophobic toluene and water suppresses the concomitant oxidative cleavage. A study of the mechanism suggests that the observed selectivity is derived from the precise solubility control of diols and hydroxy acids as well as the active species of TEMPO. Although the oxoammonium species TEMPO(+)Cl(-) is hydrophilic, the active species dissolves into the organic layer by the formation of the charge-transfer (CT) complex TEMPO-ClO2 under the reaction conditions.

  20. High-Efficiency Synthesis of Human α-Endorphin and Magainin in the Erythrocytes of Transgenic Mice: A Production System for Therapeutic Peptides

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay; Khoury-Christianson, Anastasia M.; White, Steven P.; Dhanjal, Nirpal K.; Huang, Wen; Paulhiac, Clara; Friedman, Eric J.; Manjula, Belur N.; Kumar, Ramesh

    1994-09-01

    Chemical synthesis of peptides, though feasible, is hindered by considerations of cost, purity, and efficiency of synthesizing longer chains. Here we describe a transgenic system for producing peptides of therapeutic interest as fusion proteins at low cost and high purity. Transgenic hemoglobin expression technology using the locus control region was employed to produce fusion hemoglobins in the erythrocytes of mice. The fusion hemoglobin contains the desired peptide as an extension at the C end of human α-globin. A protein cleavage site is inserted between the C end of the α-globin chain and the N-terminal residue of the desired peptide. The peptide is recovered after cleavage of the fusion protein with enzymes that recognize this cleavage signal as their substrate. Due to the selective compartmentalization of hemoglobin in the erythrocytes, purification of the fusion hemoglobin is easy and efficient. Because of its compact and highly ordered structure, the internal sites of hemoglobin are resistant to protease digestion and the desired peptide is efficiently released and recovered. The applicability of this approach was established by producing a 16-mer α-endorphin peptide and a 26-mer magainin peptide in transgenic mice. Transgenic animals and their progeny expressing these fusion proteins remain healthy, even when the fusion protein is expressed at >25% of the total hemoglobin in the erythrocytes. Additional applications and potential improvements of this methodology are discussed.

  1. Ionic Liquid as Reaction Medium for Synthesis of Hierarchically Structured One-Dimensional MoO2 for Efficient Hydrogen Evolution.

    PubMed

    Zhang, Baohua; Xue, Yiguo; Jiang, Anning; Xue, Zhimin; Li, Zhonghao; Hao, Jingcheng

    2017-03-01

    Hierarchically structured one-dimensional (1D) MoO2 is synthesized for the first time in ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([BMIM][Tf2N]). The synthesis system is very simple (single [BMIM][Tf2N] solvent plus MoO2(acac)2 reactant). [BMIM][Tf2N] itself works as both the reaction medium and the template for the formation of these interesting 1D MoO2 particles with ultrathin nanosheet subunits. The as-synthesized hierarchically 1D MoO2_40 particles exhibit remarkable electrocatalytic activity with good long-term cycle stability for the hydrogen evolution reaction (HER) in acidic media. The HER activity of present synthesized MoO2 is comparable to those of the most active Mo-based electrocatalysts in acid media reported up to now. Therefore, the ionic liquid route provides us with a newly powerful tool for the synthesis of interesting alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in acidic environment.

  2. Alkyne Elementometalation–Pd-Catalyzed Cross-Coupling. Towards Synthesis of Various Types of Acyclic Alkenes in High Yields, Efficiently, Selectively, Economically, and Safely—“Green” Way

    PubMed Central

    Wang, Guangwei; Rao, Honghua; Xu, Zhaoqing

    2010-01-01

    Palladium-catalyzed cross-coupling reactions, especially those involving Zn, Al, Zr (Negishi coupling) and B (Suzuki coupling), collectively have brought about “revolutionary” changes in organic synthesis. Thus, two regio- and stereodefined carbon groups generated as R1M (M = Zn, Al, B, Cu, Zr, etc.) and R2X (X = I, Br, OTs, etc.) may now be cross-coupled to give R1–R2 with essentially full retention of all structural features. For alkene syntheses, alkyne elementometalation reactions including hydrometalation (B, Al, Zr, etc.), carbometalation (Cu, Al–Zr, etc.), and haloboration (BX3 where X is Cl, Br, and I) have proven to be critically important. Some representative examples of highly efficient and selective (≥98%) syntheses of di-, tri- and oligoenes containing regio- and stereodefined di- and trisubstituted alkenes of all conceivable types will be discussed with emphasis on those of natural products. Some interesting but undesirable cases involving loss of the initial structural identities of the alkenyl groups are attributable to the formation of allylpalladium species, which must be either tamed or avoided. Some such examples involving the synthesis of 1,3-, 1,4-, and 1,5-dienes will also be discussed. PMID:20465291

  3. ZnS nanoparticles as an efficient and reusable heterogeneous catalyst for synthesis of 1-substituted-1 H-tetrazoles under solvent-free conditions

    NASA Astrophysics Data System (ADS)

    Naeimi, Hossein; Kiani, Fatemeh; Moradian, Mohsen

    2014-09-01

    An efficient and green protocol for the synthesis of 1-substituted-1 H-tetrazoles through cyclization reaction of various primary amines, sodium azide, and triethyl orthoformate was described. In this method, a series of tetrazole derivatives was synthesized by using ZnS nanoparticles as an effective, recoverable, and reusable catalyst under solvent-free conditions. This strategy is a magnificent improvement for the synthesis of these heterocycles due to the non-acidic, clean, and solvent-free conditions via a solid recyclable catalyst. The catalyst was separated by simple filtration and reused seven times without significant loss of activity. The ZnS nanoparticles with high surface area and fine monodisperse particles were prepared using the simple microwave-assisted method without using any surfactant. The ZnS nanoparticle catalyst is a good candidate to replace brønsted acids and metal salts or other catalyst for the preparation of 1-substituted-1 H-tetrazoles in high yields and has potential values for industrial applications.

  4. Key Building Blocks via Enzyme-Mediated Synthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  5. Synthesis and spectroscopic studies of 4-Formyl-4'-N,N-dimethylamino-1,1'-biphenyl: The unusual red edge effect and efficient laser generation.

    PubMed

    Chou, P T; Chang, C P; Clements, J H; Meng-Shin, K

    1995-12-01

    The synthesis and photophysics of 4-formyl-4'-N,N-dimethylamino-1,1'-biphenyl are reported. The emission spectrum in various solvent polarities demonstrates solvatochromism, indicating that the fluorescence originates from an electronically excited species with a strong charge transfer character. The change in Δ[Formula: see text] [[Formula: see text] max(absorption) -[Formula: see text] max(emission)] varies from ∼1500 cm(-1) inn-heptane to as much as ∼7500 cm(-1) in acetonitrile. In protic solvents, the unusual excitation energy-dependent steady-state emission (red edge effect), resulting from solvent dielectric relaxation, was observed in media with a low viscosity. The large Stokes-shifted and high-yield fluorescence led to the observation of the efficient lasing action. The frequency tunability of the laser output is strongly solvent dependent, generating a new charge transfer laser dye in the blue-green region.

  6. Efficient continuous-flow synthesis of novel 1,2,3-triazole-substituted β-aminocyclohexanecarboxylic acid derivatives with gram-scale production

    PubMed Central

    Ötvös, Sándor B; Georgiádes, Ádám; Mándity, István M; Kiss, Lóránd

    2013-01-01

    Summary The preparation of novel multi-substituted 1,2,3-triazole-modified β-aminocyclohexanecarboxylic acid derivatives in a simple and efficient continuous-flow procedure is reported. The 1,3-dipolar cycloaddition reactions were performed with copper powder as a readily accessible Cu(I) source. Initially, high reaction rates were achieved under high-pressure/high-temperature conditions. Subsequently, the reaction temperature was lowered to room temperature by the joint use of both basic and acidic additives to improve the safety of the synthesis, as azides were to be handled as unstable reactants. Scale-up experiments were also performed, which led to the achievement of gram-scale production in a safe and straightforward way. The obtained 1,2,3-triazole-substituted β-aminocyclohexanecarboxylates can be regarded as interesting precursors for drugs with possible biological effects. PMID:23946850

  7. Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated S(N)Ar reaction.

    PubMed

    Wiles, Charlotte; Watts, Paul

    2011-01-01

    Whilst microwave heating has been widely demonstrated as a synthetically useful tool for rapid reaction screening, a microwave-absorbing solvent is often required in order to achieve efficient reactant heating. In comparison, microreactors can be readily heated and pressurised in order to "super-heat" the reaction mixture, meaning that microwave-transparent solvents can also be employed. To demonstrate the advantages associated with microreaction technology a series of S(N)Ar reactions were performed under continuous flow by following previously developed microwave protocols as a starting point for the investigation. By this approach, an automated microreaction platform (Labtrix(®) S1) was employed for the continuous flow synthesis of diaryl ethers at 195 °C and 25 bar, affording a reduction in reaction time from tens of minutes to 60 s when compared with a stopped-flow microwave reactor.

  8. Phosphomolybdic and phosphotungstic acids as efficient catalysts for the synthesis of bridged 1,2,4,5-tetraoxanes from β-diketones and hydrogen peroxide.

    PubMed

    Terent'ev, Alexander O; Yaremenko, Ivan A; Vil', Vera A; Moiseev, Igor K; Kon'kov, Sergey A; Dembitsky, Valery M; Levitsky, Dmitri O; Nikishin, Gennady I

    2013-04-28

    Phosphomolybdic acid (PMA) and phosphotungstic acid (PTA) efficiently catalyze the addition of H2O2 to β-diketones to form bridged 1,2,4,5-tetraoxanes. These reactions are not accompanied by the formation of monocyclic peroxides containing hydroxy and hydroperoxide groups or polymeric peroxides. The use of these catalysts made it possible to obtain bridged tetraoxanes from easily oxidizable benzoylacetone derivatives and α-unsubstituted β-diketones. The syntheses are scaled up to ten grams. The resulting peroxides can be easily isolated from the reaction mixture by column chromatography. The yield of tetraoxanes depends on the structure of β-diketone and varies from 12 to 83%. NMR monitoring of two bridged 1,2,4,5-tetraoxanes synthesis was carried out.

  9. [11C]PR04.MZ, a promising DAT ligand for low concentration imaging: synthesis, efficient 11C-0-methylation and initial small animal PET studies

    SciTech Connect

    Riss, P.J.; Hooker, J.; Alexoff, D.; Kim, Sung-Won; Fowler, J.S.; Roesch, F.

    2009-05-01

    PR04.MZ was designed as a highly selective dopamine transporter inhibitor, derived from natural cocaine. Its binding profile indicates that [{sup 11}C]PR04.MZ may be suited as a PET radioligand for the non-invasive exploration of striatal and extrastriatal DAT populations. As a key feature, its structural design facilitates both, labelling with fluorine-18 at its terminally fluorinated butynyl moiety and carbon-11 at its methyl ester function. The present report concerns the efficient [{sup 11}C]MeI mediated synthesis of [{sup 11}C]PR04.MZ from an O-desmethyl precursor trifluoroacetic acid salt with Rb{sub 2}CO{sub 3} in DMF in up to 95 {+-} 5% labelling yield. A preliminary {mu}PET-experiment demonstrates the reversible, highly specific binding of [{sup 11}C]PR04.MZ in the brain of a male Sprague-Dawley rat.

  10. Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications.

    PubMed

    Tao, Hua Bing; Yang, Hong Bin; Chen, Jiazang; Miao, Jianwei; Liu, Bin

    2014-01-01

    A biomolecule-assisted pyrolysis method has been developed to synthesize sulfur-doped graphitic carbon nitride (CNS) nanosheets. During the synthesis, sulfur could be introduced as a dopant into the lattice of carbon nitride (CN). Sulfur doping changed the texture as well as relative band positions of CN. By growing CN on preformed sulfur-doped CN nanosheets, composite CN/CNS heterojunction nanosheets were constructed, which significantly enhanced the photoelectrochemical performance as compared with various control counterparts including CN, CNS and physically mixed CN and CNS (CN+CNS). The enhanced photoelectrochemical performance of CN/CNS heterojunction nanosheets could be ascribed to the efficient separation of photoexcited charge carriers across the heterojunction interface. The strategy of designing and preparing CN/CNS heterojunction photocatalysts in this work can open up new directions for the construction of all CN-based heterojunction photocatalysts.

  11. An Efficient Strategy for the Synthesis of 1-(Trifluoromethylsulfonamido)propan-2-yl Esters and the Evaluation of Their Cytotoxic Activity.

    PubMed

    Gómez-García, Omar; Gómez, Elizabeth; Monzón-González, César; Ramírez-Apan, Teresa; Álvarez-Toledano, Cecilio

    2017-01-01

    An efficient method for the synthesis of 1-(trifluoromethylsulfonamido)propan-2-yl benzoates is described, the products of the reaction were characterized by heteronuclear single quantum coherence spectroscopy (HSQC), heteronuclear multiple bond correlation (HMBC) and NMR experiments. The overall process began with the activation of the oxazoline ring by triflic anhydride, followed by the opening of the five-membered ring in the 5-methyl-2-phenyl-4,5-dihydrooxazole system. The cytotoxic activity of the new trifluoromethyl sulfonamides was evaluated with six cancer cell lines and human gingival fibroblasts, posteriorly analyzing the influence on cytotoxicity exerted by the withdrawing and donor substituents at the para-position of the phenyl ring. Compounds 3b-e showed cytotoxic activity, with IC50 values ranging from 17-17.44 µM for the cell lines tested, finding the highest effect for compound 3e.

  12. A novel and efficient surfactant-free synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Jijith, M.; Gummaluri, Venkata Siva; Vijayan, C.

    2016-05-01

    Rutile TiO2 microflowers with three-dimensional spiky flower like architecture at the nanometer level are obtained by a fast single step surfactant free ethylene glycol based solvothermal scheme of synthesis. These structures are characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and Raman spectroscopy. These measurements confirm Rutile phase of TiO2 flowers with very high crystallinity. Photodegradation of Rhodamine B with UV exposure is investigated by UV-Visible spectroscopy measurements in the presence of these samples. They are shown to have high photocatalytic activity due to the large surface area contributed by the highly dense spiky nanostructures. The plasmonic (Au) loading in these structures are shown to significantly enhance the photocatalytic activity.

  13. Efficient synthesis of frutinone A and its derivatives through palladium-catalyzed C - H activation/carbonylation.

    PubMed

    Shin, Yongje; Yoo, Changho; Moon, Youngtaek; Lee, Yunho; Hong, Sungwoo

    2015-04-01

    Frutinone A, a biologically active ingredient of an antimicrobial herbal extract, demonstrates potent inhibitory activity towards the CYP1A2 enzyme. A three-step total synthesis of frutinone A with an overall yield of 44 % is presented. The construction of the chromone-annelated coumarin core was achieved through palladium-catalyzed CH carbonylation of 2-phenolchromones. The straightforward synthetic route allowed facile substitutions around the frutinone A core and thus rapid exploration of the structure-activity relationship (SAR) profile of the derivatives. The inhibitory activity of the synthesized frutinone A derivatives were determined for CYP1A2, and ten compounds exhibited one-to-two digit nanomolar inhibitory activity towards the CYP1A2 enzyme.

  14. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    PubMed

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused.

  15. One-pot synthesis of gold-palladium@palladium core-shell nanoflowers as efficient electrocatalyst for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyu; Dai, Yuxuan; Tang, Yawen; Lu, Tianhong; Wei, Shaohua; Chen, Yu

    2015-03-01

    In this work, a simple polyallylamine-assisted water-based synthesis is successfully used to synthesize high-quality gold-palladium@palladium (Au-Pd@Pd) core-shell nanoflowers. Transmission electron microscopy, X-ray powder diffraction, element mapping, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy techniques are used to characterize the morphology, structure and composition of Au-Pd@Pd core-shell nanoflowers. The as-prepared Au-Pd@Pd core-shell nanoflowers exhibit significantly enhanced electrocatalytic activity for the ethanol oxidation reaction (EOR) in basic medium compared with commercial Pd black. In addition, Au-Pd@Pd core-shell nanoflowers also show higher durability for the EOR than commercial Pd black.

  16. 40% Efficiency enhancement in solar cells using ZnO nanorods as shell prepared via novel hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Ebadi, Mohammad; Zarghami, Zabihullah; Motevalli, Kourosh

    2017-03-01

    Herein, rod-like ZnO nanostructures were synthesized via a novel hydrothermal route using Zn(OAc)2, ethylenediamine and hydrazine as a new set of starting reagents. The as-synthesized products were characterized by techniques including XRD, EDS, SEM, XPS, Pl and FTIR. The prepared ZnO nanostructures were utilized as shell on TiO2 film in DSSCs. Effect of precursor type, morphology and thickness of ZnO shell (number of electrophoresis cycle) on solar cells efficiency were well studied. Our results showed that ethylenediamine has crucial effect on morphology of synthesized ZnO nanostructures and using ZnO nanostructures leads to an increase in DSSCs efficiency compared to bare TiO2 from 4.66 to 7.13% ( 40% improvement). Moreover, highest amount of solar cell efficiency (7.13%) was obtained by using ZnO nanorods with two cycle of electrophoresis for deposition.

  17. Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ.

    PubMed

    Kawasaki, Takayasu; Gouda, Mudeppa D; Sawasaki, Tatsuya; Takai, Kazuyuki; Endo, Yaeta

    2003-12-01

    We have developed a highly productive cell-free protein synthesis system from wheat germ, which is expected to become an important tool for postgenomic research. However, this system has not been optimized for the synthesis of disulfide-containing proteins. Thus, we searched here for translation conditions under which a model protein, a single-chain antibody variable fragment (scFv), could be synthesized into its active form. Before the start of translation, the reducing agent dithiothreitol, which normally is added to the wheat germ extract but which inhibits disulfide formation during translation, was removed by gel filtration. When the scFv mRNA was incubated with this dithiothreitol-deficient extract, more than half of the synthesized polypeptide was recovered in the soluble fraction. By addition of protein disulfide isomerase in the translation solution, the solubility of the product was further improved, and nearly half of the soluble polypeptides strongly bound to the antigen immobilized on an agarose support. This strong binding component had a high affinity as shown by surface-plasmon resonance analysis. These results show that the wheat germ cell-free system can produce a functional scFv with a simple change of the reaction ingredients. We also discuss protein folding in this system and suggest that the disulfide bridges are formed cotranslationally. Finally, we show that biotinylated scFv could be synthesized in similar fashion and immobilized on a solid surface to which streptavidin is bound. SPR measurements for detection of antigens were also possible with the use of this immobilized surface.

  18. Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species.

    PubMed

    Vistoli, Giulio; Orioli, Marica; Pedretti, Alessandro; Regazzoni, Luca; Canevotti, Renato; Negrisoli, Gianpaolo; Carini, Marina; Aldini, Giancarlo

    2009-06-01

    Carnosine aryl derivatives as sequestering agents of RCS: Reactive carbonyl species (RCS) are cytotoxic mediators representing a novel drug target, as they are presumed to play a pathogenic role in several diseases. Carnosine is a selective RCS-sequestering agent, but is rapidly hydrolyzed by serum carnosinase. Herein we describe the in silico design, synthesis, and evaluation of a set of carnosine aryl derivatives.Reactive carbonyl species (RCS) are important cytotoxic mediators generated by lipid oxidation of polyunsaturated fatty acids (PUFAs) and represent a novel drug target, as they are presumed to play a pathogenic role in several diseases. L-Carnosine (L-CAR, beta-alanyl-L-histidine) is a specific detoxifying agent of RCS, but is rapidly hydrolyzed in human serum by carnosinase, a specific dipeptidase. Herein we describe the in silico design, synthesis, and biological evaluation of carnosine derivatives that are resistant to carnosinase and that have increased quenching efficacy. Stability against carnosinase-mediated turnover was achieved by isomerization of the histidine residue, leading to D-carnosine (D-CAR, beta-alanyl-D-histidine), which maintains the same quenching activity of L-carnosine. A molecular modeling approach was then used to design derivatives characterized by an increased quenching efficacy. The most promising candidates were synthesized, and their stability and quenching activity were evaluated. This study describes a set of aryl derivatives that are characterized by high stability in human plasma and a quenching activity toward 4-hydroxy-trans-2-nonenal (HNE), chosen as a model of RCS, up to threefold greater than D-carnosine.

  19. Synthesis and characterization of ion beam assisted silver nanosystems in silicon based materials for enhanced photocurrent collection efficiency

    NASA Astrophysics Data System (ADS)

    Dhoubhadel, Mangal S.

    In recent years a great deal of interest has been focused on the synthesis of transitional metal (e.g. Ag, Cu, Fe, Au) nanosystems at the surface to sub-surface regions of Si and SiO2 matrices for fundamental understanding of their structures as well as for development of technological applications with enhanced electronic and optical properties. The applications of the metal nanoparticle or nanocluster (NC) systems range from plasmonics, photovoltaic devices, medical, and biosensors. In all of these applications; the size, shape and distribution of the metallic NCs in the silicon matrix play a key role. Low energy ion implantation followed by thermal annealing (in vacuum or gas environment) is one of the most suitable methods for synthesis of NCs at near surfaces to buried layers below the surfaces of the substrates. This technique can provide control over depth and concentration of the implanted ions in the host matrix. The implanted low energy metal ions initially amorphizes the Si substrates while being distributed at a shallow depth near the substrate surface. When subject to thermal annealing, the implanted ions agglomerate to form clusters of different sizes at different depths depending upon the fluence. However, for the heavier ions implanted with high fluences (˜1x10 16 - 1x1017 atoms/cm2), there lies challenges for accurately predicting the distribution of the implanted ions due to sputtering of the surface as well as redistribution of the implants within the host matrix. In this dissertation, we report the investigation of the saturation of the concentration of the implanted ion species in the depth profiles with low energies (< 80 keV) metal ions (Ag and Au) in Si (100), while studying the dynamic changes during the ion implantation. (Abstract shortened by ProQuest.).

  20. Modeling, synthesis and study of highly efficient solar cells based on III-nitride nanowire arrays grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Mozharov, A. M.; Bolshakov, A. D.; Kudryashov, D. A.; Kryzhanovskaya, N. V.; Cirlin, G. E.; Mukhin, I. S.; Harmand, J. C.; Tchernysheva, M.

    2015-11-01

    In this letter we investigate photovoltaic properties of GaN nanowires (NWs) - Si substrate heterostructure obtained by molecular beam epitaxy (MBE). Antireflection properties of the NW array were studied theoretically and experimentally to show an order of magnitude enhancement in antireflection comparing to the pure Si surface (2.5% vs. 33.8%). In order to determine optimal morphology and doping levels of the structure with maximum possible efficiency we simulated it's properties using a finite difference method. The carried out simulation showed that a maximum efficiency should be 20%.

  1. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.

    PubMed

    Yu, Hua; Pan, Jian; Bai, Yang; Zong, Xu; Li, Xinyong; Wang, Lianzhou

    2013-09-27

    One-dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye-sensitized solar cells (DSSCs) due to their superior electron-transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three-dimensional (3D) rutile-nanorod-based network structure directly grown on fluorine-doped tin oxide (FTO) substrates was developed by using a facile two-step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head-caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light-harvesting efficiency was increased due to an enhanced light-scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open-circuit voltage decay (OCVD) analyses confirmed that the electron-recombiantion rate was reduced on formation of the nanorod-based 3D network for fast electron transport. As a resut, a light-to-electricity conversion efficiency of 6.31% was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2 .

  2. Highly efficient asymmetric synthesis of 3-indolyl(hydroxy)acetates via Friedel-Crafts alkylation of indoles.

    PubMed

    Hui, Yonghai; Zhang, Qi; Jiang, Jun; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2009-09-04

    An efficient enantioselective Friedel-Crafts alkylation of indoles to ethyl glyoxylate catalyzed by chiral N,N'-dioxide-Sc(III) complex was developed. The corresponding 3-indolyl(hydroxy)acetates compounds were afforded in good yields with high enantioselectivities (up to 95% ee).

  3. AN EFFICIENT AQUEOUS N-HETEROCYCLIZATION OF ANILINE DERIVATIVES: MICROWAVE-ASSISTED SYNTHESIS OF N-ARYL AZACYCLOALKANES

    EPA Science Inventory

    N-aryl azacycloalkanes, an important class of building blocks in natural product and pharmaceuticals, are synthesized via an efficient and simple eco-friendly protocol that involves double N-alkylation of aniline derivatives. The reaction is accelerated by exposure to microwaves ...

  4. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    PubMed

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination.

  5. An efficient Ugi-3CR/aza Diels-Alder/Pomeranz-Fritsch protocol towards novel aza-analogues of (±)-nuevamine, (±)-lennoxamine and magallanesine: a diversity oriented synthesis approach.

    PubMed

    Vázquez-Vera, Óscar; Sánchez-Badillo, Jorge S; Islas-Jácome, Alejandro; Rentería-Gómez, Manuel A; Pharande, Shrikant G; Cortes-García, Carlos J; Rincón-Guevara, Mónica A; Ibarra, Ilich A; Gámez-Montaño, Rocío; González-Zamora, Eduardo

    2017-03-15

    A rapid and efficient synthesis of a series of (±)-nuevamine, (±)-lennoxamine and magallanesine aza analogues is described. The synthetic strategy involves Ugi-3CR and two further condensation processes, aza-Diels-Alder cycloaddition and the Pomeranz-Fritsch reaction. The variation of the chain-size in aldehyde moieties provided structural diversity in only two operational reaction steps.

  6. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3.

    PubMed

    Ren, Limin; Zhu, Longfeng; Yang, Chengguang; Chen, Yanmei; Sun, Qi; Zhang, Haiyan; Li, Caijin; Nawaz, Faisal; Meng, Xiangju; Xiao, Feng-Shou

    2011-09-21

    Low-cost copper-amine complex was rationally designed to be a novel template for one-pot synthesis of Cu-SSZ-13 zeolites. Proper confirmation and appropriate size make this complex fit well with CHA cages as an efficient template. The products exhibit superior catalytic performance on NH(3)-SCR reaction.

  7. Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Huanhuan; Liu, Xiangqian; He, Guangli; Zhang, Xiaoxing; Bao, Shujuan; Hu, Weihua

    2015-04-01

    Efficient electrocatalyst of oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and heteroatom-doped carbon materials have demonstrated promising catalytic performance towards ORR. In this paper we report a bioinspired method to synthesize nitrogen/sulfur (N/S) co-doped graphene as an efficient ORR electrocatalyst via self-polymerization of polydopamine (PDA) thin layer on graphene oxide sheets, followed by reacting with cysteine and finally thermal annealing in Argon (Ar) atmosphere. As-prepared N/S co-doped graphene exhibits significantly enhanced ORR catalytic activity in alkaline solution compared with pristine graphene or N-doped graphene. It also displays long-term operation stability and strong tolerance to methanol poison effect, indicating it a promising ORR electrocatalyst.

  8. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %.

  9. Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation.

    PubMed

    Wang, Xiangyun; Xu, Shimei; Tan, Yun; Du, Juan; Wang, Jide

    2016-04-20

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, silanized cellulose was prepared by sol-gel reaction between microcrystalline cellulose (MCC) and hexadecyltrimethoxysilane (HDTMS) using for oil-water separation. The silanized cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). A higher mass ratio of HDTMS to MCC made silanized cellulose become looser, and showed lower water absorbency. The silanized cellulose exhibited specific separation performance towards vegetable oil-water mixture (not for mineral oil-water mixture) with separation efficiency of 99.93%. Moreover, the separation was fast with a water flux of 4628.5Lm(-2)h(-1). The separation efficiency still remained at 99.77% even after recycling for 10 times.

  10. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain computer interface

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Bin

    2004-03-01

    The recognition of mental states during motor imagery tasks is crucial for EEG-based brain computer interface research. We have developed a new algorithm by means of frequency decomposition and weighting synthesis strategy for recognizing imagined right- and left-hand movements. A frequency range from 5 to 25 Hz was divided into 20 band bins for each trial, and the corresponding envelopes of filtered EEG signals for each trial were extracted as a measure of instantaneous power at each frequency band. The dimensionality of the feature space was reduced from 200 (corresponding to 2 s) to 3 by down-sampling of envelopes of the feature signals, and subsequently applying principal component analysis. The linear discriminate analysis algorithm was then used to classify the features, due to its generalization capability. Each frequency band bin was weighted by a function determined according to the classification accuracy during the training process. The present classification algorithm was applied to a dataset of nine human subjects, and achieved a success rate of classification of 90% in training and 77% in testing. The present promising results suggest that the present classification algorithm can be used in initiating a general-purpose mental state recognition based on motor imagery tasks.

  11. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    SciTech Connect

    Chen, Hua; Xiao, Liang; Huang, Jianhua

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine B and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.

  12. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  13. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract

    NASA Astrophysics Data System (ADS)

    Roopan, Selvaraj Mohana; Bharathi, A.; Prabhakarn, A.; Abdul Rahuman, A.; Velayutham, K.; Rajakumar, G.; Padmaja, R. D.; Lekshmi, Mohan; Madhumitha, G.

    2012-12-01

    In the present study, the biosynthesis of rutile TiO2 nanoparticles (TiO2 NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO2 NPs at lower temperature using agricultural waste. Rutile TiO2 NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO2 NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO2 NPs as observed from the XRD spectrum is confirmed to be TiO2 particles in the rutile form as evidenced by the peaks at 2θ = 27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23 ± 2 nm ranges.

  14. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract.

    PubMed

    Roopan, Selvaraj Mohana; Bharathi, A; Prabhakarn, A; Rahuman, A Abdul; Velayutham, K; Rajakumar, G; Padmaja, R D; Lekshmi, Mohan; Madhumitha, G

    2012-12-01

    In the present study, the biosynthesis of rutile TiO(2) nanoparticles (TiO(2) NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO(2) NPs at lower temperature using agricultural waste. Rutile TiO(2) NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO(2) NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO(2) NPs as observed from the XRD spectrum is confirmed to be TiO(2) particles in the rutile form as evidenced by the peaks at 2θ=27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23±2 nm ranges.

  15. One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Qingli; Zhang, Qitao; Yuan, Saisai; Zhang, Yongcai; Zhang, Ming

    2015-10-01

    In this paper, the branched Ag-ZnO heterojunction nanostructure and the branched ZnO were synthesized successfully by a facile, green and one-pot hydrothermal method. Such branched heterojunction and the comparing branched pure ZnO were characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis diffuse reflectance spectra (DRS). The photocatalytic degradation of RhB aqueous solution and acetaldehyde (CH3CHO) gas results both showed that the branched Ag-ZnO heterojunction possessed the enhanced photocatalytic properties in comparison to the branched ZnO and Ag-ZnO counterparts due to its special interface structures and fast separation of its photogenerated charge carriers. This method is simple, feasible and can provide an important clue for synthesis and application of other branched metal/semiconductor heterojunction nanostructures.

  16. Highly efficient synthesis of exopolysaccharides by Lactobacillus curvatus DPPMA10 during growth in hydrolyzed wheat flour agar.

    PubMed

    Minervini, F; De Angelis, M; Surico, R F; Di Cagno, R; Gänzle, M; Gobbetti, M

    2010-06-30

    The aim of this study was to optimize the production of exopolysaccharides (EPS) by sourdough Lactobacillus curvatus DPPMA10 for industrial application. The effects of pH, temperature, planktonic or attached cells and of some food matrices as substrates were studied. Wheat flour hydrolysate (WFH), reconstituted skimmed milk (RSM) and whey milk were supplemented with fresh yeast extract, mineral salts, and/or molasses. Non-controlled pH, starting from 5.6 to 3.5, was the optimal condition for L. curvatus DPPMA10. Temperature of 30 degrees C was also found to be optimal. Solid surfaces (agar culture media) stimulated attached bacteria to synthesize EPS (> or = of two-fold, P<0.05) with respect to planktonic cells (broth media). The highest production of EPS (ca. 46-50 g/kg of wet medium) was found during growth as attached cells in WFH agar supplemented with glucose, sucrose or molasses, mineral salts and fresh yeast extract at 30 degrees C for 48 h. As shown by high-performance liquid chromatography analysis, glucose was the only hydrolysis end-product for EPS synthesized during 48 h of incubation. The EPS synthesized by L. curvatus DPPMA10 improved the quality of bread and was utilized as carbon course by intestinal strains of lactobacilli and bifidobacteria. The synthesis of EPS by L. curvatus DPPMA10 under the conditions of this study may open new perspectives for their industrial applications.

  17. Facile synthesis of flower-like platinum nanostructures as an efficient electrocatalyst for methanol electro-oxidation.

    PubMed

    Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Zhong, Jing; Wang, Gang; Kiani, Maryam; Wang, Ruilin

    2016-10-01

    This paper presents a facile approach for the synthesis of a novel Pt/graphene-nickel foam (Pt/GNF) electrode composed of flower-like Pt nanoparticles (NPs) and 3D graphene. The fabrication process involved the chemical vapor deposition of graphene onto Ni foam as a substrate and the subsequent growth of Pt NPs via a galvanic replacement reaction without using any seed and organic solvent. The surface morphology and composition of the prepared materials were characterized. Meanwhile, cyclic voltammetry and electrochemical impedance spectroscopy were employed to confirm their typical electrochemical characteristics. The as-prepared nanocomposites displayed enhanced catalytic activity and kinetics toward methanol electro-oxidation. Such an excellent performance can be ascribed to the high dispersion of flower-like Pt NPs and to the exposure of more sites provided by the flower-like structure. The improved stability, decreased charge transfer resistance, and enhanced reaction rate of the nanocomposites promise new opportunities for the development of direct methanol fuel cells.

  18. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-01

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn2+ interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  19. Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes.

    PubMed

    Wang, Luhuan; Ke, Fei; Zhu, Junfa

    2016-03-21

    Magnetic porous carbon composites are promising materials in various applications, such as adsorbents, supercapacitors and catalyst supports, due to their high surface area, thermal and chemical stability, and easy separation. However, despite the increasing number of reports of magnetic porous carbon composites, the preparation of these materials with environmentally friendly procedures still remains a great challenge. Herein, we report a facile method to prepare a magnetic porous carbon composite with high surface area from a Fe-based metal-organic gel (MOG) template, an extended structure of a metal-organic framework (MOF). The obtained magnetic porous carbon composite was applied to remove organic dyes from an aqueous solution by selecting methyl orange (MO) as a model molecule. It exhibits excellent adsorption capacity (182.82 mg g(-1)), fast adsorption kinetics (8.13 × 10(-3) g mg(-1) min(-1)), and a perfect magnetic separation performance for the MO removal. This study demonstrates a new way to achieve clean synthesis of magnetic porous carbon materials, and opens a new door for the application of MOGs in organic dye removal.

  20. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent.

    PubMed

    Baran, Talat; Açıksöz, Eda; Menteş, Ayfer

    2016-05-20

    The aim of this study was to develop a quick reaction that had high activity with a small amount of catalyst, which could be an eco-friendly alternative technique for the synthesis of biarlys in Suzuki coupling reactions. First, a novel chitosan Schiff base supported Pd(II) catalyst was synthesized, and its structure was illuminated with FTIR, (1)H NMR, (13)C NMR, TG/DTG, SEM/EDAX, XRD, ICP-OES, UV-vis, magnetic moment, and molar conductivity techniques. Subsequently, the catalytic activity of the catalyst was tested in Suzuki C-C reactions under microwave irradiation using a solvent-free reaction condition. The catalytic tests showed an excellent activity with a small load of the catalyst (0.02 mol%) in 4 min. The catalyst showed seven runs without loss of activity, and high values of turnover numbers (TON) and turnover frequency (TOF) were obtained. The novel biopolymer supported Pd(II) catalyst provided much faster reaction times, higher yields, and reusability under microwave heating compared to classic heating methods.

  1. Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide.

    PubMed

    Liu, Jianxi; Yang, Kaiguang; Shao, Wenya; Li, Senwu; Wu, Qi; Zhang, Shen; Qu, Yanyan; Zhang, Lihua; Zhang, Yukui

    2016-08-31

    Because of the low abundance of glycopeptide in natural biological samples, methods for efficient and selective enrichment of glycopeptides play a significant role in mass spectrometry (MS)-based glycoproteomics. In this study, a novel kind of zwitterionic hydrophilic interaction chromatography polymer particles, namely, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@l-Cys (poly(MBAAm-co-MAA)@l-Cys), for the enrichment of glycopeptides was synthesized by a facile and efficient approach that combined distillation precipitation polymerization (DPP) and "thiol-ene" click reaction. In the DPP approach, residual vinyl groups explored outside the core with high density, then the functional ligand cysteine was immobilized onto the surface of core particles by highly efficient thiol-ene click reaction. Taking advantage of the unique structure of poly(MBAAm-co-MAA)@l-Cys, the resulting particles possess remarkable enrichment selectivity for glycopeptides from the tryptic digested human immunoglobulin G. The polymer particles were successfully employed for the analysis of human plasma, and 208 unique glycopeptides corresponding to 121 glycoproteins were reliably identified in triple independent nano-LC-MS/MS runs. The selectivity toward glycopeptides of these particles poly(MBAAm-co-MAA)@l-Cys is ∼2 times than that of the commercial beads. These results demonstrated that these particles had great potential for large-scale glycoproteomics research. Moreover, the strategy with the combination of DPP and thiol-ene click chemistry might be a facile method to produce functional polymer particles for bioenrichment application.

  2. Graphite oxide-mediated synthesis of porous CeO{sub 2} quadrangular prisms and their high-efficiency adsorptive performance

    SciTech Connect

    Chang, Ling; Wang, Fengxian; Xie, Dong; Zhang, Jun; Du, Gaohui

    2013-10-15

    Graphical abstract: - Highlights: • Porous CeO{sub 2} quadrangular prisms have been prepared via graphite oxide-mediated synthesis. • Dual-pore hierarchical systems are formed with the pore distributions around 4 nm and 30 nm. • Porous CeO{sub 2} exhibits a rapid adsorption to Rhodamine B with a removal efficiency of ∼99%. • Porous CeO{sub 2} retains the same performances in different pH solutions. - Abstract: We report a graphite oxide-mediated approach for synthesizing porous CeO{sub 2} through a facile hydrothermal process followed by thermal annealing in air. The phase structure, morphology, microstructure and porosity of the products have been revealed by a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N{sub 2} adsorption. The as-prepared CeO{sub 2} products show well-defined quadrangular prism morphology, and they are composed of interconnected nanoparticles with diameters around 30–100 nm. In particular, the dual-pore hierarchical systems are created in the CeO{sub 2} quadrangular prisms with the pore distributions around 4 nm and 30 nm. The dye sorption capacity of the porous CeO{sub 2} is investigated, which exhibits a rapid adsorption to rhodamine B with a high removal efficiency of ∼99%. Moreover, the CeO{sub 2} absorbent retains the same performances in different pH solutions.

  3. Two-step electrochemical synthesis of polypyrrole/reduced graphene oxide composites as efficient Pt-free counter electrode for plastic dye-sensitized solar cells.

    PubMed

    Liu, Wantao; Fang, Yanyan; Xu, Peng; Lin, Yuan; Yin, Xiong; Tang, Guangshi; He, Meng

    2014-09-24

    Polypyrrole/reduced graphene oxide (PPy/RGO) composites on the rigid and plastic conducting substrates were fabricated via a facile two-step electrochemical process at low temperature. The polypyrrole/graphene oxide (PPy/GO) composites were first prepared on the substrate with electrochemical polymerization method, and the PPy/RGO composites were subsequently obtained by electrochemically reducing the PPy/GO. The resultant PPy/GO and PPy/RGO composites were porous, in contrast to the dense and flat pristine PPy films. The cyclic voltammetry measurement revealed that resultant composites exhibited a superior catalytic performance for triiodide reduction in the order of PPy/RGO > PPy/GO > PPy. The catalytic activity of PPy/RGO was comparable to that of Pt counter electrode (CE). Under the optimal conditions, an energy conversion efficiency of 6.45% was obtained for a rigid PPy/RGO-based dye-sensitized solar cell, which is 90% of that for a thermally deposited Pt-based device (7.14%). A plastic counter electrode was fabricated by depositing PPy/RGO composites on the plastic ITO/PEN substrate, and then an all-plastic device was assembled and exhibited an energy conversion efficiency of 4.25%, comparable to that of the counterpart using a sputtered-Pt CE (4.83%) on a plastic substrate. These results demonstrated that electrochemical synthesis is a facile low-temperature method to fabricate high-performance RGO/polymer composite-based CEs for plastic DSCs.

  4. Polycationic diblock and random polyethylene glycol- or tris(hydroxymethyl)methyl-grafted (co)telomers for gene transfer: synthesis and evaluation of their in vitro transfection efficiency.

    PubMed

    Le Bon, Bertrand; Van Craynest, Nathalie; Boussif, Otmane; Vierling, Pierre

    2002-01-01

    We report on the synthesis of a series of polycationic telomers, polycationic diblock and random polyethylene glycol (PEG)-grafted (co)telomers, and polycationic random tris(hydroxymethyl)methyl (THM) cotelomers, and on their in vitro gene transfer capability. These compounds were obtained by a telomerization process of various amino-, tetraethylene glycol-, or THM-acrylamide taxogens with thiols which might derive from PEG2000. For N/P ratios [N is the number of (co)telomer amine equivalents; P is the number of DNA phosphate equivalents] from 0.8 to 10, these (co)telomers condensed DNA, forming (co)teloplexes with mean sizes in the 85-330 nm range, even for an N/P ratio of 0.8 or 1.25. Some structure-transfection efficiency relationships were established. Among the new polycationic derivatives that were synthesized and investigated for their transfection efficiency, the (i)Bu-[NH](75) telomers and the diblock polyethylene glycol-conjugated PEG2000-[NH](n) telomers are very promising candidates for gene transfer purposes.

  5. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  6. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes.

    PubMed

    Ren, Xiaomei; El-Sagheer, Afaf H; Brown, Tom

    2016-05-05

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX.

  7. One-Pot Synthesis of Mesoporous TiO₂ Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells.

    PubMed

    Li, Zhao-Qian; Que, Ya-Ping; Mo, Li-E; Chen, Wang-Chao; Ding, Yong; Ma, Yan-Mei; Jiang, Ling; Hu, Lin-Hua; Dai, Song-Yuan

    2015-05-27

    TiO2 microspheres are of great interest for a great deal of applications, especially in the solar cell field. Because of their unique microstructure and light-scattering effect, TiO2 microsphere-based solar cells often exhibit superior photovoltaic performance. Hence, exploring new suitable TiO2 microspheres for high-efficiency solar cells is essential. In this work, we demonstrate a facile one-pot solvothermal approach for synthesis of TiO2 microspheres using acetone as solvent. The as-prepared TiO2 microspheres are composed of densely interconnected nanocrystals and possess a high specific surface area up to 138.47 m(2) g(-1). As the photoanode, the TiO2 microsphere-based DSSC gives higher dye loading and light adsorption ability as well as longer electron lifetime, resulting in higher short-circuit current value and superior power conversion efficiency (PCE) compared with Dyesol 18 nm TiO2 nanoparticle paste. Finally, the TiO2 microsphere-based DSSC were optimized by adding a TiO2 nanocrystal underlayer and TiCl4 post-treatment, giving a high PCE of 10.32%.

  8. A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation.

    PubMed

    Das, Dipika; Dutta, Raj Kumar

    2015-11-01

    A facile one pot method has been developed for synthesis of stable (ξ=-37.5 mV), orthorhombic structured SnS nanorods capped with mercaptoacetic acid by precipitation method. The SnS nanorods were measured to be about 45 nm long with a diameter of 20 nm, as studied by transmission electron microscopy (TEM). The band gap of the MAA capped SnS nanorods was 1.81 eV, measured by diffused reflectance spectroscopy and was larger than the bulk SnS. The relative positions of highest valence band and lowest conduction band were determined from theoretical band structure calculation as 1.58 eV and -0.23 eV, respectively. The UV-Visible-NIR fluorescence emission spectrum of the SnS nanorods revealed intense emission peak at 1000 nm (1.239 eV) and weaker peaks at 935 nm, 1080 nm, 1160 nm which is likely to be due to Sn(2+) vacancies. The as-synthesized SnS nanorods exhibited more than 95% sunlight induced photocatalytic degradation of trypan blue in 4 h, following first order kinetics with high rate of degradation (k) (0.0124 min(-1)). The observed dye degradation is attributable to generation of reactive oxygen species (ROS), confirmed from terephthalic acid assay. The ROS generation has been explained on the basis of interaction between photoexcited electrons from conduction band with molecular oxygen adhered to the surface of nanorods owing to favourable redox potentials of O2/O2(-) (-0.20 eV) in normal hydrogen electrode (NHE) scale.

  9. Superparamagnetic plasmonic nanohybrids: shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria.

    PubMed

    Zhai, Yueming; Han, Lei; Wang, Ping; Li, Gaiping; Ren, Wen; Liu, Ling; Wang, Erkang; Dong, Shaojun

    2011-11-22

    Magnetic materials and noble metal-based multifunctional hybrids have attracted much attention recently due to their unique properties and potential applications in a variety of fields. However, substantial challenges remain to directly obtain water-soluble hybrids with well-defined structures and to directly combine magnetic nanoparticles with nonspherical noble metals. We describe here for the first time a simple solvothermal method to synthesize a series of novel water-soluble nanohybrids composed of shape-tuned Ag cores and a Fe(3)O(4) shell. We found that small Fe(3)O(4) grains can be well-distributed directly on the surface on the Ag seeds. Such hybrids have both plasmonic and significant superparamagnetic properties, enabling magnetic separation. The plasmon resonance frequency of Ag nanostructures can be fine-tuned through the interactions between the two components. In addition, the decorated Fe(3)O(4) nanoparticles stabilized the Ag nanostructures when exposed to air and natural light for a long time. Furthermore, an interesting structural transformation is observed in the one-dimensional Ag-Fe(3)O(4) nanowires under high-energy electron beam. The Ag core can diffuse through the porous iron oxide shell, break away, and result in the formation of Ag nanocluster-decorated iron oxide tubes. Finally, the hybrids acted as a chemical template for the synthesis of Fe(3)O(4)/Au-AgCl double-layer nanotubes that display obvious near-infrared absorption. Importantly, the double-layer nanotubes exhibited enhanced photocatalytic inactivation of bacteria at very low concentrations under natural sunlight.

  10. Facile and selective synthesis of oligothiophene-based sensitizer isomers: an approach toward efficient dye-sensitized solar cells.

    PubMed

    Feng, Quanyou; Zhang, Qian; Lu, Xuefeng; Wang, Hong; Zhou, Gang; Wang, Zhong-Sheng

    2013-09-25

    Two sets of isomeric organic dyes with n-hexyl (DH and AH) or 2-ethylhexyl (DEH and AEH) groups substituted at the spacer part have been designed and straightforwardly synthesized via a facile and selective synthetic route. The structure difference between the isomers stands at the position of the incorporated alkyl chains which are introduced into the terthiophene spacer close to the donor (D) or anchor (A) side. The relationship between the isomeric structures and the optoelectronic properties are systematically investigated. It is found that, in the D series dyes, the alkyl group is much closer to the aromatic donor moiety, which brings about strong steric hindrance and therefore causes a remarkable twist in the molecular skeleton. In contrast, a more planar chemical structure and more effective π-conjugation are realized in the A series dye isomers. Consequently, the A series isomeric dyes demonstrate bathochromically shifted absorption bands, resulting in the improved light-harvesting capability and enhanced photo-generated current. However, the D series isomeric dyes with more twisted molecular skeleton have suppressed the intermolecular interactions and retarded the charge recombination more efficiently, which induces higher open-circuit photovoltage. Combining the two effects on the performance of the fabricated dye-sensitized solar cells (DSSC), the influence from the short-circuit photocurrent plays a more significant role on the power conversion efficiency (η). As a result, isomer AEH-based DSSC with quasi-solid-state electrolyte displays the highest η of 7.10% which remained at 98% of the initial value after continuous light soaking for 1000 h. Promisingly, a η of 8.66% has been achieved for AEH-based DSSC with liquid electrolyte containing Co(II)/(III) redox couple. This work presents the crucial issue of molecular engineering and paves a way to design organic sensitizers for highly efficient and stable DSSCs.

  11. Synthesis, growth and optical properties of an efficient nonlinear optical single crystal: L-alanine DL-malic acid

    NASA Astrophysics Data System (ADS)

    Kirubagaran, R.; Madhavan, J.

    2015-02-01

    Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.

  12. Design and Synthesis of TiO2 Hollow Spheres with Spatially Separated Dual Cocatalysts for Efficient Photocatalytic Hydrogen Production

    PubMed Central

    Jiang, Qianqian; Li, Li; Bi, Jinhong; Liang, Shijing; Liu, Minghua

    2017-01-01

    TiO2 hollow spheres modified with spatially separated Ag species and RuO2 cocatalysts have been prepared via an alkoxide hydrolysis–precipitation method and a facile impregnation method. High-resolution transmission electron microscopy studies indicate that Ag species and RuO2 co-located on the inner and outer surface of TiO2 hollow spheres, respectively. The resultant catalysts show significantly enhanced activity in photocatalytic hydrogen production under simulated sunlight attributed to spatially separated Ag species and RuO2 cocatalysts on TiO2 hollow spheres, which results in the efficient separation and transportation of photogenerated charge carriers. PMID:28336859

  13. An emulsifier-free RAFT-mediated process for the efficient synthesis of cerium oxide/polymer hybrid latexes.

    PubMed

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; Vanderveken, Yves; van Herk, Alex M

    2012-08-28

    Hybrid latexes based on cerium oxide nanoparticles are synthesized via an emulsifier-free process of emulsion polymerization employing amphiphatic macro-RAFT agents. Poly(butyl acrylate-co-acrylic acid) random oligomers of various compositions and chain lengths are first obtained by RAFT copolymerization in the presence of a trithiocarbonate as controlling agent. In a second step, the seeded emulsion copolymerization of styrene and methyl acrylate is carried out in the presence of nanoceria with macro-RAFT agents adsorbed at their surface, resulting in a high incorporation efficiency of cerium oxide nanoparticles in the final hybrid latexes, as evidenced by cryo-transmission electron microscopy.

  14. Zn(ii) assisted synthesis of porous salen as an efficient heterogeneous scaffold for capture and conversion of CO2.

    PubMed

    Bhunia, Subhajit; Molla, Rostam Ali; Kumari, Vandana; Islam, Sk Manirul; Bhaumik, Asim

    2015-11-07

    We have designed a unique strategy to obtain a zinc-salen functionalized porous polymer (Zn@SBMMP) with high zinc content (15.3 wt%) by an easy one-step, cost effective and scalable process, which shows unprecedented catalytic efficiency in the CO2 fixation reaction via cycloaddition of CO2 with epoxides. We hypothesize that a high density of Zn-Schiff base/salen units present in the porous polymer network is responsible for the exceptionally high catalytic performance of Zn@SBMMP.

  15. Synthesis of novel ZrO2&GO@TiO2 nanocomposite as an efficient photoanode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Dao, Van-Duong; Yasin, Ahmed S.; Yassin, Mohamed A.; Barakat, Nasser A. M.; Choi, Ho-Suk

    2017-02-01

    Due to the physicochemical and photo-electro properties, TiO2 nanostructures still being the outstanding photoanode materials in the dye-sensitized solar cells (DSCs). However, it is well known that a low dye-loading and charge recombination constrain the limitation of large-scale application. This work introduces the synthesis of ZrO2&GO@TiO2 nanofibers (NFs) by facile two steps using electrospinning and hydrothermal treatment. Furthermore, the developed materials are applied as an efficient photoanode of DSCs. The synthesized NFs are described in terms of morphology, crystallography and chemistry via FESEM, TEM, XRD, Raman spectra and EDX analysis. As the results, the Ti, Zr, O and C elements are uniformly distributed in the synthesized sample. The percentages of the atomic elements are 10.77, 57.69, 1.45 and 30.09 for C, O, Zr and Ti, respectively. The synthesized composite shows only anatase with crystal size of 25.86 nm and cell volume of 142.39 Å3. The developed material is employed as working electrode of DSCs. The J-V characteristic showed 5.09% efficiency for device using the synthesized material, which is higher than those of cells assembled with TiO2 NFs and ZrO2@TiO2 NFs photoanodes. The obtained result is explained by enhanced dye-loading (1.055 × 1017 molecule/cm2) and improved charge transfer resistance (Rct = 9.18 Ω) of the photoanode substrate. Hence, the presented nanocomposite can be an efficient photoanode towards technology of DSC.

  16. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; ...

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required tomore » overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  17. An efficient and practical synthesis of [2-11C]indole via superfast nucleophilic [11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    SciTech Connect

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; Schueller, Michael; Kim, Dohyun; Nauth, Alexander; Weber, Carina; Kim, Sung Won; Hooker, Jacob M.; Ma, Ling; Qu, Wenchao

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1-11C]acetonitrile ([11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1-11C]propanenitrile ([11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2-11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening of basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2-11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.

  18. Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ye, Liqun; Jin, Xiaoli; Leng, Yumin; Su, Yurong; Xie, Haiquan; Liu, Chao

    2015-10-01

    The thickness of 2D BiOCl nanosheets along [001] direction control the internal electric fields intensity. In order to enhance the photocatalytic properties of BiOCl, decreasing the thickness is the best choice. In this paper, black ultrathin BiOCl nanosheet (BU-BiOCl) with expanded spacing of the (001) crystal plane and oxygen vacancy was synthesized in high viscosity and alcohol group concentration glycerol system. It was characterized by X-ray diffraction patterns (XRD), X-ray photoelectron spectroscopy (XPS), X-ray photoelectron scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), electron spin resonance (ESR), UV-vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The experimental characterization and theoretical calculation results also indicated that expanded facets spacing and oxygen vacancy of as-synthesized BU-BiOCl enhanced separation efficiency of photoinduced carriers and photon absorption efficiency. Therefore, BU-BiOCl showed higher activity than bulk BiOCl for H2 production under visible light irradiation.

  19. p-n junction CuO/BiVO₄ heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance.

    PubMed

    Wang, Wenzhong; Wang, Jun; Wang, Zhizhen; Wei, Xuanzhen; Liu, Li; Ren, Qingshan; Gao, Wenliang; Liang, Yujie; Shi, Honglong

    2014-05-14

    A new strategy via coupling a polyol route with an oxidation process has been developed to successfully synthesize p-n junction CuO/BiVO4 heterogeneous nanostructures. The experimental results reveal that the as-prepared p-n junction CuO/BiVO4 heterogeneous nanostructures exhibit much higher visible-light-driven photocatalytic activity for the degradation of model dye rhodamine B (RhB) than the pure BiVO4 nanocrystals. The photocatalytic degradation rate (C/C0) of the RhB for p-n junction CuO/BiVO4 heterogeneous nanostructures is about two times higher than that of pure BiVO4 nanocrystals. The enhanced photocatalytic efficiency is attributed to a large number of p-n junctions in CuO/BiVO4 heterogeneous nanostructures, which effectively reduces the recombination of electrons and holes by charge transfer from n-type BiVO4 to the attached p-type CuO nanoparticles. This work not only provides an efficient route to enhance the visible-light-driven photocatalytic activity of BiVO4, but also offers a new strategy for fabricating p-n junction heterogeneous nanostructure photocatalysts, which are expected to show considerable potential application in solar-driven wastewater treatment and water splitting.

  20. Metal-organic framework-templated synthesis of magnetic nanoporous carbon as an efficient absorbent for enrichment of phenylurea herbicides.

    PubMed

    Liu, Xingli; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-04-22

    Nanoporous carbon with a high specific surface area and unique porous structure represents an attractive material as an adsorbent in analytical chemistry. In this study, a magnetic nanoporous carbon (MNC) was fabricated by direct carbonization of Co-based metal-organic framework in nitrogen atmosphere without using any additional carbon precursors. The MNC was used as an effective magnetic adsorbent for the extraction and enrichment of some phenylurea herbicides (monuron, isoproturon, diuron and buturon) in grape and bitter gourd samples prior to their determination by high performance liquid chromatography with ultraviolet detection. Several important experimental parameters that could influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity was achieved in the concentration range of 1.0-100.0 ng g(-1) for monuron, diuron and buturon and 1.5-100.0 ng g(-1) for isoproturon with the correlation coefficients (r) larger than 0.9964. The limits of detection (S/N=3) of the method were in the range from 0.17 to 0.46 ng g(-1). The results indicated that the MNC material was stable and efficient adsorbent for the magnetic solid-phase extraction of phenylurea herbicides and would have a great application potential for the extraction and preconcentration of more organic pollutants from real samples.

  1. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  2. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light.

    PubMed

    Tanaka, Atsuhiro; Hashimoto, Keiji; Kominami, Hiroshi

    2012-09-05

    Au/CeO(2) samples with various Au contents were prepared by the multistep (MS) photodeposition method. Their properties including Au particle size, particle dispersion, and photoabsorption were investigated and compared with properties of samples prepared by using the single-step (SS) photodeposition method. The MS- and SS-Au/CeO(2) samples were used for selective oxidation of benzyl alcohols to corresponding benzaldehydes in aqueous suspensions under irradiation by visible light from a green LED, and the correlations between reaction rates and physical properties of the MS- and SS-Au/CeO(2) samples were investigated. Difference in the two photodeposition methods was reflected in the average size and number of Au nanoparticles, for example, 92 nm and 1.3 × 10(12) (g-Au/CeO(2))(-1) for MS photodeposition and 59 nm and 4.8 × 10(12) (g-Au/CeO(2))(-1) for SS photodeposition in the case of 1.0 wt % Au samples. Fixation of larger Au particles resulted in strong photoabsorption of the MS-Au/CeO(2) samples at around 550 nm due to the surface plasmon resonance, and the Kubelka-Munk function of the photoabsorption linearly increased with increase in Au content up to 2.0 wt %, in contrast to the photoabsorption of SS-Au/CeO(2) samples, which was weak and was saturated even at around 0.5 wt %. Due to the strong photoabsorption, the MS-Au/CeO(2) samples exhibited reaction rates approximately twice larger than those of SS-Au/CeO(2) samples with the same Au contents, and apparent quantum efficiency of MS-Au/CeO(2) reached 4.9% at 0.4 mW cm(-2). Linear correlations were observed between reaction rates (r) and surface area of Au nanoparticles (S) in both MS- and SS-Au/CeO(2) samples, though the two slopes of r versus S plots were different, suggesting that oxidation of benzyl alcohol occurred on the Au surface and that S was one of the important factors controlling the reaction rate. Photocatalytic oxidation of benzyl alcohol having an amino group revealed that the Au/CeO(2

  3. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    PubMed

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity.

  4. Efficient Synthesis of Ephedra Alkaloid Analogues Using an Enantiomerically Pure N-[(R)-(+)-alpha-Methylbenzyl]aziridine-2-carboxaldehyde.

    PubMed

    Hwang, Gwon-Il; Chung, Jae-Ho; Lee, Won Koo

    1996-09-06

    Efficient preparation of enantiomerically pure (2S)-aziridine-2-carboxaldehyde 9 and its 2(R) isomer and highly diastereoselective addition of organolithium reagents to the aldehyde 9 are described. The diastereoselectivity in additions of the lithium reagents seems to come from "chelation-controlled" carbon-carbon bond formation and is influenced by the source of the organometallic compound, solvent, and the presence of a Li salt. The C(3)-N bond of the aziridine ring of the addition products was regioselectively reduced by catalytic hydrogenation in the presence of Pearlman's catalyst to provide enantiomerically pure 1,2-amino alcohols. The absolute stereochemistries of the amino alcohol 13a were assigned as (1S,2S) when the C-1 substituent was phenyl by comparison with those of commercially available norpseudoephedrine.

  5. Simple and efficient synthesis of 5'-aryl-5'-deoxyguanosine analogs by azide-alkyne click reaction and their antileishmanial activities.

    PubMed

    Daligaux, Pierre; Pomel, Sébastien; Leblanc, Karine; Loiseau, Philippe M; Cavé, Christian

    2016-05-01

    A series of non-hydrolysable 5'-aryl substituted GDP analogs has been synthesized by reacting 5'-azido-5'-deoxyguanosine with different aryl- and benzyloxy-alkynes. Cu(I) nanoparticles in water were found to be the most efficient catalyst, producing the desired 5'-arylguanosines with good yields. The synthesized compounds were screened for in vitro antileishmanial activity against Leishmania donovani axenic amastigotes and intramacrophage amastigotes stages. The 4-(3-nitrobenzyl)-1,2,3-triazole 5'-substituted guanosine analog was found to be the most active in the series with an IC50 of 8.6 μM on axenic amastigotes. Despite a rather low in vitro antileishmanial activity on the intramacrophage amastigotes, the absence of cytotoxicity on RAW 264.7 macrophages justifies further pharmacomodulations making this antileishmanial series promising.

  6. Sonochemical Synthesis of CdS/C3N4 Composites with Efficient Photocatalytic Performance Under Visible Light Irradiation.

    PubMed

    Chai, Bo; Wang, Xing

    2016-02-01

    The CdS/C3N4 composites with efficient photocatalytic performance under visible light irradiation were synthesized by a facile sonochemical route. The as-prepared CdS/C3N4 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution trans- mission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption spectra (DRS), fourier transform infrared spectroscopy (FTIR) and photoluminescence spectra (PL). The photocatalytic degradation of rhodamine B (RhB) by the CdS/C3N4 composites was explored and optimized, suggesting the optimal amount of CdS in the composites was 50 wt%. The significantly enhanced photocatalytic activity of CdS/C3N4 composites could be attributed to the effectively interfacial transfer of photogenerated charge carriers between CdS and C3N4, which restrained the recombination of electron-hole pairs.

  7. Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts.

    PubMed

    Baldizzone, Claudio; Mezzavilla, Stefano; Carvalho, Hudson W P; Meier, Josef Christian; Schuppert, Anna K; Heggen, Marc; Galeano, Carolina; Grunwaldt, Jan-Dierk; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-12-15

    The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an advanced nanostructured support. Owing to the high specific activity and large active surface area, the catalyst shows extraordinary mass activity values of 1.0 A mgPt(-1). Moreover, the material retains its initial active surface area and intrinsic activity during an extended accelerated aging test within the typical operation range. This excellent performance is achieved by confined-space alloying of the nanoparticles in a controlled manner in the pores of the support.

  8. Synthesis and Characterization of Phenothiazine-Based Platinum(II)-Acetylide Photosensitizers for Efficient Dye-Sensitized Solar Cells.

    PubMed

    Siu, Chi-Ho; Lee, Lawrence Tien Lin; Yiu, Sze-Chun; Ho, Po-Yu; Zhou, Panwang; Ho, Cheuk-Lam; Chen, Tao; Liu, Jianyong; Han, Keli; Wong, Wai-Yeung

    2016-03-07

    Three new unsymmetrical phenothiazine-based platinum(II) bis(acetylide) complexes PT1-PT3 with different electron-donating arylacetylide ligands were synthesized and characterized. Their photophysical, electrochemical, and photovoltaic properties have been fully investigated and the density functional theory (DFT) calculations have been carried out. Under AM 1.5 irradiation (100 mW cm(-2)), the PT1-based dye-sensitized solar cell (DSSC) device exhibited an attractive power conversion efficiency (η) up to 5.78 %, with a short-circuit photocurrent density (J(sc)) of 10.98 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.738 V, and a fill factor (ff) of 0.713. These findings provide strong evidence that platinum-acetylide complexes have great potential as promising photosensitizers in DSSC applications.

  9. Further reduction of minimal first-met bad markings for the computationally efficient synthesis of a maximally permissive controller

    NASA Astrophysics Data System (ADS)

    Liu, GaiYun; Chao, Daniel Yuh

    2015-08-01

    To date, research on the supervisor design for flexible manufacturing systems focuses on speeding up the computation of optimal (maximally permissive) liveness-enforcing controllers. Recent deadlock prevention policies for systems of simple sequential processes with resources (S3PR) reduce the computation burden by considering only the minimal portion of all first-met bad markings (FBMs). Maximal permissiveness is ensured by not forbidding any live state. This paper proposes a method to further reduce the size of minimal set of FBMs to efficiently solve integer linear programming problems while maintaining maximal permissiveness using a vector-covering approach. This paper improves the previous work and achieves the simplest structure with the minimal number of monitors.

  10. Hydrothermal synthesis and photoelectric properties of BiVO 4 with different morphologies: An efficient visible-light photocatalyst

    NASA Astrophysics Data System (ADS)

    Fan, Haimei; Wang, Dejun; Wang, Lingling; Li, Haiyan; Wang, Ping; Jiang, Tengfei; Xie, Tengfeng

    2011-06-01

    Different morphologies of monoclinic BiVO 4 with smaller size were hydrothermal synthesized by simply adjusting the amount of surfactant (polyvinyl pyrrolidone PVP K30) added. The detailed field emission scanning electron microscope (FESEM) analysis revealed that the amount of PVP added could significantly affect the morphology and size of BiVO 4. Their photocatalytic activities were evaluated by the decolorization of methylene blue (MB) aqueous solution under visible-light irradiation ( λ > 400 nm), and the as-prepared sample with well-assembled flower-like morphology showed a much higher photocatalytic activity due to larger specific surface area and higher separation efficiency of photo-induced carriers. The relationship between the behavior of photo-induced carriers and photocatalytic activity was studied using the surface photovoltage spectroscopy (SPS) and corresponding phase spectra.

  11. The efficient synthesis of a molybdenum carbide catalyst via H2-thermal treatment of a Mo(VI)-hexamethylenetetramine complex.

    PubMed

    Wang, Zhi-Qiang; Zhang, Zhong-Biao; Zhang, Ming-Hui

    2011-02-07

    An efficient method for preparation of Mo(2)C catalyst is described, where Mo(2)C is obtained by the heat treatment of a single solid precursor containing (NH(4))(6)Mo(7)O(24) and hexamethylenetetramine (HMT) at 923 K in H(2) flow without conventional prolonged carbonization. The catalysts are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area measurement, and transmission electron microscopy (TEM). Furthermore, these catalysts are evaluated in the dibenzothiophene (DBT) hydrodesulfurization (HDS) reaction, and proved to be superior to those prepared by a temperature-programmed reduction (TPRe) method. The better catalytic performance is ascribed to higher dispersion of Mo(2)C on the support and a lower surface polymeric carbon content. This hydrogen thermal treatment (HTT) method provided a new strategy for the preparation of a highly active molybdenum carbide catalyst.

  12. An efficient photochemical route to Pd nanoparticles; application to the one-step synthesis of Pd@polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Wolak, Séverine; Vidal, Loïc; Becht, Jean-Michel; Michelin, Laure; Balan, Lavinia

    2016-08-01

    We have developed a facile, efficient, low cost and ‘green’ photochemical approach to preparing surfactant-free Pd nanoparticles and Pd-immobilized@acrylate photo-polymer films at room temperature, under air and without any additional treatment. The reaction system only includes a photo-initiator used as a generator of free radicals and a Pd(II) salt. In ethanol solution, the photochemical reduction of Pd(II) to Pd(0) generates very small metal particles with a narrow size distribution (2-4 nm). Furthermore, we have shown that the formation of Pd nanoparticles from a Pd(II) salt can be reversible thus allowing easy handling and safe storage with the possibility of generating the nanoparticles just before use. In the presence of an acrylate bifunctional monomer, Pd@polymer film was obtained through a ‘one-pot, one-step’ process resulting from a simultaneous photo-reduction of Pd(II) and photo-polymerization of acrylate units. The simultaneous generation of a 3D polymer network and of metal particles leads to a homogeneous distribution of Pd nanoparticles in the photo-polymer matrix with an average diameter of approximately 3.7 ± 1.1 nm. Such as-prepared Pd@polymer films were found to efficiently catalyze the Mizoroki-Heck reaction in the presence of only 0.9 mequiv. of supported palladium. The major interest of this arrangement is its recoverability and reusability, which makes it very attractive both from a practical and economical viewpoint. Finally, it is worth noting that this innovation offers a great advantage over concurrent methods in that it is simply generated within minutes, it is highly stable, and there is sharp monodispersity in the size of the Pd nanoparticles that can be stored for months without alteration of their physico-chemical properties and catalytic activity.

  13. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts.

  14. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts

    PubMed Central

    2014-01-01

    Background Lipase-catalyzed biotransformation of acylglycerides or fatty acids into biodiesel via immobilized enzymes or whole cell catalysts has been considered as one of the most promising methods to produce renewable and environmentally friendly alternative liquid fuels, thus being extensively studied so far. In all previously pursued approaches, however, lipase enzymes are prepared in an independent process separated from enzymatic biodiesel production, which would unavoidably increase the cost and energy consumption during industrial manufacture of this cost-sensitive energy product. Therefore, there is an urgent need to develop novel cost-effective biocatalysts and biocatalytic processes with genuine industrial feasibility. Result Inspired by the consolidated bioprocessing of lignocellulose to generate bioethanol, an integrated process with coupled lipase production and in situ biodiesel synthesis in a recombinant P. pastoris yeast was developed in this study. The novel and efficient dual biocatalytic system based on Thermomyces lanuginosus lipase took advantage of both cell free enzymes and whole cell catalysts. The extracellular and intracellular lipases of growing yeast cells were simultaneously utilized to produce biodiesel from waste cooking oils in situ and in one pot. This integrated system effectively achieved 58% and 72% biodiesel yield via concurrent esterified-transesterified methanolysis and stepwise hydrolysis-esterification at 3:1 molar ratio between methanol and waste cooking oils, respectively. Further increasing the molar ratio of methanol to waste cooking oils to 6:1 led to an 87% biodiesel yield using the stepwise strategy. Both water tolerance and methanol tolerance of this novel system were found to be significantly improved compared to previous non-integrated biodiesel production processes using separately prepared immobilized enzymes or whole cell catalysts. Conclusion We have proposed a new concept of integrated biodiesel production

  15. Insight into chemoselectivity of nitroarene hydrogenation: A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Lidong; Cao, Xiao-Ming; Hu, P.

    2017-01-01

    The adsorption of nitrobenzene and 4-nitrostyrene on the Pt(111) and the Au(111) surfaces under the general reaction condition of nitroarene catalytic hydrogenation is investigated utilizing periodic density functional theory calculations with the Grimme's empirical three-body dispersion correction to understand the influence of adsorption configurations on chemoselectivity of nitroarene compound hydrogenation. It is found that at the low coverage both nitrobenzene and 4-nitrostyrene tend to adsorb paralleling to the Pt(111) and the Au(111) surfaces. Based on the crystal orbital Hamilton population analysis, it is found that the chemical bonding between nitro group and Pt(111) surface is weak. The adsorption configurations of nitrobenzene and 4-nitrostyrene are determined by the chemisorption strength of phenyl group and vinyl group. Under the reaction condition, the 1/9 ML nitrobenzene and 4/9 ML hydrogen atom can be coadsorbed while the 1/6 ML 4-nitrostyrene and 1/3 ML hydrogen atom can be coadsorbed on Pt(111). With the increase of the coverage, nitrobenzene still remains its paralleled adsorption configuration while the adsorption configuration of 4-nitrostyrene is switched to the tilted adsorption configuration through vinyl group without the chemisorption of phenyl and nitro group on Pt(111). In addition, the competitive adsorption with hydrogen will not change the adsorption configuration of nitrobenzene and 4-nitrostyrene under the reaction condition. On Au(111), the physical adsorption strength determines the adsorption configuration. The paralleled adsorption with the shortest average distance between the adsorbate and Au(111) surface is preferred. At the paralleled adsorption configuration, the chemoselectivities of the hydrogenation on these functional groups are similar if only in terms of geometric configuration. However, the hydrogenation on nitro group encounters the problem of steric hindrance at the tilted adsorption configuration through vinyl

  16. New efficient calixarene amide ionophores for the selective removal of strontium ion from nuclear waste: synthesis, complexation, and extraction properties.

    PubMed

    Casnati, A; Barboso, S; Rouquette, H; Schwing-Weill, M J; Arnaud-Neu, F; Dozol, J F; Ungaro, R

    2001-12-12

    Three novel lower rim hexamide derivatives 5(6), 7(6), and 9(6) of p-hydroxycalix[6]arene and four octamides 5(8), 7(8)-9(8) derived from the corresponding p-hydroxycalix[8]arene were synthesized, and their potential as extractants in radioactive waste treatment was evaluated, in comparison with upper rim analogues 12(6) and 12(8) and other existing selective neutral ionophores currently used in radioactive waste treatment. Extraction of alkali and alkaline earth metal picrates from water to dichloromethane, and of the corresponding nitrates from acidic water solution simulating radioactive waste, to 2-nitrophenyl hexyl ether (NPHE), showed that the lower rim amides extract divalent cations much better than monovalent ones. The upper rim hexa-12(6) and octamide 12(8) are very inefficient ligands, hardly extracting any cation. In all cases, p-alkoxy octamides are more efficient and selective extractants than the corresponding hexamides. In the case of simulated waste solutions, the distribution coefficients for strontium removal by octamides (6.5 < D(Sr) < 30) are much higher than the corresponding value (D(Sr)) found for dicyclohexyl-18-crown-6 (DC18C6), and the same applies for the strontium/sodium selectivity, which is 6500 < D(Sr)/D(Na) < 30 000 for octamides and 47 for DC18C6. ESI-MS, UV-vis, and X-ray crystal structure studies give consistent results and indicate the formation of 2:1 (cation/ligand) strontium complexes for all octamides tested. Stability constants were determined in homogeneous methanol solution for alkali metal (log beta(11) < or = 2), calcium (4.3 < or = log beta(11) < or = 6.0; 9.4 < or = log beta(21) < or = 12.0), and strontium (5.6 < or = log beta(11) < or = 12.3) ions using a UV-vis competition method with 1-(2-pyridylazo)-2-naphthol (PAN). They confirm the high efficiency and high divalent/monovalent selectivity found in metal ion extraction experiments for the new octamide ligands. Evidence for a positive cooperative effect between the

  17. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents.

    PubMed

    Deka, Juti Rani; Liu, Chia-Ling; Wang, Tzu-Hua; Chang, Wei-Chieh; Kao, Hsien-Ming

    2014-08-15

    Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π-π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles.

  18. Synthesis and high-efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ding, Zui; Cai, Minhan; Jian, Haitao; Zeng, Zhiqiao; Li, Feng; Liu, J. Ping

    2015-08-01

    MnFe2O4 nanoparticles and polyacrylic acid PAA/MnFe2O4 nanocomposites were synthesized by a hydrothermal method and ultrasonic mixing process. The obtained materials were characterized by XRD, FTIR, SEM, TEM, and VSM. XRD patterns indicate that the synthesized MnFe2O4 nanoparticles have a single cubic spinel phase. SEM images confirm the existence of three types of basic morphology of MnFe2O4 nanoparticles: octahedral, flower-like, and plate-like particles. High saturation magnetization Ms (up to 74.6 emu/g) of the as-synthesized MnFe2O4 nanoparticles was obtained. Experiments demonstrate that the variation of the hydrothermal reaction time does not remarkably affect the magnetic properties of MnFe2O4 nanoparticles. In PAA/MnFe2O4 nanocomposites, the coating of PAA leads to a slight decrease in magnetization of MnFe2O4 nanoparticles. Additionally, PAA coating greatly enhances the adsorption properties of MnFe2O4 nanoparticles for Methylene Blue (MB) dye. Especially, the removal efficiency reaches 96.3%. This research indicates that the as-synthesized PAA/MnFe2O4 nanocomposites exhibit excellent magnetic properties and can be taken as a promising adsorbent for removal of MB dye in industrial scale.

  19. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction

    PubMed Central

    Wang, Jiacheng; Ma, Ruguang; Zhou, Zhenzhen; Liu, Guanghui; Liu, Qian

    2015-01-01

    Efficient metal-free electrocatalysts for oxygen reduction reaction (ORR) are highly expected in future low-cost energy systems. We have successfully prepared crumpled, sheet-like, sulfur-doped graphene by magnesiothermic reduction of easily available, low-cost, nontoxic CO2 (in the form of Na2CO3) and Na2SO4 as the carbon and sulfur sources, respectively. At high temperature, Mg can reduce not only carbon in the oxidation state of +4 in CO32− to form graphene, but also sulfur in SO42− from its highest (+6) to lowest valence which was hybridized into the carbon sp2 framework. Various characterization results show that sulfur-doped graphene with only few layers has an appropriate sulfur content, hierarchically robust porous structure, large surface area/pore volume, and highly graphitized textures. The S-doped graphene samples exhibit not only a high activity for ORR with a four-electron pathway, but also superior durability and tolerance to MeOH crossover to 40% Pt/C. This is mainly ascribed to the combination of sulfur-related active sites and hierarchical porous textures, facilitating fast diffusion of oxygen molecules and electrolyte to catalytic sites and release of products from the sites. PMID:25790856

  20. Synthesis of β-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Wang, Ce

    2015-12-09

    Water-insoluble β-cyclodextrin-based fibers were synthesized by electrospinining followed by thermal cross-linking. The fibers were characterized by field-emission scanning electron microscopic (FE-SEM) and Fourier transformed infrared spectrometer (FT-IR). The highly insoluble fraction obtained from different pH values (3-11) indicates successful cross-linking reactions and their usability in aqueous solution. After the cross-linking reaction, the fibers' tensile strength increases significantly and the BET surface area is 19.49 m(2)/g. The cross-linked fibers exhibited high adsorption capacity for cationic dye methylene blue (MB) with good recyclability. The adsorption performance can be fitted well with pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacity is 826.45 mg/g according to Langmuir fitting. Due to electrostatic repulsion, the fibers show weak adsorption toward negatively charged anionic dye methyl orange (MO). On the basis of the selective adsorption, the fiber membrane can separate the MB/MO mixture solution by dynamic filtration at a high flow rate of 150 mL/min. The fibers can maintain good fibrous morphology and high separation efficiency even after five filtration-regeneration cycles. The obtained results suggested potential applications of β-cyclodextrin-based electrospun fibers in the dye wastewater treatment field.