Improved Ant Colony Clustering Algorithm and Its Performance Study
Gao, Wei
2016-01-01
Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533
Clustering algorithm for determining community structure in large networks
NASA Astrophysics Data System (ADS)
Pujol, Josep M.; Béjar, Javier; Delgado, Jordi
2006-07-01
We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Johnson, J. K.
1979-01-01
An efficient procedure which clusters data using a completely unsupervised clustering algorithm and then uses labeled pixels to label the resulting clusters or perform a stratified estimate using the clusters as strata is developed. Three clustering algorithms, CLASSY, AMOEBA, and ISOCLS, are compared for efficiency. Three stratified estimation schemes and three labeling schemes are also considered and compared.
A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering
ERIC Educational Resources Information Center
Chahine, Firas Safwan
2012-01-01
Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…
Efficient clustering aggregation based on data fragments.
Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing
2012-06-01
Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-01-01
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices’ service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes’ life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN. PMID:26703619
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things.
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-12-23
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices' service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes' life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
Liu, Wenfen
2017-01-01
Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral embedding. Compared with the original model, the new algorithm has the similar results with the increase of its model size asymptotically; compared with the most efficient CSC algorithm known, the new algorithm runs faster and has a wider range of suitable data sets. Meanwhile, a scalable semisupervised cluster ensemble algorithm is also proposed via the combination of our fast CSC algorithm and dimensionality reduction with random projection in the process of spectral ensemble clustering. We demonstrate by presenting theoretical analysis and empirical results that the new cluster ensemble algorithm has advantages in terms of efficiency and effectiveness. Furthermore, the approximate preservation of random projection in clustering accuracy proved in the stage of consensus clustering is also suitable for the weighted k-means clustering and thus gives the theoretical guarantee to this special kind of k-means clustering where each point has its corresponding weight. PMID:29312447
GDPC: Gravitation-based Density Peaks Clustering algorithm
NASA Astrophysics Data System (ADS)
Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin
2018-07-01
The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.
Shah, Sohil Atul
2017-01-01
Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank. PMID:28851838
NASA Astrophysics Data System (ADS)
Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan
2018-04-01
Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-08-13
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
Efficient Record Linkage Algorithms Using Complete Linkage Clustering.
Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar
2016-01-01
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.
Efficient Record Linkage Algorithms Using Complete Linkage Clustering
Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar
2016-01-01
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2013-01-01
The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.
Procedure of Partitioning Data Into Number of Data Sets or Data Group - A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.
NASA Astrophysics Data System (ADS)
Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-03-01
The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.
Clustering PPI data by combining FA and SHC method.
Lei, Xiujuan; Ying, Chao; Wu, Fang-Xiang; Xu, Jin
2015-01-01
Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value.
Clustering PPI data by combining FA and SHC method
2015-01-01
Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value. PMID:25707632
A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.
Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong
2015-12-01
Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.
Multi-Optimisation Consensus Clustering
NASA Astrophysics Data System (ADS)
Li, Jian; Swift, Stephen; Liu, Xiaohui
Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.
Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means
NASA Astrophysics Data System (ADS)
Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.
2018-04-01
This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.
A highly efficient multi-core algorithm for clustering extremely large datasets
2010-01-01
Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922
Cooperative network clustering and task allocation for heterogeneous small satellite network
NASA Astrophysics Data System (ADS)
Qin, Jing
The research of small satellite has emerged as a hot topic in recent years because of its economical prospects and convenience in launching and design. Due to the size and energy constraints of small satellites, forming a small satellite network(SSN) in which all the satellites cooperate with each other to finish tasks is an efficient and effective way to utilize them. In this dissertation, I designed and evaluated a weight based dominating set clustering algorithm, which efficiently organizes the satellites into stable clusters. The traditional clustering algorithms of large monolithic satellite networks, such as formation flying and satellite swarm, are often limited on automatic formation of clusters. Therefore, a novel Distributed Weight based Dominating Set(DWDS) clustering algorithm is designed to address the clustering problems in the stochastically deployed SSNs. Considering the unique features of small satellites, this algorithm is able to form the clusters efficiently and stably. In this algorithm, satellites are separated into different groups according to their spatial characteristics. A minimum dominating set is chosen as the candidate cluster head set based on their weights, which is a weighted combination of residual energy and connection degree. Then the cluster heads admit new neighbors that accept their invitations into the cluster, until the maximum cluster size is reached. Evaluated by the simulation results, in a SSN with 200 to 800 nodes, the algorithm is able to efficiently cluster more than 90% of nodes in 3 seconds. The Deadline Based Resource Balancing (DBRB) task allocation algorithm is designed for efficient task allocations in heterogeneous LEO small satellite networks. In the task allocation process, the dispatcher needs to consider the deadlines of the tasks as well as the residue energy of different resources for best energy utilization. We assume the tasks adopt a Map-Reduce framework, in which a task can consist of multiple subtasks. The DBRB algorithm is deployed on the head node of a cluster. It gathers the status from each cluster member and calculates their Node Importance Factors (NIFs) from the carried resources, residue power and compute capacity. The algorithm calculates the number of concurrent subtasks based on the deadlines, and allocates the subtasks to the nodes according to their NIF values. The simulation results show that when cluster members carry multiple resources, resource are more balanced and rare resources serve longer in DBRB than in the Earliest Deadline First algorithm. We also show that the algorithm performs well in service isolation by serving multiple tasks with different deadlines. Moreover, the average task response time with various cluster size settings is well controlled within deadlines as well. Except non-realtime tasks, small satellites may execute realtime tasks as well. The location-dependent tasks, such as image capturing, data transmission and remote sensing tasks are realtime tasks that are required to be started / finished on specific time. The resource energy balancing algorithm for realtime and non-realtime mixed workload is developed to efficiently schedule the tasks for best system performance. It calculates the residue energy for each resource type and tries to preserve resources and node availability when distributing tasks. Non-realtime tasks can be preempted by realtime tasks to provide better QoS to realtime tasks. I compared the performance of proposed algorithm with a random-priority scheduling algorithm, with only realtime tasks, non-realtime tasks and mixed tasks. It shows the resource energy reservation algorithm outperforms the latter one with both balanced and imbalanced workloads. Although the resource energy balancing task allocation algorithm for mixed workload provides preemption mechanism for realtime tasks, realtime tasks can still fail due to resource exhaustion. For LEO small satellite flies around the earth on stable orbits, the location-dependent realtime tasks can be considered as periodical tasks. Therefore, it is possible to reserve energy for these realtime tasks. The resource energy reservation algorithm preserves energy for the realtime tasks when the execution routine of periodical realtime tasks is known. In order to reserve energy for tasks starting very early in each period that the node does not have enough energy charged, an energy wrapping mechanism is also designed to calculate the residue energy from the previous period. The simulation results show that without energy reservation, realtime task failure rate can reach more than 60% when the workload is highly imbalanced. In contrast, the resource energy reservation produces zero RT task failures and leads to equal or better aggregate system throughput than the non-reservation algorithm. The proposed algorithm also preserves more energy because it avoids task preemption. (Abstract shortened by ProQuest.).
A method of operation scheduling based on video transcoding for cluster equipment
NASA Astrophysics Data System (ADS)
Zhou, Haojie; Yan, Chun
2018-04-01
Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.
Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong
2017-07-03
Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.
Fuzzy Document Clustering Approach using WordNet Lexical Categories
NASA Astrophysics Data System (ADS)
Gharib, Tarek F.; Fouad, Mohammed M.; Aref, Mostafa M.
Text mining refers generally to the process of extracting interesting information and knowledge from unstructured text. This area is growing rapidly mainly because of the strong need for analysing the huge and large amount of textual data that reside on internal file systems and the Web. Text document clustering provides an effective navigation mechanism to organize this large amount of data by grouping their documents into a small number of meaningful classes. In this paper we proposed a fuzzy text document clustering approach using WordNet lexical categories and Fuzzy c-Means algorithm. Some experiments are performed to compare efficiency of the proposed approach with the recently reported approaches. Experimental results show that Fuzzy clustering leads to great performance results. Fuzzy c-means algorithm overcomes other classical clustering algorithms like k-means and bisecting k-means in both clustering quality and running time efficiency.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.
LOD-based clustering techniques for efficient large-scale terrain storage and visualization
NASA Astrophysics Data System (ADS)
Bao, Xiaohong; Pajarola, Renato
2003-05-01
Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.
Research on the precise positioning of customers in large data environment
NASA Astrophysics Data System (ADS)
Zhou, Xu; He, Lili
2018-04-01
Customer positioning has always been a problem that enterprises focus on. In this paper, FCM clustering algorithm is used to cluster customer groups. However, due to the traditional FCM clustering algorithm, which is susceptible to the influence of the initial clustering center and easy to fall into the local optimal problem, the short board of FCM is solved by the gray optimization algorithm (GWO) to achieve efficient and accurate handling of a large number of retailer data.
Efficient implementation of parallel three-dimensional FFT on clusters of PCs
NASA Astrophysics Data System (ADS)
Takahashi, Daisuke
2003-05-01
In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-07
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.
Efficiency of parallel direct optimization
NASA Technical Reports Server (NTRS)
Janies, D. A.; Wheeler, W. C.
2001-01-01
Tremendous progress has been made at the level of sequential computation in phylogenetics. However, little attention has been paid to parallel computation. Parallel computing is particularly suited to phylogenetics because of the many ways large computational problems can be broken into parts that can be analyzed concurrently. In this paper, we investigate the scaling factors and efficiency of random addition and tree refinement strategies using the direct optimization software, POY, on a small (10 slave processors) and a large (256 slave processors) cluster of networked PCs running LINUX. These algorithms were tested on several data sets composed of DNA and morphology ranging from 40 to 500 taxa. Various algorithms in POY show fundamentally different properties within and between clusters. All algorithms are efficient on the small cluster for the 40-taxon data set. On the large cluster, multibuilding exhibits excellent parallel efficiency, whereas parallel building is inefficient. These results are independent of data set size. Branch swapping in parallel shows excellent speed-up for 16 slave processors on the large cluster. However, there is no appreciable speed-up for branch swapping with the further addition of slave processors (>16). This result is independent of data set size. Ratcheting in parallel is efficient with the addition of up to 32 processors in the large cluster. This result is independent of data set size. c2001 The Willi Hennig Society.
An Improved Clustering Algorithm of Tunnel Monitoring Data for Cloud Computing
Zhong, Luo; Tang, KunHao; Li, Lin; Yang, Guang; Ye, JingJing
2014-01-01
With the rapid development of urban construction, the number of urban tunnels is increasing and the data they produce become more and more complex. It results in the fact that the traditional clustering algorithm cannot handle the mass data of the tunnel. To solve this problem, an improved parallel clustering algorithm based on k-means has been proposed. It is a clustering algorithm using the MapReduce within cloud computing that deals with data. It not only has the advantage of being used to deal with mass data but also is more efficient. Moreover, it is able to compute the average dissimilarity degree of each cluster in order to clean the abnormal data. PMID:24982971
Energy Efficient and Stable Weight Based Clustering for Mobile Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Bouk, Safdar H.; Sasase, Iwao
Recently several weighted clustering algorithms have been proposed, however, to the best of our knowledge; there is none that propagates weights to other nodes without weight message for leader election, normalizes node parameters and considers neighboring node parameters to calculate node weights. In this paper, we propose an Energy Efficient and Stable Weight Based Clustering (EE-SWBC) algorithm that elects cluster heads without sending any additional weight message. It propagates node parameters to its neighbors through neighbor discovery message (HELLO Message) and stores these parameters in neighborhood list. Each node normalizes parameters and efficiently calculates its own weight and the weights of neighboring nodes from that neighborhood table using Grey Decision Method (GDM). GDM finds the ideal solution (best node parameters in neighborhood list) and calculates node weights in comparison to the ideal solution. The node(s) with maximum weight (parameters closer to the ideal solution) are elected as cluster heads. In result, EE-SWBC fairly selects potential nodes with parameters closer to ideal solution with less overhead. Different performance metrics of EE-SWBC and Distributed Weighted Clustering Algorithm (DWCA) are compared through simulations. The simulation results show that EE-SWBC maintains fewer average numbers of stable clusters with minimum overhead, less energy consumption and fewer changes in cluster structure within network compared to DWCA.
Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.
Chen, Ying-Chih; Wen, Chih-Yu
2012-11-08
This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing
2018-01-01
For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
An AK-LDMeans algorithm based on image clustering
NASA Astrophysics Data System (ADS)
Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan
2018-03-01
Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-01-01
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272
A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.
Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue
2016-02-19
Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.
Scalable Parallel Density-based Clustering and Applications
NASA Astrophysics Data System (ADS)
Patwary, Mostofa Ali
2014-04-01
Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
Scaling deep learning on GPU and knights landing clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yang; Buluc, Aydin; Demmel, James
Training neural networks has become a big bottleneck. For example, training ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. We use both self-host Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From the algorithm aspect, we focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. We redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD,more » and Hogwild EASGD are faster than existing counter-part methods (Async SGD, Async MSGD, and Hogwild SGD) in all comparisons. Sync EASGD achieves 5.3X speedup over original EASGD on the same platform. We achieve 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
Zone-Based Routing Protocol for Wireless Sensor Networks
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455
Zone-Based Routing Protocol for Wireless Sensor Networks.
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.
Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal
2008-07-01
UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.
Seman, Ali; Sapawi, Azizian Mohd; Salleh, Mohd Zaki
2015-06-01
Y-chromosome short tandem repeats (Y-STRs) are genetic markers with practical applications in human identification. However, where mass identification is required (e.g., in the aftermath of disasters with significant fatalities), the efficiency of the process could be improved with new statistical approaches. Clustering applications are relatively new tools for large-scale comparative genotyping, and the k-Approximate Modal Haplotype (k-AMH), an efficient algorithm for clustering large-scale Y-STR data, represents a promising method for developing these tools. In this study we improved the k-AMH and produced three new algorithms: the Nk-AMH I (including a new initial cluster center selection), the Nk-AMH II (including a new dominant weighting value), and the Nk-AMH III (combining I and II). The Nk-AMH III was the superior algorithm, with mean clustering accuracy that increased in four out of six datasets and remained at 100% in the other two. Additionally, the Nk-AMH III achieved a 2% higher overall mean clustering accuracy score than the k-AMH, as well as optimal accuracy for all datasets (0.84-1.00). With inclusion of the two new methods, the Nk-AMH III produced an optimal solution for clustering Y-STR data; thus, the algorithm has potential for further development towards fully automatic clustering of any large-scale genotypic data.
Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering
Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
Cluster compression algorithm: A joint clustering/data compression concept
NASA Technical Reports Server (NTRS)
Hilbert, E. E.
1977-01-01
The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.
SLIC superpixels compared to state-of-the-art superpixel methods.
Achanta, Radhakrishna; Shaji, Appu; Smith, Kevin; Lucchi, Aurelien; Fua, Pascal; Süsstrunk, Sabine
2012-11-01
Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.
Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin
2018-05-03
Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental tool in numerous image processing and remote sensing applications. For example, unsupervised clustering is often used to obtain vegetation maps of an area of interest. This approach is useful when reliable training data are either scarce or expensive, and when relatively little a priori information about the data is available. Unsupervised clustering methods play a significant role in the pursuit of unsupervised classification. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points (or samples) in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute a set of cluster centers in d-space. Although there is no specific optimization criterion, the algorithm is similar in spirit to the well known k-means clustering method in which the objective is to minimize the average squared distance of each point to its nearest center, called the average distortion. One significant feature of ISOCLUS over k-means is that clusters may be merged or split, and so the final number of clusters may be different from the number k supplied as part of the input. This algorithm will be described in later in this paper. The ISOCLUS algorithm can run very slowly, particularly on large data sets. Given its wide use in remote sensing, its efficient computation is an important goal. We have developed a fast implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm, the filtering algorithm, by Kanungo et al.. They showed that, by storing the data in a kd-tree, it was possible to significantly reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm. For technical reasons, which are explained later, it is necessary to make a minor modification to the ISOCLUS specification. We provide empirical evidence, on both synthetic and Landsat image data sets, that our algorithm's performance is essentially the same as that of ISOCLUS, but with significantly lower running times. We show that our algorithm runs from 3 to 30 times faster than a straightforward implementation of ISOCLUS. Our adaptation of the filtering algorithm involves the efficient computation of a number of cluster statistics that are needed for ISOCLUS, but not for k-means.
A robust multilevel simultaneous eigenvalue solver
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1993-01-01
Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.
A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising
NASA Astrophysics Data System (ADS)
Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua
2018-04-01
In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.
Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Korayem, L.; Khorsid, M.; Kassem, S. S.
2015-05-01
The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.
Impact of heuristics in clustering large biological networks.
Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel
2015-12-01
Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.
Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal
2008-01-01
Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. Results: We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. Availability: A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request. Contact: lonshy@cs.huji.ac.il PMID:18586742
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
NASA Astrophysics Data System (ADS)
Rastogi, Richa; Londhe, Ashutosh; Srivastava, Abhishek; Sirasala, Kirannmayi M.; Khonde, Kiran
2017-03-01
In this article, a new scalable 3D Kirchhoff depth migration algorithm is presented on state of the art multicore CPU based cluster. Parallelization of 3D Kirchhoff depth migration is challenging due to its high demand of compute time, memory, storage and I/O along with the need of their effective management. The most resource intensive modules of the algorithm are traveltime calculations and migration summation which exhibit an inherent trade off between compute time and other resources. The parallelization strategy of the algorithm largely depends on the storage of calculated traveltimes and its feeding mechanism to the migration process. The presented work is an extension of our previous work, wherein a 3D Kirchhoff depth migration application for multicore CPU based parallel system had been developed. Recently, we have worked on improving parallel performance of this application by re-designing the parallelization approach. The new algorithm is capable to efficiently migrate both prestack and poststack 3D data. It exhibits flexibility for migrating large number of traces within the available node memory and with minimal requirement of storage, I/O and inter-node communication. The resultant application is tested using 3D Overthrust data on PARAM Yuva II, which is a Xeon E5-2670 based multicore CPU cluster with 16 cores/node and 64 GB shared memory. Parallel performance of the algorithm is studied using different numerical experiments and the scalability results show striking improvement over its previous version. An impressive 49.05X speedup with 76.64% efficiency is achieved for 3D prestack data and 32.00X speedup with 50.00% efficiency for 3D poststack data, using 64 nodes. The results also demonstrate the effectiveness and robustness of the improved algorithm with high scalability and efficiency on a multicore CPU cluster.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-11-12
The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
2013-01-01
Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333
Novel density-based and hierarchical density-based clustering algorithms for uncertain data.
Zhang, Xianchao; Liu, Han; Zhang, Xiaotong
2017-09-01
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Honey bee-inspired algorithms for SNP haplotype reconstruction problem
NASA Astrophysics Data System (ADS)
PourkamaliAnaraki, Maryam; Sadeghi, Mehdi
2016-03-01
Reconstructing haplotypes from SNP fragments is an important problem in computational biology. There have been a lot of interests in this field because haplotypes have been shown to contain promising data for disease association research. It is proved that haplotype reconstruction in Minimum Error Correction model is an NP-hard problem. Therefore, several methods such as clustering techniques, evolutionary algorithms, neural networks and swarm intelligence approaches have been proposed in order to solve this problem in appropriate time. In this paper, we have focused on various evolutionary clustering techniques and try to find an efficient technique for solving haplotype reconstruction problem. It can be referred from our experiments that the clustering methods relying on the behaviour of honey bee colony in nature, specifically bees algorithm and artificial bee colony methods, are expected to result in more efficient solutions. An application program of the methods is available at the following link. http://www.bioinf.cs.ipm.ir/software/haprs/
Scaling Deep Learning on GPU and Knights Landing clusters
You, Yang; Buluc, Aydin; Demmel, James
2017-09-26
The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less
Scaling Deep Learning on GPU and Knights Landing clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yang; Buluc, Aydin; Demmel, James
The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less
NASA Astrophysics Data System (ADS)
Rozyczka, M.; Narloch, W.; Pietrukowicz, P.; Thompson, I. B.; Pych, W.; Poleski, R.
2018-03-01
We adapt the friends of friends algorithm to the analysis of light curves, and show that it can be succesfully applied to searches for transient phenomena in large photometric databases. As a test case we search OGLE-III light curves for known dwarf novae. A single combination of control parameters allows us to narrow the search to 1% of the data while reaching a ≍90% detection efficiency. A search involving ≍2% of the data and three combinations of control parameters can be significantly more effective - in our case a 100% efficiency is reached. The method can also quite efficiently detect semi-regular variability. In particular, 28 new semi-regular variables have been found in the field of the globular cluster M22, which was examined earlier with the help of periodicity-searching algorithms.
An efficient dictionary learning algorithm and its application to 3-D medical image denoising.
Li, Shutao; Fang, Leyuan; Yin, Haitao
2012-02-01
In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods. © 2011 IEEE
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
Visual verification and analysis of cluster detection for molecular dynamics.
Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas
2007-01-01
A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.
Efficient architecture for spike sorting in reconfigurable hardware.
Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying
2013-11-01
This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.
Clustering-based energy-saving algorithm in ultra-dense network
NASA Astrophysics Data System (ADS)
Huang, Junwei; Zhou, Pengguang; Teng, Deyang; Zhang, Renchi; Xu, Hao
2017-06-01
In Ultra-dense Networks (UDN), dense deployment of low power small base stations will cause serious small cells interference and a large amount of energy consumption. The purpose of this paper is to explore the method of reducing small cells interference and energy saving system in UDN, and we innovatively propose a sleep-waking-active (SWA) scheme. The scheme decreases the user outage causing by failure to detect users’ service requests, shortens the opening time of active base stations directly switching to sleep mode; we further proposes a Vertex Surrounding Clustering(VSC) algorithm, which first colours the small cells with the most strongest interference and next extends to the adjacent small cells. VSC algorithm can use the least colour to stain the small cell, reduce the number of iterations and promote the efficiency of colouring. The simulation results show that SWA scheme can effectively improve the system Energy Efficiency (EE), the VSC algorithm can reduce the small cells interference and optimize the users’ Spectrum Efficiency (SE) and throughput.
Kaliman, Ilya A; Krylov, Anna I
2017-04-30
A new hardware-agnostic contraction algorithm for tensors of arbitrary symmetry and sparsity is presented. The algorithm is implemented as a stand-alone open-source code libxm. This code is also integrated with general tensor library libtensor and with the Q-Chem quantum-chemistry package. An overview of the algorithm, its implementation, and benchmarks are presented. Similarly to other tensor software, the algorithm exploits efficient matrix multiplication libraries and assumes that tensors are stored in a block-tensor form. The distinguishing features of the algorithm are: (i) efficient repackaging of the individual blocks into large matrices and back, which affords efficient graphics processing unit (GPU)-enabled calculations without modifications of higher-level codes; (ii) fully asynchronous data transfer between disk storage and fast memory. The algorithm enables canonical all-electron coupled-cluster and equation-of-motion coupled-cluster calculations with single and double substitutions (CCSD and EOM-CCSD) with over 1000 basis functions on a single quad-GPU machine. We show that the algorithm exhibits predicted theoretical scaling for canonical CCSD calculations, O(N 6 ), irrespective of the data size on disk. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China
Zou, Hui; Zou, Zhihong; Wang, Xiaojing
2015-01-01
The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
A similarity based agglomerative clustering algorithm in networks
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong
2018-04-01
The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.
NASA Astrophysics Data System (ADS)
Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu
2018-06-01
An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Ding, Jiarui; Shah, Sohrab; Condon, Anne
2016-01-01
Motivation: Many biological data processing problems can be formalized as clustering problems to partition data points into sensible and biologically interpretable groups. Results: This article introduces densityCut, a novel density-based clustering algorithm, which is both time- and space-efficient and proceeds as follows: densityCut first roughly estimates the densities of data points from a K-nearest neighbour graph and then refines the densities via a random walk. A cluster consists of points falling into the basin of attraction of an estimated mode of the underlining density function. A post-processing step merges clusters and generates a hierarchical cluster tree. The number of clusters is selected from the most stable clustering in the hierarchical cluster tree. Experimental results on ten synthetic benchmark datasets and two microarray gene expression datasets demonstrate that densityCut performs better than state-of-the-art algorithms for clustering biological datasets. For applications, we focus on the recent cancer mutation clustering and single cell data analyses, namely to cluster variant allele frequencies of somatic mutations to reveal clonal architectures of individual tumours, to cluster single-cell gene expression data to uncover cell population compositions, and to cluster single-cell mass cytometry data to detect communities of cells of the same functional states or types. densityCut performs better than competing algorithms and is scalable to large datasets. Availability and Implementation: Data and the densityCut R package is available from https://bitbucket.org/jerry00/densitycut_dev. Contact: condon@cs.ubc.ca or sshah@bccrc.ca or jiaruid@cs.ubc.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153661
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks
Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.
2010-01-01
Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less
An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.
Shabanzadeh, Parvaneh; Yusof, Rubiyah
2015-01-01
Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
A Fast Implementation of the ISODATA Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2005-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
A Fast Implementation of the Isodata Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Le Moigne, Jacqueline; Mount, David M.; Netanyahu, Nathan S.
2007-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to IsoDATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
Blocked inverted indices for exact clustering of large chemical spaces.
Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver
2014-09-22
The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Concept design and cluster control of advanced space connectable intelligent microsatellite
NASA Astrophysics Data System (ADS)
Wang, Xiaohui; Li, Shuang; She, Yuchen
2017-12-01
In this note, a new type of advanced space connectable intelligent microsatellite is presented to extend the range of potential application of microsatellite and improve the efficiency of cooperation. First, the overall concept of the micro satellite cluster is described, which is characterized by autonomously connecting with each other and being able to realize relative rotation through the external interfaces. Second, the multi-satellite autonomous assembly algorithm and control algorithm of the cluster motion are developed to make the cluster system combine into a variety of configurations in order to achieve different types of functionality. Finally, the design of the satellite cluster system is proposed, and the possible applications are discussed.
A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.
Shen, Lili; Guo, Jiming; Wang, Lei
2018-06-06
The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Salim, Shelly; Moh, Sangman
2016-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
Detecting communities in large networks
NASA Astrophysics Data System (ADS)
Capocci, A.; Servedio, V. D. P.; Caldarelli, G.; Colaiori, F.
2005-07-01
We develop an algorithm to detect community structure in complex networks. The algorithm is based on spectral methods and takes into account weights and link orientation. Since the method detects efficiently clustered nodes in large networks even when these are not sharply partitioned, it turns to be specially suitable for the analysis of social and information networks. We test the algorithm on a large-scale data-set from a psychological experiment of word association. In this case, it proves to be successful both in clustering words, and in uncovering mental association patterns.
Possible world based consistency learning model for clustering and classifying uncertain data.
Liu, Han; Zhang, Xianchao; Zhang, Xiaotong
2018-06-01
Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
An Energy-Efficient Mobile Sink-Based Unequal Clustering Mechanism for WSNs.
Gharaei, Niayesh; Abu Bakar, Kamalrulnizam; Mohd Hashim, Siti Zaiton; Hosseingholi Pourasl, Ali; Siraj, Mohammad; Darwish, Tasneem
2017-08-11
Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.
Specialized Computer Systems for Environment Visualization
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.
2018-06-01
The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale
Kobourov, Stephen; Gallant, Mike; Börner, Katy
2016-01-01
Overview Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. Cluster Quality Metrics We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Network Clustering Algorithms Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters. PMID:27391786
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Graph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis
2015-01-01
ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...algorithms we proposed improve the time e ciency signi cantly for large scale datasets. In the last chapter, we also propose an incremental reseeding...plume detection in hyper-spectral video data. These graph based clustering algorithms we proposed improve the time efficiency significantly for large
NASA Astrophysics Data System (ADS)
Orlov, Alexandr K.
2017-10-01
The article deals with the application of sustainable construction concept within implementation of megaprojects of tourist clusters development using energy saving technologies. The concept of sustainable construction includes the elements of green construction, energy management as well as aspects of the economic efficiency of construction projects implementation. The methodical approach to the implementation of megaprojects for the creation of tourist clusters in Russia based on the concept of energy efficiency and sustainable construction is proved. The conceptual approach to the evaluation of the ecological, social and economic components of the integral indicator of the effectiveness of the megaproject for the development of the tourist cluster is provided. The algorithm for estimation of the efficiency of innovative solutions in green construction is considered.
Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing
2017-01-01
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962
An improved K-means clustering method for cDNA microarray image segmentation.
Wang, T N; Li, T J; Shao, G F; Wu, S X
2015-07-14
Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.
Clustering of color map pixels: an interactive approach
NASA Astrophysics Data System (ADS)
Moon, Yiu Sang; Luk, Franklin T.; Yuen, K. N.; Yeung, Hoi Wo
2003-12-01
The demand for digital maps continues to arise as mobile electronic devices become more popular nowadays. Instead of creating the entire map from void, we may convert a scanned paper map into a digital one. Color clustering is the very first step of the conversion process. Currently, most of the existing clustering algorithms are fully automatic. They are fast and efficient but may not work well in map conversion because of the numerous ambiguous issues associated with printed maps. Here we introduce two interactive approaches for color clustering on the map: color clustering with pre-calculated index colors (PCIC) and color clustering with pre-calculated color ranges (PCCR). We also introduce a memory model that could enhance and integrate different image processing techniques for fine-tuning the clustering results. Problems and examples of the algorithms are discussed in the paper.
Chaotic map clustering algorithm for EEG analysis
NASA Astrophysics Data System (ADS)
Bellotti, R.; De Carlo, F.; Stramaglia, S.
2004-03-01
The non-parametric chaotic map clustering algorithm has been applied to the analysis of electroencephalographic signals, in order to recognize the Huntington's disease, one of the most dangerous pathologies of the central nervous system. The performance of the method has been compared with those obtained through parametric algorithms, as K-means and deterministic annealing, and supervised multi-layer perceptron. While supervised neural networks need a training phase, performed by means of data tagged by the genetic test, and the parametric methods require a prior choice of the number of classes to find, the chaotic map clustering gives a natural evidence of the pathological class, without any training or supervision, thus providing a new efficient methodology for the recognition of patterns affected by the Huntington's disease.
Reducing the time requirement of k-means algorithm.
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem is to determine a set of k points in R(d), called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARI(HA)). We found that when k is close to d, the quality is good (ARI(HA)>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARI(HA)>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data.
Reducing the Time Requirement of k-Means Algorithm
Osamor, Victor Chukwudi; Adebiyi, Ezekiel Femi; Oyelade, Jelilli Olarenwaju; Doumbia, Seydou
2012-01-01
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data. PMID:23239974
Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.
Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy
2016-01-01
Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.
Dimitrakopoulou, Konstantina; Vrahatis, Aristidis G; Wilk, Esther; Tsakalidis, Athanasios K; Bezerianos, Anastasios
2013-09-01
The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them (e.g. cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web (http://biosignal.med.upatras.gr/wordpress/biosignal/). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
VANET Clustering Based Routing Protocol Suitable for Deserts.
Nasr, Mohammed Mohsen Mohammed; Abdelgader, Abdeldime Mohamed Salih; Wang, Zhi-Gong; Shen, Lian-Feng
2016-04-06
In recent years, there has emerged applications of vehicular ad hoc networks (VANETs) towards security, safety, rescue, exploration, military and communication redundancy systems in non-populated areas, besides its ordinary use in urban environments as an essential part of intelligent transportation systems (ITS). This paper proposes a novel algorithm for the process of organizing a cluster structure and cluster head election (CHE) suitable for VANETs. Moreover, it presents a robust clustering-based routing protocol, which is appropriate for deserts and can achieve high communication efficiency, ensuring reliable information delivery and optimal exploitation of the equipment on each vehicle. A comprehensive simulation is conducted to evaluate the performance of the proposed CHE and routing algorithms.
VANET Clustering Based Routing Protocol Suitable for Deserts
Mohammed Nasr, Mohammed Mohsen; Abdelgader, Abdeldime Mohamed Salih; Wang, Zhi-Gong; Shen, Lian-Feng
2016-01-01
In recent years, there has emerged applications of vehicular ad hoc networks (VANETs) towards security, safety, rescue, exploration, military and communication redundancy systems in non-populated areas, besides its ordinary use in urban environments as an essential part of intelligent transportation systems (ITS). This paper proposes a novel algorithm for the process of organizing a cluster structure and cluster head election (CHE) suitable for VANETs. Moreover, it presents a robust clustering-based routing protocol, which is appropriate for deserts and can achieve high communication efficiency, ensuring reliable information delivery and optimal exploitation of the equipment on each vehicle. A comprehensive simulation is conducted to evaluate the performance of the proposed CHE and routing algorithms. PMID:27058539
Adaptive fuzzy leader clustering of complex data sets in pattern recognition
NASA Technical Reports Server (NTRS)
Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.
Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm
Yang, Zhang; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428
High-dimensional cluster analysis with the Masked EM Algorithm
Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.
2014-01-01
Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694
Bhattacharya, Anindya; De, Rajat K
2010-08-01
Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to be consulted before installation and execution of the software. Copyright 2010 Elsevier Inc. All rights reserved.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
NASA Astrophysics Data System (ADS)
Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua
2017-05-01
With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.
Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine
2017-11-07
Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.
Autonomous distributed self-organization for mobile wireless sensor networks.
Wen, Chih-Yu; Tang, Hung-Kai
2009-01-01
This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.
An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin
2018-04-01
Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.
Advances in Patch-Based Adaptive Mesh Refinement Scalability
Gunney, Brian T.N.; Anderson, Robert W.
2015-12-18
Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less
Advances in Patch-Based Adaptive Mesh Refinement Scalability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunney, Brian T.N.; Anderson, Robert W.
Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less
Gaur, Pallavi; Chaturvedi, Anoop
2017-07-22
The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Multi-exemplar affinity propagation.
Wang, Chang-Dong; Lai, Jian-Huang; Suen, Ching Y; Zhu, Jun-Yong
2013-09-01
The affinity propagation (AP) clustering algorithm has received much attention in the past few years. AP is appealing because it is efficient, insensitive to initialization, and it produces clusters at a lower error rate than other exemplar-based methods. However, its single-exemplar model becomes inadequate when applied to model multisubclasses in some situations such as scene analysis and character recognition. To remedy this deficiency, we have extended the single-exemplar model to a multi-exemplar one to create a new multi-exemplar affinity propagation (MEAP) algorithm. This new model automatically determines the number of exemplars in each cluster associated with a super exemplar to approximate the subclasses in the category. Solving the model is NP-hard and we tackle it with the max-sum belief propagation to produce neighborhood maximum clusters, with no need to specify beforehand the number of clusters, multi-exemplars, and superexemplars. Also, utilizing the sparsity in the data, we are able to reduce substantially the computational time and storage. Experimental studies have shown MEAP's significant improvements over other algorithms on unsupervised image categorization and the clustering of handwritten digits.
NASA Astrophysics Data System (ADS)
Dayananda, Karanam Ravichandran; Straub, Jeremy
2017-05-01
This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
Srie Vidhya Janani, E.; Ganesh Kumar, P.
2015-01-01
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417
A flexible algorithm for calculating pair interactions on SIMD architectures
NASA Astrophysics Data System (ADS)
Páll, Szilárd; Hess, Berk
2013-12-01
Calculating interactions or correlations between pairs of particles is typically the most time-consuming task in particle simulation or correlation analysis. Straightforward implementations using a double loop over particle pairs have traditionally worked well, especially since compilers usually do a good job of unrolling the inner loop. In order to reach high performance on modern CPU and accelerator architectures, single-instruction multiple-data (SIMD) parallelization has become essential. Avoiding memory bottlenecks is also increasingly important and requires reducing the ratio of memory to arithmetic operations. Moreover, when pairs only interact within a certain cut-off distance, good SIMD utilization can only be achieved by reordering input and output data, which quickly becomes a limiting factor. Here we present an algorithm for SIMD parallelization based on grouping a fixed number of particles, e.g. 2, 4, or 8, into spatial clusters. Calculating all interactions between particles in a pair of such clusters improves data reuse compared to the traditional scheme and results in a more efficient SIMD parallelization. Adjusting the cluster size allows the algorithm to map to SIMD units of various widths. This flexibility not only enables fast and efficient implementation on current CPUs and accelerator architectures like GPUs or Intel MIC, but it also makes the algorithm future-proof. We present the algorithm with an application to molecular dynamics simulations, where we can also make use of the effective buffering the method introduces.
A robust fuzzy local Information c-means clustering algorithm with noise detection
NASA Astrophysics Data System (ADS)
Shang, Jiayu; Li, Shiren; Huang, Junwei
2018-04-01
Fuzzy c-means clustering (FCM), especially with spatial constraints (FCM_S), is an effective algorithm suitable for image segmentation. Its reliability contributes not only to the presentation of fuzziness for belongingness of every pixel but also to exploitation of spatial contextual information. But these algorithms still remain some problems when processing the image with noise, they are sensitive to the parameters which have to be tuned according to prior knowledge of the noise. In this paper, we propose a new FCM algorithm, combining the gray constraints and spatial constraints, called spatial and gray-level denoised fuzzy c-means (SGDFCM) algorithm. This new algorithm conquers the parameter disadvantages mentioned above by considering the possibility of noise of each pixel, which aims to improve the robustness and obtain more detail information. Furthermore, the possibility of noise can be calculated in advance, which means the algorithm is effective and efficient.
Mining algorithm for association rules in big data based on Hadoop
NASA Astrophysics Data System (ADS)
Fu, Chunhua; Wang, Xiaojing; Zhang, Lijun; Qiao, Liying
2018-04-01
In order to solve the problem that the traditional association rules mining algorithm has been unable to meet the mining needs of large amount of data in the aspect of efficiency and scalability, take FP-Growth as an example, the algorithm is realized in the parallelization based on Hadoop framework and Map Reduce model. On the basis, it is improved using the transaction reduce method for further enhancement of the algorithm's mining efficiency. The experiment, which consists of verification of parallel mining results, comparison on efficiency between serials and parallel, variable relationship between mining time and node number and between mining time and data amount, is carried out in the mining results and efficiency by Hadoop clustering. Experiments show that the paralleled FP-Growth algorithm implemented is able to accurately mine frequent item sets, with a better performance and scalability. It can be better to meet the requirements of big data mining and efficiently mine frequent item sets and association rules from large dataset.
Design and implementation of streaming media server cluster based on FFMpeg.
Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao
2015-01-01
Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system.
Design and Implementation of Streaming Media Server Cluster Based on FFMpeg
Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao
2015-01-01
Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system. PMID:25734187
Interactive visual exploration and refinement of cluster assignments.
Kern, Michael; Lex, Alexander; Gehlenborg, Nils; Johnson, Chris R
2017-09-12
With ever-increasing amounts of data produced in biology research, scientists are in need of efficient data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don't properly account for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear. While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments based on the source data, derived scores, and contextual data. In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms. Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe whether a clustering of genomic data results in a meaningful differentiation in phenotypes. Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce improved clusterings that better differentiate genotypes and phenotypes.
Distributed Multihop Clustering Approach for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Israr, Nauman; Awan, Irfan
Prolonging the life time of Wireless Sensor Networks (WSNs) has been the focus of current research. One of the issues that needs to be addressed along with prolonging the network life time is to ensure uniform energy consumption across the network in WSNs especially in case of random network deployment. Cluster based routing algorithms are believed to be the best choice for WSNs because they work on the principle of divide and conquer and also improve the network life time considerably compared to flat based routing schemes. In this paper we propose a new routing strategy based on two layers clustering which exploits the redundancy property of the network in order to minimise duplicate data transmission and also make the intercluster and intracluster communication multihop. The proposed algorithm makes use of the nodes in a network whose area coverage is covered by the neighbouring nodes. These nodes are marked as temporary cluster heads and later use these temporary cluster heads randomly for multihop intercluster communication. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing across the network and is more energy efficient compared to the enhanced version of widely used Leach algorithm.
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Tong, M.; Brown, A. P.; Agh, C.
2013-09-01
We develop efficient spatiotemporal image processing algorithms for rejection of non-stationary clutter and tracking of multiple dim objects using non-linear track-before-detect methods. For clutter suppression, we include an innovative image alignment (registration) algorithm. The images are assumed to contain elements of the same scene, but taken at different angles, from different locations, and at different times, with substantial clutter non-stationarity. These challenges are typical for space-based and surface-based IR/EO moving sensors, e.g., highly elliptical orbit or low earth orbit scenarios. The algorithm assumes that the images are related via a planar homography, also known as the projective transformation. The parameters are estimated in an iterative manner, at each step adjusting the parameter vector so as to achieve improved alignment of the images. Operating in the parameter space rather than in the coordinate space is a new idea, which makes the algorithm more robust with respect to noise as well as to large inter-frame disturbances, while operating at real-time rates. For dim object tracking, we include new advancements to a particle non-linear filtering-based track-before-detect (TrbD) algorithm. The new TrbD algorithm includes both real-time full image search for resolved objects not yet in track and joint super-resolution and tracking of individual objects in closely spaced object (CSO) clusters. The real-time full image search provides near-optimal detection and tracking of multiple extremely dim, maneuvering objects/clusters. The super-resolution and tracking CSO TrbD algorithm provides efficient near-optimal estimation of the number of unresolved objects in a CSO cluster, as well as the locations, velocities, accelerations, and intensities of the individual objects. We demonstrate that the algorithm is able to accurately estimate the number of CSO objects and their locations when the initial uncertainty on the number of objects is large. We demonstrate performance of the TrbD algorithm both for satellite-based and surface-based EO/IR surveillance scenarios.
Wolf, Antje; Kirschner, Karl N
2013-02-01
With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria's L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.
SEMIPARAMETRIC EFFICIENT ESTIMATION FOR SHARED-FRAILTY MODELS WITH DOUBLY-CENSORED CLUSTERED DATA
Wang, Jane-Ling
2018-01-01
In this paper, we investigate frailty models for clustered survival data that are subject to both left- and right-censoring, termed “doubly-censored data”. This model extends current survival literature by broadening the application of frailty models from right-censoring to a more complicated situation with additional left censoring. Our approach is motivated by a recent Hepatitis B study where the sample consists of families. We adopt a likelihood approach that aims at the nonparametric maximum likelihood estimators (NPMLE). A new algorithm is proposed, which not only works well for clustered data but also improve over existing algorithm for independent and doubly-censored data, a special case when the frailty variable is a constant equal to one. This special case is well known to be a computational challenge due to the left censoring feature of the data. The new algorithm not only resolves this challenge but also accommodate the additional frailty variable effectively. Asymptotic properties of the NPMLE are established along with semi-parametric efficiency of the NPMLE for the finite-dimensional parameters. The consistency of Bootstrap estimators for the standard errors of the NPMLE is also discussed. We conducted some simulations to illustrate the numerical performance and robustness of the proposed algorithm, which is also applied to the Hepatitis B data. PMID:29527068
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-05-21
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Ranjan; Chelmis, Charalampos; Aman, Saima
The advent of smart meters and advanced communication infrastructures catalyzes numerous smart grid applications such as dynamic demand response, and paves the way to solve challenging research problems in sustainable energy consumption. The space of solution possibilities are restricted primarily by the huge amount of generated data requiring considerable computational resources and efficient algorithms. To overcome this Big Data challenge, data clustering techniques have been proposed. Current approaches however do not scale in the face of the “increasing dimensionality” problem where a cluster point is represented by the entire customer consumption time series. To overcome this aspect we first rethinkmore » the way cluster points are created and designed, and then design an efficient online clustering technique for demand response (DR) in order to analyze high volume, high dimensional energy consumption time series data at scale, and on the fly. Our online algorithm is randomized in nature, and provides optimal performance guarantees in a computationally efficient manner. Unlike prior work we (i) study the consumption properties of the whole population simultaneously rather than developing individual models for each customer separately, claiming it to be a ‘killer’ approach that breaks the “curse of dimensionality” in online time series clustering, and (ii) provide tight performance guarantees in theory to validate our approach. Our insights are driven by the field of sociology, where collective behavior often emerges as the result of individual patterns and lifestyles.« less
Advances in Significance Testing for Cluster Detection
NASA Astrophysics Data System (ADS)
Coleman, Deidra Andrea
Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic surveillance data while controlling the Bayesian False Discovery Rate (BFDR). The procedure entails choosing an appropriate Bayesian model that captures the spatial dependency inherent in epidemiological data and considers all days of interest, selecting a test statistic based on a chosen measure that provides the magnitude of the maximumal spatial cluster for each day, and identifying a cutoff value that controls the BFDR for rejecting the collective null hypothesis of no outbreak over a collection of days for a specified region.We use our procedure to analyze botulism-like syndrome data collected by the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT).
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping
NASA Astrophysics Data System (ADS)
Tamiminia, H.; Homayouni, S.; Safari, A.
2015-12-01
Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.
Azad, Ariful; Ouzounis, Christos A; Kyrpides, Nikos C; Buluç, Aydin
2018-01-01
Abstract Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license. PMID:29315405
Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.; ...
2018-01-05
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less
Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins
2013-01-01
Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718
Unsupervised tattoo segmentation combining bottom-up and top-down cues
NASA Astrophysics Data System (ADS)
Allen, Josef D.; Zhao, Nan; Yuan, Jiangbo; Liu, Xiuwen
2011-06-01
Tattoo segmentation is challenging due to the complexity and large variance in tattoo structures. We have developed a segmentation algorithm for finding tattoos in an image. Our basic idea is split-merge: split each tattoo image into clusters through a bottom-up process, learn to merge the clusters containing skin and then distinguish tattoo from the other skin via top-down prior in the image itself. Tattoo segmentation with unknown number of clusters is transferred to a figureground segmentation. We have applied our segmentation algorithm on a tattoo dataset and the results have shown that our tattoo segmentation system is efficient and suitable for further tattoo classification and retrieval purpose.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
Adamczak, Rafal; Meller, Jarek
2016-12-28
Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust . uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs.
NASA Astrophysics Data System (ADS)
Sirait, Kamson; Tulus; Budhiarti Nababan, Erna
2017-12-01
Clustering methods that have high accuracy and time efficiency are necessary for the filtering process. One method that has been known and applied in clustering is K-Means Clustering. In its application, the determination of the begining value of the cluster center greatly affects the results of the K-Means algorithm. This research discusses the results of K-Means Clustering with starting centroid determination with a random and KD-Tree method. The initial determination of random centroid on the data set of 1000 student academic data to classify the potentially dropout has a sse value of 952972 for the quality variable and 232.48 for the GPA, whereas the initial centroid determination by KD-Tree has a sse value of 504302 for the quality variable and 214,37 for the GPA variable. The smaller sse values indicate that the result of K-Means Clustering with initial KD-Tree centroid selection have better accuracy than K-Means Clustering method with random initial centorid selection.
Data Mining Technologies Inspired from Visual Principle
NASA Astrophysics Data System (ADS)
Xu, Zongben
In this talk we review the recent work done by our group on data mining (DM) technologies deduced from simulating visual principle. Through viewing a DM problem as a cognition problems and treading a data set as an image with each light point located at a datum position, we developed a series of high efficient algorithms for clustering, classification and regression via mimicking visual principles. In pattern recognition, human eyes seem to possess a singular aptitude to group objects and find important structure in an efficient way. Thus, a DM algorithm simulating visual system may solve some basic problems in DM research. From this point of view, we proposed a new approach for data clustering by modeling the blurring effect of lateral retinal interconnections based on scale space theory. In this approach, as the data image blurs, smaller light blobs merge into large ones until the whole image becomes one light blob at a low enough level of resolution. By identifying each blob with a cluster, the blurring process then generates a family of clustering along the hierarchy. The proposed approach provides unique solutions to many long standing problems, such as the cluster validity and the sensitivity to initialization problems, in clustering. We extended such an approach to classification and regression problems, through combatively employing the Weber's law in physiology and the cell response classification facts. The resultant classification and regression algorithms are proven to be very efficient and solve the problems of model selection and applicability to huge size of data set in DM technologies. We finally applied the similar idea to the difficult parameter setting problem in support vector machine (SVM). Viewing the parameter setting problem as a recognition problem of choosing a visual scale at which the global and local structures of a data set can be preserved, and the difference between the two structures be maximized in the feature space, we derived a direct parameter setting formula for the Gaussian SVM. The simulations and applications show that the suggested formula significantly outperforms the known model selection methods in terms of efficiency and precision.
Development of advanced acreage estimation methods
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator)
1982-01-01
The development of an accurate and efficient algorithm for analyzing the structure of MSS data, the application of the Akaiki information criterion to mixture models, and a research plan to delineate some of the technical issues and associated tasks in the area of rice scene radiation characterization are discussed. The AMOEBA clustering algorithm is refined and documented.
Progeny Clustering: A Method to Identify Biological Phenotypes
Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.
2015-01-01
Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476
Identification of piecewise affine systems based on fuzzy PCA-guided robust clustering technique
NASA Astrophysics Data System (ADS)
Khanmirza, Esmaeel; Nazarahari, Milad; Mousavi, Alireza
2016-12-01
Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available, some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper, we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated. Furthermore, this modified clustering technique enables us to determine the number of subsystems without any prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator. Simulation together with experiment analysis has proved the effectiveness of the proposed method.
Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.
Zhu, Guohun; Li, Yan; Wen, Peng Paul; Wang, Shuaifang
2015-01-01
Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.
An algorithm of discovering signatures from DNA databases on a computer cluster.
Lee, Hsiao Ping; Sheu, Tzu-Fang
2014-10-05
Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.
NASA Astrophysics Data System (ADS)
Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan
2017-09-01
Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.
Pipelining Architecture of Indexing Using Agglomerative Clustering
NASA Astrophysics Data System (ADS)
Goyal, Deepika; Goyal, Deepti; Gupta, Parul
2010-11-01
The World Wide Web is an interlinked collection of billions of documents. Ironically the huge size of this collection has become an obstacle for information retrieval. To access the information from Internet, search engine is used. Search engine retrieve the pages from indexer. This paper introduce a novel pipelining technique for structuring the core index-building system that substantially reduces the index construction time and also clustering algorithm that aims at partitioning the set of documents into ordered clusters so that the documents within the same cluster are similar and are being assigned the closer document identifiers. After assigning to the clusters it creates the hierarchy of index so that searching is efficient. It will make the super cluster then mega cluster by itself. The pipeline architecture will create the index in such a way that it will be efficient in space and time saving manner. It will direct the search from higher level to lower level of index or higher level of clusters to lower level of cluster so that the user gets the possible match result in time saving manner. As one cluster is making by taking only two clusters so it search is limited to two clusters for lower level of index and so on. So it is efficient in time saving manner.
iNJclust: Iterative Neighbor-Joining Tree Clustering Framework for Inferring Population Structure.
Limpiti, Tulaya; Amornbunchornvej, Chainarong; Intarapanich, Apichart; Assawamakin, Anunchai; Tongsima, Sissades
2014-01-01
Understanding genetic differences among populations is one of the most important issues in population genetics. Genetic variations, e.g., single nucleotide polymorphisms, are used to characterize commonality and difference of individuals from various populations. This paper presents an efficient graph-based clustering framework which operates iteratively on the Neighbor-Joining (NJ) tree called the iNJclust algorithm. The framework uses well-known genetic measurements, namely the allele-sharing distance, the neighbor-joining tree, and the fixation index. The behavior of the fixation index is utilized in the algorithm's stopping criterion. The algorithm provides an estimated number of populations, individual assignments, and relationships between populations as outputs. The clustering result is reported in the form of a binary tree, whose terminal nodes represent the final inferred populations and the tree structure preserves the genetic relationships among them. The clustering performance and the robustness of the proposed algorithm are tested extensively using simulated and real data sets from bovine, sheep, and human populations. The result indicates that the number of populations within each data set is reasonably estimated, the individual assignment is robust, and the structure of the inferred population tree corresponds to the intrinsic relationships among populations within the data.
A Genetic Algorithm for the Bi-Level Topological Design of Local Area Networks
Camacho-Vallejo, José-Fernando; Mar-Ortiz, Julio; López-Ramos, Francisco; Rodríguez, Ricardo Pedraza
2015-01-01
Local access networks (LAN) are commonly used as communication infrastructures which meet the demand of a set of users in the local environment. Usually these networks consist of several LAN segments connected by bridges. The topological LAN design bi-level problem consists on assigning users to clusters and the union of clusters by bridges in order to obtain a minimum response time network with minimum connection cost. Therefore, the decision of optimally assigning users to clusters will be made by the leader and the follower will make the decision of connecting all the clusters while forming a spanning tree. In this paper, we propose a genetic algorithm for solving the bi-level topological design of a Local Access Network. Our solution method considers the Stackelberg equilibrium to solve the bi-level problem. The Stackelberg-Genetic algorithm procedure deals with the fact that the follower’s problem cannot be optimally solved in a straightforward manner. The computational results obtained from two different sets of instances show that the performance of the developed algorithm is efficient and that it is more suitable for solving the bi-level problem than a previous Nash-Genetic approach. PMID:26102502
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm
NASA Astrophysics Data System (ADS)
Wu, Xiaolan; Grubesic, Tony H.
2010-12-01
Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.
Saini, Devashish; Mazza, Giovanni; Shah, Najaf; Mirza, Muzna; Gori, Mandar M; Nandigam, Hari Krishna; Orthner, Helmuth F
2006-01-01
Response times for pre-hospital emergency care may be improved with the use of algorithms that analyzes historical patterns in incident location and suggests optimal places for prepositioning of emergency response units. We will develop such an algorithm based on cluster analysis and test whether it leads to significant improvement in mileage when compared to actual historical data of dispatching based on fixed stations. PMID:17238702
Saini, Devashish; Mazza, Giovanni; Shah, Najaf; Mirza, Muzna; Gori, Mandar M; Nandigam, Hari Krishna; Orthner, Helmuth F
2006-01-01
Response times for pre-hospital emergency care may be improved with the use of algorithms that analyzes historical patterns in incident location and suggests optimal places for pre-positioning of emergency response units. We will develop such an algorithm based on cluster analysis and test whether it leads to significant improvement in mileage when compared to actual historical data of dispatching based on fixed stations.
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
Duan, Weisi; Song, Min; Yates, Alexander
2009-01-01
Background We aim to solve the problem of determining word senses for ambiguous biomedical terms with minimal human effort. Methods We build a fully automated system for Word Sense Disambiguation by designing a system that does not require manually-constructed external resources or manually-labeled training examples except for a single ambiguous word. The system uses a novel and efficient graph-based algorithm to cluster words into groups that have the same meaning. Our algorithm follows the principle of finding a maximum margin between clusters, determining a split of the data that maximizes the minimum distance between pairs of data points belonging to two different clusters. Results On a test set of 21 ambiguous keywords from PubMed abstracts, our system has an average accuracy of 78%, outperforming a state-of-the-art unsupervised system by 2% and a baseline technique by 23%. On a standard data set from the National Library of Medicine, our system outperforms the baseline by 6% and comes within 5% of the accuracy of a supervised system. Conclusion Our system is a novel, state-of-the-art technique for efficiently finding word sense clusters, and does not require training data or human effort for each new word to be disambiguated. PMID:19344480
Depth data research of GIS based on clustering analysis algorithm
NASA Astrophysics Data System (ADS)
Xiong, Yan; Xu, Wenli
2018-03-01
The data of GIS have spatial distribution. Geographic data has both spatial characteristics and attribute characteristics, and also changes with time. Therefore, the amount of data is very large. Nowadays, many industries and departments in the society are using GIS. However, without proper data analysis and mining scheme, GIS will not exert its maximum effectiveness and will waste a lot of data. In this paper, we use the geographic information demand of a national security department as the experimental object, combining the characteristics of GIS data, taking into account the characteristics of time, space, attributes and so on, and using cluster analysis algorithm. We further study the mining scheme for depth data, and get the algorithm model. This algorithm can automatically classify sample data, and then carry out exploratory analysis. The research shows that the algorithm model and the information mining scheme can quickly find hidden depth information from the surface data of GIS, thus improving the efficiency of the security department. This algorithm can also be extended to other fields.
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
Value-based customer grouping from large retail data sets
NASA Astrophysics Data System (ADS)
Strehl, Alexander; Ghosh, Joydeep
2000-04-01
In this paper, we propose OPOSSUM, a novel similarity-based clustering algorithm using constrained, weighted graph- partitioning. Instead of binary presence or absence of products in a market-basket, we use an extended 'revenue per product' measure to better account for management objectives. Typically the number of clusters desired in a database marketing application is only in the teens or less. OPOSSUM proceeds top-down, which is more efficient and takes a small number of steps to attain the desired number of clusters as compared to bottom-up agglomerative clustering approaches. OPOSSUM delivers clusters that are balanced in terms of either customers (samples) or revenue (value). To facilitate data exploration and validation of results we introduce CLUSION, a visualization toolkit for high-dimensional clustering problems. To enable closed loop deployment of the algorithm, OPOSSUM has no user-specified parameters. Thresholding heuristics are avoided and the optimal number of clusters is automatically determined by a search for maximum performance. Results are presented on a real retail industry data-set of several thousand customers and products, to demonstrate the power of the proposed technique.
Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set
NASA Astrophysics Data System (ADS)
Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif
2018-03-01
Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.
Lanying Lin; Sheng He; Feng Fu; Xiping Wang
2015-01-01
Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...
NASA Astrophysics Data System (ADS)
Zhang, Jiangjiang; Lin, Guang; Li, Weixuan; Wu, Laosheng; Zeng, Lingzao
2018-03-01
Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists.
RRW: repeated random walks on genome-scale protein networks for local cluster discovery
Macropol, Kathy; Can, Tolga; Singh, Ambuj K
2009-01-01
Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters. PMID:19740439
PuReD-MCL: a graph-based PubMed document clustering methodology.
Theodosiou, T; Darzentas, N; Angelis, L; Ouzounis, C A
2008-09-01
Biomedical literature is the principal repository of biomedical knowledge, with PubMed being the most complete database collecting, organizing and analyzing such textual knowledge. There are numerous efforts that attempt to exploit this information by using text mining and machine learning techniques. We developed a novel approach, called PuReD-MCL (Pubmed Related Documents-MCL), which is based on the graph clustering algorithm MCL and relevant resources from PubMed. PuReD-MCL avoids using natural language processing (NLP) techniques directly; instead, it takes advantage of existing resources, available from PubMed. PuReD-MCL then clusters documents efficiently using the MCL graph clustering algorithm, which is based on graph flow simulation. This process allows users to analyse the results by highlighting important clues, and finally to visualize the clusters and all relevant information using an interactive graph layout algorithm, for instance BioLayout Express 3D. The methodology was applied to two different datasets, previously used for the validation of the document clustering tool TextQuest. The first dataset involves the organisms Escherichia coli and yeast, whereas the second is related to Drosophila development. PuReD-MCL successfully reproduces the annotated results obtained from TextQuest, while at the same time provides additional insights into the clusters and the corresponding documents. Source code in perl and R are available from http://tartara.csd.auth.gr/~theodos/
e-DMDAV: A new privacy preserving algorithm for wearable enterprise information systems
NASA Astrophysics Data System (ADS)
Zhang, Zhenjiang; Wang, Xiaoni; Uden, Lorna; Zhang, Peng; Zhao, Yingsi
2018-04-01
Wearable devices have been widely used in many fields to improve the quality of people's lives. More and more data on individuals and businesses are collected by statistical organizations though those devices. Almost all of this data holds confidential information. Statistical Disclosure Control (SDC) seeks to protect statistical data in such a way that it can be released without giving away confidential information that can be linked to specific individuals or entities. The MDAV (Maximum Distance to Average Vector) algorithm is an efficient micro-aggregation algorithm belonging to SDC. However, the MDAV algorithm cannot survive homogeneity and background knowledge attacks because it was designed for static numerical data. This paper proposes a systematic dynamic-updating anonymity algorithm based on MDAV called the e-DMDAV algorithm. This algorithm introduces a new parameter and a table to ensure that the k records in one cluster with the range of the distinct values in each cluster is no less than e for numerical and non-numerical datasets. This new algorithm has been evaluated and compared with the MDAV algorithm. The simulation results show that the new algorithm outperforms MDAV in terms of minimizing distortion and disclosure risk with a similar computational cost.
Improving Electronic Sensor Reliability by Robust Outlier Screening
Moreno-Lizaranzu, Manuel J.; Cuesta, Federico
2013-01-01
Electronic sensors are widely used in different application areas, and in some of them, such as automotive or medical equipment, they must perform with an extremely low defect rate. Increasing reliability is paramount. Outlier detection algorithms are a key component in screening latent defects and decreasing the number of customer quality incidents (CQIs). This paper focuses on new spatial algorithms (Good Die in a Bad Cluster with Statistical Bins (GDBC SB) and Bad Bin in a Bad Cluster (BBBC)) and an advanced outlier screening method, called Robust Dynamic Part Averaging Testing (RDPAT), as well as two practical improvements, which significantly enhance existing algorithms. Those methods have been used in production in Freescale® Semiconductor probe factories around the world for several years. Moreover, a study was conducted with production data of 289,080 dice with 26 CQIs to determine and compare the efficiency and effectiveness of all these algorithms in identifying CQIs. PMID:24113682
Improving electronic sensor reliability by robust outlier screening.
Moreno-Lizaranzu, Manuel J; Cuesta, Federico
2013-10-09
Electronic sensors are widely used in different application areas, and in some of them, such as automotive or medical equipment, they must perform with an extremely low defect rate. Increasing reliability is paramount. Outlier detection algorithms are a key component in screening latent defects and decreasing the number of customer quality incidents (CQIs). This paper focuses on new spatial algorithms (Good Die in a Bad Cluster with Statistical Bins (GDBC SB) and Bad Bin in a Bad Cluster (BBBC)) and an advanced outlier screening method, called Robust Dynamic Part Averaging Testing (RDPAT), as well as two practical improvements, which significantly enhance existing algorithms. Those methods have been used in production in Freescale® Semiconductor probe factories around the world for several years. Moreover, a study was conducted with production data of 289,080 dice with 26 CQIs to determine and compare the efficiency and effectiveness of all these algorithms in identifying CQIs.
Algorithm to determine the percolation largest component in interconnected networks.
Schneider, Christian M; Araújo, Nuno A M; Herrmann, Hans J
2013-04-01
Interconnected networks have been shown to be much more vulnerable to random and targeted failures than isolated ones, raising several interesting questions regarding the identification and mitigation of their risk. The paradigm to address these questions is the percolation model, where the resilience of the system is quantified by the dependence of the size of the largest cluster on the number of failures. Numerically, the major challenge is the identification of this cluster and the calculation of its size. Here, we propose an efficient algorithm to tackle this problem. We show that the algorithm scales as O(NlogN), where N is the number of nodes in the network, a significant improvement compared to O(N(2)) for a greedy algorithm, which permits studying much larger networks. Our new strategy can be applied to any network topology and distribution of interdependencies, as well as any sequence of failures.
Cleaning by clustering: methodology for addressing data quality issues in biomedical metadata.
Hu, Wei; Zaveri, Amrapali; Qiu, Honglei; Dumontier, Michel
2017-09-18
The ability to efficiently search and filter datasets depends on access to high quality metadata. While most biomedical repositories require data submitters to provide a minimal set of metadata, some such as the Gene Expression Omnibus (GEO) allows users to specify additional metadata in the form of textual key-value pairs (e.g. sex: female). However, since there is no structured vocabulary to guide the submitter regarding the metadata terms to use, consequently, the 44,000,000+ key-value pairs in GEO suffer from numerous quality issues including redundancy, heterogeneity, inconsistency, and incompleteness. Such issues hinder the ability of scientists to hone in on datasets that meet their requirements and point to a need for accurate, structured and complete description of the data. In this study, we propose a clustering-based approach to address data quality issues in biomedical, specifically gene expression, metadata. First, we present three different kinds of similarity measures to compare metadata keys. Second, we design a scalable agglomerative clustering algorithm to cluster similar keys together. Our agglomerative cluster algorithm identified metadata keys that were similar, based on (i) name, (ii) core concept and (iii) value similarities, to each other and grouped them together. We evaluated our method using a manually created gold standard in which 359 keys were grouped into 27 clusters based on six types of characteristics: (i) age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi) treatment. As a result, the algorithm generated 18 clusters containing 355 keys (four clusters with only one key were excluded). In the 18 clusters, there were keys that were identified correctly to be related to that cluster, but there were 13 keys which were not related to that cluster. We compared our approach with four other published methods. Our approach significantly outperformed them for most metadata keys and achieved the best average F-Score (0.63). Our algorithm identified keys that were similar to each other and grouped them together. Our intuition that underpins cleaning by clustering is that, dividing keys into different clusters resolves the scalability issues for data observation and cleaning, and keys in the same cluster with duplicates and errors can easily be found. Our algorithm can also be applied to other biomedical data types.
Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Hayden, David; Thompson, David R.; Castano, Rebecca
2013-01-01
Many current and future NASA missions are capable of collecting enormous amounts of data, of which only a small portion can be transmitted to Earth. Communications are limited due to distance, visibility constraints, and competing mission downlinks. Long missions and high-resolution, multispectral imaging devices easily produce data exceeding the available bandwidth. To address this situation computationally efficient algorithms were developed for analyzing science imagery onboard the spacecraft. These algorithms autonomously cluster the data into classes of similar imagery, enabling selective downlink of representatives of each class, and a map classifying the terrain imaged rather than the full dataset, reducing the volume of the downlinked data. A range of approaches was examined, including k-means clustering using image features based on color, texture, temporal, and spatial arrangement
Campana, R.; Bernieri, E.; Massaro, E.; ...
2013-05-22
We present that the minimal spanning tree (MST) algorithm is a graph-theoretical cluster-finding method. We previously applied it to γ-ray bidimensional images, showing that it is quite sensitive in finding faint sources. Possible sources are associated with the regions where the photon arrival directions clusterize. MST selects clusters starting from a particular “tree” connecting all the point of the image and performing a cut based on the angular distance between photons, with a number of events higher than a given threshold. In this paper, we show how a further filtering, based on some parameters linked to the cluster properties, canmore » be applied to reduce spurious detections. We find that the most efficient parameter for this secondary selection is the magnitudeM of a cluster, defined as the product of its number of events by its clustering degree. We test the sensitivity of the method by means of simulated and real Fermi-Large Area Telescope (LAT) fields. Our results show that √M is strongly correlated with other statistical significance parameters, derived from a wavelet based algorithm and maximum likelihood (ML) analysis, and that it can be used as a good estimator of statistical significance of MST detections. Finally, we apply the method to a 2-year LAT image at energies higher than 3 GeV, and we show the presence of new clusters, likely associated with BL Lac objects.« less
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs
NASA Astrophysics Data System (ADS)
Choi, Woo-Yong; Chatterjee, Mainak
2015-03-01
With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.
Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds
NASA Astrophysics Data System (ADS)
Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni
2012-09-01
Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.
NASA Astrophysics Data System (ADS)
Zhuang, Wei; Mountrakis, Giorgos
2014-09-01
Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82 m (5.29 m for GD) in deciduous plots, 3.25 m (4.57 m for GD) in coniferous plots, 2.63 m (2.83 m for GD) in shrub plots, 0.82 m (0.93 m for GD) in grass plots, and 0.70 m (0.51 m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA's major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors.
Effect of data truncation in an implementation of pixel clustering on a custom computing machine
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Theiler, James P.; Estlick, Michael; Kitaryeva, Natalya V.; Szymanski, John J.
2000-10-01
We investigate the effect of truncating the precision of hyperspectral image data for the purpose of more efficiently segmenting the image using a variant of k-means clustering. We describe the implementation of the algorithm on field-programmable gate array (FPGA) hardware. Truncating the data to only a few bits per pixel in each spectral channel permits a more compact hardware design, enabling greater parallelism, and ultimately a more rapid execution. It also enables the storage of larger images in the onboard memory. In exchange for faster clustering, however, one trades off the quality of the produced segmentation. We find, however, that the clustering algorithm can tolerate considerable data truncation with little degradation in cluster quality. This robustness to truncated data can be extended by computing the cluster centers to a few more bits of precision than the data. Since there are so many more pixels than centers, the more aggressive data truncation leads to significant gains in the number of pixels that can be stored in memory and processed in hardware concurrently.
Clustering approach for unsupervised segmentation of malarial Plasmodium vivax parasite
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida
2017-10-01
Malaria is a global health problem, particularly in Africa and south Asia where it causes countless deaths and morbidity cases. Efficient control and prompt of this disease require early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes an image segmentation approach via unsupervised pixel segmentation of malaria parasite to automate the diagnosis of malaria. In this study, a modified clustering algorithm namely enhanced k-means (EKM) clustering, is proposed for malaria image segmentation. In the proposed EKM clustering, the concept of variance and a new version of transferring process for clustered members are used to assist the assignation of data to the proper centre during the process of clustering, so that good segmented malaria image can be generated. The effectiveness of the proposed EKM clustering has been analyzed qualitatively and quantitatively by comparing this algorithm with two popular image segmentation techniques namely Otsu's thresholding and k-means clustering. The experimental results show that the proposed EKM clustering has successfully segmented 100 malaria images of P. vivax species with segmentation accuracy, sensitivity and specificity of 99.20%, 87.53% and 99.58%, respectively. Hence, the proposed EKM clustering can be considered as an image segmentation tool for segmenting the malaria images.
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Moayedi, A.; Abbaspour, R. Ali
2017-09-01
Automated fare collection (AFC) systems are regarded as valuable resources for public transport planners. In this paper, the AFC data are utilized to analysis and extract mobility patterns in a public transportation system. For this purpose, the smart card data are inserted into a proposed metaheuristic-based aggregation model and then converted to O-D matrix between stops, since the size of O-D matrices makes it difficult to reproduce the measured passenger flows precisely. The proposed strategy is applied to a case study from Haaglanden, Netherlands. In this research, moth-flame optimizer (MFO) is utilized and evaluated for the first time as a new metaheuristic algorithm (MA) in estimating transit origin-destination matrices. The MFO is a novel, efficient swarm-based MA inspired from the celestial navigation of moth insects in nature. To investigate the capabilities of the proposed MFO-based approach, it is compared to methods that utilize the K-means algorithm, gray wolf optimization algorithm (GWO) and genetic algorithm (GA). The sum of the intra-cluster distances and computational time of operations are considered as the evaluation criteria to assess the efficacy of the optimizers. The optimality of solutions of different algorithms is measured in detail. The traveler's behavior is analyzed to achieve to a smooth and optimized transport system. The results reveal that the proposed MFO-based aggregation strategy can outperform other evaluated approaches in terms of convergence tendency and optimality of the results. The results show that it can be utilized as an efficient approach to estimating the transit O-D matrices.
Clustering by soft-constraint affinity propagation: applications to gene-expression data.
Leone, Michele; Sumedha; Weigt, Martin
2007-10-15
Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.
A novel complex networks clustering algorithm based on the core influence of nodes.
Tong, Chao; Niu, Jianwei; Dai, Bin; Xie, Zhongyu
2014-01-01
In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.
NASA Technical Reports Server (NTRS)
Janich, Karl W.
2005-01-01
The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.
Image-driven Population Analysis through Mixture Modeling
Sabuncu, Mert R.; Balci, Serdar K.; Shenton, Martha E.; Golland, Polina
2009-01-01
We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover sub-populations that correspond to interesting structural or functional “modes.” PMID:19336293
Accelerating DNA analysis applications on GPU clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Villa, Oreste
DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also includemore » heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.« less
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm.
Raykov, Yordan P; Boukouvalas, Alexis; Baig, Fahd; Little, Max A
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.
What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm
Baig, Fahd; Little, Max A.
2016-01-01
The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism. PMID:27669525
A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental building block in numerous image processing applications. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute the coordinates of a set of cluster centers in d-space, such that those centers minimize the mean squared distance from each data point to its nearest center. This clustering algorithm is similar to another well-known clustering method, called k-means. One significant feature of ISOCLUS over k-means is that the actual number of clusters reported might be fewer or more than the number supplied as part of the input. The algorithm uses different heuristics to determine whether to merge lor split clusters. As ISOCLUS can run very slowly, particularly on large data sets, there has been a growing .interest in the remote sensing community in computing it efficiently. We have developed a faster implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm of Kanungo, et al. They showed that, by using a kd-tree data structure for storing the data, it is possible to reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm, and we show that it is possible to achieve essentially the same results as ISOCLUS on large data sets, but with significantly lower running times. This adaptation involves computing a number of cluster statistics that are needed for ISOCLUS but not for k-means. Both the k-means and ISOCLUS algorithms are based on iterative schemes, in which nearest neighbors are calculated until some convergence criterion is satisfied. Each iteration requires that the nearest center for each data point be computed. Naively, this requires O(kn) time, where k denotes the current number of centers. Traditional techniques for accelerating nearest neighbor searching involve storing the k centers in a data structure. However, because of the iterative nature of the algorithm, this data structure would need to be rebuilt with each new iteration. Our approach is to store the data points in a kd-tree data structure. The assignment of points to nearest neighbors is carried out by a filtering process, which successively eliminates centers that can not possibly be the nearest neighbor for a given region of space. This algorithm is significantly faster, because large groups of data points can be assigned to their nearest center in a single operation. Preliminary results on a number of real Landsat datasets show that our revised ISOCLUS-like scheme runs about twice as fast.
NASA Astrophysics Data System (ADS)
Wagstaff, Kiri L.
2012-03-01
On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained clustering, in which some partial information about item assignments or other components of the resulting output are already known and must be accommodated by the solution. Some algorithms seek a partition of the data set into distinct clusters, while others build a hierarchy of nested clusters that can capture taxonomic relationships. Some produce a single optimal solution, while others construct a probabilistic model of cluster membership. More formally, clustering algorithms operate on a data set X composed of items represented by one or more features (dimensions). These could include physical location, such as right ascension and declination, as well as other properties such as brightness, color, temporal change, size, texture, and so on. Let D be the number of dimensions used to represent each item, xi ∈ RD. The clustering goal is to produce an organization P of the items in X that optimizes an objective function f : P -> R, which quantifies the quality of solution P. Often f is defined so as to maximize similarity within a cluster and minimize similarity between clusters. To that end, many algorithms make use of a measure d : X x X -> R of the distance between two items. A partitioning algorithm produces a set of clusters P = {c1, . . . , ck} such that the clusters are nonoverlapping (c_i intersected with c_j = empty set, i != j) subsets of the data set (Union_i c_i=X). Hierarchical algorithms produce a series of partitions P = {p1, . . . , pn }. For a complete hierarchy, the number of partitions n’= n, the number of items in the data set; the top partition is a single cluster containing all items, and the bottom partition contains n clusters, each containing a single item. For model-based clustering, each cluster c_j is represented by a model m_j , such as the cluster center or a Gaussian distribution. The wide array of available clustering algorithms may seem bewildering, and covering all of them is beyond the scope of this chapter. Choosing among them for a particular application involves considerations of the kind of data being analyzed, algorithm runtime efficiency, and how much prior knowledge is available about the problem domain, which can dictate the nature of clusters sought. Fundamentally, the clustering method and its representations of clusters carries with it a definition of what a cluster is, and it is important that this be aligned with the analysis goals for the problem at hand. In this chapter, I emphasize this point by identifying for each algorithm the cluster representation as a model, m_j , even for algorithms that are not typically thought of as creating a “model.” This chapter surveys a basic collection of clustering methods useful to any practitioner who is interested in applying clustering to a new data set. The algorithms include k-means (Section 25.2), EM (Section 25.3), agglomerative (Section 25.4), and spectral (Section 25.5) clustering, with side mentions of variants such as kernel k-means and divisive clustering. The chapter also discusses each algorithm’s strengths and limitations and provides pointers to additional in-depth reading for each subject. Section 25.6 discusses methods for incorporating domain knowledge into the clustering process. This chapter concludes with a brief survey of interesting applications of clustering methods to astronomy data (Section 25.7). The chapter begins with k-means because it is both generally accessible and so widely used that understanding it can be considered a necessary prerequisite for further work in the field. EM can be viewed as a more sophisticated version of k-means that uses a generative model for each cluster and probabilistic item assignments. Agglomerative clustering is the most basic form of hierarchical clustering and provides a basis for further exploration of algorithms in that vein. Spectral clustering permits a departure from feature-vector-based clustering and can operate on data sets instead represented as affinity, or similarity matrices—cases in which only pairwise information is known. The list of algorithms covered in this chapter is representative of those most commonly in use, but it is by no means comprehensive. There is an extensive collection of existing books on clustering that provide additional background and depth. Three early books that remain useful today are Anderberg’s Cluster Analysis for Applications [3], Hartigan’s Clustering Algorithms [25], and Gordon’s Classification [22]. The latter covers basics on similarity measures, partitioning and hierarchical algorithms, fuzzy clustering, overlapping clustering, conceptual clustering, validations methods, and visualization or data reduction techniques such as principal components analysis (PCA),multidimensional scaling, and self-organizing maps. More recently, Jain et al. provided a useful and informative survey [27] of a variety of different clustering algorithms, including those mentioned here as well as fuzzy, graph-theoretic, and evolutionary clustering. Everitt’s Cluster Analysis [19] provides a modern overview of algorithms, similarity measures, and evaluation methods.
Cluster ensemble based on Random Forests for genetic data.
Alhusain, Luluah; Hafez, Alaaeldin M
2017-01-01
Clustering plays a crucial role in several application domains, such as bioinformatics. In bioinformatics, clustering has been extensively used as an approach for detecting interesting patterns in genetic data. One application is population structure analysis, which aims to group individuals into subpopulations based on shared genetic variations, such as single nucleotide polymorphisms. Advances in DNA sequencing technology have facilitated the obtainment of genetic datasets with exceptional sizes. Genetic data usually contain hundreds of thousands of genetic markers genotyped for thousands of individuals, making an efficient means for handling such data desirable. Random Forests (RFs) has emerged as an efficient algorithm capable of handling high-dimensional data. RFs provides a proximity measure that can capture different levels of co-occurring relationships between variables. RFs has been widely considered a supervised learning method, although it can be converted into an unsupervised learning method. Therefore, RF-derived proximity measure combined with a clustering technique may be well suited for determining the underlying structure of unlabeled data. This paper proposes, RFcluE, a cluster ensemble approach for determining the underlying structure of genetic data based on RFs. The approach comprises a cluster ensemble framework to combine multiple runs of RF clustering. Experiments were conducted on high-dimensional, real genetic dataset to evaluate the proposed approach. The experiments included an examination of the impact of parameter changes, comparing RFcluE performance against other clustering methods, and an assessment of the relationship between the diversity and quality of the ensemble and its effect on RFcluE performance. This paper proposes, RFcluE, a cluster ensemble approach based on RF clustering to address the problem of population structure analysis and demonstrate the effectiveness of the approach. The paper also illustrates that applying a cluster ensemble approach, combining multiple RF clusterings, produces more robust and higher-quality results as a consequence of feeding the ensemble with diverse views of high-dimensional genetic data obtained through bagging and random subspace, the two key features of the RF algorithm.
Protein sequences clustering of herpes virus by using Tribe Markov clustering (Tribe-MCL)
NASA Astrophysics Data System (ADS)
Bustamam, A.; Siswantining, T.; Febriyani, N. L.; Novitasari, I. D.; Cahyaningrum, R. D.
2017-07-01
The herpes virus can be found anywhere and one of the important characteristics is its ability to cause acute and chronic infection at certain times so as a result of the infection allows severe complications occurred. The herpes virus is composed of DNA containing protein and wrapped by glycoproteins. In this work, the Herpes viruses family is classified and analyzed by clustering their protein-sequence using Tribe Markov Clustering (Tribe-MCL) algorithm. Tribe-MCL is an efficient clustering method based on the theory of Markov chains, to classify protein families from protein sequences using pre-computed sequence similarity information. We implement the Tribe-MCL algorithm using an open source program of R. We select 24 protein sequences of Herpes virus obtained from NCBI database. The dataset consists of three types of glycoprotein B, F, and H. Each type has eight herpes virus that infected humans. Based on our simulation using different inflation factor r=1.5, 2, 3 we find a various number of the clusters results. The greater the inflation factor the greater the number of their clusters. Each protein will grouped together in the same type of protein.
Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)
NASA Astrophysics Data System (ADS)
Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook
1997-05-01
This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.
TOPTRAC: Topical Trajectory Pattern Mining
Kim, Younghoon; Han, Jiawei; Yuan, Cangzhou
2015-01-01
With the increasing use of GPS-enabled mobile phones, geo-tagging, which refers to adding GPS information to media such as micro-blogging messages or photos, has seen a surge in popularity recently. This enables us to not only browse information based on locations, but also discover patterns in the location-based behaviors of users. Many techniques have been developed to find the patterns of people's movements using GPS data, but latent topics in text messages posted with local contexts have not been utilized effectively. In this paper, we present a latent topic-based clustering algorithm to discover patterns in the trajectories of geo-tagged text messages. We propose a novel probabilistic model to capture the semantic regions where people post messages with a coherent topic as well as the patterns of movement between the semantic regions. Based on the model, we develop an efficient inference algorithm to calculate model parameters. By exploiting the estimated model, we next devise a clustering algorithm to find the significant movement patterns that appear frequently in data. Our experiments on real-life data sets show that the proposed algorithm finds diverse and interesting trajectory patterns and identifies the semantic regions in a finer granularity than the traditional geographical clustering methods. PMID:26709365
Automatic classification of protein structures relying on similarities between alignments
2012-01-01
Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP. PMID:22974051
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-10-30
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.
Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella
2015-01-01
The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms. PMID:26528984
GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
Hess, Berk; Kutzner, Carsten; van der Spoel, David; Lindahl, Erik
2008-03-01
Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems. Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines. The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel. To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions. Not only does this combination of algorithms enable extremely long simulations of large systems but also it provides that simulation performance on quite modest numbers of standard cluster nodes.
NASA Astrophysics Data System (ADS)
Konno, Yohko; Suzuki, Keiji
This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.
SOTXTSTREAM: Density-based self-organizing clustering of text streams.
Bryant, Avory C; Cios, Krzysztof J
2017-01-01
A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clustering algorithms use a two-phase clustering approach. In the first phase, a micro-clustering solution is maintained online, while in the second phase, the micro-clustering solution is clustered offline to produce a macro solution. By performing self-organization techniques on micro-clusters in the online phase, SOSTREAM is able to maintain a macro clustering solution in a single phase. Leveraging concepts from SOSTREAM, a new density-based self-organizing text stream clustering algorithm, SOTXTSTREAM, is presented that addresses several shortcomings of SOSTREAM. Gains in clustering performance of this new algorithm are demonstrated on several real-world text stream datasets.
A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip
2014-11-01
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
Efficient Skeletonization of Volumetric Objects.
Zhou, Yong; Toga, Arthur W
1999-07-01
Skeletonization promises to become a powerful tool for compact shape description, path planning, and other applications. However, current techniques can seldom efficiently process real, complicated 3D data sets, such as MRI and CT data of human organs. In this paper, we present an efficient voxel-coding based algorithm for Skeletonization of 3D voxelized objects. The skeletons are interpreted as connected centerlines. consisting of sequences of medial points of consecutive clusters. These centerlines are initially extracted as paths of voxels, followed by medial point replacement, refinement, smoothness, and connection operations. The voxel-coding techniques have been proposed for each of these operations in a uniform and systematic fashion. In addition to preserving basic connectivity and centeredness, the algorithm is characterized by straightforward computation, no sensitivity to object boundary complexity, explicit extraction of ready-to-parameterize and branch-controlled skeletons, and efficient object hole detection. These issues are rarely discussed in traditional methods. A range of 3D medical MRI and CT data sets were used for testing the algorithm, demonstrating its utility.
NASA Astrophysics Data System (ADS)
Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.
2017-11-01
We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.
NASA Astrophysics Data System (ADS)
Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza
2017-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.
Cross-layer cluster-based energy-efficient protocol for wireless sensor networks.
Mammu, Aboobeker Sidhik Koyamparambil; Hernandez-Jayo, Unai; Sainz, Nekane; de la Iglesia, Idoia
2015-04-09
Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs). One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE) can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs) and a cluster head (CH). The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Chen; Maitra, Ranjan
2011-01-01
We propose a model-based approach for clustering time series regression data in an unsupervised machine learning framework to identify groups under the assumption that each mixture component follows a Gaussian autoregressive regression model of order p. Given the number of groups, the traditional maximum likelihood approach of estimating the parameters using the expectation-maximization (EM) algorithm can be employed, although it is computationally demanding. The somewhat fast tune to the EM folk song provided by the Alternating Expectation Conditional Maximization (AECM) algorithm can alleviate the problem to some extent. In this article, we develop an alternative partial expectation conditional maximization algorithmmore » (APECM) that uses an additional data augmentation storage step to efficiently implement AECM for finite mixture models. Results on our simulation experiments show improved performance in both fewer numbers of iterations and computation time. The methodology is applied to the problem of clustering mutual funds data on the basis of their average annual per cent returns and in the presence of economic indicators.« less
Ren, Peng; Qian, Jiansheng
2016-01-01
This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380
Kim, Minkyoung; Choi, Seung-Hoon; Kim, Junhyoung; Choi, Kihang; Shin, Jae-Min; Kang, Sang-Kee; Choi, Yun-Jaie; Jung, Dong Hyun
2009-11-01
This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring conformations, so if a conformation has too few neighboring conformations, then it is considered as noise or an outlier and is excluded from the list of cluster members. With this approach, we can easily identify clusters in which the members are densely crowded in the conformational space, and we can safely avoid misclustering individual clusters linked by noise or outliers. Consideration of neighbor density significantly improves the efficiency of clustering of small peptide conformations sampled from molecular dynamics simulations and can be used for predicting peptide structures.
The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine
NASA Astrophysics Data System (ADS)
Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick
2017-04-01
Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Small target detection using objectness and saliency
NASA Astrophysics Data System (ADS)
Zhang, Naiwen; Xiao, Yang; Fang, Zhiwen; Yang, Jian; Wang, Li; Li, Tao
2017-10-01
We are motived by the need for generic object detection algorithm which achieves high recall for small targets in complex scenes with acceptable computational efficiency. We propose a novel object detection algorithm, which has high localization quality with acceptable computational cost. Firstly, we obtain the objectness map as in BING[1] and use NMS to get the top N points. Then, k-means algorithm is used to cluster them into K classes according to their location. We set the center points of the K classes as seed points. For each seed point, an object potential region is extracted. Finally, a fast salient object detection algorithm[2] is applied to the object potential regions to highlight objectlike pixels, and a series of efficient post-processing operations are proposed to locate the targets. Our method runs at 5 FPS on 1000*1000 images, and significantly outperforms previous methods on small targets in cluttered background.
A coarse to fine minutiae-based latent palmprint matching.
Liu, Eryun; Jain, Anil K; Tian, Jie
2013-10-01
With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a previously published state-of-the-art-algorithm.
Xu, Lina; O'Hare, Gregory M P; Collier, Rem
2017-07-05
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.
O’Hare, Gregory M. P.; Collier, Rem
2017-01-01
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity. PMID:28678164
A space-efficient algorithm for local similarities.
Huang, X Q; Hardison, R C; Miller, W
1990-10-01
Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.
Simple and efficient self-healing strategy for damaged complex networks
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Fefferman, Nina H.
2015-11-01
The process of destroying a complex network through node removal has been the subject of extensive interest and research. Node loss typically leaves the network disintegrated into many small and isolated clusters. Here we show that these clusters typically remain close to each other and we suggest a simple algorithm that is able to reverse the inflicted damage by restoring the network's functionality. After damage, each node decides independently whether to create a new link depending on the fraction of neighbors it has lost. In addition to relying only on local information, where nodes do not need knowledge of the global network status, we impose the additional constraint that new links should be as short as possible (i.e., that the new edge completes a shortest possible new cycle). We demonstrate that this self-healing method operates very efficiently, both in model and real networks. For example, after removing the most connected airports in the USA, the self-healing algorithm rejoined almost 90% of the surviving airports.
An efficient 3D R-tree spatial index method for virtual geographic environments
NASA Astrophysics Data System (ADS)
Zhu, Qing; Gong, Jun; Zhang, Yeting
A three-dimensional (3D) spatial index is required for real time applications of integrated organization and management in virtual geographic environments of above ground, underground, indoor and outdoor objects. Being one of the most promising methods, the R-tree spatial index has been paid increasing attention in 3D geospatial database management. Since the existing R-tree methods are usually limited by their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size of nodes, this paper introduces the k-means clustering method and employs the 3D overlap volume, 3D coverage volume and the minimum bounding box shape value of nodes as the integrative grouping criteria. A new spatial cluster grouping algorithm and R-tree insertion algorithm is then proposed. Experimental analysis on comparative performance of spatial indexing shows that by the new method the overlap of R-tree sibling nodes is minimized drastically and a balance in the volumes of the nodes is maintained.
A Hybrid Approach for CpG Island Detection in the Human Genome.
Yang, Cheng-Hong; Lin, Yu-Da; Chiang, Yi-Cheng; Chuang, Li-Yeh
2016-01-01
CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging. A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection. The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time.
Pandini, Alessandro; Fraccalvieri, Domenico; Bonati, Laura
2013-01-01
The biological function of proteins is strictly related to their molecular flexibility and dynamics: enzymatic activity, protein-protein interactions, ligand binding and allosteric regulation are important mechanisms involving protein motions. Computational approaches, such as Molecular Dynamics (MD) simulations, are now routinely used to study the intrinsic dynamics of target proteins as well as to complement molecular docking approaches. These methods have also successfully supported the process of rational design and discovery of new drugs. Identification of functionally relevant conformations is a key step in these studies. This is generally done by cluster analysis of the ensemble of structures in the MD trajectory. Recently Artificial Neural Network (ANN) approaches, in particular methods based on Self-Organising Maps (SOMs), have been reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data-mining problems. In the specific case of conformational analysis, SOMs have been successfully used to compare multiple ensembles of protein conformations demonstrating a potential in efficiently detecting the dynamic signatures central to biological function. Moreover, examples of the use of SOMs to address problems relevant to other stages of the drug-design process, including clustering of docking poses, have been reported. In this contribution we review recent applications of ANN algorithms in analysing conformational and structural ensembles and we discuss their potential in computer-based approaches for medicinal chemistry.
Comparison of OPC job prioritization schemes to generate data for mask manufacturing
NASA Astrophysics Data System (ADS)
Lewis, Travis; Veeraraghavan, Vijay; Jantzen, Kenneth; Kim, Stephen; Park, Minyoung; Russell, Gordon; Simmons, Mark
2015-03-01
Delivering mask ready OPC corrected data to the mask shop on-time is critical for a foundry to meet the cycle time commitment for a new product. With current OPC compute resource sharing technology, different job scheduling algorithms are possible, such as, priority based resource allocation and fair share resource allocation. In order to maximize computer cluster efficiency, minimize the cost of the data processing and deliver data on schedule, the trade-offs of each scheduling algorithm need to be understood. Using actual production jobs, each of the scheduling algorithms will be tested in a production tape-out environment. Each scheduling algorithm will be judged on its ability to deliver data on schedule and the trade-offs associated with each method will be analyzed. It is now possible to introduce advance scheduling algorithms to the OPC data processing environment to meet the goals of on-time delivery of mask ready OPC data while maximizing efficiency and reducing cost.
Yousef, Malik; Khalifa, Waleed; AbedAllah, Loai
2016-12-22
The performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that ECkNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.
Yousef, Malik; Khalifa, Waleed; AbdAllah, Loai
2016-12-01
The performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that EC-kNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.
NASA Astrophysics Data System (ADS)
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
Information Clustering Based on Fuzzy Multisets.
ERIC Educational Resources Information Center
Miyamoto, Sadaaki
2003-01-01
Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-02-01
The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1
Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems
NASA Technical Reports Server (NTRS)
Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.
2000-01-01
The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.
An improved clustering algorithm based on reverse learning in intelligent transportation
NASA Astrophysics Data System (ADS)
Qiu, Guoqing; Kou, Qianqian; Niu, Ting
2017-05-01
With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.
A roadmap of clustering algorithms: finding a match for a biomedical application.
Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael
2009-05-01
Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.
Biological network motif detection and evaluation
2011-01-01
Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624
Modifications to Improve Data Acquisition and Analysis for Camouflage Design
1983-01-01
terrains into facsimiles of the original scenes in 3, 4# or 5 colors in CIELAB notation. Tasks that were addressed included optimization of the...a histogram algorithm (HIST) was used as a first step In the clustering of the CIELAB values of the scene pixels. This algorithm Is highly efficient...however, an optimal process and the CIELAB coordinates of the final color domains can be Influenced by the color coordinate Increments used In the
An Effective Semantic Event Matching System in the Internet of Things (IoT) Environment.
Alhakbani, Noura; Hassan, Mohammed Mehedi; Ykhlef, Mourad
2017-09-02
IoT sensors use the publish/subscribe model for communication to benefit from its decoupled nature with respect to space, time, and synchronization. Because of the heterogeneity of communicating parties, semantic decoupling is added as a fourth dimension. The added semantic decoupling complicates the matching process and reduces its efficiency. Our proposed algorithm clusters subscriptions and events according to topic and performs the matching process within these clusters, which increases the throughput by reducing the matching time from the range of 16-18 ms to 2-4 ms. Moreover, the accuracy of matching is improved when subscriptions must be fully approximated, as demonstrated by an over 40% increase in F-score results. This work shows the benefit of clustering, as well as the improvement in the matching accuracy and efficiency achieved using this approach.
Hyper-spectral image segmentation using spectral clustering with covariance descriptors
NASA Astrophysics Data System (ADS)
Kursun, Olcay; Karabiber, Fethullah; Koc, Cemalettin; Bal, Abdullah
2009-02-01
Image segmentation is an important and difficult computer vision problem. Hyper-spectral images pose even more difficulty due to their high-dimensionality. Spectral clustering (SC) is a recently popular clustering/segmentation algorithm. In general, SC lifts the data to a high dimensional space, also known as the kernel trick, then derive eigenvectors in this new space, and finally using these new dimensions partition the data into clusters. We demonstrate that SC works efficiently when combined with covariance descriptors that can be used to assess pixelwise similarities rather than in the high-dimensional Euclidean space. We present the formulations and some preliminary results of the proposed hybrid image segmentation method for hyper-spectral images.
A Distance-based Energy Aware Routing algorithm for wireless sensor networks.
Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung
2010-01-01
Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms.
Semi-supervised and unsupervised extreme learning machines.
Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng
2014-12-01
Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.
A clustering method of Chinese medicine prescriptions based on modified firefly algorithm.
Yuan, Feng; Liu, Hong; Chen, Shou-Qiang; Xu, Liang
2016-12-01
This paper is aimed to study the clustering method for Chinese medicine (CM) medical cases. The traditional K-means clustering algorithm had shortcomings such as dependence of results on the selection of initial value, trapping in local optimum when processing prescriptions form CM medical cases. Therefore, a new clustering method based on the collaboration of firefly algorithm and simulated annealing algorithm was proposed. This algorithm dynamically determined the iteration of firefly algorithm and simulates sampling of annealing algorithm by fitness changes, and increased the diversity of swarm through expansion of the scope of the sudden jump, thereby effectively avoiding premature problem. The results from confirmatory experiments for CM medical cases suggested that, comparing with traditional K-means clustering algorithms, this method was greatly improved in the individual diversity and the obtained clustering results, the computing results from this method had a certain reference value for cluster analysis on CM prescriptions.
ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.
Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi
2015-01-01
Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.
Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita
2016-04-01
Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji
2014-01-01
An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.
Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222
Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.
An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
Algorithm of reducing the false positives in IDS based on correlation Analysis
NASA Astrophysics Data System (ADS)
Liu, Jianyi; Li, Sida; Zhang, Ru
2018-03-01
This paper proposes an algorithm of reducing the false positives in IDS based on correlation Analysis. Firstly, the algorithm analyzes the distinguishing characteristics of false positives and real alarms, and preliminary screen the false positives; then use the method of attribute similarity clustering to the alarms and further reduces the amount of alarms; finally, according to the characteristics of multi-step attack, associated it by the causal relationship. The paper also proposed a reverse causation algorithm based on the attack association method proposed by the predecessors, turning alarm information into a complete attack path. Experiments show that the algorithm simplifies the number of alarms, improve the efficiency of alarm processing, and contribute to attack purposes identification and alarm accuracy improvement.
Scalable Static and Dynamic Community Detection Using Grappolo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman
Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less
Combining Multiobjective Optimization and Cluster Analysis to Study Vocal Fold Functional Morphology
Palaparthi, Anil; Riede, Tobias
2017-01-01
Morphological design and the relationship between form and function have great influence on the functionality of a biological organ. However, the simultaneous investigation of morphological diversity and function is difficult in complex natural systems. We have developed a multiobjective optimization (MOO) approach in association with cluster analysis to study the form-function relation in vocal folds. An evolutionary algorithm (NSGA-II) was used to integrate MOO with an existing finite element model of the laryngeal sound source. Vocal fold morphology parameters served as decision variables and acoustic requirements (fundamental frequency, sound pressure level) as objective functions. A two-layer and a three-layer vocal fold configuration were explored to produce the targeted acoustic requirements. The mutation and crossover parameters of the NSGA-II algorithm were chosen to maximize a hypervolume indicator. The results were expressed using cluster analysis and were validated against a brute force method. Results from the MOO and the brute force approaches were comparable. The MOO approach demonstrated greater resolution in the exploration of the morphological space. In association with cluster analysis, MOO can efficiently explore vocal fold functional morphology. PMID:24771563
Unbiased clustering estimation in the presence of missing observations
NASA Astrophysics Data System (ADS)
Bianchi, Davide; Percival, Will J.
2017-11-01
In order to be efficient, spectroscopic galaxy redshift surveys do not obtain redshifts for all galaxies in the population targeted. The missing galaxies are often clustered, commonly leading to a lower proportion of successful observations in dense regions. One example is the close-pair issue for SDSS spectroscopic galaxy surveys, which have a deficit of pairs of observed galaxies with angular separation closer than the hardware limit on placing neighbouring fibres. Spatially clustered missing observations will exist in the next generations of surveys. Various schemes have previously been suggested to mitigate these effects, but none works for all situations. We argue that the solution is to link the missing galaxies to those observed with statistically equivalent clustering properties, and that the best way to do this is to rerun the targeting algorithm, varying the angular position of the observations. Provided that every pair has a non-zero probability of being observed in one realization of the algorithm, then a pair-upweighting scheme linking targets to successful observations, can correct these issues. We present such a scheme, and demonstrate its validity using realizations of an idealized simple survey strategy.
Hierarchical Dirichlet process model for gene expression clustering
2013-01-01
Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447
Canonical PSO Based K-Means Clustering Approach for Real Datasets.
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
"Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.
Atlas-guided cluster analysis of large tractography datasets.
Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer
2013-01-01
Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment.
Large Scale Frequent Pattern Mining using MPI One-Sided Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnu, Abhinav; Agarwal, Khushbu
In this paper, we propose a work-stealing runtime --- Library for Work Stealing LibWS --- using MPI one-sided model for designing scalable FP-Growth --- {\\em de facto} frequent pattern mining algorithm --- on large scale systems. LibWS provides locality efficient and highly scalable work-stealing techniques for load balancing on a variety of data distributions. We also propose a novel communication algorithm for FP-growth data exchange phase, which reduces the communication complexity from state-of-the-art O(p) to O(f + p/f) for p processes and f frequent attributed-ids. FP-Growth is implemented using LibWS and evaluated on several work distributions and support counts. Anmore » experimental evaluation of the FP-Growth on LibWS using 4096 processes on an InfiniBand Cluster demonstrates excellent efficiency for several work distributions (87\\% efficiency for Power-law and 91% for Poisson). The proposed distributed FP-Tree merging algorithm provides 38x communication speedup on 4096 cores.« less
Locating Structural Centers: A Density-Based Clustering Method for Community Detection
Liu, Gongshen; Li, Jianhua; Nees, Jan P.
2017-01-01
Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030
A hybrid monkey search algorithm for clustering analysis.
Chen, Xin; Zhou, Yongquan; Luo, Qifang
2014-01-01
Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.
Computationally Efficient Clustering of Audio-Visual Meeting Data
NASA Astrophysics Data System (ADS)
Hung, Hayley; Friedland, Gerald; Yeo, Chuohao
This chapter presents novel computationally efficient algorithms to extract semantically meaningful acoustic and visual events related to each of the participants in a group discussion using the example of business meeting recordings. The recording setup involves relatively few audio-visual sensors, comprising a limited number of cameras and microphones. We first demonstrate computationally efficient algorithms that can identify who spoke and when, a problem in speech processing known as speaker diarization. We also extract visual activity features efficiently from MPEG4 video by taking advantage of the processing that was already done for video compression. Then, we present a method of associating the audio-visual data together so that the content of each participant can be managed individually. The methods presented in this article can be used as a principal component that enables many higher-level semantic analysis tasks needed in search, retrieval, and navigation.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.
Canonical PSO Based K-Means Clustering Approach for Real Datasets
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
“Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms. PMID:27355083
[Cluster analysis in biomedical researches].
Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D
2013-01-01
Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.
Data depth based clustering analysis
Jeong, Myeong -Hun; Cai, Yaping; Sullivan, Clair J.; ...
2016-01-01
Here, this paper proposes a new algorithm for identifying patterns within data, based on data depth. Such a clustering analysis has an enormous potential to discover previously unknown insights from existing data sets. Many clustering algorithms already exist for this purpose. However, most algorithms are not affine invariant. Therefore, they must operate with different parameters after the data sets are rotated, scaled, or translated. Further, most clustering algorithms, based on Euclidean distance, can be sensitive to noises because they have no global perspective. Parameter selection also significantly affects the clustering results of each algorithm. Unlike many existing clustering algorithms, themore » proposed algorithm, called data depth based clustering analysis (DBCA), is able to detect coherent clusters after the data sets are affine transformed without changing a parameter. It is also robust to noises because using data depth can measure centrality and outlyingness of the underlying data. Further, it can generate relatively stable clusters by varying the parameter. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed algorithm outperforms DBSCAN and HDBSCAN in terms of affine invariance, and exceeds or matches the ro-bustness to noises of DBSCAN or HDBSCAN. The robust-ness to parameter selection is also demonstrated through the case study of clustering twitter data.« less
Load Weight Classification of The Quayside Container Crane Based On K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Bingqian; Hu, Xiong; Tang, Gang; Wang, Yide
2017-07-01
The precise knowledge of the load weight of each operation of the quayside container crane is important for accurately assessing the service life of the crane. The load weight is directly related to the vibration intensity. Through the study on the vibration of the hoist motor of the crane in radial and axial directions, we can classify the load using K-means clustering algorithm and quantitative statistical analysis. Vibration in radial direction is significantly and positively correlated with that in axial direction by correlation analysis, which means that we can use the data only in one of the directions to carry out the study improving then the efficiency without degrading the accuracy of load classification. The proposed method can well represent the real-time working condition of the crane.
Joint fMRI analysis and subject clustering using sparse dictionary learning
NASA Astrophysics Data System (ADS)
Kim, Seung-Jun; Dontaraju, Krishna K.
2017-08-01
Multi-subject fMRI data analysis methods based on sparse dictionary learning are proposed. In addition to identifying the component spatial maps by exploiting the sparsity of the maps, clusters of the subjects are learned by postulating that the fMRI volumes admit a subspace clustering structure. Furthermore, in order to tune the associated hyper-parameters systematically, a cross-validation strategy is developed based on entry-wise sampling of the fMRI dataset. Efficient algorithms for solving the proposed constrained dictionary learning formulations are developed. Numerical tests performed on synthetic fMRI data show promising results and provides insights into the proposed technique.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
An Effective Semantic Event Matching System in the Internet of Things (IoT) Environment
Alhakbani, Noura; Ykhlef, Mourad
2017-01-01
IoT sensors use the publish/subscribe model for communication to benefit from its decoupled nature with respect to space, time, and synchronization. Because of the heterogeneity of communicating parties, semantic decoupling is added as a fourth dimension. The added semantic decoupling complicates the matching process and reduces its efficiency. Our proposed algorithm clusters subscriptions and events according to topic and performs the matching process within these clusters, which increases the throughput by reducing the matching time from the range of 16–18 ms to 2–4 ms. Moreover, the accuracy of matching is improved when subscriptions must be fully approximated, as demonstrated by an over 40% increase in F-score results. This work shows the benefit of clustering, as well as the improvement in the matching accuracy and efficiency achieved using this approach. PMID:28869508
FTUC: A Flooding Tree Uneven Clustering Protocol for a Wireless Sensor Network.
He, Wei; Pillement, Sebastien; Xu, Du
2017-11-23
Clustering is an efficient approach in a wireless sensor network (WSN) to reduce the energy consumption of nodes and to extend the lifetime of the network. Unfortunately, this approach requires that all cluster heads (CHs) transmit their data to the base station (BS), which gives rise to the long distance communications problem, and in multi-hop routing, the CHs near the BS have to forward data from other nodes that lead those CHs to die prematurely, creating the hot zones problem. Unequal clustering has been proposed to solve these problems. Most of the current algorithms elect CH only by considering their competition radius, leading to unevenly distributed cluster heads. Furthermore, global distances values are needed when calculating the competition radius, which is a tedious task in large networks. To face these problems, we propose a flooding tree uneven clustering protocol (FTUC) suited for large networks. Based on the construction of a tree type sub-network to calculate the minimum and maximum distances values of the network, we then apply the unequal cluster theory. We also introduce referenced position circles to evenly elect cluster heads. Therefore, cluster heads are elected depending on the node's residual energy and their distance to a referenced circle. FTUC builds the best inter-cluster communications route by evaluating a cluster head cost function to find the best next hop to the BS. The simulation results show that the FTUC algorithm decreases the energy consumption of the nodes and balances the global energy consumption effectively, thus extending the lifetime of the network.
Application of hybrid clustering using parallel k-means algorithm and DIANA algorithm
NASA Astrophysics Data System (ADS)
Umam, Khoirul; Bustamam, Alhadi; Lestari, Dian
2017-03-01
DNA is one of the carrier of genetic information of living organisms. Encoding, sequencing, and clustering DNA sequences has become the key jobs and routine in the world of molecular biology, in particular on bioinformatics application. There are two type of clustering, hierarchical clustering and partitioning clustering. In this paper, we combined two type clustering i.e. K-Means (partitioning clustering) and DIANA (hierarchical clustering), therefore it called Hybrid clustering. Application of hybrid clustering using Parallel K-Means algorithm and DIANA algorithm used to clustering DNA sequences of Human Papillomavirus (HPV). The clustering process is started with Collecting DNA sequences of HPV are obtained from NCBI (National Centre for Biotechnology Information), then performing characteristics extraction of DNA sequences. The characteristics extraction result is store in a matrix form, then normalize this matrix using Min-Max normalization and calculate genetic distance using Euclidian Distance. Furthermore, the hybrid clustering is applied by using implementation of Parallel K-Means algorithm and DIANA algorithm. The aim of using Hybrid Clustering is to obtain better clusters result. For validating the resulted clusters, to get optimum number of clusters, we use Davies-Bouldin Index (DBI). In this study, the result of implementation of Parallel K-Means clustering is data clustered become 5 clusters with minimal IDB value is 0.8741, and Hybrid Clustering clustered data become 13 sub-clusters with minimal IDB values = 0.8216, 0.6845, 0.3331, 0.1994 and 0.3952. The IDB value of hybrid clustering less than IBD value of Parallel K-Means clustering only that perform at 1ts stage. Its means clustering using Hybrid Clustering have the better result to clustered DNA sequence of HPV than perform parallel K-Means Clustering only.
He, Jieyue; Wang, Chunyan; Qiu, Kunpu; Zhong, Wei
2014-01-01
Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies.
2014-01-01
Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism evaluation based on circuit simulation method excludes most of subgraphs which are not probability isomorphism and reduces the search space of the probability isomorphism subgraphs using the mismatch values in the node voltage set. It is an innovative way to find the frequent probability patterns, which can be efficiently applied to probability motif discovery problems in the further studies. PMID:25350277
Parallel Computing Strategies for Irregular Algorithms
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.
Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso
2018-07-01
There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.
Rapid Calculation of Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks
Mollah, Md Atiqul; Yuan, Xin; Pakin, Scott; ...
2017-08-29
Max-min fairness is often used in the performance modeling of interconnection networks. Existing methods to compute max-min fair rates for multi-commodity flows have high complexity and are computationally infeasible for large networks. In this paper, we show that by considering topological features, this problem can be solved efficiently for the fat-tree topology that is widely used in data centers and high performance compute clusters. Several efficient new algorithms are developed for this problem, including a parallel algorithm that can take advantage of multi-core and shared-memory architectures. Using these algorithms, we demonstrate that it is possible to find the max-min fairmore » rate allocation for multi-commodity flows in fat-tree networks that support tens of thousands of nodes. We evaluate the run-time performance of the proposed algorithms and show improvement in orders of magnitude over the previously best known method. Finally, we further demonstrate a new application of max-min fair rate allocation that is only computationally feasible using our new algorithms.« less
Rapid Calculation of Max-Min Fair Rates for Multi-Commodity Flows in Fat-Tree Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, Md Atiqul; Yuan, Xin; Pakin, Scott
Max-min fairness is often used in the performance modeling of interconnection networks. Existing methods to compute max-min fair rates for multi-commodity flows have high complexity and are computationally infeasible for large networks. In this paper, we show that by considering topological features, this problem can be solved efficiently for the fat-tree topology that is widely used in data centers and high performance compute clusters. Several efficient new algorithms are developed for this problem, including a parallel algorithm that can take advantage of multi-core and shared-memory architectures. Using these algorithms, we demonstrate that it is possible to find the max-min fairmore » rate allocation for multi-commodity flows in fat-tree networks that support tens of thousands of nodes. We evaluate the run-time performance of the proposed algorithms and show improvement in orders of magnitude over the previously best known method. Finally, we further demonstrate a new application of max-min fair rate allocation that is only computationally feasible using our new algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kuang; Libisch, Florian; Carter, Emily A., E-mail: eac@princeton.edu
We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to ourmore » previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors.« less
A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.
Alia, Osama Moh'd
2014-01-01
Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.
A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks
2014-01-01
Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols. PMID:25162060
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets
Wernisch, Lorenz
2017-01-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm. PMID:29036190
Clusternomics: Integrative context-dependent clustering for heterogeneous datasets.
Gabasova, Evelina; Reid, John; Wernisch, Lorenz
2017-10-01
Integrative clustering is used to identify groups of samples by jointly analysing multiple datasets describing the same set of biological samples, such as gene expression, copy number, methylation etc. Most existing algorithms for integrative clustering assume that there is a shared consistent set of clusters across all datasets, and most of the data samples follow this structure. However in practice, the structure across heterogeneous datasets can be more varied, with clusters being joined in some datasets and separated in others. In this paper, we present a probabilistic clustering method to identify groups across datasets that do not share the same cluster structure. The proposed algorithm, Clusternomics, identifies groups of samples that share their global behaviour across heterogeneous datasets. The algorithm models clusters on the level of individual datasets, while also extracting global structure that arises from the local cluster assignments. Clusters on both the local and the global level are modelled using a hierarchical Dirichlet mixture model to identify structure on both levels. We evaluated the model both on simulated and on real-world datasets. The simulated data exemplifies datasets with varying degrees of common structure. In such a setting Clusternomics outperforms existing algorithms for integrative and consensus clustering. In a real-world application, we used the algorithm for cancer subtyping, identifying subtypes of cancer from heterogeneous datasets. We applied the algorithm to TCGA breast cancer dataset, integrating gene expression, miRNA expression, DNA methylation and proteomics. The algorithm extracted clinically meaningful clusters with significantly different survival probabilities. We also evaluated the algorithm on lung and kidney cancer TCGA datasets with high dimensionality, again showing clinically significant results and scalability of the algorithm.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models
NASA Technical Reports Server (NTRS)
Mjoisness, Eric; Castano, Rebecca; Gray, Alexander
1999-01-01
We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.
Research on retailer data clustering algorithm based on Spark
NASA Astrophysics Data System (ADS)
Huang, Qiuman; Zhou, Feng
2017-03-01
Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
NASA Astrophysics Data System (ADS)
Syakur, M. A.; Khotimah, B. K.; Rochman, E. M. S.; Satoto, B. D.
2018-04-01
Clustering is a data mining technique used to analyse data that has variations and the number of lots. Clustering was process of grouping data into a cluster, so they contained data that is as similar as possible and different from other cluster objects. SMEs Indonesia has a variety of customers, but SMEs do not have the mapping of these customers so they did not know which customers are loyal or otherwise. Customer mapping is a grouping of customer profiling to facilitate analysis and policy of SMEs in the production of goods, especially batik sales. Researchers will use a combination of K-Means method with elbow to improve efficient and effective k-means performance in processing large amounts of data. K-Means Clustering is a localized optimization method that is sensitive to the selection of the starting position from the midpoint of the cluster. So choosing the starting position from the midpoint of a bad cluster will result in K-Means Clustering algorithm resulting in high errors and poor cluster results. The K-means algorithm has problems in determining the best number of clusters. So Elbow looks for the best number of clusters on the K-means method. Based on the results obtained from the process in determining the best number of clusters with elbow method can produce the same number of clusters K on the amount of different data. The result of determining the best number of clusters with elbow method will be the default for characteristic process based on case study. Measurement of k-means value of k-means has resulted in the best clusters based on SSE values on 500 clusters of batik visitors. The result shows the cluster has a sharp decrease is at K = 3, so K as the cut-off point as the best cluster.
Efficient sequential and parallel algorithms for record linkage.
Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar
2014-01-01
Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Our sequential and parallel algorithms have been tested on a real dataset of 1,083,878 records and synthetic datasets ranging in size from 50,000 to 9,000,000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm.
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.
Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong
2016-01-01
In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.
Atlas-Guided Cluster Analysis of Large Tractography Datasets
Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer
2013-01-01
Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment. PMID:24386292
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
Mining the National Career Assessment Examination Result Using Clustering Algorithm
NASA Astrophysics Data System (ADS)
Pagudpud, M. V.; Palaoag, T. T.; Padirayon, L. M.
2018-03-01
Education is an essential process today which elicits authorities to discover and establish innovative strategies for educational improvement. This study applied data mining using clustering technique for knowledge extraction from the National Career Assessment Examination (NCAE) result in the Division of Quirino. The NCAE is an examination given to all grade 9 students in the Philippines to assess their aptitudes in the different domains. Clustering the students is helpful in identifying students’ learning considerations. With the use of the RapidMiner tool, clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), k-means, k-medoid, expectation maximization clustering, and support vector clustering algorithms were analyzed. The silhouette indexes of the said clustering algorithms were compared, and the result showed that the k-means algorithm with k = 3 and silhouette index equal to 0.196 is the most appropriate clustering algorithm to group the students. Three groups were formed having 477 students in the determined group (cluster 0), 310 proficient students (cluster 1) and 396 developing students (cluster 2). The data mining technique used in this study is essential in extracting useful information from the NCAE result to better understand the abilities of students which in turn is a good basis for adopting teaching strategies.
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud
2015-01-01
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309
Berkeley lab checkpoint/restart (BLCR) for Linux clusters
Hargrove, Paul H.; Duell, Jason C.
2006-09-01
This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to fault precursors (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instancemore » reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters. © 2006 IOP Publishing Ltd.« less
SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies
Bouaziz, Matthieu; Paccard, Caroline; Guedj, Mickael; Ambroise, Christophe
2012-01-01
Inferring the structure of populations has many applications for genetic research. In addition to providing information for evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study. SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost and its ease of use make this method a promising solution to infer fine-scale genetic patterns. PMID:23077494
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
An extended affinity propagation clustering method based on different data density types.
Zhao, XiuLi; Xu, WeiXiang
2015-01-01
Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points. But in many cases there exist some different intensive areas within the same data set, which means that the data set does not distribute homogeneously. In such situation the AP algorithm cannot group the data points into ideal clusters. In this paper, we proposed an extended AP clustering algorithm to deal with such a problem. There are two steps in our method: firstly the data set is partitioned into several data density types according to the nearest distances of each data point; and then the AP clustering method is, respectively, used to group the data points into clusters in each data density type. Two experiments are carried out to evaluate the performance of our algorithm: one utilizes an artificial data set and the other uses a real seismic data set. The experiment results show that groups are obtained more accurately by our algorithm than OPTICS and AP clustering algorithm itself.
Protein complex prediction for large protein protein interaction networks with the Core&Peel method.
Pellegrini, Marco; Baglioni, Miriam; Geraci, Filippo
2016-11-08
Biological networks play an increasingly important role in the exploration of functional modularity and cellular organization at a systemic level. Quite often the first tools used to analyze these networks are clustering algorithms. We concentrate here on the specific task of predicting protein complexes (PC) in large protein-protein interaction networks (PPIN). Currently, many state-of-the-art algorithms work well for networks of small or moderate size. However, their performance on much larger networks, which are becoming increasingly common in modern proteome-wise studies, needs to be re-assessed. We present a new fast algorithm for clustering large sparse networks: Core&Peel, which runs essentially in time and storage O(a(G)m+n) for a network G of n nodes and m arcs, where a(G) is the arboricity of G (which is roughly proportional to the maximum average degree of any induced subgraph in G). We evaluated Core&Peel on five PPI networks of large size and one of medium size from both yeast and homo sapiens, comparing its performance against those of ten state-of-the-art methods. We demonstrate that Core&Peel consistently outperforms the ten competitors in its ability to identify known protein complexes and in the functional coherence of its predictions. Our method is remarkably robust, being quite insensible to the injection of random interactions. Core&Peel is also empirically efficient attaining the second best running time over large networks among the tested algorithms. Our algorithm Core&Peel pushes forward the state-of the-art in PPIN clustering providing an algorithmic solution with polynomial running time that attains experimentally demonstrable good output quality and speed on challenging large real networks.
An energy-efficient data gathering protocol in large wireless sensor network
NASA Astrophysics Data System (ADS)
Wang, Yamin; Zhang, Ruihua; Tao, Shizhong
2006-11-01
Wireless sensor network consisting of a large number of small sensors with low-power transceiver can be an effective tool for gathering data in a variety of environment. The collected data must be transmitted to the base station for further processing. Since a network consists of sensors with limited battery energy, the method for data gathering and routing must be energy efficient in order to prolong the lifetime of the network. In this paper, we presented an energy-efficient data gathering protocol in wireless sensor network. The new protocol used data fusion technology clusters nodes into groups and builds a chain among the cluster heads according to a hybrid of the residual energy and distance to the base station. Results in stochastic geometry are used to derive the optimum parameter of our algorithm that minimizes the total energy spent in the network. Simulation results show performance superiority of the new protocol.
Data Mining Methods for Recommender Systems
NASA Astrophysics Data System (ADS)
Amatriain, Xavier; Jaimes*, Alejandro; Oliver, Nuria; Pujol, Josep M.
In this chapter, we give an overview of the main Data Mining techniques used in the context of Recommender Systems. We first describe common preprocessing methods such as sampling or dimensionality reduction. Next, we review the most important classification techniques, including Bayesian Networks and Support Vector Machines. We describe the k-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.
Semi-supervised clustering for parcellating brain regions based on resting state fMRI data
NASA Astrophysics Data System (ADS)
Cheng, Hewei; Fan, Yong
2014-03-01
Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.
Removal of impulse noise clusters from color images with local order statistics
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery
NASA Astrophysics Data System (ADS)
Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.
2016-12-01
Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.
Study of parameters of the nearest neighbour shared algorithm on clustering documents
NASA Astrophysics Data System (ADS)
Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni
2018-03-01
Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
A new clustering algorithm applicable to multispectral and polarimetric SAR images
NASA Technical Reports Server (NTRS)
Wong, Yiu-Fai; Posner, Edward C.
1993-01-01
We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.
NASA Astrophysics Data System (ADS)
Shen, Fei; Chen, Chao; Yan, Ruqiang
2017-05-01
Classical bearing fault diagnosis methods, being designed according to one specific task, always pay attention to the effectiveness of extracted features and the final diagnostic performance. However, most of these approaches suffer from inefficiency when multiple tasks exist, especially in a real-time diagnostic scenario. A fault diagnosis method based on Non-negative Matrix Factorization (NMF) and Co-clustering strategy is proposed to overcome this limitation. Firstly, some high-dimensional matrixes are constructed using the Short-Time Fourier Transform (STFT) features, where the dimension of each matrix equals to the number of target tasks. Then, the NMF algorithm is carried out to obtain different components in each dimension direction through optimized matching, such as Euclidean distance and divergence distance. Finally, a Co-clustering technique based on information entropy is utilized to realize classification of each component. To verity the effectiveness of the proposed approach, a series of bearing data sets were analysed in this research. The tests indicated that although the diagnostic performance of single task is comparable to traditional clustering methods such as K-mean algorithm and Guassian Mixture Model, the accuracy and computational efficiency in multi-tasks fault diagnosis are improved.
Processing ARM VAP data on an AWS cluster
NASA Astrophysics Data System (ADS)
Martin, T.; Macduff, M.; Shippert, T.
2017-12-01
The Atmospheric Radiation Measurement (ARM) Data Management Facility (DMF) manages over 18,000 processes and 1.3 TB of data each day. This includes many Value Added Products (VAPs) that make use of multiple instruments to produce the derived products that are scientifically relevant. A thermodynamic and cloud profile VAP is being developed to provide input to the ARM Large-eddy simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/vaps/lasso-122) . This algorithm is CPU intensive and the processing requirements exceeded the available DMF computing capacity. Amazon Web Service (AWS) along with CfnCluster was investigated to see how it would perform. This cluster environment is cost effective and scales dynamically based on demand. We were able to take advantage of autoscaling which allowed the cluster to grow and shrink based on the size of the processing queue. We also were able to take advantage of the Amazon Web Services spot market to further reduce the cost. Our test was very successful and found that cloud resources can be used to efficiently and effectively process time series data. This poster will present the resources and methodology used to successfully run the algorithm.
Quantifying Biomass from Point Clouds by Connecting Representations of Ecosystem Structure
NASA Astrophysics Data System (ADS)
Hendryx, S. M.; Barron-Gafford, G.
2017-12-01
Quantifying terrestrial ecosystem biomass is an essential part of monitoring carbon stocks and fluxes within the global carbon cycle and optimizing natural resource management. Point cloud data such as from lidar and structure from motion can be effective for quantifying biomass over large areas, but significant challenges remain in developing effective models that allow for such predictions. Inference models that estimate biomass from point clouds are established in many environments, yet, are often scale-dependent, needing to be fitted and applied at the same spatial scale and grid size at which they were developed. Furthermore, training such models typically requires large in situ datasets that are often prohibitively costly or time-consuming to obtain. We present here a scale- and sensor-invariant framework for efficiently estimating biomass from point clouds. Central to this framework, we present a new algorithm, assignPointsToExistingClusters, that has been developed for finding matches between in situ data and clusters in remotely-sensed point clouds. The algorithm can be used for assessing canopy segmentation accuracy and for training and validating machine learning models for predicting biophysical variables. We demonstrate the algorithm's efficacy by using it to train a random forest model of above ground biomass in a shrubland environment in Southern Arizona. We show that by learning a nonlinear function to estimate biomass from segmented canopy features we can reduce error, especially in the presence of inaccurate clusterings, when compared to a traditional, deterministic technique to estimate biomass from remotely measured canopies. Our random forest on cluster features model extends established methods of training random forest regressions to predict biomass of subplots but requires significantly less training data and is scale invariant. The random forest on cluster features model reduced mean absolute error, when evaluated on all test data in leave one out cross validation, by 40.6% from deterministic mesquite allometry and 35.9% from the inferred ecosystem-state allometric function. Our framework should allow for the inference of biomass more efficiently than common subplot methods and more accurately than individual tree segmentation methods in densely vegetated environments.
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo
2016-07-19
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .
Spatial cluster detection using dynamic programming.
Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F
2012-03-25
The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.
Spatial cluster detection using dynamic programming
2012-01-01
Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
Swarm Intelligence in Text Document Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Potok, Thomas E
2008-01-01
Social animals or insects in nature often exhibit a form of emergent collective behavior. The research field that attempts to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies is called Swarm Intelligence. Compared to the traditional algorithms, the swarm algorithms are usually flexible, robust, decentralized and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document collection clustering. The major challenge of today's information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role inmore » helping users to effectively navigate, summarize, and organize the overwhelmed information. In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. These clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools and ant food forage.« less
The Detection and Statistics of Giant Arcs behind CLASH Clusters
NASA Astrophysics Data System (ADS)
Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton
2016-02-01
We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift zs = 1.9 with 33% of the detected arcs having zs > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c-M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-01-01
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks. PMID:27916917
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels.
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-11-30
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Traveling salesman problems with PageRank Distance on complex networks reveal community structure
NASA Astrophysics Data System (ADS)
Jiang, Zhongzhou; Liu, Jing; Wang, Shuai
2016-12-01
In this paper, we propose a new algorithm for community detection problems (CDPs) based on traveling salesman problems (TSPs), labeled as TSP-CDA. Since TSPs need to find a tour with minimum cost, cities close to each other are usually clustered in the tour. This inspired us to model CDPs as TSPs by taking each vertex as a city. Then, in the final tour, the vertices in the same community tend to cluster together, and the community structure can be obtained by cutting the tour into a couple of paths. There are two challenges. The first is to define a suitable distance between each pair of vertices which can reflect the probability that they belong to the same community. The second is to design a suitable strategy to cut the final tour into paths which can form communities. In TSP-CDA, we deal with these two challenges by defining a PageRank Distance and an automatic threshold-based cutting strategy. The PageRank Distance is designed with the intrinsic properties of CDPs in mind, and can be calculated efficiently. In the experiments, benchmark networks with 1000-10,000 nodes and varying structures are used to test the performance of TSP-CDA. A comparison is also made between TSP-CDA and two well-established community detection algorithms. The results show that TSP-CDA can find accurate community structure efficiently and outperforms the two existing algorithms.
Automatic microseismic event picking via unsupervised machine learning
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2018-01-01
Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.
Modified algorithm for mineral identification in LWIR hyperspectral imagery
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sojasi, Saeed; Liaigre, Kévin; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin
2017-05-01
The applications of hyperspectral infrared imagery in the different fields of research are significant and growing. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using in airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory conditions. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 ) with a LW-macro lens providing a spatial resolution of 100 μm, an infragold plate, and a heating source are the instruments used in the experiment. The proposed algorithm clusters all the pixel-spectra in different categories. Then the best representatives of each cluster are chosen and compared with the ASTER spectral library of JPL/NASA through spectral comparison techniques, such as Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC). The results of the algorithm indicate significant computational efficiency (more than 20 times faster) as compared to previous algorithms and have shown a promising performance for mineral identification.
Clustering Categorical Data Using Community Detection Techniques
2017-01-01
With the advent of the k-modes algorithm, the toolbox for clustering categorical data has an efficient tool that scales linearly in the number of data items. However, random initialization of cluster centers in k-modes makes it hard to reach a good clustering without resorting to many trials. Recently proposed methods for better initialization are deterministic and reduce the clustering cost considerably. A variety of initialization methods differ in how the heuristics chooses the set of initial centers. In this paper, we address the clustering problem for categorical data from the perspective of community detection. Instead of initializing k modes and running several iterations, our scheme, CD-Clustering, builds an unweighted graph and detects highly cohesive groups of nodes using a fast community detection technique. The top-k detected communities by size will define the k modes. Evaluation on ten real categorical datasets shows that our method outperforms the existing initialization methods for k-modes in terms of accuracy, precision, and recall in most of the cases. PMID:29430249
VizieR Online Data Catalog: Properties of giant arcs behind CLASH clusters (Xu+, 2016)
NASA Astrophysics Data System (ADS)
Xu, B.; Postman, M.; Meneghetti, M.; Seitz, S.; Zitrin, A.; Merten, J.; Maoz, D.; Frye, B.; Umetsu, K.; Zheng, W.; Bradley, L.; Vega, J.; Koekemoer, A.
2018-01-01
Giant arcs are found in the CLASH images and in simulated images that mimic the CLASH data, using an efficient automated arc-finding algorithm whose selection function has been carefully quantified. CLASH is a 524-orbit multicycle treasury program that targeted 25 massive clusters with 0.18
A novel community detection method in bipartite networks
NASA Astrophysics Data System (ADS)
Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan
2018-02-01
Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.
Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.
Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai
2016-03-01
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
Anandakrishnan, Ramu; Onufriev, Alexey
2008-03-01
In statistical mechanics, the equilibrium properties of a physical system of particles can be calculated as the statistical average over accessible microstates of the system. In general, these calculations are computationally intractable since they involve summations over an exponentially large number of microstates. Clustering algorithms are one of the methods used to numerically approximate these sums. The most basic clustering algorithms first sub-divide the system into a set of smaller subsets (clusters). Then, interactions between particles within each cluster are treated exactly, while all interactions between different clusters are ignored. These smaller clusters have far fewer microstates, making the summation over these microstates, tractable. These algorithms have been previously used for biomolecular computations, but remain relatively unexplored in this context. Presented here, is a theoretical analysis of the error and computational complexity for the two most basic clustering algorithms that were previously applied in the context of biomolecular electrostatics. We derive a tight, computationally inexpensive, error bound for the equilibrium state of a particle computed via these clustering algorithms. For some practical applications, it is the root mean square error, which can be significantly lower than the error bound, that may be more important. We how that there is a strong empirical relationship between error bound and root mean square error, suggesting that the error bound could be used as a computationally inexpensive metric for predicting the accuracy of clustering algorithms for practical applications. An example of error analysis for such an application-computation of average charge of ionizable amino-acids in proteins-is given, demonstrating that the clustering algorithm can be accurate enough for practical purposes.
Clustering methods for the optimization of atomic cluster structure
NASA Astrophysics Data System (ADS)
Bagattini, Francesco; Schoen, Fabio; Tigli, Luca
2018-04-01
In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.
A note on the kappa statistic for clustered dichotomous data.
Zhou, Ming; Yang, Zhao
2014-06-30
The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida
2015-05-01
Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Lei, Yang; Yu, Dai; Bin, Zhang; Yang, Yang
2017-01-01
Clustering algorithm as a basis of data analysis is widely used in analysis systems. However, as for the high dimensions of the data, the clustering algorithm may overlook the business relation between these dimensions especially in the medical fields. As a result, usually the clustering result may not meet the business goals of the users. Then, in the clustering process, if it can combine the knowledge of the users, that is, the doctor's knowledge or the analysis intent, the clustering result can be more satisfied. In this paper, we propose an interactive K -means clustering method to improve the user's satisfactions towards the result. The core of this method is to get the user's feedback of the clustering result, to optimize the clustering result. Then, a particle swarm optimization algorithm is used in the method to optimize the parameters, especially the weight settings in the clustering algorithm to make it reflect the user's business preference as possible. After that, based on the parameter optimization and adjustment, the clustering result can be closer to the user's requirement. Finally, we take an example in the breast cancer, to testify our method. The experiments show the better performance of our algorithm.
Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.
Wang, Haizhou; Song, Mingzhou
2011-12-01
The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.
Inference from clustering with application to gene-expression microarrays.
Dougherty, Edward R; Barrera, Junior; Brun, Marcel; Kim, Seungchan; Cesar, Roberto M; Chen, Yidong; Bittner, Michael; Trent, Jeffrey M
2002-01-01
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different underlying classes, whereas those in the same cluster come from the same class. Stochastically, the underlying classes represent different random processes. The inference is that clusters represent a partition of the sample points according to which process they belong. This paper discusses a model-based clustering toolbox that evaluates cluster accuracy. Each random process is modeled as its mean plus independent noise, sample points are generated, the points are clustered, and the clustering error is the number of points clustered incorrectly according to the generating random processes. Various clustering algorithms are evaluated based on process variance and the key issue of the rate at which algorithmic performance improves with increasing numbers of experimental replications. The model means can be selected by hand to test the separability of expected types of biological expression patterns. Alternatively, the model can be seeded by real data to test the expected precision of that output or the extent of improvement in precision that replication could provide. In the latter case, a clustering algorithm is used to form clusters, and the model is seeded with the means and variances of these clusters. Other algorithms are then tested relative to the seeding algorithm. Results are averaged over various seeds. Output includes error tables and graphs, confusion matrices, principal-component plots, and validation measures. Five algorithms are studied in detail: K-means, fuzzy C-means, self-organizing maps, hierarchical Euclidean-distance-based and correlation-based clustering. The toolbox is applied to gene-expression clustering based on cDNA microarrays using real data. Expression profile graphics are generated and error analysis is displayed within the context of these profile graphics. A large amount of generated output is available over the web.
Implementation of spectral clustering on microarray data of carcinoma using k-means algorithm
NASA Astrophysics Data System (ADS)
Frisca, Bustamam, Alhadi; Siswantining, Titin
2017-03-01
Clustering is one of data analysis methods that aims to classify data which have similar characteristics in the same group. Spectral clustering is one of the most popular modern clustering algorithms. As an effective clustering technique, spectral clustering method emerged from the concepts of spectral graph theory. Spectral clustering method needs partitioning algorithm. There are some partitioning methods including PAM, SOM, Fuzzy c-means, and k-means. Based on the research that has been done by Capital and Choudhury in 2013, when using Euclidian distance k-means algorithm provide better accuracy than PAM algorithm. So in this paper we use k-means as our partition algorithm. The major advantage of spectral clustering is in reducing data dimension, especially in this case to reduce the dimension of large microarray dataset. Microarray data is a small-sized chip made of a glass plate containing thousands and even tens of thousands kinds of genes in the DNA fragments derived from doubling cDNA. Application of microarray data is widely used to detect cancer, for the example is carcinoma, in which cancer cells express the abnormalities in his genes. The purpose of this research is to classify the data that have high similarity in the same group and the data that have low similarity in the others. In this research, Carcinoma microarray data using 7457 genes. The result of partitioning using k-means algorithm is two clusters.
Efficient sequential and parallel algorithms for record linkage
Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar
2014-01-01
Background and objective Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Methods Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Results Our sequential and parallel algorithms have been tested on a real dataset of 1 083 878 records and synthetic datasets ranging in size from 50 000 to 9 000 000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). Conclusions We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm. PMID:24154837
Spadone, Sara; de Pasquale, Francesco; Mantini, Dante; Della Penna, Stefania
2012-09-01
Independent component analysis (ICA) is typically applied on functional magnetic resonance imaging, electroencephalographic and magnetoencephalographic (MEG) data due to its data-driven nature. In these applications, ICA needs to be extended from single to multi-session and multi-subject studies for interpreting and assigning a statistical significance at the group level. Here a novel strategy for analyzing MEG independent components (ICs) is presented, Multivariate Algorithm for Grouping MEG Independent Components K-means based (MAGMICK). The proposed approach is able to capture spatio-temporal dynamics of brain activity in MEG studies by running ICA at subject level and then clustering the ICs across sessions and subjects. Distinctive features of MAGMICK are: i) the implementation of an efficient set of "MEG fingerprints" designed to summarize properties of MEG ICs as they are built on spatial, temporal and spectral parameters; ii) the implementation of a modified version of the standard K-means procedure to improve its data-driven character. This algorithm groups the obtained ICs automatically estimating the number of clusters through an adaptive weighting of the parameters and a constraint on the ICs independence, i.e. components coming from the same session (at subject level) or subject (at group level) cannot be grouped together. The performances of MAGMICK are illustrated by analyzing two sets of MEG data obtained during a finger tapping task and median nerve stimulation. The results demonstrate that the method can extract consistent patterns of spatial topography and spectral properties across sessions and subjects that are in good agreement with the literature. In addition, these results are compared to those from a modified version of affinity propagation clustering method. The comparison, evaluated in terms of different clustering validity indices, shows that our methodology often outperforms the clustering algorithm. Eventually, these results are confirmed by a comparison with a MEG tailored version of the self-organizing group ICA, which is largely used for fMRI IC clustering. Copyright © 2012 Elsevier Inc. All rights reserved.
Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters
NASA Astrophysics Data System (ADS)
Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.
2018-06-01
We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.
NASA Astrophysics Data System (ADS)
Chen, Xin; Liu, Li; Zhou, Sida; Yue, Zhenjiang
2016-09-01
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.
NASA Astrophysics Data System (ADS)
Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.
1996-02-01
The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran, C; Kamal, H
Purpose: To provide a multicriteria optimization algorithm for intensity modulated radiation therapy using pencil proton beam scanning. Methods: Intensity modulated radiation therapy using pencil proton beam scanning requires efficient optimization algorithms to overcome the uncertainties in the Bragg peaks locations. This work is focused on optimization algorithms that are based on Monte Carlo simulation of the treatment planning and use the weights and the dose volume histogram (DVH) control points to steer toward desired plans. The proton beam treatment planning process based on single objective optimization (representing a weighted sum of multiple objectives) usually leads to time-consuming iterations involving treatmentmore » planning team members. We proved a time efficient multicriteria optimization algorithm that is developed to run on NVIDIA GPU (Graphical Processing Units) cluster. The multicriteria optimization algorithm running time benefits from up-sampling of the CT voxel size of the calculations without loss of fidelity. Results: We will present preliminary results of Multicriteria optimization for intensity modulated proton therapy based on DVH control points. The results will show optimization results of a phantom case and a brain tumor case. Conclusion: The multicriteria optimization of the intensity modulated radiation therapy using pencil proton beam scanning provides a novel tool for treatment planning. Work support by a grant from Varian Inc.« less
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
SAGE: The Self-Adaptive Grid Code. 3
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1999-01-01
The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
Weighted graph cuts without eigenvectors a multilevel approach.
Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian
2007-11-01
A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.
Multilayer Statistical Intrusion Detection in Wireless Networks
NASA Astrophysics Data System (ADS)
Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine
2008-12-01
The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.
Model-based clustering for RNA-seq data.
Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P
2014-01-15
RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org
Two generalizations of Kohonen clustering
NASA Technical Reports Server (NTRS)
Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.
1993-01-01
The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.
Network Community Detection based on the Physarum-inspired Computational Framework.
Gao, Chao; Liang, Mingxin; Li, Xianghua; Zhang, Zili; Wang, Zhen; Zhou, Zhili
2016-12-13
Community detection is a crucial and essential problem in the structure analytics of complex networks, which can help us understand and predict the characteristics and functions of complex networks. Many methods, ranging from the optimization-based algorithms to the heuristic-based algorithms, have been proposed for solving such a problem. Due to the inherent complexity of identifying network structure, how to design an effective algorithm with a higher accuracy and a lower computational cost still remains an open problem. Inspired by the computational capability and positive feedback mechanism in the wake of foraging process of Physarum, which is a large amoeba-like cell consisting of a dendritic network of tube-like pseudopodia, a general Physarum-based computational framework for community detection is proposed in this paper. Based on the proposed framework, the inter-community edges can be identified from the intra-community edges in a network and the positive feedback of solving process in an algorithm can be further enhanced, which are used to improve the efficiency of original optimization-based and heuristic-based community detection algorithms, respectively. Some typical algorithms (e.g., genetic algorithm, ant colony optimization algorithm, and Markov clustering algorithm) and real-world datasets have been used to estimate the efficiency of our proposed computational framework. Experiments show that the algorithms optimized by Physarum-inspired computational framework perform better than the original ones, in terms of accuracy and computational cost. Moreover, a computational complexity analysis verifies the scalability of our framework.
An improved initialization center k-means clustering algorithm based on distance and density
NASA Astrophysics Data System (ADS)
Duan, Yanling; Liu, Qun; Xia, Shuyin
2018-04-01
Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.
Diametrical clustering for identifying anti-correlated gene clusters.
Dhillon, Inderjit S; Marcotte, Edward M; Roshan, Usman
2003-09-01
Clustering genes based upon their expression patterns allows us to predict gene function. Most existing clustering algorithms cluster genes together when their expression patterns show high positive correlation. However, it has been observed that genes whose expression patterns are strongly anti-correlated can also be functionally similar. Biologically, this is not unintuitive-genes responding to the same stimuli, regardless of the nature of the response, are more likely to operate in the same pathways. We present a new diametrical clustering algorithm that explicitly identifies anti-correlated clusters of genes. Our algorithm proceeds by iteratively (i). re-partitioning the genes and (ii). computing the dominant singular vector of each gene cluster; each singular vector serving as the prototype of a 'diametric' cluster. We empirically show the effectiveness of the algorithm in identifying diametrical or anti-correlated clusters. Testing the algorithm on yeast cell cycle data, fibroblast gene expression data, and DNA microarray data from yeast mutants reveals that opposed cellular pathways can be discovered with this method. We present systems whose mRNA expression patterns, and likely their functions, oppose the yeast ribosome and proteosome, along with evidence for the inverse transcriptional regulation of a number of cellular systems.
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
NASA Astrophysics Data System (ADS)
Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.
2016-03-01
Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.
A Parallel Multiclassification Algorithm for Big Data Using an Extreme Learning Machine.
Duan, Mingxing; Li, Kenli; Liao, Xiangke; Li, Keqin
2018-06-01
As data sets become larger and more complicated, an extreme learning machine (ELM) that runs in a traditional serial environment cannot realize its ability to be fast and effective. Although a parallel ELM (PELM) based on MapReduce to process large-scale data shows more efficient learning speed than identical ELM algorithms in a serial environment, some operations, such as intermediate results stored on disks and multiple copies for each task, are indispensable, and these operations create a large amount of extra overhead and degrade the learning speed and efficiency of the PELMs. In this paper, an efficient ELM based on the Spark framework (SELM), which includes three parallel subalgorithms, is proposed for big data classification. By partitioning the corresponding data sets reasonably, the hidden layer output matrix calculation algorithm, matrix decomposition algorithm, and matrix decomposition algorithm perform most of the computations locally. At the same time, they retain the intermediate results in distributed memory and cache the diagonal matrix as broadcast variables instead of several copies for each task to reduce a large amount of the costs, and these actions strengthen the learning ability of the SELM. Finally, we implement our SELM algorithm to classify large data sets. Extensive experiments have been conducted to validate the effectiveness of the proposed algorithms. As shown, our SELM achieves an speedup on a cluster with ten nodes, and reaches a speedup with 15 nodes, an speedup with 20 nodes, a speedup with 25 nodes, a speedup with 30 nodes, and a speedup with 35 nodes.
Efficient error correction for next-generation sequencing of viral amplicons
2012-01-01
Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430
Efficient error correction for next-generation sequencing of viral amplicons.
Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury
2012-06-25
Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.
Elastic Cloud Computing Architecture and System for Heterogeneous Spatiotemporal Computing
NASA Astrophysics Data System (ADS)
Shi, X.
2017-10-01
Spatiotemporal computation implements a variety of different algorithms. When big data are involved, desktop computer or standalone application may not be able to complete the computation task due to limited memory and computing power. Now that a variety of hardware accelerators and computing platforms are available to improve the performance of geocomputation, different algorithms may have different behavior on different computing infrastructure and platforms. Some are perfect for implementation on a cluster of graphics processing units (GPUs), while GPUs may not be useful on certain kind of spatiotemporal computation. This is the same situation in utilizing a cluster of Intel's many-integrated-core (MIC) or Xeon Phi, as well as Hadoop or Spark platforms, to handle big spatiotemporal data. Furthermore, considering the energy efficiency requirement in general computation, Field Programmable Gate Array (FPGA) may be a better solution for better energy efficiency when the performance of computation could be similar or better than GPUs and MICs. It is expected that an elastic cloud computing architecture and system that integrates all of GPUs, MICs, and FPGAs could be developed and deployed to support spatiotemporal computing over heterogeneous data types and computational problems.
Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming
2015-01-01
It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes’ mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network. PMID:26633405
Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming
2015-12-01
It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.
A novel harmony search-K means hybrid algorithm for clustering gene expression data
Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351
A novel harmony search-K means hybrid algorithm for clustering gene expression data.
Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. © 2017 Yufei Gao et al.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
Gao, Yufei; Zhou, Yanjie; Zhou, Bing; Shi, Lei; Zhang, Jiacai
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data.
Handling Data Skew in MapReduce Cluster by Using Partition Tuning
Zhou, Yanjie; Zhou, Bing; Shi, Lei
2017-01-01
The healthcare industry has generated large amounts of data, and analyzing these has emerged as an important problem in recent years. The MapReduce programming model has been successfully used for big data analytics. However, data skew invariably occurs in big data analytics and seriously affects efficiency. To overcome the data skew problem in MapReduce, we have in the past proposed a data processing algorithm called Partition Tuning-based Skew Handling (PTSH). In comparison with the one-stage partitioning strategy used in the traditional MapReduce model, PTSH uses a two-stage strategy and the partition tuning method to disperse key-value pairs in virtual partitions and recombines each partition in case of data skew. The robustness and efficiency of the proposed algorithm were tested on a wide variety of simulated datasets and real healthcare datasets. The results showed that PTSH algorithm can handle data skew in MapReduce efficiently and improve the performance of MapReduce jobs in comparison with the native Hadoop, Closer, and locality-aware and fairness-aware key partitioning (LEEN). We also found that the time needed for rule extraction can be reduced significantly by adopting the PTSH algorithm, since it is more suitable for association rule mining (ARM) on healthcare data. PMID:29065568
Fast structure similarity searches among protein models: efficient clustering of protein fragments
2012-01-01
Background For many predictive applications a large number of models is generated and later clustered in subsets based on structure similarity. In most clustering algorithms an all-vs-all root mean square deviation (RMSD) comparison is performed. Most of the time is typically spent on comparison of non-similar structures. For sets with more than, say, 10,000 models this procedure is very time-consuming and alternative faster algorithms, restricting comparisons only to most similar structures would be useful. Results We exploit the inverse triangle inequality on the RMSD between two structures given the RMSDs with a third structure. The lower bound on RMSD may be used, when restricting the search of similarity to a reasonably low RMSD threshold value, to speed up similarity searches significantly. Tests are performed on large sets of decoys which are widely used as test cases for predictive methods, with a speed-up of up to 100 times with respect to all-vs-all comparison depending on the set and parameters used. Sample applications are shown. Conclusions The algorithm presented here allows fast comparison of large data sets of structures with limited memory requirements. As an example of application we present clustering of more than 100000 fragments of length 5 from the top500H dataset into few hundred representative fragments. A more realistic scenario is provided by the search of similarity within the very large decoy sets used for the tests. Other applications regard filtering nearly-indentical conformation in selected CASP9 datasets and clustering molecular dynamics snapshots. Availability A linux executable and a Perl script with examples are given in the supplementary material (Additional file 1). The source code is available upon request from the authors. PMID:22642815
m-BIRCH: an online clustering approach for computer vision applications
NASA Astrophysics Data System (ADS)
Madan, Siddharth K.; Dana, Kristin J.
2015-03-01
We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.
Comulang: towards a collaborative e-learning system that supports student group modeling.
Troussas, Christos; Virvou, Maria; Alepis, Efthimios
2013-01-01
This paper describes an e-learning system that is expected to further enhance the educational process in computer-based tutoring systems by incorporating collaboration between students and work in groups. The resulting system is called "Comulang" while as a test bed for its effectiveness a multiple language learning system is used. Collaboration is supported by a user modeling module that is responsible for the initial creation of student clusters, where, as a next step, working groups of students are created. A machine learning clustering algorithm works towards group formatting, so that co-operations between students from different clusters are attained. One of the resulting system's basic aims is to provide efficient student groups whose limitations and capabilities are well balanced.
Wang, Xingmei; Hao, Wenqian; Li, Qiming
2017-12-18
This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.
Efficient Maximum Likelihood Estimation for Pedigree Data with the Sum-Product Algorithm.
Engelhardt, Alexander; Rieger, Anna; Tresch, Achim; Mansmann, Ulrich
2016-01-01
We analyze data sets consisting of pedigrees with age at onset of colorectal cancer (CRC) as phenotype. The occurrence of familial clusters of CRC suggests the existence of a latent, inheritable risk factor. We aimed to compute the probability of a family possessing this risk factor as well as the hazard rate increase for these risk factor carriers. Due to the inheritability of this risk factor, the estimation necessitates a costly marginalization of the likelihood. We propose an improved EM algorithm by applying factor graphs and the sum-product algorithm in the E-step. This reduces the computational complexity from exponential to linear in the number of family members. Our algorithm is as precise as a direct likelihood maximization in a simulation study and a real family study on CRC risk. For 250 simulated families of size 19 and 21, the runtime of our algorithm is faster by a factor of 4 and 29, respectively. On the largest family (23 members) in the real data, our algorithm is 6 times faster. We introduce a flexible and runtime-efficient tool for statistical inference in biomedical event data with latent variables that opens the door for advanced analyses of pedigree data. © 2017 S. Karger AG, Basel.
Analysis of Community Detection Algorithms for Large Scale Cyber Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mane, Prachita; Shanbhag, Sunanda; Kamath, Tanmayee
The aim of this project is to use existing community detection algorithms on an IP network dataset to create supernodes within the network. This study compares the performance of different algorithms on the network in terms of running time. The paper begins with an introduction to the concept of clustering and community detection followed by the research question that the team aimed to address. Further the paper describes the graph metrics that were considered in order to shortlist algorithms followed by a brief explanation of each algorithm with respect to the graph metric on which it is based. The nextmore » section in the paper describes the methodology used by the team in order to run the algorithms and determine which algorithm is most efficient with respect to running time. Finally, the last section of the paper includes the results obtained by the team and a conclusion based on those results as well as future work.« less
Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie
2014-01-01
It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.
A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters
Wang, Zhihao; Yi, Jing
2016-01-01
For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291
Poole, William; Leinonen, Kalle; Shmulevich, Ilya
2017-01-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390
Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady
2017-02-01
Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.
The Mucciardi-Gose Clustering Algorithm and Its Applications in Automatic Pattern Recognition.
A procedure known as the Mucciardi- Gose clustering algorithm, CLUSTR, for determining the geometrical or statistical relationships among groups of N...discussion of clustering algorithms is given; the particular advantages of the Mucciardi- Gose procedure are described. The mathematical basis for, and the
Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold
2014-12-01
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.
Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G
2014-09-30
This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.
Security clustering algorithm based on reputation in hierarchical peer-to-peer network
NASA Astrophysics Data System (ADS)
Chen, Mei; Luo, Xin; Wu, Guowen; Tan, Yang; Kita, Kenji
2013-03-01
For the security problems of the hierarchical P2P network (HPN), the paper presents a security clustering algorithm based on reputation (CABR). In the algorithm, we take the reputation mechanism for ensuring the security of transaction and use cluster for managing the reputation mechanism. In order to improve security, reduce cost of network brought by management of reputation and enhance stability of cluster, we select reputation, the historical average online time, and the network bandwidth as the basic factors of the comprehensive performance of node. Simulation results showed that the proposed algorithm improved the security, reduced the network overhead, and enhanced stability of cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
From virtual clustering analysis to self-consistent clustering analysis: a mathematical study
NASA Astrophysics Data System (ADS)
Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam
2018-03-01
In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.
NASA Astrophysics Data System (ADS)
Farsadnia, Farhad; Ghahreman, Bijan
2016-04-01
Hydrologic homogeneous group identification is considered both fundamental and applied research in hydrology. Clustering methods are among conventional methods to assess the hydrological homogeneous regions. Recently, Self-Organizing feature Map (SOM) method has been applied in some studies. However, the main problem of this method is the interpretation on the output map of this approach. Therefore, SOM is used as input to other clustering algorithms. The aim of this study is to apply a two-level Self-Organizing feature map and Ward hierarchical clustering method to determine the hydrologic homogenous regions in North and Razavi Khorasan provinces. At first by principal component analysis, we reduced SOM input matrix dimension, then the SOM was used to form a two-dimensional features map. To determine homogeneous regions for flood frequency analysis, SOM output nodes were used as input into the Ward method. Generally, the regions identified by the clustering algorithms are not statistically homogeneous. Consequently, they have to be adjusted to improve their homogeneity. After adjustment of the homogeneity regions by L-moment tests, five hydrologic homogeneous regions were identified. Finally, adjusted regions were created by a two-level SOM and then the best regional distribution function and associated parameters were selected by the L-moment approach. The results showed that the combination of self-organizing maps and Ward hierarchical clustering by principal components as input is more effective than the hierarchical method, by principal components or standardized inputs to achieve hydrologic homogeneous regions.
Determining open cluster membership. A Bayesian framework for quantitative member classification
NASA Astrophysics Data System (ADS)
Stott, Jonathan J.
2018-01-01
Aims: My goal is to develop a quantitative algorithm for assessing open cluster membership probabilities. The algorithm is designed to work with single-epoch observations. In its simplest form, only one set of program images and one set of reference images are required. Methods: The algorithm is based on a two-stage joint astrometric and photometric assessment of cluster membership probabilities. The probabilities were computed within a Bayesian framework using any available prior information. Where possible, the algorithm emphasizes simplicity over mathematical sophistication. Results: The algorithm was implemented and tested against three observational fields using published survey data. M 67 and NGC 654 were selected as cluster examples while a third, cluster-free, field was used for the final test data set. The algorithm shows good quantitative agreement with the existing surveys and has a false-positive rate significantly lower than the astrometric or photometric methods used individually.
Random Walk Quantum Clustering Algorithm Based on Space
NASA Astrophysics Data System (ADS)
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
Fast and robust generation of feature maps for region-based visual attention.
Aziz, Muhammad Zaheer; Mertsching, Bärbel
2008-05-01
Visual attention is one of the important phenomena in biological vision which can be followed to achieve more efficiency, intelligence, and robustness in artificial vision systems. This paper investigates a region-based approach that performs pixel clustering prior to the processes of attention in contrast to late clustering as done by contemporary methods. The foundation steps of feature map construction for the region-based attention model are proposed here. The color contrast map is generated based upon the extended findings from the color theory, the symmetry map is constructed using a novel scanning-based method, and a new algorithm is proposed to compute a size contrast map as a formal feature channel. Eccentricity and orientation are computed using the moments of obtained regions and then saliency is evaluated using the rarity criteria. The efficient design of the proposed algorithms allows incorporating five feature channels while maintaining a processing rate of multiple frames per second. Another salient advantage over the existing techniques is the reusability of the salient regions in the high-level machine vision procedures due to preservation of their shapes and precise locations. The results indicate that the proposed model has the potential to efficiently integrate the phenomenon of attention into the main stream of machine vision and systems with restricted computing resources such as mobile robots can benefit from its advantages.
Contributions to "k"-Means Clustering and Regression via Classification Algorithms
ERIC Educational Resources Information Center
Salman, Raied
2012-01-01
The dissertation deals with clustering algorithms and transforming regression problems into classification problems. The main contributions of the dissertation are twofold; first, to improve (speed up) the clustering algorithms and second, to develop a strict learning environment for solving regression problems as classification tasks by using…
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2014-12-30
Understanding neural functions requires knowledge from analysing electrophysiological data. The process of assigning spikes of a multichannel signal into clusters, called spike sorting, is one of the important problems in such analysis. There have been various automated spike sorting techniques with both advantages and disadvantages regarding accuracy and computational costs. Therefore, developing spike sorting methods that are highly accurate and computationally inexpensive is always a challenge in the biomedical engineering practice. An automatic unsupervised spike sorting method is proposed in this paper. The method uses features extracted by the locality preserving projection (LPP) algorithm. These features afterwards serve as inputs for the landmark-based spectral clustering (LSC) method. Gap statistics (GS) is employed to evaluate the number of clusters before the LSC can be performed. The proposed LPP-LSC is highly accurate and computationally inexpensive spike sorting approach. LPP spike features are very discriminative; thereby boost the performance of clustering methods. Furthermore, the LSC method exhibits its efficiency when integrated with the cluster evaluator GS. The proposed method's accuracy is approximately 13% superior to that of the benchmark combination between wavelet transformation and superparamagnetic clustering (WT-SPC). Additionally, LPP-LSC computing time is six times less than that of the WT-SPC. LPP-LSC obviously demonstrates a win-win spike sorting solution meeting both accuracy and computational cost criteria. LPP and LSC are linear algorithms that help reduce computational burden and thus their combination can be applied into real-time spike analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Bingxiao; Zheng, Wei; Postman, Marc
We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ andmore » length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift z{sub s} = 1.9 with 33% of the detected arcs having z{sub s} > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.« less
A fuzzy clustering algorithm to detect planar and quadric shapes
NASA Technical Reports Server (NTRS)
Krishnapuram, Raghu; Frigui, Hichem; Nasraoui, Olfa
1992-01-01
In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream
Ying Wah, Teh
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753
A fast density-based clustering algorithm for real-time Internet of Things stream.
Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut
2014-01-01
Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.
Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343
Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.
Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing
2015-01-01
Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.
An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN.
Hosen, A S M Sanwar; Cho, Gi Hwan; Ra, In-Ho
2017-09-16
Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform.
An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN
Hosen, A. S. M. Sanwar; Cho, Gi Hwan; Ra, In-Ho
2017-01-01
Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform. PMID:28926958
Semiautomatic mapping of permafrost in the Yukon Flats, Alaska
NASA Astrophysics Data System (ADS)
Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer
2016-12-01
Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.
Semiautomatic mapping of permafrost in the Yukon Flats, Alaska
Gulbrandsen, Mats Lundh; Minsley, Burke J.; Ball, Lyndsay B.; Hansen, Thomas Mejer
2016-01-01
Thawing of permafrost due to global warming can have major impacts on hydrogeological processes, climate feedback, arctic ecology, and local environments. To understand these effects and processes, it is crucial to know the distribution of permafrost. In this study we exploit the fact that airborne electromagnetic (AEM) data are sensitive to the distribution of permafrost and demonstrate how the distribution of permafrost in the Yukon Flats, Alaska, is mapped in an efficient (semiautomatic) way, using a combination of supervised and unsupervised (machine) learning algorithms, i.e., Smart Interpretation and K-means clustering. Clustering is used to sort unfrozen and frozen regions, and Smart Interpretation is used to predict the depth of permafrost based on expert interpretations. This workflow allows, for the first time, a quantitative and objective approach to efficiently map permafrost based on large amounts of AEM data.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
A clustering algorithm for determining community structure in complex networks
NASA Astrophysics Data System (ADS)
Jin, Hong; Yu, Wei; Li, ShiJun
2018-02-01
Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
NASA Astrophysics Data System (ADS)
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
A GPU-Accelerated Approach for Feature Tracking in Time-Varying Imagery Datasets.
Peng, Chao; Sahani, Sandip; Rushing, John
2017-10-01
We propose a novel parallel connected component labeling (CCL) algorithm along with efficient out-of-core data management to detect and track feature regions of large time-varying imagery datasets. Our approach contributes to the big data field with parallel algorithms tailored for GPU architectures. We remove the data dependency between frames and achieve pixel-level parallelism. Due to the large size, the entire dataset cannot fit into cached memory. Frames have to be streamed through the memory hierarchy (disk to CPU main memory and then to GPU memory), partitioned, and processed as batches, where each batch is small enough to fit into the GPU. To reconnect the feature regions that are separated due to data partitioning, we present a novel batch merging algorithm to extract the region connection information across multiple batches in a parallel fashion. The information is organized in a memory-efficient structure and supports fast indexing on the GPU. Our experiment uses a commodity workstation equipped with a single GPU. The results show that our approach can efficiently process a weather dataset composed of terabytes of time-varying radar images. The advantages of our approach are demonstrated by comparing to the performance of an efficient CPU cluster implementation which is being used by the weather scientists.
NASA Astrophysics Data System (ADS)
Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing
2007-04-01
On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.
Text extraction from images in the wild using the Viola-Jones algorithm
NASA Astrophysics Data System (ADS)
Saabna, Raid M.; Zingboim, Eran
2018-04-01
Text Localization and extraction is an important issue in modern applications of computer vision. Applications such as reading and translating texts in the wild or from videos are among the many applications that can benefit results of this field. In this work, we adopt the well-known Viola-Jones algorithm to enable text extraction and localization from images in the wild. The Viola-Jones is an efficient, and a fast image-processing algorithm originally used for face detection. Based on some resemblance between text and face detection tasks in the wild, we have modified the viola-jones to detect regions of interest where text may be localized. In the proposed approach, some modification to the HAAR like features and a semi-automatic process of data set generating and manipulation were presented to train the algorithm. A process of sliding windows with different sizes have been used to scan the image for individual letters and letter clusters existence. A post processing step is used in order to combine the detected letters into words and to remove false positives. The novelty of the presented approach is using the strengths of a modified Viola-Jones algorithm to identify many different objects representing different letters and clusters of similar letters and later combine them into words of varying lengths. Impressive results were obtained on the ICDAR contest data sets.
Parallel Clustering Algorithm for Large-Scale Biological Data Sets
Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang
2014-01-01
Backgrounds Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Methods Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. Result A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies. PMID:24705246
O'Hara, F. Patrick; Suaya, Jose A.; Ray, G. Thomas; Baxter, Roger; Brown, Megan L.; Mera, Robertino M.; Close, Nicole M.; Thomas, Elizabeth
2016-01-01
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants. PMID:26669861
O'Hara, F Patrick; Suaya, Jose A; Ray, G Thomas; Baxter, Roger; Brown, Megan L; Mera, Robertino M; Close, Nicole M; Thomas, Elizabeth; Amrine-Madsen, Heather
2016-01-01
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants.
Measuring Constraint-Set Utility for Partitional Clustering Algorithms
NASA Technical Reports Server (NTRS)
Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato
2006-01-01
Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.
SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV
Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...
2016-09-05
SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg 2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~10 14–10 15 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precisemore » (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less
SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV
NASA Astrophysics Data System (ADS)
Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.
2016-12-01
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.
2014-06-01
The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-04-26
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.
Query by example video based on fuzzy c-means initialized by fixed clustering center
NASA Astrophysics Data System (ADS)
Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar
2012-04-01
Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.
Message Passing vs. Shared Address Space on a Cluster of SMPs
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak
2000-01-01
The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs) with commodity networking has become an attractive platform for high end scientific computing. Currently, message-passing and shared address space (SAS) are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI, and is the most common and mature programming approach. However message-passing code development can be extremely difficult, especially for irregular structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality, and high protocol overhead. In this paper, we compare the performance of and programming effort, required for six applications under both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit high efficiency under shared memory programming. due to their high communication to computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications: however, on certain classes of problems SAS performance is competitive with MPI. We also present new algorithms for improving the PC cluster performance of MPI collective operations.
Blessy, S A Praylin Selva; Sulochana, C Helen
2015-01-01
Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Adaptive density trajectory cluster based on time and space distance
NASA Astrophysics Data System (ADS)
Liu, Fagui; Zhang, Zhijie
2017-10-01
There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.
An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.
Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei
2013-05-01
Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.
NASA Astrophysics Data System (ADS)
Di, Nur Faraidah Muhammad; Satari, Siti Zanariah
2017-05-01
Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement. PMID:26305223
MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.
Idris, Muhammad; Hussain, Shujaat; Siddiqi, Muhammad Hameed; Hassan, Waseem; Syed Muhammad Bilal, Hafiz; Lee, Sungyoung
2015-01-01
Large quantities of data have been generated from multiple sources at exponential rates in the last few years. These data are generated at high velocity as real time and streaming data in variety of formats. These characteristics give rise to challenges in its modeling, computation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distributed processing framework using the distributed file system (DFS) for Big Data. Current implementations of MR only support execution of a single algorithm in the entire Hadoop cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that supports execution of a set of related algorithms in a single MR job. We exploit the computational capability of a cluster by increasing the compute-intensiveness of MapReduce while maintaining its data-intensive approach. It uses the available computing resources by dynamically managing the task assignment and intermediate data. Intermediate data from multiple algorithms are managed using multi-key and skew mitigation strategies. The performance study of the proposed system shows that it is time, I/O, and memory efficient compared to the default MapReduce. The proposed approach reduces the execution time by 200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results analysis shows significant performance improvement.
Efficient video-equipped fire detection approach for automatic fire alarm systems
NASA Astrophysics Data System (ADS)
Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon
2013-01-01
This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.
Shrimankar, D D; Sathe, S R
2016-01-01
Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today's supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures.
Shrimankar, D. D.; Sathe, S. R.
2016-01-01
Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today’s supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures. PMID:27932868
Craig, Hugh; Berretta, Regina; Moscato, Pablo
2016-01-01
In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays. PMID:27571416
Accurate Grid-based Clustering Algorithm with Diagonal Grid Searching and Merging
NASA Astrophysics Data System (ADS)
Liu, Feng; Ye, Chengcheng; Zhu, Erzhou
2017-09-01
Due to the advent of big data, data mining technology has attracted more and more attentions. As an important data analysis method, grid clustering algorithm is fast but with relatively lower accuracy. This paper presents an improved clustering algorithm combined with grid and density parameters. The algorithm first divides the data space into the valid meshes and invalid meshes through grid parameters. Secondly, from the starting point located at the first point of the diagonal of the grids, the algorithm takes the direction of “horizontal right, vertical down” to merge the valid meshes. Furthermore, by the boundary grid processing, the invalid grids are searched and merged when the adjacent left, above, and diagonal-direction grids are all the valid ones. By doing this, the accuracy of clustering is improved. The experimental results have shown that the proposed algorithm is accuracy and relatively faster when compared with some popularly used algorithms.
Clustering Tree-structured Data on Manifold
Lu, Na; Miao, Hongyu
2016-01-01
Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of Euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illus trate its efficiency and accuracy. PMID:26660696
Efficient similarity-based data clustering by optimal object to cluster reallocation.
Rossignol, Mathias; Lagrange, Mathieu; Cont, Arshia
2018-01-01
We present an iterative flat hard clustering algorithm designed to operate on arbitrary similarity matrices, with the only constraint that these matrices be symmetrical. Although functionally very close to kernel k-means, our proposal performs a maximization of average intra-class similarity, instead of a squared distance minimization, in order to remain closer to the semantics of similarities. We show that this approach permits the relaxing of some conditions on usable affinity matrices like semi-positiveness, as well as opening possibilities for computational optimization required for large datasets. Systematic evaluation on a variety of data sets shows that compared with kernel k-means and the spectral clustering methods, the proposed approach gives equivalent or better performance, while running much faster. Most notably, it significantly reduces memory access, which makes it a good choice for large data collections. Material enabling the reproducibility of the results is made available online.
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Robust MST-Based Clustering Algorithm.
Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing
2018-06-01
Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.
NASA Astrophysics Data System (ADS)
Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.
2005-05-01
Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.
Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.
Post-processing interstitialcy diffusion from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Bhardwaj, U.; Bukkuru, S.; Warrier, M.
2016-01-01
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.
Post-processing interstitialcy diffusion from molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.
2016-01-15
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less
A fast parallel clustering algorithm for molecular simulation trajectories.
Zhao, Yutong; Sheong, Fu Kit; Sun, Jian; Sander, Pedro; Huang, Xuhui
2013-01-15
We implemented a GPU-powered parallel k-centers algorithm to perform clustering on the conformations of molecular dynamics (MD) simulations. The algorithm is up to two orders of magnitude faster than the CPU implementation. We tested our algorithm on four protein MD simulation datasets ranging from the small Alanine Dipeptide to a 370-residue Maltose Binding Protein (MBP). It is capable of grouping 250,000 conformations of the MBP into 4000 clusters within 40 seconds. To achieve this, we effectively parallelized the code on the GPU and utilize the triangle inequality of metric spaces. Furthermore, the algorithm's running time is linear with respect to the number of cluster centers. In addition, we found the triangle inequality to be less effective in higher dimensions and provide a mathematical rationale. Finally, using Alanine Dipeptide as an example, we show a strong correlation between cluster populations resulting from the k-centers algorithm and the underlying density. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Study of CP(N-1) theta-vacua by cluster simulation of SU(N) quantum spin ladders.
Beard, B B; Pepe, M; Riederer, S; Wiese, U-J
2005-01-14
D-theory provides an alternative lattice regularization of the 2D CP(N-1) quantum field theory in which continuous classical fields emerge from the dimensional reduction of discrete SU(N) quantum spins. Spin ladders consisting of n transversely coupled spin chains lead to a CP(N-1) model with a vacuum angle theta=npi. In D-theory no sign problem arises and an efficient cluster algorithm is used to investigate theta-vacuum effects. At theta=pi there is a first order phase transition with spontaneous breaking of charge conjugation symmetry for CP(N-1) models with N>2.
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
NASA Astrophysics Data System (ADS)
Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua
2016-11-01
Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.
Response to "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra".
Griss, Johannes; Perez-Riverol, Yasset; The, Matthew; Käll, Lukas; Vizcaíno, Juan Antonio
2018-05-04
In the recent benchmarking article entitled "Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra", Rieder et al. compared several different approaches to cluster MS/MS spectra. While we certainly recognize the value of the manuscript, here, we report some shortcomings detected in the original analyses. For most analyses, the authors clustered only single MS/MS runs. In one of the reported analyses, three MS/MS runs were processed together, which already led to computational performance issues in many of the tested approaches. This fact highlights the difficulties of using many of the tested algorithms on the nowadays produced average proteomics data sets. Second, the authors only processed identified spectra when merging MS runs. Thereby, all unidentified spectra that are of lower quality were already removed from the data set and could not influence the clustering results. Next, we found that the authors did not analyze the effect of chimeric spectra on the clustering results. In our analysis, we found that 3% of the spectra in the used data sets were chimeric, and this had marked effects on the behavior of the different clustering algorithms tested. Finally, the authors' choice to evaluate the MS-Cluster and spectra-cluster algorithms using a precursor tolerance of 5 Da for high-resolution Orbitrap data only was, in our opinion, not adequate to assess the performance of MS/MS clustering approaches.
A Novel Artificial Bee Colony Based Clustering Algorithm for Categorical Data
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data. PMID:25993469
A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times
NASA Astrophysics Data System (ADS)
Li, Xin; Fung, Richard Y. K.
2018-02-01
This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.
A novel artificial bee colony based clustering algorithm for categorical data.
Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang
2015-01-01
Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
A genetic graph-based approach for partitional clustering.
Menéndez, Héctor D; Barrero, David F; Camacho, David
2014-05-01
Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
IoT Service Clustering for Dynamic Service Matchmaking.
Zhao, Shuai; Yu, Le; Cheng, Bo; Chen, Junliang
2017-07-27
As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users' requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising.
IoT Service Clustering for Dynamic Service Matchmaking
Yu, Le; Cheng, Bo; Chen, Junliang
2017-01-01
As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment, real-world devices will open their capabilities through service interfaces, which enable other functional entities to interact with them. In an IoT application, it is indispensable to find suitable services for satisfying users’ requirements or replacing the unavailable services. However, from the perspective of performance, it is inappropriate to find desired services from the service repository online directly. Instead, clustering services offline according to their similarity and matchmaking or discovering service online in limited clusters is necessary. This paper proposes a multidimensional model-based approach to measure the similarity between IoT services. Then, density-peaks-based clustering is employed to gather similar services together according to the result of similarity measurement. Based on the service clustering, the algorithms of dynamic service matchmaking, discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to validate the performance of proposed approaches, and the results are promising. PMID:28749431
Machine-learned cluster identification in high-dimensional data.
Ultsch, Alfred; Lötsch, Jörn
2017-02-01
High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable, unbiased method to identify true clusters in the high-dimensional space of complex data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.
Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin
2017-01-01
In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434
Nidheesh, N; Abdul Nazeer, K A; Ameer, P M
2017-12-01
Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determining the Number of Clusters in a Data Set Without Graphical Interpretation
NASA Technical Reports Server (NTRS)
Aguirre, Nathan S.; Davies, Misty D.
2011-01-01
Cluster analysis is a data mining technique that is meant ot simplify the process of classifying data points. The basic clustering process requires an input of data points and the number of clusters wanted. The clustering algorithm will then pick starting C points for the clusters, which can be either random spatial points or random data points. It then assigns each data point to the nearest C point where "nearest usually means Euclidean distance, but some algorithms use another criterion. The next step is determining whether the clustering arrangement this found is within a certain tolerance. If it falls within this tolerance, the process ends. Otherwise the C points are adjusted based on how many data points are in each cluster, and the steps repeat until the algorithm converges,
Ferraro Petrillo, Umberto; Roscigno, Gianluca; Cattaneo, Giuseppe; Giancarlo, Raffaele
2018-06-01
Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in the realm of genome assembly. However, they are so specialized to this domain that they do not extend easily to the computation of informational and linguistic indices, concurrently on sets of genomes. Following the well-established approach in many disciplines, and with a growing success also in bioinformatics, to resort to MapReduce and Hadoop to deal with 'Big Data' problems, we present KCH, the first set of MapReduce algorithms able to perform concurrently informational and linguistic analysis of large collections of genomic sequences on a Hadoop cluster. The benchmarking of KCH that we provide indicates that it is quite effective and versatile. It is also competitive with respect to the parallel and distributed algorithms highly specialized to k-mer statistics collection for genome assembly problems. In conclusion, KCH is a much needed addition to the growing number of algorithms and tools that use MapReduce for bioinformatics core applications. The software, including instructions for running it over Amazon AWS, as well as the datasets are available at http://www.di-srv.unisa.it/KCH. umberto.ferraro@uniroma1.it. Supplementary data are available at Bioinformatics online.
MICCA: a complete and accurate software for taxonomic profiling of metagenomic data.
Albanese, Davide; Fontana, Paolo; De Filippo, Carlotta; Cavalieri, Duccio; Donati, Claudio
2015-05-19
The introduction of high throughput sequencing technologies has triggered an increase of the number of studies in which the microbiota of environmental and human samples is characterized through the sequencing of selected marker genes. While experimental protocols have undergone a process of standardization that makes them accessible to a large community of scientist, standard and robust data analysis pipelines are still lacking. Here we introduce MICCA, a software pipeline for the processing of amplicon metagenomic datasets that efficiently combines quality filtering, clustering of Operational Taxonomic Units (OTUs), taxonomy assignment and phylogenetic tree inference. MICCA provides accurate results reaching a good compromise among modularity and usability. Moreover, we introduce a de-novo clustering algorithm specifically designed for the inference of Operational Taxonomic Units (OTUs). Tests on real and synthetic datasets shows that thanks to the optimized reads filtering process and to the new clustering algorithm, MICCA provides estimates of the number of OTUs and of other common ecological indices that are more accurate and robust than currently available pipelines. Analysis of public metagenomic datasets shows that the higher consistency of results improves our understanding of the structure of environmental and human associated microbial communities. MICCA is an open source project.
Adham, Manal T; Bentley, Peter J
2016-08-01
This paper proposes and evaluates a solution to the truck redistribution problem prominent in London's Santander Cycle scheme. Due to the complexity of this NP-hard combinatorial optimisation problem, no efficient optimisation techniques are known to solve the problem exactly. This motivates our use of the heuristic Artificial Ecosystem Algorithm (AEA) to find good solutions in a reasonable amount of time. The AEA is designed to take advantage of highly distributed computer architectures and adapt to changing problems. In the AEA a problem is first decomposed into its relative sub-components; they then evolve solution building blocks that fit together to form a single optimal solution. Three variants of the AEA centred on evaluating clustering methods are presented: the baseline AEA, the community-based AEA which groups stations according to journey flows, and the Adaptive AEA which actively modifies clusters to cater for changes in demand. We applied these AEA variants to the redistribution problem prominent in bike share schemes (BSS). The AEA variants are empirically evaluated using historical data from Santander Cycles to validate the proposed approach and prove its potential effectiveness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
MICCA: a complete and accurate software for taxonomic profiling of metagenomic data
Albanese, Davide; Fontana, Paolo; De Filippo, Carlotta; Cavalieri, Duccio; Donati, Claudio
2015-01-01
The introduction of high throughput sequencing technologies has triggered an increase of the number of studies in which the microbiota of environmental and human samples is characterized through the sequencing of selected marker genes. While experimental protocols have undergone a process of standardization that makes them accessible to a large community of scientist, standard and robust data analysis pipelines are still lacking. Here we introduce MICCA, a software pipeline for the processing of amplicon metagenomic datasets that efficiently combines quality filtering, clustering of Operational Taxonomic Units (OTUs), taxonomy assignment and phylogenetic tree inference. MICCA provides accurate results reaching a good compromise among modularity and usability. Moreover, we introduce a de-novo clustering algorithm specifically designed for the inference of Operational Taxonomic Units (OTUs). Tests on real and synthetic datasets shows that thanks to the optimized reads filtering process and to the new clustering algorithm, MICCA provides estimates of the number of OTUs and of other common ecological indices that are more accurate and robust than currently available pipelines. Analysis of public metagenomic datasets shows that the higher consistency of results improves our understanding of the structure of environmental and human associated microbial communities. MICCA is an open source project. PMID:25988396
NASA Technical Reports Server (NTRS)
Eigen, D. J.; Fromm, F. R.; Northouse, R. A.
1974-01-01
A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.
Online clustering algorithms for radar emitter classification.
Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max
2005-08-01
Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.
CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.
Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B
2011-08-15
Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.
Auction dynamics: A volume constrained MBO scheme
NASA Astrophysics Data System (ADS)
Jacobs, Matt; Merkurjev, Ekaterina; Esedoǧlu, Selim
2018-02-01
We show how auction algorithms, originally developed for the assignment problem, can be utilized in Merriman, Bence, and Osher's threshold dynamics scheme to simulate multi-phase motion by mean curvature in the presence of equality and inequality volume constraints on the individual phases. The resulting algorithms are highly efficient and robust, and can be used in simulations ranging from minimal partition problems in Euclidean space to semi-supervised machine learning via clustering on graphs. In the case of the latter application, numerous experimental results on benchmark machine learning datasets show that our approach exceeds the performance of current state-of-the-art methods, while requiring a fraction of the computation time.
Diverse Power Iteration Embeddings and Its Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang H.; Yoo S.; Yu, D.
2014-12-14
Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detectionmore » and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.« less
Percolation of the site random-cluster model by Monte Carlo method
NASA Astrophysics Data System (ADS)
Wang, Songsong; Zhang, Wanzhou; Ding, Chengxiang
2015-08-01
We propose a site random-cluster model by introducing an additional cluster weight in the partition function of the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility per site χp, as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the percolating cluster. We find that for different exponents of cluster weight q =1.5 , 2, 2.5 , 3, 3.5 , and 4, the numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of the site random-cluster model and the bond random-cluster model are completely identical. For larger values of q , we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the percolation of traditional statistical models.
Hybrid Clustering-GWO-NARX neural network technique in predicting stock price
NASA Astrophysics Data System (ADS)
Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.
2017-09-01
Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.
Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.
2012-01-01
We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.
Computational gene expression profiling under salt stress reveals patterns of co-expression
Sanchita; Sharma, Ashok
2016-01-01
Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
A scalable and practical one-pass clustering algorithm for recommender system
NASA Astrophysics Data System (ADS)
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
Consensus properties and their large-scale applications for the gene duplication problem.
Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver
2016-06-01
Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.
A novel framework for feature extraction in multi-sensor action potential sorting.
Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran
2015-09-30
Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Thematic clustering of text documents using an EM-based approach
2012-01-01
Clustering textual contents is an important step in mining useful information on the web or other text-based resources. The common task in text clustering is to handle text in a multi-dimensional space, and to partition documents into groups, where each group contains documents that are similar to each other. However, this strategy lacks a comprehensive view for humans in general since it cannot explain the main subject of each cluster. Utilizing semantic information can solve this problem, but it needs a well-defined ontology or pre-labeled gold standard set. In this paper, we present a thematic clustering algorithm for text documents. Given text, subject terms are extracted and used for clustering documents in a probabilistic framework. An EM approach is used to ensure documents are assigned to correct subjects, hence it converges to a locally optimal solution. The proposed method is distinctive because its results are sufficiently explanatory for human understanding as well as efficient for clustering performance. The experimental results show that the proposed method provides a competitive performance compared to other state-of-the-art approaches. We also show that the extracted themes from the MEDLINE® dataset represent the subjects of clusters reasonably well. PMID:23046528
Ju, Chunhua; Xu, Chonghuan
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.
Ju, Chunhua
2013-01-01
Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods. PMID:24381525
Convalescing Cluster Configuration Using a Superlative Framework
Sabitha, R.; Karthik, S.
2015-01-01
Competent data mining methods are vital to discover knowledge from databases which are built as a result of enormous growth of data. Various techniques of data mining are applied to obtain knowledge from these databases. Data clustering is one such descriptive data mining technique which guides in partitioning data objects into disjoint segments. K-means algorithm is a versatile algorithm among the various approaches used in data clustering. The algorithm and its diverse adaptation methods suffer certain problems in their performance. To overcome these issues a superlative algorithm has been proposed in this paper to perform data clustering. The specific feature of the proposed algorithm is discretizing the dataset, thereby improving the accuracy of clustering, and also adopting the binary search initialization method to generate cluster centroids. The generated centroids are fed as input to K-means approach which iteratively segments the data objects into respective clusters. The clustered results are measured for accuracy and validity. Experiments conducted by testing the approach on datasets from the UC Irvine Machine Learning Repository evidently show that the accuracy and validity measure is higher than the other two approaches, namely, simple K-means and Binary Search method. Thus, the proposed approach proves that discretization process will improve the efficacy of descriptive data mining tasks. PMID:26543895
On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms
He, Li; Zheng, Hao; Wang, Lei
2017-01-01
Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546
2015-01-01
Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691
Liu, L L; Liu, M J; Ma, M
2015-09-28
The central task of this study was to mine the gene-to-medium relationship. Adequate knowledge of this relationship could potentially improve the accuracy of differentially expressed gene mining. One of the approaches to differentially expressed gene mining uses conventional clustering algorithms to identify the gene-to-medium relationship. Compared to conventional clustering algorithms, self-organization maps (SOMs) identify the nonlinear aspects of the gene-to-medium relationships by mapping the input space into another higher dimensional feature space. However, SOMs are not suitable for huge datasets consisting of millions of samples. Therefore, a new computational model, the Function Clustering Self-Organization Maps (FCSOMs), was developed. FCSOMs take advantage of the theory of granular computing as well as advanced statistical learning methodologies, and are built specifically for each information granule (a function cluster of genes), which are intelligently partitioned by the clustering algorithm provided by the DAVID_6.7 software platform. However, only the gene functions, and not their expression values, are considered in the fuzzy clustering algorithm of DAVID. Compared to the clustering algorithm of DAVID, these experimental results show a marked improvement in the accuracy of classification with the application of FCSOMs. FCSOMs can handle huge datasets and their complex classification problems, as each FCSOM (modeled for each function cluster) can be easily parallelized.
Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering.
Rodríguez-Sotelo, J L; Peluffo-Ordoñez, D; Cuesta-Frau, D; Castellanos-Domínguez, G
2012-10-01
The computer-assisted analysis of biomedical records has become an essential tool in clinical settings. However, current devices provide a growing amount of data that often exceeds the processing capacity of normal computers. As this amount of information rises, new demands for more efficient data extracting methods appear. This paper addresses the task of data mining in physiological records using a feature selection scheme. An unsupervised method based on relevance analysis is described. This scheme uses a least-squares optimization of the input feature matrix in a single iteration. The output of the algorithm is a feature weighting vector. The performance of the method was assessed using a heartbeat clustering test on real ECG records. The quantitative cluster validity measures yielded a correctly classified heartbeat rate of 98.69% (specificity), 85.88% (sensitivity) and 95.04% (general clustering performance), which is even higher than the performance achieved by other similar ECG clustering studies. The number of features was reduced on average from 100 to 18, and the temporal cost was a 43% lower than in previous ECG clustering schemes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems
Dawson, Kevin J.; Belkhir, Khalid
2009-01-01
Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306
NASA Astrophysics Data System (ADS)
Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo
2018-04-01
Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.
The applicability and effectiveness of cluster analysis
NASA Technical Reports Server (NTRS)
Ingram, D. S.; Actkinson, A. L.
1973-01-01
An insight into the characteristics which determine the performance of a clustering algorithm is presented. In order for the techniques which are examined to accurately cluster data, two conditions must be simultaneously satisfied. First the data must have a particular structure, and second the parameters chosen for the clustering algorithm must be correct. By examining the structure of the data from the Cl flight line, it is clear that no single set of parameters can be used to accurately cluster all the different crops. The effectiveness of either a noniterative or iterative clustering algorithm to accurately cluster data representative of the Cl flight line is questionable. Thus extensive a prior knowledge is required in order to use cluster analysis in its present form for applications like assisting in the definition of field boundaries and evaluating the homogeneity of a field. New or modified techniques are necessary for clustering to be a reliable tool.
Efficient fuzzy C-means architecture for image segmentation.
Li, Hui-Ya; Hwang, Wen-Jyi; Chang, Chia-Yen
2011-01-01
This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.
Hsu, Arthur L; Tang, Sen-Lin; Halgamuge, Saman K
2003-11-01
Current Self-Organizing Maps (SOMs) approaches to gene expression pattern clustering require the user to predefine the number of clusters likely to be expected. Hierarchical clustering methods used in this area do not provide unique partitioning of data. We describe an unsupervised dynamic hierarchical self-organizing approach, which suggests an appropriate number of clusters, to perform class discovery and marker gene identification in microarray data. In the process of class discovery, the proposed algorithm identifies corresponding sets of predictor genes that best distinguish one class from other classes. The approach integrates merits of hierarchical clustering with robustness against noise known from self-organizing approaches. The proposed algorithm applied to DNA microarray data sets of two types of cancers has demonstrated its ability to produce the most suitable number of clusters. Further, the corresponding marker genes identified through the unsupervised algorithm also have a strong biological relationship to the specific cancer class. The algorithm tested on leukemia microarray data, which contains three leukemia types, was able to determine three major and one minor cluster. Prediction models built for the four clusters indicate that the prediction strength for the smaller cluster is generally low, therefore labelled as uncertain cluster. Further analysis shows that the uncertain cluster can be subdivided further, and the subdivisions are related to two of the original clusters. Another test performed using colon cancer microarray data has automatically derived two clusters, which is consistent with the number of classes in data (cancerous and normal). JAVA software of dynamic SOM tree algorithm is available upon request for academic use. A comparison of rectangular and hexagonal topologies for GSOM is available from http://www.mame.mu.oz.au/mechatronics/journalinfo/Hsu2003supp.pdf