Miller, Thomas F.
2017-01-01
We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency. PMID:28328943
Dalley, Jane A.; Selkirk, Alexander
2008-01-01
Targeting of proteins to the endoplasmic reticulum (ER) occurs cotranslationally necessitating the interaction of the signal recognition particle (SRP) and the translocon with the ribosome. Biochemical and structural studies implicate ribosomal protein Rpl25p as a major ribosome interaction site for both these factors. Here we characterize an RPL25GFP fusion, which behaves as a dominant mutant leading to defects in co- but not posttranslational translocation in vivo. In these cells, ribosomes still interact with ER membrane and the translocon, but are defective in binding SRP. Overexpression of SRP can restore ribosome binding of SRP, but only partially rescues growth and translocation defects. Our results indicate that Rpl25p plays a critical role in the recruitment of SRP to the ribosome. PMID:18448667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ilho; Kim, Jiyeon; Park, Joong-Yeol
2013-05-01
Although clusterin (CLU) was originally identified as a secreted glycoprotein that plays cytoprotective role, several intracellular CLU variants have been recently identified in the diverse pathological conditions. The mechanistic basis of these variants is now believed to be alternative splicing and retrotranslocation. Here, we uncovered, an unglycosylated and signal sequence-unprocessed, CLU variant in the cytosol. This variant proved to be a product that cotranslationally rerouted to the cytosol during translocation. Cytosolic CLU was prone to aggregation at peri-nuclear region of cells and induced cell death. Signal sequence is shown to be an important determinant for cytosolic CLU generation and aggregation.more » These results provide not only a new mechanistic insight into the cytosolic CLU generation but also an idea for therapeutic mislocalization of CLU as a strategy for cancer treatment. - Highlights: ► Intracellular CLU variants have been recently identified in the diverse pathological conditions. ► Translocation of clusterin is less efficient than that of Prl. ► We identified a new cytotoxic clusterin variant whose signal sequence was unprocessed. ► This variant proved to be a product that cotranslationally rerouted to cytosol.« less
Lakkaraju, Asvin K. K.; Thankappan, Ratheeshkumar; Mary, Camille; Garrison, Jennifer L.; Taunton, Jack; Strub, Katharina
2012-01-01
Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120–160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway. PMID:22648169
Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding.
Pechmann, Sebastian; Frydman, Judith
2013-02-01
The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.
Reid, David W; Nicchitta, Christopher V
2015-06-12
Jan et al. (Research Articles, 7 November 2014, p. 716) propose that ribosomes translating secretome messenger RNAs (mRNAs) traffic from the cytosol to the endoplasmic reticulum (ER) upon emergence of the signal peptide and return to the cytosol after termination. An accounting of controls demonstrates that mRNAs initiate translation on ER-bound ribosomes and that ribosomes are retained on the ER through many cycles of translation. Copyright © 2015, American Association for the Advancement of Science.
Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, Y.; Li, H.; Li, Hua
2009-04-28
Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less
Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site
Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.
2009-01-01
Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066
Dirndorfer, Daniela; Seidel, Ralf P.; Nimrod, Guy; Miesbauer, Margit; Ben-Tal, Nir; Engelhard, Martin; Zimmermann, Richard; Winklhofer, Konstanze F.; Tatzelt, Jörg
2013-01-01
Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation. PMID:23532840
Dirndorfer, Daniela; Seidel, Ralf P; Nimrod, Guy; Miesbauer, Margit; Ben-Tal, Nir; Engelhard, Martin; Zimmermann, Richard; Winklhofer, Konstanze F; Tatzelt, Jörg
2013-05-17
Different neuropeptide hormones, which are either too small to adopt a stable conformation or are predicted to be intrinsically disordered, are synthesized as larger precursors containing a prodomain in addition to an N-terminal signal peptide. We analyzed the biogenesis of three unstructured neuropeptide hormones and observed that translocation of these precursors into the lumen of the endoplasmic reticulum (ER) is critically dependent on the presence of the prodomain. The hormone domains could be deleted from the precursors without interfering with ER import and secretion, whereas constructs lacking the prodomain remained in the cytosol. Domain-swapping experiments revealed that the activity of the prodomains to promote productive ER import resides in their ability to adopt an α-helical structure. Removal of the prodomain from the precursor did not interfere with co-translational targeting of the nascent chain to the Sec61 translocon but with its subsequent productive translocation into the ER lumen. Our study reveals a novel function of prodomains to enable import of small or intrinsically disordered secretory proteins into the ER based on their ability to adopt an α-helical conformation.
Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A
2017-05-12
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid
The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, wemore » report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.« less
Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.
2016-01-01
The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592
Hwang Fu, Yu-Hsien; Huang, William Y C; Shen, Kuang; Groves, Jay T; Miller, Thomas; Shan, Shu-Ou
2017-07-28
The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting.
Kirst, Henning; Melis, Anastasios
2014-01-01
The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated. © 2013.
Mahe, Karan; Ou, Tingyoung; Castro, Noemi M; Christensen, Lana N; Cheung, Lee; Jiang, Xueer; Yoon, Daniel; Huang, Bo
2018-01-01
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. PMID:29708497
Assembly of the Human Signal Recognition Particle
NASA Astrophysics Data System (ADS)
Menichelli, Elena; Nagai, Kiyoshi
Large RNA-protein complexes (ribonucleoprotein particles or RNPs) control fundamental biological processes. Their correct assembly is essential for function and occurs by the ordered addition of proteins to the RNA. A good model system for studying RNP assembly is provided by the Signal Recognition Particle (SRP), an RNP conserved from bacteria to humans, with different degrees of complexity. Human SRP, composed of a single RNA molecule and six pro teins, is responsible for the co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum membrane. In vitro studies reveal that the SRP proteins need to be added to the RNA sequentially. If the order of addition is altered, non-native particles are formed. The sequential association of proteins causes conformational changes in the RNA, allowing binding of other proteins. The in vivo assembly is regulated by the translocation of precursors between different cellular compartments. In this chapter we review the current understanding of the human SRP assembly mechanism.
Kassem, Sari; Villanyi, Zoltan
2017-01-01
Abstract Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4–Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4–Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4–Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4–Not-dependent co-translational SAGA assembly and functions as a chaperone. PMID:28180299
Activated GTPase movement on an RNA scaffold drives cotranslational protein targeting
Shen, Kuang; Arslan, Sinan; Akopian, David; Ha, Taekjip; Shan, Shu-ou
2012-01-01
Roughly one third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane1. The proper localization of these proteins is mediated by a universally conserved protein targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences2–4 and, via interactions with the SRP receptor5,6, delivers them to the protein translocation machinery on the target membrane7. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA whose precise functions have remained elusive. Here, we used single molecule fluorescence microscopy to demonstrate that the SRP-receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism to ensure the productive exchange of the targeting and translocation machineries at the ribosome exit site with exquisite spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the facile exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes. PMID:23235881
The ribosome uses two active mechanisms to unwind messenger RNA during translation.
Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio
2011-07-06
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved
Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes.
Kronenberg-Versteeg, Deborah; Eichmann, Martin; Russell, Mark A; de Ru, Arnoud; Hehn, Beate; Yusuf, Norkhairin; van Veelen, Peter A; Richardson, Sarah J; Morgan, Noel G; Lemberg, Marius K; Peakman, Mark
2018-04-01
The signal peptide region of preproinsulin (PPI) contains epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) cytotoxic T cells as part of the pathogenesis of β-cell destruction in type 1 diabetes. We extended the discovery of the PPI epitope to disease-associated HLA-B*1801 and HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (protective) alleles, revealing that four of six alleles present epitopes derived from the signal peptide region. During cotranslational translocation of PPI, its signal peptide is cleaved and retained within the endoplasmic reticulum (ER) membrane, implying it is processed for immune recognition outside of the canonical proteasome-directed pathway. Using in vitro translocation assays with specific inhibitors and gene knockout in PPI-expressing target cells, we show that PPI signal peptide antigen processing requires signal peptide peptidase (SPP). The intramembrane protease SPP generates cytoplasm-proximal epitopes, which are transporter associated with antigen processing (TAP), ER-luminal epitopes, which are TAP independent, each presented by different HLA class I molecules and N-terminal trimmed by ER aminopeptidase 1 for optimal presentation. In vivo, TAP expression is significantly upregulated and correlated with HLA class I hyperexpression in insulin-containing islets of patients with type 1 diabetes. Thus, PPI signal peptide epitopes are processed by SPP and loaded for HLA-guided immune recognition via pathways that are enhanced during disease pathogenesis. © 2018 by the American Diabetes Association.
Co-Translational Folding Trajectory of the HemK Helical Domain.
Mercier, Evan; Rodnina, Marina V
2018-06-26
Protein folding begins co-translationally within the restricted space of the peptide exit tunnel of the ribosome. We have already shown that the N-terminal α-helical domain of the universally conserved N 5 -glutamine methyltransferase HemK is compacted within the exit tunnel and rearranges into the native fold upon emerging from the ribosome. However, the exact folding pathway of the domain remained unclear. Here we analyzed the rapid kinetics of translation and folding monitored by fluorescence resonance energy transfer and photoinduced electron transfer using global fitting to a model for synthesis of the 112-amino acid HemK fragment. Our results suggest that the co-translational folding trajectory of HemK starts within the tunnel and passes through four kinetically distinct folding intermediates that may represent sequential docking of helices to a growing compact core. The kinetics of the process is defined entirely by translation. The results show how analysis of ensemble kinetic data can be used to dissect complex trajectories of rapid conformational rearrangements in multicomponent systems.
In awe of subcellular complexity: 50 years of trespassing boundaries within the cell.
Sabatini, David D
2005-01-01
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Shoji, Shinichiro; Janssen, Brian D.; Hayes, Christopher S.; Fredrick, Kurt
2009-01-01
LepA is a translational GTPase highly conserved in bacterial lineages. While it has been shown that LepA can catalyze reverse ribosomal translocation in vitro, the role of LepA in the cell remains unclear. Here, we show that deletion of the lepA gene (ΔlepA) in E. coli causes hypersensitivity to potassium tellurite and penicillin G, but has no appreciable effect on growth under many other conditions. ΔlepA does not increase miscoding or frameshifting errors under normal or stress conditions, indicating that LepA does not contribute to the fidelity of translation. Overexpression of LepA interferes with tmRNA-mediated peptide tagging and A-site mRNA cleavage, suggesting that LepA is a bona fide translation factor that can act on stalled ribosomes with a vacant A site in vivo. Together these results lead us to hypothesize that LepA is involved in co-translational folding of proteins that are otherwise vulnerable to tellurite oxidation. PMID:19925844
Improving membrane protein expression by optimizing integration efficiency
2017-01-01
The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were 4-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effects of double mutations on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. PMID:28918393
Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.
Eichmann, Cédric; Preissler, Steffen; Riek, Roland; Deuerling, Elke
2010-05-18
The folding of proteins in living cells may start during their synthesis when the polypeptides emerge gradually at the ribosomal exit tunnel. However, our current understanding of cotranslational folding processes at the atomic level is limited. We employed NMR spectroscopy to monitor the conformation of the SH3 domain from alpha-spectrin at sequential stages of elongation via in vivo ribosome-arrested (15)N,(13)C-labeled nascent polypeptides. These nascent chains exposed either the entire SH3 domain or C-terminally truncated segments thereof, thus providing snapshots of the translation process. We show that nascent SH3 polypeptides remain unstructured during elongation but fold into a compact, native-like beta-sheet assembly when the entire sequence information is available. Moreover, the ribosome neither imposes major conformational constraints nor significantly interacts with exposed unfolded nascent SH3 domain moieties. Our data provide evidence for a domainwise folding of the SH3 domain on ribosomes without significant population of folding intermediates. The domain follows a thermodynamically favorable pathway in which sequential folding units are stabilized, thus avoiding kinetic traps during the process of cotranslational folding.
Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones
Pausch, Patrick; Singh, Ujjwala; Ahmed, Yasar Luqman; Pillet, Benjamin; Murat, Guillaume; Altegoer, Florian; Stier, Gunter; Thoms, Matthias; Hurt, Ed; Sinning, Irmgard; Bange, Gert; Kressler, Dieter
2015-01-01
Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the assembly site. Here we explore the intuitive possibility that ribosomal proteins are captured by dedicated chaperones in a co-translational manner. Affinity purification of four chaperones (Rrb1, Syo1, Sqt1 and Yar1) selectively enriched the mRNAs encoding their specific ribosomal protein clients (Rpl3, Rpl5, Rpl10 and Rps3). X-ray crystallography reveals how the N-terminal, rRNA-binding residues of Rpl10 are shielded by Sqt1's WD-repeat β-propeller, providing mechanistic insight into the incorporation of Rpl10 into pre-60S subunits. Co-translational capturing of nascent ribosomal proteins by dedicated chaperones constitutes an elegant mechanism to prevent unspecific interactions and aggregation of ribosomal proteins on their road to incorporation. PMID:26112308
Naimuddin, Mohammed; Kubo, Tai
2011-12-01
We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.
Gagat, Przemysław; Bodył, Andrzej; Mackiewicz, Paweł
2013-07-11
It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the beginning. Only a handful of host proteins, which already were targeted through the ES, later were adapted to reach the plastid via the vesicular trafficking. They represent a derived class of higher plant plastid-targeted proteins with an unusual evolutionary history.
Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana
Merret, Rémy; Nagarajan, Vinay K.; Carpentier, Marie-Christine; Park, Sunhee; Favory, Jean-Jacques; Descombin, Julie; Picart, Claire; Charng, Yee-yung; Green, Pamela J.; Deragon, Jean-Marc; Bousquet-Antonelli, Cécile
2015-01-01
The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5′-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5′-ribosome pausing leading to the XRN4-mediated 5′-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of ‘non-aberrant’ mRNAs. PMID:25845591
Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.
Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang
2017-01-04
Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.
Kjær, Jonas; Belsham, Graham J
2018-04-15
Foot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational "cleavage" of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed "ribosome skipping" or "StopGo." Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E 14 , S 15 , and N 16 within the 2A sequences of infectious FMDVs despite their reported "cleavage" efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P 17 , G 18 , or P 19 , which displayed little or no "cleavage" activity in vitro , were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E 14 , S 15 , N 16 , and P 19 resulted in partial "cleavage" of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational "cleavage." Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational "cleavage" of the FMDV polyprotein precursor at the 2A/2B junction, termed StopGo, is mediated by the short 2A peptide through a nonproteolytic mechanism which leads to release of the nascent protein and continued translation of the downstream sequence. Improved understanding of this process will not only give a better insight into how this peptide influences the FMDV replication cycle but may also assist the application of this sequence in biotechnology for the production of multiple proteins from a single mRNA. Our data show that single amino acid substitutions in the 2A peptide can have a major influence on viral protein synthesis, virus viability, and polyprotein processing. They also indicate that efficient "cleavage" at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity is not essential for the viability of FMDV. Copyright © 2018 American Society for Microbiology.
Huang, Wenxi; Liu, Wanting; Jin, Jingjie; Xiao, Qilan; Lu, Ruibin; Chen, Wei; Xiong, Sheng; Zhang, Gong
2018-03-25
Translational pausing coordinates protein synthesis and co-translational folding. It is a common factor that facilitates the correct folding of large, multi-domain proteins. For small proteins, pausing sites rarely occurs in the gene body, and the 3'-end pausing sites are only essential for the folding of a fraction of proteins. The determinant of the necessity of the pausings remains obscure. In this study, we demonstrated that the steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Validated by experiments with 5 model proteins, we found that the rigid protein structures do not, while the flexible structures do need 3'-end pausings to fold correctly. Therefore, rational optimization of translational pausing can improve soluble expression of small proteins with flexible structures, but not the rigid ones. The rigidity of the structure can be quantitatively estimated in silico using molecular dynamic simulation. Nevertheless, we also found that the translational pausing optimization increases the fitness of the expression host, and thus benefits the recombinant protein production, independent from the soluble expression. These results shed light on the structural basis of the translational pausing and provided a practical tool for industrial protein fermentation. Copyright © 2017. Published by Elsevier Inc.
Small protein domains fold inside the ribosome exit tunnel.
Marino, Jacopo; von Heijne, Gunnar; Beckmann, Roland
2016-03-01
Cotranslational folding of small protein domains within the ribosome exit tunnel may be an important cellular strategy to avoid protein misfolding. However, the pathway of cotranslational folding has so far been described only for a few proteins, and therefore, it is unclear whether folding in the ribosome exit tunnel is a common feature for small protein domains. Here, we have analyzed nine small protein domains and determined at which point during translation their folding generates sufficient force on the nascent chain to release translational arrest by the SecM arrest peptide, both in vitro and in live E. coli cells. We find that all nine protein domains initiate folding while still located well within the ribosome exit tunnel. © 2016 Federation of European Biochemical Societies.
A two-step recognition of signal sequences determines the translocation efficiency of proteins.
Belin, D; Bost, S; Vassalli, J D; Strub, K
1996-01-01
The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery. Images PMID:8599930
A two-step recognition of signal sequences determines the translocation efficiency of proteins.
Belin, D; Bost, S; Vassalli, J D; Strub, K
1996-02-01
The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.
2013-01-01
Background It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. Results We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. Conclusions The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the beginning. Only a handful of host proteins, which already were targeted through the ES, later were adapted to reach the plastid via the vesicular trafficking. They represent a derived class of higher plant plastid-targeted proteins with an unusual evolutionary history. Reviewers This article was reviewed by Prof. William Martin, Dr. Philippe Deschamps (nominated by Dr. Purificacion Lopez-Garcia) and Dr Simonetta Gribaldo. PMID:23845039
Krebs, H O; Hoffschulte, H K; Müller, M
1989-05-01
We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.
Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species
USDA-ARS?s Scientific Manuscript database
An improved understanding of Ni root-to-shoot translocation mechanism in hyperaccumulators is necessary to increase Ni uptake efficiency for phytoextraction technologies. It is presumed that an important aspect of Ni translocation and storage involves chelation with organic ligands. It has been re...
Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones
Keefer, Kathryn M.; True, Heather L.
2016-01-01
The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders. PMID:27828954
A versatile coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates.
Buntru, Matthias; Vogel, Simon; Stoff, Katrin; Spiegel, Holger; Schillberg, Stefan
2015-05-01
Cell-free protein synthesis is a powerful method for the high-throughput production of recombinant proteins, especially proteins that are difficult to express in living cells. Here we describe a coupled cell-free transcription-translation system based on tobacco BY-2 cell lysates (BYLs). Using a combination of fractional factorial designs and response surface models, we developed a cap-independent system that produces more than 250 μg/mL of functional enhanced yellow fluorescent protein (eYFP) and about 270 μg/mL of firefly luciferase using plasmid templates, and up to 180 μg/mL eYFP using linear templates (PCR products) in 18 h batch reactions. The BYL contains actively-translocating microsomal vesicles derived from the endoplasmic reticulum, promoting the formation of disulfide bonds, glycosylation and the cotranslational integration of membrane proteins. This was demonstrated by expressing a functional full-size antibody (∼ 150 μg/mL), the model enzyme glucose oxidase (GOx) (∼ 7.3 U/mL), and a transmembrane growth factor (∼ 25 μg/mL). Subsequent in vitro treatment of GOx with peptide-N-glycosidase F confirmed the presence of N-glycans. Our results show that the BYL can be used as a high-throughput expression and screening platform that is particularly suitable for complex and cytotoxic proteins. © 2014 Wiley Periodicals, Inc.
Pekosz, Andrew; Lamb, Robert A.
2000-01-01
Two mRNA species are derived from the influenza C virus RNA segment six, (i) a colinear transcript containing a 374-amino-acid residue open reading frame (referred to herein as the seg 6 ORF) which is translated to yield the p42 protein, and (ii) a spliced mRNA which encodes the influenza C virus matrix (CM1) protein consisting of the first 242 amino acids of p42. The p42 protein undergoes proteolytic cleavage at a consensus signal peptidase cleavage site after residue 259, yielding the p31 and CM2 proteins. Translocation of p42 into the endoplasmic reticulum membrane occurs cotranslationally and requires the hydrophobic internal signal peptide (residues 239 to 259), as well as the predicted transmembrane domain of CM2 (residues 285 to 308). The p31 protein was found to undergo rapid degradation after cleavage from p42. Addition of the 26S proteasome inhibitor lactacystin to influenza C virus-infected or seg 6 ORF cDNA-transfected cells drastically reduced p31 degradation. Transfer of the 17-residue C-terminal region of p31 to heterologous proteins resulted in their rapid turnover. The hydrophobic nature, but not the specific amino acid sequence of the 17-amino-acid C terminus of p31 appears to act as the signal for targeting the protein to membranes and for degradation. PMID:11044092
Ramos, Nubia L; Lamprokostopoulou, Agaristi; Chapman, Toni A; Chin, James C; Römling, Ute; Brauner, Annelie; Katouli, Mohammad
2011-02-01
Four efficiently translocating Escherichia coli (TEC) strains isolated from the blood of humans (HMLN-1), pigs (PC-1) and rats (KIC-1 and KIC-2) were tested for their ability to adhere and translocate across human gut epithelial Caco-2 and HT-29 cells, to elicit a proinflammatory response and for the presence of 47 pathogenic E. coli virulence genes. HMLN-1 and PC-1 were more efficient in adhesion and translocation than rat strains, had identical biochemical phenotype (BPT) and serotype (O77:H18) and phylogenetic group (D). KIC-2 adhered more than KIC-1, belonged to different BPT and serotype but the same phylogenetic group as KIC-1. TEC strains elicited significantly higher IL-8 response in both cell lines (P < 0.05) and monocytic THP-1 (P < 0.0001) cells than non-TEC strains. KIC-2 induced the highest IL-8 response which may be associated with its immunostimulatory flagellin. Apart from adhesin genes fimH and bmaE that were carried by all strains, HMLN-1 and PC-1 carried capsule synthesis gene kpsMT III and KIC-2 carried the EAST1 toxin gene. The lack of known virulence genes and the ability of TEC to efficiently adhere and translocate whilst causing proinflammatory response suggests that these strains may carry as yet unidentified genes that enable their translocating ability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Towards Personalized Medicine Mediated by in Vitro Virus-Based Interactome Approaches
Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko
2014-01-01
We have developed a simple in vitro virus (IVV) selection system based on cell-free co-translation, using a highly stable and efficient mRNA display method. The IVV system is applicable to the high-throughput and comprehensive analysis of proteins and protein–ligand interactions. Huge amounts of genomic sequence data have been generated over the last decade. The accumulated genetic alterations and the interactome networks identified within cells represent a universal feature of a disease, and knowledge of these aspects can help to determine the optimal therapy for the disease. The concept of the “integrome” has been developed as a means of integrating large amounts of data. We have developed an interactome analysis method aimed at providing individually-targeted health care. We also consider future prospects for this system. PMID:24756093
Liu, Michael A; Morris, Paraskevi; Reeves, Peter R
2018-06-10
The Wzx flippase is a critical component of the O-antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram-negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O-unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O-unit main-chain, despite both being able to translocate several other structurally-divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O-unit residues are equally important determinants of translocation efficiency. We propose a new "Structure-Specific Triggering" model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high-frequency translocation only being triggered by Wzx interacting with one or more preferred O-unit structural elements found on its cognate O unit(s). © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Oh, Chang-Sik; Carpenter, Sara C D; Hayes, Marshall L; Beer, Steven V
2010-04-01
DspA/E is a type III effector of Erwinia amylovora, the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation. In this work, DspB/F-binding sites and secretion and translocation signals in the DspA/E protein were determined. Based on yeast two-hybrid assays, DspB/F was found to bind DspA/E within the first 210 amino acids of the protein. Surprisingly, both DspB/F and OrfA, the putative chaperone of Eop1, also interacted with the C-terminal 1059 amino acids of DspA/E; this suggests another chaperone-binding site. Secretion and translocation assays using serial N-terminal lengths of DspA/E fused with the active form of AvrRpt2 revealed that at least the first 109 amino acids, including the first N-terminal chaperone-binding motif and DspB/F, were required for efficient translocation of DspA/E, although the first 35 amino acids were sufficient for its secretion and the presence of DspB/F was not required. These results indicate that secretion and translocation signals are present in the N terminus of DspA/E, and that at least one DspB/F-binding motif is required for efficient translocation into plant cells.
Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61.
Huang, Kuan-Chun; Chen, Zhihong; Jiang, Yimin; Akare, Sandeep; Kolber-Simonds, Donna; Condon, Krista; Agoulnik, Sergei; Tendyke, Karen; Shen, Yongchun; Wu, Kuo-Ming; Mathieu, Steven; Choi, Hyeong-Wook; Zhu, Xiaojie; Shimizu, Hajime; Kotake, Yoshihiko; Gerwick, William H; Uenaka, Toshimitsu; Woodall-Jappe, Mary; Nomoto, Kenichi
2016-06-01
Apratoxin A is a natural product with potent antiproliferative activity against many human cancer cell lines. However, we and other investigators observed that it has a narrow therapeutic window in vivo Previous mechanistic studies have suggested its involvement in the secretory pathway as well as the process of chaperone-mediated autophagy. Still the link between the biologic activities of apratoxin A and its in vivo toxicity has remained largely unknown. A better understanding of this relationship is critically important for any further development of apratoxin A as an anticancer drug. Here, we describe a detailed pathologic analysis that revealed a specific pancreas-targeting activity of apratoxin A, such that severe pancreatic atrophy was observed in apratoxin A-treated animals. Follow-up tissue distribution studies further uncovered a unique drug distribution profile for apratoxin A, showing high drug exposure in pancreas and salivary gland. It has been shown previously that apratoxin A inhibits the protein secretory pathway by preventing cotranslational translocation. However, the molecule targeted by apratoxin A in this pathway has not been well defined. By using a (3)H-labeled apratoxin A probe and specific Sec 61α/β antibodies, we identified that the Sec 61 complex is the molecular target of apratoxin A. We conclude that apratoxin A in vivo toxicity is likely caused by pancreas atrophy due to high apratoxin A exposure. Mol Cancer Ther; 15(6); 1208-16. ©2016 AACR. ©2016 American Association for Cancer Research.
Amyot, Whitney M.; deJesus, Dennise
2013-01-01
Legionella pneumophila uses the Icm/Dot type 4B secretion system (T4BSS) to deliver translocated protein substrates to the host cell, promoting replication vacuole formation. The conformational state of the translocated substrates within the bacterial cell is unknown, so we sought to determine if folded substrates could be translocated via this system. Fusions of L. pneumophila Icm/Dot-translocated substrates (IDTS) to dihydrofolate reductase (DHFR) or ubiquitin (Ub), small proteins known to fold rapidly, resulted in proteins with low translocation efficiencies. The folded moieties did not cause increased aggregation of the IDTS and did not impede interaction with the adaptor protein complex IcmS/IcmW, which is thought to form a soluble complex that promotes translocation. The translocation defect was alleviated with a Ub moiety harboring mutations known to destabilize its structure, indicating that unfolded proteins are preferred substrates. Real-time analysis of translocation, following movement during the first 30 min after bacterial contact with host cells, revealed that the folded moiety caused a kinetic defect in IDTS translocation. Expression of an IDTS fused to a folded moiety interfered with the translocation of other IDTS, consistent with it causing a blockage of the translocation channel. Furthermore, the folded protein fusions also interfered with intracellular growth, consistent with inefficient or impaired translocation of proteins critical for L. pneumophila intracellular growth. These studies indicate that substrates of the Icm/Dot T4SS are translocated to the host cytosol in an unfolded conformation and that folded proteins are stalled within the translocation channel, impairing the function of the secretion system. PMID:23798536
Yarrowia lipolytica vesicle-mediated protein transport pathways
Swennen, Dominique; Beckerich, Jean-Marie
2007-01-01
Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y. lipolytica proteins are closer to animal ones, whereas they are only 13% in the case of S. cerevisiae. Conclusion These results provide further support for the idea, previously noted about the endoplasmic reticulum translocation pathway, that Y. lipolytica is more representative of vesicular secretion of animals and other fungi than is S. cerevisiae. PMID:17997821
Chang, C N; Inouye, H; Model, P; Beckwith, J
1980-01-01
An inner membrane preparation co-translationally cleaved both the alkaline phosphatase and bacteriophage f1 coat protein precursors to the mature proteins. Post-translational outer membrane proteolysis of pre-alkaline phosphatase generated a protein smaller than the authentic monomer. Images PMID:6991486
A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion
Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko
2014-11-06
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components thatmore » form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.« less
Membrane Protein Production in E. coli Lysates in Presence of Preassembled Nanodiscs.
Rues, Ralf-Bernhardt; Gräwe, Alexander; Henrich, Erik; Bernhard, Frank
2017-01-01
Cell-free expression allows to synthesize membrane proteins in completely new formats that can relatively easily be customized for particular applications. Amphiphilic superstructures such as micelles, lipomicelles, or nanodiscs can be provided as nano-devices for the solubilization of membrane proteins. Defined empty bilayers in the form of nanodiscs offer native like environments for membrane proteins, supporting functional folding, proper oligomeric assembly as well as stability. Even very difficult and detergent-sensitive membrane proteins can be addressed by the combination of nanodisc technology with efficient cell-free expression systems as the direct co-translational insertion of nascent membrane proteins into supplied preassembled nanodiscs is possible. This chapter provides updated protocols for the synthesis of membrane proteins in presence of preassembled nanodiscs suitable for emerging applications such as screening of lipid effects on membrane protein function and the modulation of oligomeric complex formation.
Volpe, Noelia L; Hadley, Adam S; Robinson, W Douglas; Betts, Matthew G
Translocation experiments, in which researchers displace animals and then monitor their movements to return home, are commonly used as tools to assess functional connectivity of fragmented landscapes. Such experiments are purported to have important advantages of being time efficient and of standardizing “motivation” to move across individuals. Yet, we lack tests of whether movement behavior of translocated birds reflects natural behavior of unmanipulated birds. We compared the routine movement behavior of a tropical hummingbird, the Green Hermit (Phaethornis guy), to that of experimentally translocated individuals. We tested for differences in site selection patterns during movement at two spatial scales (point and path levels). We also compared movement rates between treatments. Behaviors documented during translocation experiments reflected those observed during routine movements. At the point level, both translocated and non-translocated birds showed similar levels of preference for mature tropical forest. At the path level, step selection functions showed both translocated and non-translocated hummingbirds avoiding movement across non-forested matrix and selecting streams as movement corridors. Movement rates were generally higher during translocation experiments. However, the negative influence of forest cover on movement rates was proportionately similar in translocation and routine movement treatments. We report the first evidence showing that movement behavior of birds during translocation experiments is similar to their natural movement behavior. Therefore, translocation experiments may be reliable tools to address effects of landscape structure on animal movement. We observed consistent selection of landscape elements between translocated and non-translocated birds, indicating that both routine and translocation movement studies lead to similar conclusions regarding the effect of landscape structure and forest composition on functional connectivity. Our observation that hummingbirds avoid non-forest matrix and select riparian corridors also provides a potential mechanism for pollen limitation in fragmented tropical forest.
Translocation of cell-penetrating peptides into Candida fungal pathogens.
Gong, Zifan; Karlsson, Amy J
2017-09-01
Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.
Glozman, Rina; Okiyoneda, Tsukasa; Mulvihill, Cory M; Rini, James M; Barriere, Herve; Lukacs, Gergely L
2009-03-23
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.
Molecular mechanism and structure of Trigger Factor bound to the translating ribosome
Merz, Frieder; Boehringer, Daniel; Schaffitzel, Christiane; Preissler, Steffen; Hoffmann, Anja; Maier, Timm; Rutkowska, Anna; Lozza, Jasmin; Ban, Nenad; Bukau, Bernd; Deuerling, Elke
2008-01-01
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome–nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors. PMID:18497744
NASA Astrophysics Data System (ADS)
O'Brien, Edward; Vendruscolo, Michele; Dobson, Christopher
2010-03-01
In vitro experiments examining cotranslational folding utilize ribosome-nascent chain complexes (RNCs) in which the nascent chain is stalled at different points of its biosynthesis on the ribosome. We investigate the thermodynamics, kinetics, and structural properties of RNCs containing five different globular and repeat proteins stalled at ten different nascent chain lengths using coarse grained replica exchange simulations. We find that when the proteins are stalled near the ribosome exit tunnel opening they exhibit altered folding coopserativity, quantified by the van't Hoff enthalpy criterion; a significantly altered denatured state ensemble, in terms of Rg and shape parameters (Rg tensor); and the appearance of partially folded intermediates during cotranslation, evidenced by the appearance of a third basin in the free energy profile. These trends are due in part to excluded volume (crowding) interactions between the ribosome and nascent chain. We perform in silico temperature-jump experiments on the RNCs and examine nascent chain folding kinetics and structural changes in the transition state ensemble at various stall lengths.
Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing.
Suzuki, Toshifumi; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Miyake, Noriko; Saitsu, Hirotomo; Takeda, Satoru; Matsumoto, Naomichi
2014-12-01
Structural variations (SVs), including translocations, inversions, deletions and duplications, are potentially associated with Mendelian diseases and contiguous gene syndromes. Determination of SV-related breakpoints at the nucleotide level is important to reveal the genetic causes for diseases. Whole-genome sequencing (WGS) by next-generation sequencers is expected to determine structural abnormalities more directly and efficiently than conventional methods. In this study, 14 SVs (9 balanced translocations, 1 inversion and 4 microdeletions) in 9 patients were analyzed by WGS with a shallow (5 × ) to moderate read coverage (20 × ). Among 28 breakpoints (as each SV has two breakpoints), 19 SV breakpoints had been determined previously at the nucleotide level by any other methods and 9 were uncharacterized. BreakDancer and Integrative Genomics Viewer determined 20 breakpoints (16 translocation, 2 inversion and 2 deletion breakpoints), but did not detect 8 breakpoints (2 translocation and 6 deletion breakpoints). These data indicate the efficacy of WGS for the precise determination of translocation and inversion breakpoints.
Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers
2018-01-01
ABSTRACT Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. PMID:29871918
Charge Requirements for Proton Gradient-driven Translocation of Anthrax Toxin*
Brown, Michael J.; Thoren, Katie L.; Krantz, Bryan A.
2011-01-01
Anthrax lethal toxin is used as a model system to study protein translocation. The toxin is composed of a translocase channel, called protective antigen (PA), and an enzyme, called lethal factor (LF). A proton gradient (ΔpH) can drive LF unfolding and translocation through PA channels; however, the mechanism of ΔpH-mediated force generation, substrate unfolding, and establishment of directionality are poorly understood. One recent hypothesis suggests that the ΔpH may act through changes in the protonation state of residues in the substrate. Here we report the charge requirements of LF's amino-terminal binding domain (LFN) using planar lipid bilayer electrophysiology. We found that acidic residues are required in LFN to utilize a proton gradient for translocation. Constructs lacking negative charges in the unstructured presequence of LFN translocate independently of the ΔpH driving force. Acidic residues markedly increase the rate of ΔpH-driven translocation, and the presequence is optimized in its natural acidic residue content for efficient ΔpH-driven unfolding and translocation. We discuss a ΔpH-driven charge state Brownian ratchet mechanism for translocation, where glutamic and aspartic acid residues in the substrate are the “molecular teeth” of the ratchet. Our Brownian ratchet model includes a mechanism for unfolding and a novel role for positive charges, which we propose chaperone negative charges through the PA channel during ΔpH translocation. PMID:21507946
Zimmer, Adrien; Durand, Cécile; Loira, Nicolás; Durrens, Pascal; Sherman, David James; Marullo, Philippe
2014-01-01
Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity. PMID:24489712
Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.
Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana
2015-03-13
Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi
2014-03-28
Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with amore » Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.« less
Siu, Fai Y.; Spanggord, Richard J.; Doudna, Jennifer A.
2007-01-01
The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP–receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP–receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP–receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo. PMID:17164479
Becker, Annemarie H.; Oh, Eugene; Weissman, Jonathan S.; Kramer, Günter; Bukau, Bernd
2014-01-01
A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors, and enzymes. Many factors act cotranslationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling, RP), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor–RNC interactions are stabilized by crosslinking, the resulting factor–RNC adducts are then nuclease-treated to generate monosomes, and affinity-purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor and is readily adaptable to other cotranslationally acting factors, including eukaryotic factors. Factor–RNC purification and sequencing library preparation takes 7–8 days, sequencing and data analysis can be completed in 5–6 days. PMID:24136347
Topological invariant and cotranslational symmetry in strongly interacting multi-magnon systems
NASA Astrophysics Data System (ADS)
Qin, Xizhou; Mei, Feng; Ke, Yongguan; Zhang, Li; Lee, Chaohong
2018-01-01
It is still an outstanding challenge to characterize and understand the topological features of strongly interacting states such as bound states in interacting quantum systems. Here, by introducing a cotranslational symmetry in an interacting multi-particle quantum system, we systematically develop a method to define a Chern invariant, which is a generalization of the well-known Thouless-Kohmoto-Nightingale-den Nijs invariant, for identifying strongly interacting topological states. As an example, we study the topological multi-magnon states in a generalized Heisenberg XXZ model, which can be realized by the currently available experiment techniques of cold atoms (Aidelsburger et al 2013 Phys. Rev. Lett. 111, 185301; Miyake et al 2013 Phys. Rev. Lett. 111, 185302). Through calculating the two-magnon excitation spectrum and the defined Chern number, we explore the emergence of topological edge bound states and give their topological phase diagram. We also analytically derive an effective single-particle Hofstadter superlattice model for a better understanding of the topological bound states. Our results not only provide a new approach to defining a topological invariant for interacting multi-particle systems, but also give insights into the characterization and understanding of strongly interacting topological states.
Hepp, Christof; Maier, Berenike
2017-10-01
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Yokota, M E; Frison, P S; Marcante, R C; Jorge, L F; Valle, J S; Dragunski, D C; Colauto, N B; Linde, G A
2016-02-22
Translocation of minerals from substrate to mushrooms can change the medicinal characteristics, commercial value, and biological efficiency of mushroom. In the present study, we demonstrated that addition of iron to the substrate reduces the yield of Pleurotus ostreatus mushroom. The biological efficiency of the mushroom varied from 36.53% on the unsupplemented substrate to 2.08% for the substrate with 500 mg/kg iron added. The maximum iron concentration obtained for mushroom was 478.66 mg/kg (dry basis) and the maximum solubility in vitro was 293.70 mg/kg (dry basis). Iron translocation increased the ash and protein content, reduced antioxidant activity, and enhanced the aroma and flavor characteristics of the mushroom. However mushroom has higher amounts of iron than vegetables like collard greens, it is not feasible to use mushrooms as the only dietary source of iron. The study also indicated that because of more bioaccumulation of iron in mycelium than in the mushroom, mycelium and not mushroom, could be a better alternative as a non-animal iron source.
NASA Astrophysics Data System (ADS)
Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine
2016-11-01
The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.
Cotranslational Coat Protein-Mediated Inhibition of Potyviral RNA Translation
Besong-Ndika, Jane; Ivanov, Konstantin I.; Hafrèn, Anders; Michon, Thierry
2015-01-01
ABSTRACT Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production. PMID:25631087
Position-dependent effects of polylysine on Sec protein transport.
Liang, Fu-Cheng; Bageshwar, Umesh K; Musser, Siegfried M
2012-04-13
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.
Position-dependent Effects of Polylysine on Sec Protein Transport*
Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.
2012-01-01
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204
Cancer translocations in human cells induced by zinc finger and TALE nucleases
Piganeau, Marion; Ghezraoui, Hind; De Cian, Anne; Guittat, Lionel; Tomishima, Mark; Perrouault, Loic; René, Oliver; Katibah, George E.; Zhang, Lei; Holmes, Michael C.; Doyon, Yannick; Concordet, Jean-Paul; Giovannangeli, Carine; Jasin, Maria; Brunet, Erika
2013-01-01
Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. The wealth of genomic aberrations found in cancer, however, makes it challenging to assign a specific phenotypic change to a specific aberration. In this study, we set out to use genome editing with zinc finger (ZFN) and transcription activator-like effector (TALEN) nucleases to engineer, de novo, translocation-associated oncogenes at cognate endogenous loci in human cells. Using ZFNs and TALENs designed to cut precisely at relevant translocation breakpoints, we induced cancer-relevant t(11;22)(q24;q12) and t(2;5)(p23;q35) translocations found in Ewing sarcoma and anaplastic large cell lymphoma (ALCL), respectively. We recovered both translocations with high efficiency, resulting in the expression of the EWSR1–FLI1 and NPM1–ALK fusions. Breakpoint junctions recovered after ZFN cleavage in human embryonic stem (ES) cell–derived mesenchymal precursor cells fully recapitulated the genomic characteristics found in tumor cells from Ewing sarcoma patients. This approach with tailored nucleases demonstrates that expression of fusion genes found in cancer cells can be induced from the native promoter, allowing interrogation of both the underlying mechanisms and oncogenic consequences of tumor-related translocations in human cells. With an analogous strategy, the ALCL translocation was reverted in a patient cell line to restore the integrity of the two participating chromosomes, further expanding the repertoire of genomic rearrangements that can be engineered by tailored nucleases. PMID:23568838
Functional Tat transport of unstructured, small, hydrophilic proteins.
Richter, Silke; Lindenstrauss, Ute; Lücke, Christian; Bayliss, Richard; Brüser, Thomas
2007-11-16
The twin-arginine translocation (Tat) system is a protein translocation system that is adapted to the translocation of folded proteins across biological membranes. An understanding of the folding requirements for Tat substrates is of fundamental importance for the elucidation of the transport mechanism. We now demonstrate for the first time Tat transport for fully unstructured proteins, using signal sequence fusions to naturally unfolded FG repeats from the yeast Nsp1p nuclear pore protein. The transport of unfolded proteins becomes less efficient with increasing size, consistent with only a single interaction between the system and the substrate. Strikingly, the introduction of six residues from the hydrophobic core of a globular protein completely blocked translocation. Physiological data suggest that hydrophobic surface patches abort transport at a late stage, most likely by membrane interactions during transport. This study thus explains the observed restriction of the Tat system to folded globular proteins on a molecular level.
Simulation of polymer translocation through protein channels
Muthukumar, M.; Kong, C. Y.
2006-01-01
A modeling algorithm is presented to compute simultaneously polymer conformations and ionic current, as single polymer molecules undergo translocation through protein channels. The method is based on a combination of Langevin dynamics for coarse-grained models of polymers and the Poisson–Nernst–Planck formalism for ionic current. For the illustrative example of ssDNA passing through the α-hemolysin pore, vivid details of conformational fluctuations of the polymer inside the vestibule and β-barrel compartments of the protein pore, and their consequent effects on the translocation time and extent of blocked ionic current are presented. In addition to yielding insights into several experimentally reported puzzles, our simulations offer experimental strategies to sequence polymers more efficiently. PMID:16567657
Biggins, D.E.; Godbey, J.L.; Horton, B.M.; Livieri, T.M.
2011-01-01
Black-footed ferrets (Mustela nigripes) apparently were extirpated from all native habitats by 1987, and their repatriation requires a combination of captive breeding, reintroductions, and translocations among sites. Improvements in survival rates of released ferrets have resulted from experience in quasi-natural environments during their rearing. Reestablishment of a self-sustaining wild population by 1999 provided the 1st opportunity to initiate new populations by translocating wild-born individuals. Using radiotelemetry, we compared behaviors and survival of 18 translocated wild-born ferrets and 18 pen-experienced captive-born ferrets after their release into a prairie dog colony not occupied previously by ferrets. Translocated wild-born ferrets moved significantly less and had significantly higher short-term survival rates than their captive-born counterparts. Using markrecapture methods, we also assessed potential impacts to the established donor population of removing 37% of its estimated annual production of kits. Annual survival rates for 30 ferret kits remaining at the donor subcomplex were higher than rates for 54 ferret kits at the control subcomplex (unmanipulated) for males (+82%) and females (+32%). Minimum survival of translocated kits did not differ significantly from survival of those at the control subcomplex. Direct translocation of young, wild-born ferrets from site to site appears to be an efficient method to establish new populations. ?? 2011 American Society of Mammalogists.
Miscoding-induced stalling of substrate translocation on the bacterial ribosome.
Alejo, Jose L; Blanchard, Scott C
2017-10-10
Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.
Miscoding-induced stalling of substrate translocation on the bacterial ribosome
Alejo, Jose L.; Blanchard, Scott C.
2017-01-01
Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G–catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors. PMID:28973849
Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys
NASA Technical Reports Server (NTRS)
Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.
1996-01-01
Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.
Lucas, J N; Hill, F S; Burk, C E; Cox, A B; Straume, T
1996-09-01
Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.
Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons 1
Hara-Nishimura, Ikuko; Nishimura, Mikio; Akazawa, Takashi
1985-01-01
In vitro studies to explore the biosynthesis of 11S globulin developing cotyledons of pumpkin (Cucurbita sp.) demonstrated that 11S globulin is synthesized on membrane-bound polysomes. Mr of the translation products (preproglobulin) synthesized by the poly(A)+-RNA isolated from developing cotyledons were determined to be 64,000 and 59,000, which are larger than those of the mature globulin subunit (62,000 and 57,000). Preproglobulin is then cotranslationally processed by cleavage of the signal peptide to produce proglobulin. In vivo pulse-chase experiments showed the sequential transformation of the single-chain proglobulin to mature globulin subunit (disulfide-linked doublet polypeptides) indicating posttranslational modification of the proglobulin. Subcellular fractionation of the pulse-chased intact cotyledons showed that the [35S]methionine label is detectable in proglobulin in rough endoplasmic reticulum shortly after the pulse label. With time, the labeled proteins move into other cellular fractions: proglobulin in the density = 1.24 grams per cubic centimeter fractions after 30 minutes and mature globulin subunit associated with protein bodies after 1 to 2 hours. The distribution of proglobulin in sucrose density gradients did not correspond with those of catalase (microbody marker) or fumarase (mitochondria marker). An accumulation of proglobulin occurred in the density = 1.24 grams per cubic centimeter fractions, whereas the mature globulin was scarcely detectable in this fraction. In contrast, proglobulin was not detected by immunochemical blotting analysis in the protein bodies prepared under the mild conditions from cotyledon protoplasts. The results suggest that the d = 1.24 grams per cubic centimeter fractions are engaged in the translocation of proglobulin into the protein bodies. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16664128
Enhanced polymer capture speed and extended translocation time in pressure-solvation traps
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin
2018-06-01
The efficiency of nanopore-based biosequencing techniques requires fast anionic polymer capture by like-charged pores followed by a prolonged translocation process. We show that this condition can be achieved by setting a pressure-solvation trap. Polyvalent cation addition to the KCl solution triggers the like-charge polymer-pore attraction. The attraction speeds-up the pressure-driven polymer capture but also traps the molecule at the pore exit, reducing the polymer capture time and extending the polymer escape time by several orders of magnitude. By direct comparison with translocation experiments [D. P. Hoogerheide et al., ACS Nano 8, 7384 (2014), 10.1021/nn5025829], we characterize as well the electrohydrodynamics of polymers transport in pressure-voltage traps. We derive scaling laws that can accurately reproduce the pressure dependence of the experimentally measured polymer translocation velocity and time. We also find that during polymer capture, the electrostatic barrier on the translocating molecule slows down the liquid flow. This prediction identifies the streaming current measurement as a potential way to probe electrostatic polymer-pore interactions.
Real-time single cell analysis of Bid cleavage and translocation in cisplatin-induced apoptosis
NASA Astrophysics Data System (ADS)
Liu, Lei; Xing, Da; Pei, Yihui; Chen, Wei R.
2007-02-01
Cancer cell apoptosis can be induced by cisplatin, an efficient anticancer agent. However, its mechanism is not fully understood. Bcl-2 homology domain (BH) 3-only proteins couple stress signals to mitochondrial apoptotic pathways. Calpain-mediated cleavage of the BH3-only protein Bid into a 14 kD truncated protein (tBid) has been implicated in cisplatin-induced apoptotic pathway. We utilized a recombinant fluorescence resonance energy transfer (FRET) Bid probe to determine the kinetics of Bid cleavage during cisplatin-induced apoptosis in ASTC-a-1 cells. The cells were also co-transfected with Bid-CFP and DsRed-Mit to dynamically detect tBid translocation. Cells showed a cleavage of the Bid-FRET probe occurring at about 4-5 h after treated with 20 µM cisplatin. Cleavage of the Bid-FRET probe coincided with a translocation of tBid from the cytosolic to the mitochondria, and the translocation lasted about 1.5 h. Using real-time single-cell analysis, we first observed the kinetics of Bid cleavage and translocation to mitochondria in living cells during cisplatin-induced apoptosis.
Linster, Eric; Wirtz, Markus
2018-06-26
N-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. The majority of proteins is acetylated at their N-terminus in a co-translational manner by ribosome-associated N-terminal acetyltransferases (NAT). However, the recent discovery of Golgi-membrane localized NATs in metazoan, and plastid-localized NATs in plants challenged the dogma of static, co-translational imprinting of the proteome by NTA. Indeed, NTA by the cytosolic NatA is highly dynamic and under hormonal control in plants. Such active control has not been evidenced yet in other eukaryotes and might be an adaptation to the sessile lifestyle of plants forcing them to cope with diverse environmental challenges. The function of NTA for individual proteins is distinct and yet unpredictable. In yeast and humans, NTA has been shown to affect protein-protein interactions, subcellular localization, folding, aggregation, or degradation of a handful of proteins. In particular, the impact of NTA on the protein-turnover is documented by diverse examples in yeast. Consequently, NTA has recently dicovered to be a degradation signal in a distinct branch of the N-end rule pathway ubiquitin-mediated proteolysis. In this review, we summarize the current knowledge on the NAT machinery in higher plants and discuss the potential function of NTA during biotic and abiotic stresses.
Seligmann, Hervé; Warthi, Ganesh
2017-01-01
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Increasing protein production rates can decrease the rate at which functional protein is produced
NASA Astrophysics Data System (ADS)
Sharma, Ajeet; O'Brien, Edward
The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. We combine a well-established ribosome-traffic model with a master-equation model of co-translational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates associated with translation are altered. We find that while J monotonically increases as the rates of translation-initiation, -elongation and -termination increase, F can either increase or decrease. F exhibits non-monotonic behavior because increasing these rates can cause a protein to be synthesized more rapidly but provide less time for nascent-protein domains to co-translationally fold thereby producing less functional nascent protein immediately after synthesis. We further demonstrate that these non-monotonic changes in Faffect the post-translational, steady-state levels of functional protein in a similar manner. Our results provide a possible explanation for recent experimental observations that the specific activity of enzymatic proteins can decrease with increased synthesis rates and can in principle be used to rationally-design transcripts to maximize the production of functional nascent protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakatsu, Miho; Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp; Yoshida, Takako
2011-08-12
Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family ofmore » multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.« less
Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling
2007-07-01
of Smad2 and Smad3 , resulting in their oligomerization with the common mediator Smad4 (10-11). This Smad2/ Smad3 /Smad4 complex can then translocate...Smad2 and Smad3 , enabling oligomerization with Smad4 and translocation of the entire Smad complex into the nucleus. Once in the nucleus, the...performed prior to DOD funding determined that Smad2 but not Smad3 is efficiently acetylated in a p300 depend manner both in in vivo and in vitro models
Claros, M G; Aguilar, M L; Cánovas, F M
2010-09-01
In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine-glutamate translocator. Glutamine-glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S-adenosylmethionine synthesis is guaranteed.
Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion
Yenepalli, Aishwarya; Denais, Celine Marie; Rape, Andrew; Beach, Jordan R.; Wang, Yu-li; Schiemann, William P.; Baskaran, Harihara; Lammerding, Jan
2015-01-01
Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing. PMID:26261182
Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung
2017-11-17
With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.
Regulation of Effector Delivery by Type III Secretion Chaperone Proteins in Erwinia amylovora.
Castiblanco, Luisa F; Triplett, Lindsay R; Sundin, George W
2018-01-01
Type III secretion (TTS) chaperones are critical for the delivery of many effector proteins from Gram-negative bacterial pathogens into host cells, functioning in the stabilization and hierarchical delivery of the effectors to the type III secretion system (TTSS). The plant pathogen Erwinia amylovora secretes at least four TTS effector proteins: DspE, Eop1, Eop3, and Eop4. DspE specifically interacts with the TTS chaperone protein DspF, which stabilizes the effector protein in the cytoplasm and promotes its efficient translocation through the TTSS. However, the role of E. amylovora chaperones in regulating the delivery of other secreted effectors is unknown. In this study, we identified functional interactions between the effector proteins DspE, Eop1, and Eop3 with the TTS chaperones DspF, Esc1 and Esc3 in yeast. Using site-directed mutagenesis, secretion, and translocation assays, we demonstrated that the three TTS chaperones have additive roles for the secretion and translocation of DspE into plant cells whereas DspF negatively affects the translocation of Eop1 and Eop3. Collectively, these results indicate that TTS chaperone proteins exhibit a cooperative behavior to orchestrate the effector secretion and translocation dynamics in E. amylovora .
Kawakatsu, Miho; Goto, Shinji; Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng
2011-08-12
Glutathione S-transferase π (GSTπ), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GSTπ is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GSTπ appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GSTπ was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GSTπ195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GSTπ depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GSTπ, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs. Copyright © 2011 Elsevier Inc. All rights reserved.
Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes
Das, Debasis; Krantz, Bryan A.
2016-01-01
Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins—protective antigen (PA), lethal factor (LF), and edema factor—translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity. PMID:27506790
Islam, Muhymin; Motasim Bellah, Mohammad; Sajid, Adeel; Raziul Hasan, Mohammad; Kim, Young-tae; Iqbal, Samir M.
2015-01-01
Microfluidic channels have been implemented to detect cancer cells from blood using electrical measurement of each single cell from the sample. Every cell provided characteristic current profile based on its mechano-physical properties. Cancer cells not only showed higher translocation time and peak amplitude compared to blood cells, their pulse shape was also distinctively different. Prevalent microfluidic channels are plain but we created nanotexture on the channel walls using micro reactive ion etching (micro-RIE). The translocation behaviors of the metastatic renal cancer cells through plain and nanotextured PDMS microchannels showed clear differences. Nanotexture enhanced the cell-surface interactions and more than 50% tumor cells exhibited slower translocation through nanotextured channels compared to plain devices. On the other hand, most of the blood cells had very similar characteristics in both channels. Only 7.63% blood cells had slower translocation in nanotextured microchannels. The tumor cell detection efficiency from whole blood increased by 14% in nanotextured microchannels compared to plain channels. This interesting effect of nanotexture on translocation behavior of tumor cells is important for the early detection of cancer. PMID:26373820
Vitriol, Eric A; Uetrecht, Andrea C; Shen, Feimo; Jacobson, Ken; Bear, James E
2007-04-17
Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.
Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan
2017-01-01
Abstract The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson–Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. PMID:28369621
Yu, Xiao-Zhang; Gu, Ji-Dong; Xing, Li-Qun
2008-11-01
Uptake and translocation of chromium (Cr) by two willow species was investigated. Intact pre-rooted weeping willows (Salix babylonica L.) and hankow willows (Salix matsudana Koidz) were grown hydroponically and spiked with hexavalent chromium [Cr (VI)] or trivalent chromium [Cr (III)] at 25.0 +/- 0.5 degrees C for 120 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on uptake and translocation of either of the Cr species. Although the two willow species were able to eliminate Cr (VI) and Cr (III) from the hydroponic solution, significant differences in the removal rate for both chemical species were observed between the two willows (p < 0.05): faster removal rate for Cr (III) than Cr (VI) was detected in both willow species; hankow willows showed higher removal potential for both chemical species than weeping willows. Remarkable decreases in the removal rates for both Cr species were detected in the willows with leaves removed (p < 0.05). The results from the treatments spiked with Cr (VI) also revealed that Cr was more mobile in plant materials of hankow willows than that in weeping willows (p < 0.01), while higher translocation efficiency of Cr was observed in weeping willows than hankow willows for the Cr (III) treated (p < 0.01). However, a convincing decrease in the translocation efficiency due to the removal of leaves was only observed in the treatments spiked with Cr (VI) (p < 0.05). Substantial differences existed in the distribution of Cr species in plant materials after exposure of either of the chemical forms: roots and lower stems were the major sites for accumulation in weeping willows exposed to Cr (VI) and Cr (III), respectively; in contrast roots were the only sink in hankow willows exposed to both chemical species. The capacity of willows to assimilate both Cr species was also evaluated using detached leaves and roots of both willow species in sealed glass vessels in vivo. The results indicated that detached roots showed a more remarkable capacity to remove Cr (III) from the hydroponic solution than Cr (VI) (p < 0.01). Although detached leaves of both willow species were able to efficiently eliminate Cr (III), neither of them reduced the concentration of Cr (VI) in the solution. The results suggests that different mechanisms for uptake, assimilation and translocation of Cr (VI) and Cr (III) exist in different willow species and phytoremediation of Cr should consider this factor for the proposed target effectively.
McKiernan, C J; Friedlander, M
1999-12-31
The retinal rod Na(+)/Ca(2+),K(+) exchanger (RodX) is a polytopic membrane protein found in photoreceptor outer segments where it is the principal extruder of Ca(2+) ions during light adaptation. We have examined the role of the N-terminal 65 amino acids in targeting, translocation, and integration of the RodX using an in vitro translation/translocation system. cDNAs encoding human RodX and bovine RodX through the first transmembrane domain were correctly targeted and integrated into microsomal membranes; deletion of the N-terminal 65 amino acids (aa) resulted in a translation product that was not targeted or integrated. Deletion of the first 65 aa had no effect on membrane targeting of full-length RodX, but the N-terminal hydrophilic domain no longer translocated. Chimeric constructs encoding the first 65 aa of bovine RodX fused to globin were translocated across microsomal membranes, demonstrating that the sequence could function heterologously. Studies of fresh bovine retinal extracts demonstrated that the first 65 aa are present in the native protein. These data demonstrate that the first 65 aa of RodX constitute an uncleaved signal sequence required for the efficient membrane targeting and proper membrane integration of RodX.
Molecular pathways: transcription factories and chromosomal translocations.
Osborne, Cameron S
2014-01-15
The mammalian nucleus is a highly complex structure that carries out a diverse range of functions such as DNA replication, cell division, RNA processing, and nuclear export/import. Many of these activities occur at discrete subcompartments that intersect with specific regions of the genome. Over the past few decades, evidence has accumulated to suggest that RNA transcription also occurs in specialized sites, called transcription factories, that may influence how the genome is organized. There may be certain efficiency benefits to cluster transcriptional activity in this way. However, the clustering of genes at transcription factories may have consequences for genome stability, and increase the susceptibility to recurrent chromosomal translocations that lead to cancer. The relationships between genome organization, transcription, and chromosomal translocation formation will have important implications in understanding the causes of therapy-related cancers. ©2013 AACR.
The IMPORTance of the Nucleus during Flavivirus Replication
Lopez-Denman, Adam J.; Mackenzie, Jason M.
2017-01-01
Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe—while closely related—the functional differences between similar viral proteins in their nuclear translocation. PMID:28106839
Topology and Function of Human P-Glycoprotein in Multidrug Resistant Breast Cancer Cells.
1995-09-01
membrane orientation and insertion process co-translationally. For the C-terminal half of Pgp, little is known about the regulatory mechanisms of...solution (in mM: 250 sucrose, 10 Tris-HC1, pH 7.5, 150 NaCl) for further processing . For experiments requiring protease digestion and endoglycosidase...steps), 40 ms after the start of the voltage pulse . Bath and pipette solution compositions were as follows (in mM): NMDG-C1 pipette (280 mosmol/kg
Kirchhoff, Christian; Ebert, Matthias; Jahn, Dieter; Cypionka, Heribert
2018-01-01
Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O 2 - , NO 3 - , and NO 2 - respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes ( napA and nirS ), as well as a mutant ( ppsR ) impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H + /e - for O 2 respiration and about 1.1 H + /e - for NO 3 - and NO 2 - . We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc 1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H + /e - ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green-blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.
Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers
Feld, Geoffrey K.; Thoren, Katie L.; Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Greenberg, Shoshana G.; Williams, Evan R.; Krantz, Bryan A.
2011-01-01
The protein transporter, anthrax lethal toxin, is comprised of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. Following assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LFN). The first α helix and β strand of each LFN unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight on the mechanism of translocation-coupled protein unfolding. PMID:21037566
Functional and molecular alterations in T Cells induced by CCL5.
Cridge, T J; Horowitz, K M; Marinucci, M N; Rose, K M; Wells, M; Werner, M T; Kurt, Robert A
2006-01-01
To delineate whether, and the extent to which, CCL5 could impact T cell function we examined cytokine production and proliferative ability following CCL5 treatment in vitro. We report a decreased ability of splenic T cells to produce IFN-? and TNF-a as well as proliferate in response to crosslinking with antibody to CD3 after 72, but not 24 hours of CCL5 exposure. To identify a mechanism by which CCL5 modulated T cell function, we examined T cell receptor translocation and lipid raft clustering. After exposure to CCL5, T cells were less efficient at translocating the TCR and clustering lipid rafts. Since TCR translocation and lipid raft clustering are required for creation of an immunological synapse, these data suggest that extended exposure to CCL5 may impact T cell effector function by modulating the ability to create a functional immunological synapse.
Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert
2017-06-20
The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.
2011-06-01
Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm. Electronic supplementary information (ESI) available: See DOI: 10.1039/c1nr10080g
Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics.
Price, Joshua L; Shental-Bechor, Dalit; Dhar, Apratim; Turner, Maurice J; Powers, Evan T; Gruebele, Martin; Levy, Yaakov; Kelly, Jeffery W
2010-11-03
Asparagine glycosylation is one of the most common and important post-translational modifications of proteins in eukaryotic cells. N-glycosylation occurs when a triantennary glycan precursor is transferred en bloc to a nascent polypeptide (harboring the N-X-T/S sequon) as the peptide is cotranslationally translocated into the endoplasmic reticulum (ER). In addition to facilitating binding interactions with components of the ER proteostasis network, N-glycans can also have intrinsic effects on protein folding by directly altering the folding energy landscape. Previous work from our laboratories (Hanson et al. Proc. Natl. Acad. Sci. U.S.A. 2009, 109, 3131-3136; Shental-Bechor, D.; Levy, Y. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8256-8261) suggested that the three sugar residues closest to the protein are sufficient for accelerating protein folding and stabilizing the resulting structure in vitro; even a monosaccharide can have a dramatic effect. The highly conserved nature of these three proximal sugars in N-glycans led us to speculate that introducing an N-glycosylation site into a protein that is not normally glycosylated would stabilize the protein and increase its folding rate in a manner that does not depend on the presence of specific stabilizing protein-saccharide interactions. Here, we test this hypothesis experimentally and computationally by incorporating an N-linked GlcNAc residue at various positions within the Pin WW domain, a small β-sheet-rich protein. The results show that an increased folding rate and enhanced thermodynamic stability are not general, context-independent consequences of N-glycosylation. Comparison between computational predictions and experimental observations suggests that generic glycan-based excluded volume effects are responsible for the destabilizing effect of glycosylation at highly structured positions. However, this reasoning does not adequately explain the observed destabilizing effect of glycosylation within flexible loops. Our data are consistent with the hypothesis that specific, evolved protein-glycan contacts must also play an important role in mediating the beneficial energetic effects on protein folding that glycosylation can confer.
Luke, Garry A; Ryan, Martin D
2018-01-01
To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.
2015-01-01
Structural mechanisms and underlying thermodynamic determinants of efficient internalization of charged cationic peptides (cell-penetrating peptides, CPPs) such as TAT, polyarginine, and their variants, into cells, cellular constructs, and model membrane/lipid bilayers (large and giant unilamellar or multilamelar vesicles) continue to garner significant attention. Two widely held views on the translocation mechanism center on endocytotic and nonendocytotic (diffusive) processes. Espousing the view of a purely diffusive internalization process (supported by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of the translocation of a nonaarginine peptide (Arg9) into a model DPPC bilayer. In the case of the Arg9 cationic peptide, recent experiments indicate a higher internalization efficiency of the cyclic structure (cyclic Arg9) relative to the linear conformer. Furthermore, recent all-atom resolution molecular dynamics simulations of cyclic Arg9 [Huang, K.; et al. Biophys. J., 2013, 104, 412–420] suggested a critical stabilizing role of water- and lipid-constituted pores that form within the bilayer as the charged Arg9 translocates deep into the bilayer center. Herein, we use umbrella sampling molecular dynamics simulations with coarse-grained Martini lipids, polarizable coarse-grained water, and peptide to explore the dependence of translocation free energetics on peptide structure and conformation via calculation of potentials of mean force along preselected reaction paths allowing and preventing membrane deformations that lead to pore formation. Within the context of the coarse-grained force fields we employ, we observe significant barriers for Arg9 translocation from bulk aqueous solution to bilayer center. Moreover, we do not find free-energy minima in the headgroup–water interfacial region, as observed in simulations using all-atom force fields. The pore-forming paths systematically predict lower free-energy barriers (ca. 90 kJ/mol lower) than the non pore-forming paths, again consistent with all-atom force field simulations. The current force field suggests no preference for the more compact or covalently cyclic structures upon entering the bilayer. Decomposition of the PMF into the system’s components indicates that the dominant stabilizing contribution along the pore-forming path originates from the membrane as both layers of it deformed due to the formation of pore. Furthermore, our analysis revealed that although there is significant entropic stabilization arising from the enhanced configurational entropy exposing more states as the peptide moves through the bilayer, the enthalpic loss (as predicted by the interactions of this coarse-grained model) far outweighs any former stabilization, thus leading to significant barrier to translocation. Finally, we observe reduction in the translocation free-energy barrier for a second Arg9 entering the bilayer in the presence of an initial peptide restrained at the center, again, in qualitative agreement with all-atom force fields. PMID:24506488
Genome Editing of Structural Variations: Modeling and Gene Correction.
Park, Chul-Yong; Sung, Jin Jea; Kim, Dong-Wook
2016-07-01
The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification of an Essential Region for Translocation of Clostridium difficile Toxin B.
Chen, Shuyi; Wang, Haiying; Gu, Huawei; Sun, Chunli; Li, Shan; Feng, Hanping; Wang, Jufang
2016-08-15
Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and translocation domain. Few studies have investigated the translocation domain and its mechanism of action. Recently, it was demonstrated that a segment of 97 amino acids (AA 1756-1852, designated D97) within the translocation domain of TcdB is essential for the in vitro and in vivo toxicity of TcdB. However, the mechanism by which D97 regulates the action of TcdB in host cells and the important amino acids within this region are unknown. In this study, we discovered that a smaller fragment, amino acids 1756-1780, located in the N-terminus of the D97 fragment, is essential for translocation of the effector glucosyltransferase domain into the host cytosol. A sequence of 25AA within D97 is predicted to form an alpha helical structure and is the critical part of D97. The deletion mutant TcdB∆1756-1780 showed similar glucosyltransferase and cysteine protease activity, cellular binding, and pore formation to wild type TcdB, but it failed to induce the glucosylation of Rho GTPase Rac1 of host cells. Moreover, we found that TcdB∆1756-1780 was rapidly degraded in the endosome of target cells, and therefore its intact glucosyltransferase domain was unable to translocate efficiently into host cytosol. Our finding provides an insight into the molecular mechanisms of action of TcdB in the intoxication of host cells.
Consonni, Sarah V; Gloerich, Martijn; Spanjaard, Emma; Bos, Johannes L
2012-03-06
Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.
Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel
2015-09-18
Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.
Cornforth, Michael N; Anur, Pavana; Wang, Nicholas; Robinson, Erin; Ray, F Andrew; Bedford, Joel S; Loucas, Bradford D; Williams, Eli S; Peto, Myron; Spellman, Paul; Kollipara, Rahul; Kittler, Ralf; Gray, Joe W; Bailey, Susan M
2018-05-11
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.
Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D
2016-08-01
During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.
Allosteric response and substrate sensitivity in peptide binding of the signal recognition particle.
Wang, Connie Y; Miller, Thomas F
2014-10-31
We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier.
Bramini, Mattia; Ye, Dong; Hallerbach, Anna; Nic Raghnaill, Michelle; Salvati, Anna; Aberg, Christoffer; Dawson, Kenneth A
2014-05-27
Understanding nanoparticle interactions with the central nervous system, in particular the blood-brain barrier, is key to advances in therapeutics, as well as assessing the safety of nanoparticles. Challenges in achieving insights have been significant, even for relatively simple models. Here we use a combination of live cell imaging and computational analysis to directly study nanoparticle translocation across a human in vitro blood-brain barrier model. This approach allows us to identify and avoid problems in more conventional inferential in vitro measurements by identifying the catalogue of events of barrier internalization and translocation as they occur. Potentially this approach opens up the window of applicability of in vitro models, thereby enabling in depth mechanistic studies in the future. Model nanoparticles are used to illustrate the method. For those, we find that translocation, though rare, appears to take place. On the other hand, barrier uptake is efficient, and since barrier export is small, there is significant accumulation within the barrier.
Uncoupling of sexual reproduction from homologous recombination in homozygous Oenothera species.
Rauwolf, U; Greiner, S; Mráček, J; Rauwolf, M; Golczyk, H; Mohler, V; Herrmann, R G; Meurer, J
2011-07-01
Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms-a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity.
A viral peptide for intracellular delivery
NASA Astrophysics Data System (ADS)
Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania
2012-10-01
Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.
Inui, Hideyuki; Wakai, Taketo; Gion, Keiko; Yamazaki, Kiyoshi; Kim, Yun-Seok; Eun, Heesoo
2011-01-01
Zucchini cultivars Cucurbita pepo subsp. ovifera cv. Patty Green and subsp. pepo cv. Gold Rush were cultivated hydroponically in a nutrient solution supplemented with a mixture of dioxins and dioxin-like compounds. Patty Green and Gold Rush showed low and high accumulation of these compounds in the aerial parts respectively. In both cultivars, the accumulation of each congener negatively depended on its hydrophobicity. This suggests that desorption and solubilization were partly responsible for congener specificity of accumulation, since this was not found in soil experiments. In contrast, no clear difference in accumulation in the roots was observed between the cultivars, whereas the translocation factors, which are indicators of efficient translocation from the roots to the aerial parts, differed among the congeners hydrophobicity-dependently. There were positive correlations between accumulation in the roots and the hydrophobicity of the polychlorinated biphenyl congeners in both cultivars. These results indicate that translocation was also partly responsible for the congener specificity and accumulation concentrations.
Idaszkin, Yanina L; Lancelotti, Julio L; Pollicelli, María P; Marcovecchio, Jorge E; Bouza, Pablo J
2017-05-15
Phytoremediation is considered the most appropriate technique to restore metal polluted soil, given its low cost, high efficiency and low environmental impact. Spartina densiflora and Sarcocornia perennis are perennial halophytes growing under similar environmental conditions in San Antonio marsh (Patagonia Argentina), therefore it is interesting to compare their phytoremediation potential capacity. To this end, we compared concentrations of Pb, Zn, Cu, and Fe in soils and in below- and above-ground structures of S. perennis and S. densiflora. It was concluded that both species are able to inhabit Pb, Zn, and Cu polluted soils. Although Sarcocornia translocated more metals to the aerial structures than Spartina, both species translocated only when they were growing in soils with low metal concentrations. It seems that the plants translocate only a certain proportion of the metal contained in the soil. These results suggest that both species could be considered candidates to phytostabilize these metals in polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uncoupling of sexual reproduction from homologous recombination in homozygous Oenothera species
Rauwolf, U; Greiner, S; Mráček, J; Rauwolf, M; Golczyk, H; Mohler, V; Herrmann, R G; Meurer, J
2011-01-01
Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms—a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity. PMID:21448231
Efficient Recreation of t(11;22) EWSR1-FLI1+ in Human Stem Cells Using CRISPR/Cas9.
Torres-Ruiz, Raul; Martinez-Lage, Marta; Martin, Maria C; Garcia, Aida; Bueno, Clara; Castaño, Julio; Ramirez, Juan C; Menendez, Pablo; Cigudosa, Juan C; Rodriguez-Perales, Sandra
2017-05-09
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.
Elektorowicz, M; Keropian, Z
2015-01-01
The potential for phytoremediation and phytostabilization of lithium in lieu with vanadium and chromium on a formulated acidic heterogeneous growth media engineered around lithium mine tailings, was investigated in four phases: (1) overall efficiency of the removal of the three metals, (2) bioaccumulation ratios of the three metals, (3) overall relative growth rate, and (4) translocation index of the three metals in the physiology of the hyperaccumulator plant. A pot study was conducted to assess the suitability of Brassica juncea (Indian mustard) in a phytoremediation process whereby it was lingered for eighty-six days under homogeneous growth conditions and irrigated bidaily with organic fertilizer amended with LiCl. A post harvest data analysis was achieved through ashing and the implementation of cold digestion procedure in a concentrated hydrochloric acidic matrix. In physiological efficiency parameters, the hyperaccumulator plant was twice as able to phytostabilize chromium and four times was able to phytostabilize vanadium in comparison to lithium. Moreover, it was extremely efficient in translocating and accumulating lithium inside its upper physiological sites, more so than chromium and vanadium, thereby demonstrating Indian mustard, as a hyperaccumulator plant, for phytoextraction and phytostabilization in an acidic heterogeneous rhizosphere, with an extremely low relative growth rate.
Richebourg, Steven; Eclache, Virginie; Perot, Christine; Portnoi, Marie-France; Van den Akker, Jacqueline; Terré, Christine; Maareck, Odile; Soenen, Valérie; Viguié, Franck; Laï, Jean-Luc; Andrieux, Joris; Corm, Sélim; Roche-Lestienne, Catherine
2008-04-15
Many published studies have indicated that various mechanisms could be involved in the genesis of variant chronic myelogeneous leukemia (CML) translocations. These are mainly one-step or two-step mechanisms, associated or not with deletions adjacent to the translocation junction on der(9) or der(22) chromosomes (or both). Based on the mechanism of genesis, it has been suggested that the complexity may affect the occurrence of ABL1 and BCR deletions (either or both), or may be associated with the CML disease course, and thus could determine the response to imatinib therapy. Through a retrospective molecular cytogenetic study of 41 CML patients with variant Philadelphia chromosome (Ph), we explored the genesis of these variant rearrangements and analyzed the correlation with deletion status and imatinib efficiency. Our results confirmed that the one-step mechanism is the most frequent, evidenced in 30 of 41 patients (73%); 3 patients demonstrated other more complex multistep events and 8 patients (19.5%) harbored ABL1 or BCR deletions that are not significantly associated with the complexity of translocation genesis. We also found no association between one-step, two-step, or multistep mechanisms and the response to imatinib therapy.
Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.
2016-01-01
As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111
Jain, Aastha; Chugh, Archana
2016-09-01
Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics. © 2016 Federation of European Biochemical Societies.
Structure of a eukaryotic SWEET transporter in a homotrimeric complex.
Tao, Yuyong; Cheung, Lily S; Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B; Feng, Liang
2015-11-12
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.
Samrat, Subodh Kumar; Ha, Binh L; Zheng, Yi; Gu, Haidong
2018-01-15
Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It targets several host factors for proteasomal degradation and subsequently activates viral expression. ICP0 has a nuclear localization sequence and functions in the nucleus early during infection. However, later in infection, ICP0 is found solely in the cytoplasm. The molecular mechanism and biological function of the ICP0 nuclear-to-cytoplasmic translocation are not well understood. In this study, we sought to characterize elements important for this translocation. We found that (i) in human embryonic lung fibroblast (HEL) cells, ICP0 C-terminal residues 741 to 775 were necessary but not sufficient for the nuclear-to-cytoplasmic translocation; (ii) the loss of ICP0 E3 ubiquitin ligase activity, which led to defective viral replication in nonpermissive cells, also caused mutant ICP0 to be retained in the nucleus of HEL cells; (iii) in permissive U2OS cells, however, ICP0 lacking E3 ligase activity was translocated to the cytoplasm at a pace faster than that of wild-type ICP0, suggesting that nuclear retention of ICP0 occurs in an ICP0 E3 ligase-dependent manner; and (iv) the ICP0 C terminus and late viral proteins cooperate in order to overcome nuclear retention and stimulate ICP0 cytoplasmic translocation. Taken together, less ICP0 nuclear retention may contribute to the permissiveness of U2OS cells to HSV-1 in the absence of functional ICP0. IMPORTANCE A distinct characteristic for eukaryotes is the compartmentalization of cell metabolic pathways, which allows greater efficiency and specificity of cellular functions. ICP0 of HSV-1 is a multifunctional viral protein that travels through different compartments as infection progresses. Its main regulatory functions are carried out in the nucleus, but it is translocated to the cytoplasm late during HSV-1 infection. To understand the biological significance of cytoplasmic ICP0 in HSV-1 infection, we investigated the potential players involved in this nuclear-to-cytoplasmic translocation. We found that there is a nuclear retention force in an ICP0 E3 ubiquitin ligase-dependent manner. In addition, we identified the C terminus of ICP0 as a cis element cooperating with late viral proteins to overcome the nuclear retention and stimulate the nuclear-to-cytoplasmic translocation of ICP0. Copyright © 2018 American Society for Microbiology.
Yu, Xiao-Zhang; Gu, Ji-Dong
2008-06-01
The effect of available nitrogen in nutrient solution on removal of two chemical forms of chromium (Cr) by plants was investigated. Pre-rooted hankow willows (Salix matsudana Koidz) were grown in a hydroponic solution system with or without nitrogen, and amended with hexavalent chromium [Cr (VI)] or trivalent chromium [Cr (III)] at 25.0+/-0.5 degrees C for 192 h. The results revealed that higher removal of Cr by plants was achieved from the hydroponic solutions without any nitrogen than those containing nitrogen. Although faster removal of Cr (VI) than Cr (III) was observed, translocation of Cr (III) within plant materials was more efficient than Cr (VI). Substantial difference existed in the distribution of Cr in different parts of plant tissues due to the nitrogen in nutrient solutions (p<0.05): lower stems were the major sink for both Cr species in willows grown in the N-free nutrient solutions and more Cr was accumulated in the roots of plants in N-containing ones. No significant difference was found in the removal rate of Cr (VI) between willows grown in the N-free and N-containing solutions (p>0.05). Removal rates of Cr (III) decreased linearly with the strength of nutrient solutions with or without N addition (p<0.01). Translocation efficiencies of both Cr species increased proportionally with the strength of N-containing nutrient solutions and decreased with the strength of N-free nutrient solutions. Results suggest that uptake and translocation mechanisms of Cr (VI) and Cr (III) are apparently different in hankow willows. The presence of easily available nitrogen and other nutrient elements in the nutrient solutions had a more pronounced influence on the uptake of Cr (III) than Cr (VI). Nitrogen availability and quantities in the ambient environment will affect the translocation of both Cr species and their distribution in willows in phytoremediation.
Translation regulation of mammalian selenoproteins.
Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent
2018-05-09
Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.
Livingstone, Mark; Folkman, Lukas; Yang, Yuedong; Zhang, Ping; Mort, Matthew; Cooper, David N; Liu, Yunlong; Stantic, Bela; Zhou, Yaoqi
2017-10-01
Synonymous single-nucleotide variants (SNVs), although they do not alter the encoded protein sequences, have been implicated in many genetic diseases. Experimental studies indicate that synonymous SNVs can lead to changes in the secondary and tertiary structures of DNA and RNA, thereby affecting translational efficiency, cotranslational protein folding as well as the binding of DNA-/RNA-binding proteins. However, the importance of these various features in disease phenotypes is not clearly understood. Here, we have built a support vector machine (SVM) model (termed DDIG-SN) as a means to discriminate disease-causing synonymous variants. The model was trained and evaluated on nearly 900 disease-causing variants. The method achieves robust performance with the area under the receiver operating characteristic curve of 0.84 and 0.85 for protein-stratified 10-fold cross-validation and independent testing, respectively. We were able to show that the disease-causing effects in the immediate proximity to exon-intron junctions (1-3 bp) are driven by the loss of splicing motif strength, whereas the gain of splicing motif strength is the primary cause in regions further away from the splice site (4-69 bp). The method is available as a part of the DDIG server at http://sparks-lab.org/ddig. © 2017 Wiley Periodicals, Inc.
Rosser, Meredith F N; Grove, Diane E; Chen, Liling; Cyr, Douglas M
2008-11-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRDeltaF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.
Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent
2018-04-13
Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.
From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
Farinha, Carlos M; Canato, Sara
2017-01-01
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
USDA-ARS?s Scientific Manuscript database
A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...
Two MATE Proteins Play a Role in Iron Efficiency in Soybean
USDA-ARS?s Scientific Manuscript database
Iron is a necessary but often limiting nutrient for plant growth and development. Soybeans grown on the high-pH calcareous soils are especially prone to developing iron deficiency chlorosis and suffering the resultant yield losses. Once iron is transported into the root, it must be translocated from...
Becker, S; Klenk, H D; Mühlberger, E
1996-11-01
The surface protein (GP) of Marburg virus (MBG) is synthesized as a 90-kDa precursor protein which is cotranslationally modified by the addition of high-mannose sugars (140 kDa). This step is followed by the conversion of the N-linked sugars to endoglycosidase H (endo H)-resistant species and the addition of O-linked oliosaccharides leading to a mature protein of 170-200 kDa approximately 30 min after pulse labelling. The mature form of GP is efficiently transported to the plasma membrane. GP synthesized using the T7 polymerase-driven vaccinia virus expression system was transported with essentially the same kinetics as the authentic GP. However, the protein that is shown to appear 30 min after pulse labeling at the plasma membrane was slighly smaller (160 kDa) than GP incorporated into the virions (170 kDa). Using a recombinant baculovirus, GP was expressed at high levels in insect cells. Three different species could be identified: a 90-kDa unglycosylated GP localized in the cytoplasm and two 140-kDa glycosylated proteins. Characterization of the glycosylated GPs revealed that processing of the oligosaccharides of GP was less efficient in insect cells than in mammalian cells. The majority of GP remained endo H sensitive containing high-mannose type N-linked glycans, whereas only a small fraction became endo H resistant carrying processed N-glycans and O-glycans. Tunicamycin treatment of the GP-expressing cells demonstrated that N-glycosylation is essential for the transport of the MBG surface protein.
Chen, Zhangguo; Dupré, Denis J; Le Gouill, Christian; Rola-Pleszczynski, Marek; Stanková, Jana
2002-03-01
As with most G-protein-coupled receptors, repeated agonist stimulation of the platelet-activating factor receptor (PAFR) results in its desensitization, sequestration, and internalization. In this report, we show that agonist-induced PAFR internalization is independent of G-protein activation but is dependent on arrestins and involves the interaction of arrestins with a limited region of the PAFR C terminus. In cotransfected COS-7 cells, both arrestin-2 and arrestin-3 could be coimmunoprecipitated with PAFR, and agonist stimulation of PAFR induced the translocation of both arrestin-2 and arrestin-3. Furthermore, coexpression of arrestin-2 with PAFR potentiated receptor internalization, whereas agonist-induced PAFR internalization was inhibited by a dominant negative mutant of arrestin-2. The coexpression of a minigene encoding the C-terminal segment of the receptor abolished PAF-induced arrestin translocation and inhibited PAFR internalization. Using C terminus deletion mutants, we determined that the association of arrestin-2 with the receptor was dependent on the region between threonine 305 and valine 330 because arrestin-2 could be immunoprecipitated with the mutant PAFRstop330 but not PAFRstop305. Consistently, stop330 could mediate agonist-induced arrestin-2 translocation, whereas stop305 could not. Two other deletion mutants with slightly longer regions of the C terminus, PAFRstop311 and PAFRstop317, also failed to induce arrestin-2 translocation. Finally, the PAFR mutant Y293A, containing a single substitution in the putative internalization motif DPXXY in the seventh transmembrane domain (which we had shown to be able to internalize but not to couple to G-proteins) could efficiently induce arrestin translocation. Taken together, our results indicate that ligand-induced PAFR internalization is dependent on arrestins, that PAFR can associate with both arrestin-2 and -3, and that their translocation involves interaction with the region of residues 318-330 in the PAFR C terminus but is independent of G-protein activation.
Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P
2012-03-01
Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Goris, Marianne; Magin, Robert S; Foyn, Håvard; Myklebust, Line M; Varland, Sylvia; Ree, Rasmus; Drazic, Adrian; Bhambra, Parminder; Støve, Svein I; Baumann, Markus; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas
2018-04-24
N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties. Copyright © 2018 the Author(s). Published by PNAS.
Zhang, Zhongchun; Yu, Qi; Du, Hanying; Ai, Wenli; Yao, Xuan; Mendoza-Cózatl, David G; Qiu, Baosheng
2016-06-01
Investigation on the molecular mechanisms of cadmium hyperaccumulation has been mostly focused on members of the Brassicaceae family. Here, we show using hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of Sedum alfredii (Crassulaceae), that Cd hypertolerance correlates with higher Cd efflux rates and less cadmium accumulation in suspension cells and roots. The heavy metal ATPase HMA2, but not HMA4, was highly expressed in suspension cultures and roots from HP plants compared to NHP cells and plants. Reciprocal grafting also showed that Cd translocation is more efficient in HP plants. These results suggest that cadmium efflux is a conserved mechanism among natural cadmium hyperaccumulator species. © 2016 Federation of European Biochemical Societies.
Shuga, Joe; Zeng, Yong; Novak, Richard; Lan, Qing; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Li, Laiyu; Hubbard, Alan; Zhang, Luoping; Mathies, Richard A; Smith, Martyn T
2013-09-01
Cancers are heterogeneous and genetically unstable. New methods are needed that provide the sensitivity and specificity to query single cells at the genetic loci that drive cancer progression, thereby enabling researchers to study the progression of individual tumors. Here, we report the development and application of a bead-based hemi-nested microfluidic droplet digital PCR (dPCR) technology to achieve 'quantitative' measurement and single-molecule sequencing of somatically acquired carcinogenic translocations at extremely low levels (<10(-6)) in healthy subjects. We use this technique in our healthy study population to determine the overall concentration of the t(14;18) translocation, which is strongly associated with follicular lymphoma. The nested dPCR approach improves the detection limit to 1×10(-7) or lower while maintaining the analysis efficiency and specificity. Further, the bead-based dPCR enabled us to isolate and quantify the relative amounts of the various clonal forms of t(14;18) translocation in these subjects, and the single-molecule sensitivity and resolution of dPCR led to the discovery of new clonal forms of t(14;18) that were otherwise masked by the conventional quantitative PCR measurements. In this manner, we created a quantitative map for this carcinogenic mutation in this healthy population and identified the positions on chromosomes 14 and 18 where the vast majority of these t(14;18) events occur.
Sloan, Joshua L; Islam, M Anisul; Jacobs, Douglass F
2016-01-01
Northern red oak (Quercus rubra L.) seedlings are frequently planted on suboptimal sites in their native range in North America, subjecting them to environmental stresses, such as flooding, for which they may not be well adapted. Members of the genus Quercus exhibit a wide range of responses to flooding, and responses of northern red oak to flooding remain inadequately described. To better understand the physiological effects of root system inundation in post-transplant northern red oak seedlings and the effects of flooding on endogenous patterns of resource allocation within the plant, we observed the effects of short-term flooding initiated at the linear shoot growth stage on net photosynthetic rates, dark respiration, chlorophyll fluorescence (Fv/Fm) and translocation of (13)C-labeled current photosynthate. Downward translocation of current photosynthate declined after 4 days of flooding and was the first measured physiological response to flooding; net photosynthetic rates decreased and dark respiration rates increased after 7 days of flooding. Short-term flooding did not affect maximal potential efficiency of photosystem II (Fv/Fm). The finding that decreased downward translocation of (13)C-labeled current photosynthate preceded reduced net photosynthesis and increased dark respiration during flooding suggests the occurrence of sink-limited photosynthesis under these conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lin, Ping-Yuan; Liu, Hung-Jen; Chang, Ching-Dong; Chen, Yo-Chia; Chang, Chi-I; Shih, Wen-Ling
2015-04-01
In this study the mechanism of avian reovirus (ARV) S1133-induced pathogenesis was investigated, with a focus on the contribution of ER stress to apoptosis. Our results showed that upregulation of the ER stress response protein, as well as caspase-3 activation, occurred in ARV S1133-infected cultured cells and in SPF White Leghorn chicks organs. Upon infection, Bim was translocated specifically to the ER, but not mitochondria, in the middle to late infectious stages. In addition, ARV S1133 induced JNK phosphorylation and promoted JNK-Bim complex formation, which correlated with the Bim translocation and apoptosis induction that was observed at the same time point. Knockdown of BiP/GRP78 by siRNA and inhibition of BiP/GRP78 using EGCG both abolished the formation of the JNK-Bim complex, caspase-3 activation, and subsequent apoptosis induction by ARV S1133 efficiently. These results suggest that BiP/GRP78 played critical roles and works upstream of JNK-Bim in response to the ARV S1133-mediated apoptosis process.
Actin-Binding Protein Requirement for Cortical Stability and Efficient Locomotion
NASA Astrophysics Data System (ADS)
Cunningham, C. Casey; Gorlin, Jed B.; Kwiatkowski, David J.; Hartwig, John H.; Janmey, Paul A.; Randolph Byers, H.; Stossel, Thomas P.
1992-01-01
Three unrelated tumor cell lines derived from human malignant melanomas lack actin-binding protein (ABP), which cross-links actin filaments in vitro and connects these filaments to plasma membrane glycoproteins. The ABP-deficient cells have impaired locomotion and display circumferential blebbing of the plasma membrane. Expression of ABP in one of the lines after transfection restored translocational motility and reduced membrane blebbing. These findings establish that ABP functions to stabilize cortical actin in vivo and is required for efficient cell locomotion.
Structure of a eukaryotic SWEET transporter in a homotrimeric complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yuyong; Cheung, Lily S.; Li, Shuo
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loadingmore » for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. In this paper, we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Finally, insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.« less
Structure of a eukaryotic SWEET transporter in a homotrimeric complex
Tao, Yuyong; Cheung, Lily S.; Li, Shuo; ...
2015-10-19
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loadingmore » for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. In this paper, we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Finally, insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.« less
Durães, Nuno; Bobos, Iuliu; Ferreira da Silva, Eduardo; Dekayir, Abdelilah
2015-02-01
The ability of aquatic (Juncus effusus L., Scirpus holoschoenus L., Thypha latifolia L. and Juncus sp.) and land (Cistus ladanifer L., Erica andevalensis C.-R., Nerium oleander L., Isatis tinctoria L., Rosmarinus officinalis L., Cynodon dactylon L. and Hordeum murinum L.) plants from Portugal (Aljustrel, Lousal and São Domingos) and Morocco (Tighza and Zeida) mining areas to uptake, translocate and tolerate heavy metals (Cu, Zn and Pb) was evaluated. The soils (rhizosphere) of the first mining area are characterized by high acidity conditions (pH 2-5), whereas from the second area, by alkaline conditions (pH 7.0-8.5). Physicochemical parameters and mineralogy of the rhizosphere were determined from both areas. Chemical analysis of plants and the rhizosphere was carried out by inductively coupled plasma emission spectrometry. The sequential chemical extraction procedure was applied for rhizosphere samples collected from both mining areas. In the acid conditions, the aquatic plants show a high capacity for Zn bioaccumulation and translocation and less for Pb, reflecting the following metal mobility sequence: Zn > Cu > Pb. Kaolinite detected in the roots by infrared spectroscopy (IR) contributed to metal fixation (i.e. Cu), reducing its translocation to the aerial parts. Lead identified in the roots of land plants (e.g. E. andevalensis) was probably adsorbed by C-H functional groups identified by IR, being easily translocated to the aerial parts. It was found that aquatic plants are more efficient for phytostabilization than bioaccumulation. Lead is more bioavailable in the rhizosphere from Morocco mining areas due to scarcity of minerals with high adsorption ability, being absorbed and translocated by both aquatic and land plants.
Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao
2017-01-01
Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589
Structure of a eukaryotic SWEET transporter in a homo-trimeric complex
Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B.; Feng, Liang
2016-01-01
Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use related proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter Family (SSF; only animal kingdom), and SWEETs1-5. SWEETs carry mono- and disaccharides6 across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion7, phloem loading for long distance translocation8, pollen nutrition9, and seed filling10. Plant SWEETs cause pathogen susceptibility by sugar leakage from infected cells3,11,12. The vacuolar AtSWEET2 sequesters sugars in root vacuoles; loss-of-function increases susceptibility to Pythium infection13. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice, consists of an asymmetrical pair of triple-helix-bundles (THBs), connected by an inversion linker helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first THB within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs is valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux. PMID:26479032
McEvoy, K; Hayes, J; Kealey, C; Brady, D
2016-09-01
Antimicrobial resistance poses a significant global healthcare predicament. An attractive approach to the dilemma of drug-resistant bacteria is the development and use of agents that interfere with the ability of pathogens to adhere to human tissue. The influence of sweet whey protein concentrate (SWPC), and selected hydrolysates of this material, on host-pathogen interactions of Cronobacter sakazakii (ATCC 29544) was investigated. CaCo-2 cell line was selected as a suitable model for the human intestinal epithelium. Cronobacter sakazakiiATCC 29544 was identified as the strain with the highest adhesion efficiency. SWPC reduced its association by 80% (P < 0·01), invasion 35% (P < 0·01), and translocation >95% (P < 0·001). SWPC enzymatically modified with lipase, trypsin and pepsin had variable effects on these behaviours with the most significant effect exhibited with the lipase treatment. SWPC produced an almost total inhibition of translocation of C. sakazakii across a CaCo-2 cell monolayer. Lipase and pepsin treated SWPC also reduced translocation by 75% and 90% respectively. However, trypsin treatment nullified the effect SWPC had on translocation. The presence of viable bacterial cells and SWPC both increased expression of IL-8 following Cronobacter invasion into CaCo-2 cells. Factors governing adherence, invasion and translocation of Cronobacter spp. to human intestinal cells are multi-factorial and digested milk products exhibit varying effects dependant on their enzyme modification and protein lipid content. These findings contribute to our, as yet, incomplete understanding of Cronobacter pathogenesis, and suggest that SWPC in whole and enzymatically hydrolysed forms, may provide a cost-effective source of bioactive materials with inhibitory effects on bacterial virulence. © 2016 The Society for Applied Microbiology.
Liu, Mohan; Li, Yang; Che, Yeye; Deng, Shaojun; Xiao, Yan
2017-10-01
This study aimed to explore the effects of different fertilizers and their combinations on growth and nutrient and Cd uptake of Lolium multiflorum. Compared with control treatment, chemical fertilizer, organic manure, and their conjunctions with biofertilizer increased shoot biomass. Biofertilizers were found to cause significant reductions in shoot biomass of plants grown in organic manure-treated and control soil. Decreased soil-available N and P and shoot N and K concentrations in biofertilizer amendment treatments indicated that plant growth and nutrient absorption might be negatively affected under nutrient deficiency conditions. Elevated shoot biomasses contributed to the highest shoot Cd contents in chemical fertilizer and chemical fertilizer + biofertilizer treatments among all treatments. But the maximum translocation efficiency occurred in biofertilizer + chemical fertilizer + organic manure treatment, followed by organic manure and chemical fertilizer + organic manure treatments. Based on the results, we can conclude that the application of only the biofertilizer Bacillus subtilis should be avoided in nutrient-limited soils. Chemical fertilizer application could benefit the amount of Cd in shoots, and organic manure application and its combinations could result in the higher translocation efficiency.
Protecting the proteome: Eukaryotic cotranslational quality control pathways
2014-01-01
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822
Wang, Q; Xiong, D; Zhao, P; Yu, X; Tu, B; Wang, G
2011-11-01
Bioremediation of highly arsenic (As)-contaminated soil is difficult because As is very toxic for plants and micro-organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth-promoting rhizobacterium (PGPR). A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05-17) grown on As-amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg(-1)) inhibited its growth. With the bacterial inoculation, in the 300 mg kg(-1) As-amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above-ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation. © 2011 The Authors. Journal of Applied Microbiology ©2011 The Society for Applied Microbiology.
Development of an inducible platform for intercellular protein delivery.
Siller, Richard; Dufour, Eric; Lycke, Max; Wilmut, Ian; Jung, Yong-Wook; Park, In Hyun; Sullivan, Gareth J
2017-04-30
A challenge to protein based therapies is the ability to produce biologically active proteins and their ensured delivery. Various approaches have been utilised including fusion of protein transduction domains with a protein or biomolecule of interest. A compounding issue is lack of specificity, efficiency and indeed whether the protein fusions are actually translocated into the cell and not merely an artefact of the fixation process. Here we present a novel platform, allowing the inducible export and uptake of a protein of interest. The system utilises a combination of the Tetracyline repressor system, combined with a fusion protein containing the N-terminal signal peptide from human chorionic gonadotropin beta-subunit, and a C-terminal poly-arginine domain for efficient uptake by target cells. This novel platform was validated using enhanced green fluorescent protein as the gene of interest. Doxycycline efficiently induced expression of the fusion protein. The human chorionic gonadotropin beta-subunit facilitated the export of the fusion protein into the cell culture media. Finally, the fusion protein was able to efficiently enter into neighbouring cells (target cells), mediated by the poly-arginine cell penetrating peptide. Importantly we have addressed the issue of whether the observed uptake is an artefact of the fixation process or indeed genuine translocation. In addition this platform provides a number of potential applications in diverse areas such as stem cell biology, immune therapy and cancer targeting therapies. Copyright © 2017 Elsevier B.V. All rights reserved.
2014-01-01
Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. Conclusions The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion. PMID:24940480
Cooper, Colin A; Zhang, Kun; Andres, Sara N; Fang, Yuan; Kaniuk, Natalia A; Hannemann, Mandy; Brumell, John H; Foster, Leonard J; Junop, Murray S; Coombes, Brian K
2010-02-05
Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.
Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
Ouyang, Ying
2005-01-01
The uptake, transport, and accumulation of metals by plants are functions central to successful phytoextraction. This study investigates the uptake and translocation of arsenic from a contaminated sandy soil by a mature Chinese brake fern (Pteris vittata L.). An existing mathematical model for the coupled transport of water, heat, and solutes in the soil-plant-atmosphere continuum (CTSPAC) was modified to examine the flow of water as well as the uptake and translocation of total arsenic in the xylem of the fern. This model was calibrated using greenhouse measurements before its application. Simulation results showed that about 20% of the soil arsenic was removed by the fern in 10 d, of which about 90% of the arsenic was stored in the fronds and 10% in the roots. Although arsenic mass in the plant tissues increased consecutively with time, arsenic concentration in the xylem sap of the root tips has a typical diurnal distribution pattern: increasing during the day and decreasing at night, resulting from daily variations of frond surface water transpiration. The largest difference in simulated arsenic concentration in the root tips between the day and night was about 5%. This study also suggests that the use of transpiration stream concentration factor (TSCF), which is defined as the ratio of chemical concentration in the xylem sap to that in the external solution, to evaluate the translocation efficiency of arsenic for the hyperaccumulator Chinese brake fern (Pteris vittata L.) could be limited.
Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.
Van, Ru C; Pan, Yih J; Hsu, Shen H; Huang, Yun T; Hsiao, Yi Y; Pan, Rong L
2005-08-15
Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.
Comparative study of Cd uptake and tolerance of two Italian ryegrass (Lolium multiflorum) cultivars
Fang, Zhigang; Lou, Laiqing; Tai, Zhenglan; Wang, Yufeng; Yang, Lei
2017-01-01
Cadmium (Cd) is one of the most toxic heavy metals and is difficult to be removed from contaminated soil and water. Italian ryegrass (Lolium multiflorum), as an energy crop, exhibits a valuable potential to develop Cd polluted sites due to its use as a biofuel rather than as food and forage. Previously, via a screening for Cd-tolerant ryegrass, the two most extreme cultivars (IdyII and Harukaze) with high and low Cd tolerance during seed germination, respectively, were selected. However, the underlying mechanism for Cd tolerance was not well investigated. In this study, we comparatively investigated the growth, physiological responses, and Cd uptake and translocation of IdyII and Harukaze when the seedlings were exposed to a Cd (0–100 μM) solution for 12 days. As expected, excess Cd inhibited seedling growth and was accompanied by an accumulation of malondialdehyde (MDA) and reduced photosynthetic pigments in both cultivars. The effects of Cd on the uptake and translocation of other nutrient elements (Zn, Fe, Mn and Mg) were dependent on Cd concentrations, cultivars, plant tissues and elements. Compared with Harukaze, IdyII exhibited better performance with less MDA and higher pigment content. Furthermore, IdyII was less efficient in Cd uptake and translocation compared to Harukaze, which might be explained by the higher non-protein thiols content in its roots. Taken together, our data indicate that IdyII is more tolerant than Harukaze, which partially resulted from the differences in Cd uptake and translocation. PMID:29018594
In-vitro photo-translocation of antiretroviral drug delivery into TZMbl cells
NASA Astrophysics Data System (ADS)
Malabi, Rudzani; Manoto, Sello; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience
2017-02-01
The current human immunodeficiency virus (HIV) treatment regime possesses the ability to diminish the viral capacity to unnoticeable levels; however complete eradication of the virus cannot be achieved while latent HIV-1 reservoirs go unchallenged. Therapeutic targeting of HIV therefore requires further investigation and current therapies need modification in order to address HIV eradication. This deflects research towards investigating potential novel antiretroviral drug delivery systems. The use of femtosecond (fs) laser pulses in promoting targeted optical drug delivery of antiretroviral drugs (ARVs) into TZMbl cells revolves around using ultrafast laser pulses that have high peak powers, which precisely disrupt the cell plasma membrane in order to allow immediate transportation and expression of exogenous material into the live mammalian cells. A photo-translocation optical setup was built and validated by characterisation of the accurate parameters such as wavelength (800 nm) and pulse duration (115 fs). Optimisation of drug translocation parameters were done by performing trypan blue translocation studies. Cellular responses were determined via cell viability (Adenosine Triphosphate activity) and cell cytotoxicity (Lactate Dehydrogenase) assays which were done to study the influence of the drugs and laser exposure on the cells. After laser irradiation, high cell viability was observed and low toxicity levels were observed after exposure of the cells to both the ARVs and the laser. Our results confirmed that, with minimal damage and high therapeutic levels of ARVs, the fs laser assisted drug delivery system is efficient with benefits of non-invasive and non-toxic treatment to the cells.
Yu, Xiao-Zhang; Gu, Ji-Dong
2008-09-01
Due to its essentiality, deficiency, and toxicity to living organisms and the extensive use in industrial activities, selenium (Se) has become an element of global environmental and health concern. Se removal from contaminated sites using physical, chemical, and engineering techniques is quite complicated and expensive. The goal of this study was to investigate uptake and translocation of Se in willows and to provide quantitative information for field application whether Se phytoremediation is feasible and ecologically safe. Intact pre-rooted plants of hybrid willows (Salix matsudana Koidz x alba L.) and weeping willows (Salix babylonica L.) were grown hydroponically and treated with selenite or selenate at 24.0 +/- 1 degrees C for 144 h. Removal of leaves was also performed as a treatment to quantify the effect of transpiration on translocation and volatilization of Se. At the end of the study, total Se in the hydroponic solution and in different parts of plant tissues was analyzed quantitatively by hydride generation-atomic fluorescence spectrometry. The capacity of willows to assimilate both chemical forms of Se was also evaluated using detached leaves and roots in sealed glass vessels in vivo. Translocation efficiency of Se in both plants was estimated. Significant amounts of the applied selenite and selenate were eliminated from plant growth media by willows during the period of incubation. Both willows showed a significantly higher removal rate for selenate than for selenite (p < 0.05). Substantial differences existed in the distribution of both chemical forms of Se in plant materials: lower stems and roots were the major sites for accumulation of selenite and selenate, respectively. Translocation efficiency for selenite was significantly higher than that for selenate in both willow species (p < 0.01). Compared to the intact trees, remarkable decrease in the removal rate of both chemical forms of Se was found for willows without any leaves (p < 0.01). Volatilization of Se by plant leaves was estimated to be approximately 10% of the total applied selenite or selenate. Significant reduction (>20%) of selenate was observed in the sealed vessel with excised roots of willows, whereas trace amounts of selenite were eliminated from the hydroponic solution in the presence of roots. Detached leaves from neither of them reduced the concentration of selenite or selenate in the solution. Due to the significant difference in the removal rate and the distribution of the two chemical forms of Se in plant materials, the conversion of selenate to selenite in hydroponic solution prior to uptake and within plant tissues is unlikely. An independent uptake and translocation mechanisms are likely to exist for each Se chemical species. Uptake of selenate is mediated possibly through an active transport mechanism, whereas that of selenite may possibly depend on plant transpiration. Uptake velocities of selenite are linear (zero-order kinetics), while selenate removal processes obey first-order kinetics. In experiments with detached leaves in closed bottles, the cuticle of leaves was the major obstacle to extract both chemical forms of Se from the hydroponic solution. Phytovolatilization is a biological process playing an important role in Se removal. Although faster removal rates of selenate than selenite from plant growth media were observed by both willow species, selenite in plant materials was more mobile than selenate. Significant decrease in removal rates of both chemical forms of Se was detected for willows without any leaves. Significant differences in extraction, assimilation and transport pathways for selenite and selenate exist in willow trees. Phytoremediation of Se is an attractive approach of cleaning up Se contaminated environmental sites. More detailed investigation on the assimilation of Se in plant roots and transport in tissues will provide further biochemical evidence to explain the differences in uptake and translocation mechanisms between selenite and selenate in willows. A relevant phytoremediation scheme can then be designed to clean up Se contaminated sites. Willows show a great potential for uptake, assimilation and translocation of both selenite and selenate. Phytotreatment of Se is potentially an efficient and practical technology for cleaning up contaminated environmental sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.
Here, the industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenablemore » marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.« less
Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.; ...
2017-02-06
Here, the industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenablemore » marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.« less
Bahraminia, Mahboobeh; Zarei, Mehdi; Ronaghi, Abdolmajid; Ghasemi-Fasaei, Reza
2016-01-01
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg(-1)) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg(-1). The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.
Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif.
Sanghamitra, Nusrat J M; Inaba, Hiroshi; Arisaka, Fumio; Ohtan Wang, Dan; Kanamaru, Shuji; Kitagawa, Susumu; Ueno, Takafumi
2014-10-01
Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a bacteriophage T4 derived protein needle of 16 nm length spontaneously translocates through the living cell membrane. The β-helical protein needle (β-PN) internalizes into human red blood cells that lack endocytic machinery. By comparing the cellular uptake of β-PNs with modified surface charge, it is shown that the uptake efficiency is maximum when it has a negative charge corresponding to a zeta potential value of -16 mV. In HeLa cells, uptake of β-PN incorporates endocytosis independent mechanisms with partial macropinocytosis dependence. The endocytosis dependence of the uptake increases when the surface charges of β-PNs are modified to positive or negative. Thus, these results suggest that natural DNA injecting machinery can serve as an inspiration to design new class of cell-penetrating materials with a tailored mechanism.
Manara, Richard M A; Guy, Andrew T; Wallace, E Jayne; Khalid, Syma
2015-02-10
Next generation DNA sequencing methods that utilize protein nanopores have the potential to revolutionize this area of biotechnology. While the technique is underpinned by simple physics, the wild-type protein pores do not have all of the desired properties for efficient and accurate DNA sequencing. Much of the research efforts have focused on protein nanopores, such as α-hemolysin from Staphylococcus aureus. However, the speed of DNA translocation has historically been an issue, hampered in part by incomplete knowledge of the energetics of translocation. Here we have utilized atomistic molecular dynamics simulations of nucleotide fragments in order to calculate the potential of mean force (PMF) through α-hemolysin. Our results reveal specific regions within the pore that play a key role in the interaction with DNA. In particular, charged residues such as D127 and K131 provide stabilizing interactions with the anionic DNA and therefore are likely to reduce the speed of translocation. These regions provide rational targets for pore optimization. Furthermore, we show that the energetic contributions to the protein-DNA interactions are a complex combination of electrostatics and short-range interactions, often mediated by water molecules.
Morato, P N; Lollo, P C B; Moura, C S; Batista, T M; Carneiro, E M; Amaya-Farfan, J
2013-08-15
Whey protein hydrolysate (WPH) is capable of increasing muscle glycogen reserves and of concentrating the glucose transporter in the plasma membrane (PM). The objective of this study was to determine which WPH components could modulate translocation of the glucose transporter GLUT-4 to the PM of animal skeletal muscle. Forty-nine animals were divided into 7 groups (n=7) and received by oral gavage 30% glucose plus 0.55 g/kg body mass of the following WPH components: (a) control; (b) WPH; (c) L-isoleucine; (d) L-leucine; (e) L-leucine plus L-isoleucine; (f) L-isoleucyl-L-leucine dipeptide; (g) L-leucyl-L-isoleucine dipeptide. After receiving these solutions, the animals were sacrificed and the GLUT-4 analysed by western blot. Additionally, glycogen, glycaemia, insulin and free amino acids were also determined by standard methods. Of the WPH components tested, the amino acid L-isoleucine and the peptide L-leucyl-L-isoleucine showed greater efficiency in translocating GLUT-4 to the PM and of increasing glucose capture by skeletal muscle. Copyright © 2013 Elsevier Ltd. All rights reserved.
Engineering crop nutrient efficiency for sustainable agriculture.
Chen, Liyu; Liao, Hong
2017-10-01
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.
Chidgey, Jack W.; Linhartová, Markéta; Komenda, Josef; Jackson, Philip J.; Dickman, Mark J.; Canniffe, Daniel P.; Koník, Peter; Pilný, Jan; Hunter, C. Neil; Sobotka, Roman
2014-01-01
Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls. PMID:24681617
Selenium and inflammatory bowel disease.
Kudva, Avinash K; Shay, Ashley E; Prabhu, K Sandeep
2015-07-15
Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD. Copyright © 2015 the American Physiological Society.
Thoring, Lena; Wüstenhagen, Doreen A.; Borowiak, Maria; Stech, Marlitt; Sonnabend, Andrei; Kubick, Stefan
2016-01-01
Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA. PMID:27684475
Hing, Stephanie; Northover, Amy S; Narayan, Edward J; Wayne, Adrian F; Jones, Krista L; Keatley, Sarah; Thompson, R C Andrew; Godfrey, Stephanie S
2017-03-01
Translocation can be stressful for wildlife. Stress may be important in fauna translocation because it has been suggested that it can exacerbate the impact of infectious disease on translocated wildlife. However, few studies explore this hypothesis by measuring stress physiology and infection indices in parallel during wildlife translocations. We analysed faecal cortisol metabolite (FCM) concentration and endoparasite parameters (nematodes, coccidians and haemoparasites) in a critically endangered marsupial, the woylie (Bettongia penicillata), 1-3 months prior to translocation, at translocation, and 6 months later. FCM for both translocated and resident woylies was significantly higher after translocation compared to before or at translocation. In addition, body condition decreased with increasing FCM after translocation. These patterns in host condition and physiology may be indicative of translocation stress or stress associated with factors independent of the translocation. Parasite factors also influenced FCM in translocated woylies. When haemoparasites were detected, there was a significant negative relationship between strongyle egg count and FCM. This may reflect the influence of glucocorticoids on the immune response to micro- and macro-parasites. Our results indicate that host physiology and infection patterns can change significantly during translocation, but further investigation is required to determine how these patterns influence translocation success.
Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia
2014-01-01
Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287
A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte.
Jordan, Fiona L; Robin-Abbott, Molly; Maier, Raina M; Glenn, Edward P
2002-12-01
Phytoextraction is the use of plants to remove contaminants, in particular metals, from soil via root uptake and translocation to the shoots. Efficient phytoextraction requires high-biomass plants with efficient translocating properties. Halophytes characteristically accumulate large quantities of salts in above ground tissue material and can have high biomass production. It has been speculated that salt-tolerant plants may also be heavy metal tolerant and, further, may be able to accumulate metals. This study compared growth and metal uptake by a halophyte, Atriplex nummularia, and a common glycophyte, Zea mays, in a mine-tailing contaminated soil:mulch mixture. Two chelators, ethylenediaminetetraacetic acid (EDTA) and rhamnolipid, were used to facilitate plant metal uptake. Despite a lower growth rate (2% growth/d) in the contaminated soil, the halophyte accumulated roughly the same amount of metals as the glycophyte on a mass basis (30-40 mg/kg dry wt). Neither plant, however, hyperaccumulated any of the metals tested. When treated with EDTA, specific differences in patterns of metal uptake between the two plants emerged. The halophyte accumulated significantly more Cu (2x) and Pb (1x) in the shoots than the glycophyte, but root metal concentrations were generally higher for the glycophyte, indicating that the halophyte translocated more metal from the root to the shoot than the glycophyte. For example, Zn shoot-to-root ratios ranged from 1.4 to 2.1 for Atriplex and from 0.5 to 0.6 for Z. mays. The biodegradable chelator rhamnolipid was not effective at enhancing shoot metal concentrations, even though radiolabeled chelator was found in the shoot material of both plants. Our results suggest that halophytes, despite their slower growth rates, may have greater potential to selectively phytoextract metals from contaminated soils than glycophytes.
Hussein, Hussein S.; Ruiz, Oscar N.; Terry, Norman; Daniell, Henry
2008-01-01
Transgenic tobacco plants engineered with bacterial merA and merB genes via the chloroplast genome were investigated to study the uptake, translocation of different forms of mercury (Hg) from roots to shoots, and their volatilization. Untransformed plants, regardless of the form of Hg supplied, reached a saturation point at 200 µM of phenylmercuric acetate (PMA) or HgCl2, accumulating Hg concentrations up to 500 µg g−1 with significant reduction in growth. In contrast, chloroplast transgenic lines continued to grow well with Hg concentrations in root tissues up to 2000 µg g−1. Chloroplast transgenic lines accumulated both the organic and inorganic Hg forms to levels surpassing the concentrations found in the soil. The organic-Hg form was absorbed and translocated more efficiently than the inorganic-Hg form in transgenic lines, whereas no such difference was observed in untransformed plants. Chloroplast-transgenic lines showed about 100-fold increase in the efficiency of Hg accumulation in shoots compared to untransformed plants. This is the first report of such high levels of Hg accumulation in green leaves or tissues. Transgenic plants attained a maximum rate of elemental-Hg volatilization in two days when supplied with PMA and in three days when supplied with inorganic-Hg, attaining complete volatilization within a week. The combined expression of merAB via the chloroplast genome enhanced conversion of Hg2+ into Hg,0 conferred tolerance by rapid volatilization and increased uptake of different forms of mercury, surpassing the concentrations found in the soil. These investigations provide novel insights for improvement of plant tolerance and detoxification of mercury. PMID:18200876
The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit.
Clipson, Alexandra; Barrans, Sharon; Zeng, Naiyan; Crouch, Simon; Grigoropoulos, Nicholas F; Liu, Hongxiang; Kocialkowski, Sylvia; Wang, Ming; Huang, Yuanxue; Worrillow, Lisa; Goodlad, John; Buxton, Jenny; Neat, Michael; Fields, Paul; Wilkins, Bridget; Grant, John W; Wright, Penny; Ei-Daly, Hesham; Follows, George A; Roman, Eve; Watkins, A James; Johnson, Peter W M; Jack, Andrew; Du, Ming-Qing
2015-07-01
A proportion of MYC translocation positive diffuse large B-cell lymphomas (DLBCL) harbour a BCL2 and/or BCL6 translocation, known as double-hit DLBCL, and are clinically aggressive. It is unknown whether there are other genetic abnormalities that cooperate with MYC translocation and form double-hit DLBCL, and whether there is a difference in clinical outcome between the double-hit DLBCL and those with an isolated MYC translocation. We investigated TP53 gene mutations along with BCL2 and BCL6 translocations in a total of 234 cases of DLBCL, including 81 with MYC translocation. TP53 mutations were investigated by PCR and sequencing, while BCL2 and BCL6 translocation was studied by interphase fluorescence in situ hybridization. The majority of MYC translocation positive DLBCLs (60/81 = 74%) had at least one additional genetic hit. In MYC translocation positive DLBCL treated by R-CHOP ( n = 67), TP53 mutation and BCL2, but not BCL6 translocation had an adverse effect on patient overall survival. In comparison with DLBCL with an isolated MYC translocation, cases with MYC/TP53 double-hits had the worst overall survival, followed by those with MYC/BCL2 double-hits. In MYC translocation negative DLBCL treated by R-CHOP ( n = 101), TP53 mutation, BCL2 and BCL6 translocation had no impact on patient survival. The prognosis of MYC translocation positive DLBCL critically depends on the second hit, with TP53 mutations and BCL2 translocation contributing to an adverse prognosis. It is pivotal to investigate both TP53 mutations and BCL2 translocations in MYC translocation positive DLBCL, and to distinguish double-hit DLBCLs from those with an isolated MYC translocation.
von Heijne, Gunnar
2018-01-01
My scientific career has taken me from chemistry, via theoretical physics and bioinformatics, to molecular biology and even structural biology. Along the way, serendipity led me to work on problems such as the identification of signal peptides that direct protein trafficking, membrane protein biogenesis, and cotranslational protein folding. I've had some great collaborations that came about because of a stray conversation or from following up on an interesting paper. And I've had the good fortune to be asked to sit on the Nobel Committee for Chemistry, where I am constantly reminded of the amazing pace and often intricate history of scientific discovery. Could I have planned this? No way! I just went with the flow … PMID:29523692
Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.
Smolinska, Beata
2015-03-01
Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhen; Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Xiang, Wenqing
Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry ofmore » oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.« less
Ackermann, Nikolaus; Tiller, Maximilian; Anding, Gisela; Roggenkamp, Andreas; Heesemann, Jürgen
2008-07-01
The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.
Capture, Unfolding, and Detection of Individual tRNA Molecules Using a Nanopore Device
Smith, Andrew M.; Abu-Shumays, Robin; Akeson, Mark; Bernick, David L.
2015-01-01
Transfer RNAs (tRNA) are the most common RNA molecules in cells and have critical roles as both translators of the genetic code and regulators of protein synthesis. As such, numerous methods have focused on studying tRNA abundance and regulation, with the most widely used methods being RNA-seq and microarrays. Though revolutionary to transcriptomics, these assays are limited by an inability to encode tRNA modifications in the requisite cDNA. These modifications are abundant in tRNA and critical to their function. Here, we describe proof-of-concept experiments where individual tRNA molecules are examined as linear strands using a biological nanopore. This method utilizes an enzymatically ligated synthetic DNA adapter to concentrate tRNA at the lipid bilayer of the nanopore device and efficiently denature individual tRNA molecules, as they are pulled through the α-hemolysin (α-HL) nanopore. Additionally, the DNA adapter provides a loading site for ϕ29 DNA polymerase (ϕ29 DNAP), which acts as a brake on the translocating tRNA. This increases the dwell time of adapted tRNA in the nanopore, allowing us to identify the region of the nanopore signal that is produced by the translocating tRNA itself. Using adapter-modified Escherichia coli tRNAfMet and tRNALys, we show that the nanopore signal during controlled translocation is dependent on the identity of the tRNA. This confirms that adapter-modified tRNA can translocate end-to-end through nanopores and provide the foundation for future work in direct sequencing of individual transfer RNA with a nanopore-based device. PMID:26157798
Singh, Amit P.; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K.; Chakrabarty, Debasis; Tripathi, Rudra D.
2015-01-01
Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (AsV) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by AsV and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (AsIII). SA also overcame AsV induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity. PMID:26042132
He, Wei; Felderman, Martina; Evans, Angela C.; ...
2017-07-24
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Wei; Felderman, Martina; Evans, Angela C.
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less
Centromere structure and function analysis in wheat-rye translocation lines.
Wang, Jing; Liu, Yalin; Su, Handong; Guo, Xianrui; Han, Fangpu
2017-07-01
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Theoretical and computational studies in protein folding, design, and function
NASA Astrophysics Data System (ADS)
Morrissey, Michael Patrick
2000-10-01
In this work, simplified statistical models are used to understand an array of processes related to protein folding and design. In Part I, lattice models are utilized to test several theories about the statistical properties of protein-like systems. In Part II, sequence analysis and all-atom simulations are used to advance a novel theory for the behavior of a particular protein. Part I is divided into five chapters. In Chapter 2, a method of sequence design for model proteins, based on statistical mechanical first-principles, is developed. The cumulant design method uses a mean-field approximation to expand the free energy of a sequence in temperature. The method successfully designs sequences which fold to a target lattice structure at a specific temperature, a feat which was not possible using previous design methods. The next three chapters are computational studies of the double mutant cycle, which has been used experimentally to predict intra-protein interactions. Complete structure prediction is demonstrated for a model system using exhaustive, and also sub-exhaustive, double mutants. Nonadditivity of enthalpy, rather than of free energy, is proposed and demonstrated to be a superior marker for inter-residue contact. Next, a new double mutant protocol, called exchange mutation, is introduced. Although simple statistical arguments predict exchange mutation to be a more accurate contact predictor than standard mutant cycles, this hypothesis was not upheld in lattice simulations. Reasons for this inconsistency will be discussed. Finally, a multi-chain folding algorithm is introduced. Known as LINKS, this algorithm was developed to test a method of structure prediction which utilizes chain-break mutants. While structure prediction was not successful, LINKS should nevertheless be a useful tool for the study of protein-protein and protein-ligand interactions. The last chapter of Part I utilizes the lattice to explore the differences between standard folding, from the fully denatured state, and cotranslational folding, whereby one end of a protein is synthesized and released before the other. Cotranslational folding is shown to accelerate folding kinetics, particularly when the target backbone contains many local contacts. Additionally, cotranslation is shown capable of "guiding" a model protein into a metastable, local contact-rich state, despite the existence of a true native state of much lower energy. In Part II, a model is developed for the behavior of PrP, a unique mammalian protein which has been shown to possess two native states. The pathogenic "scrapie" state PrPSc, which has not been structurally characterized, is known to trigger conversion of the characterized endogenous conformation PrPC into additional PrPSc, Residues 144--153 are shown to form the most hydrophilic naturally occurring alpha-helix, out of a broad database with more than 10,000 candidates. The novel beta-nucleation model proposes that PrPSc, is not a distinct mono-molecular state, but is rather a beta-sheet-like aggregate centered around helix-1 components of multiple PrP molecules. The remainder of Part II uses molecular dynamics simulations to support the beta-nucleation hypothesis, and to propose a system of peptide ligands which may arrest the process of prion propagation.
Stengel, Anna; Benz, J Philipp; Buchanan, Bob B; Soll, Jürgen; Bölter, Bettina
2009-11-01
The import of nuclear-encoded preproteins is necessary to maintain chloroplast function. The recognition and transfer of most precursor proteins across the chloroplast envelopes are facilitated by two membrane-inserted protein complexes, the translocons of the chloroplast outer and inner envelope (Toc and Tic complexes, respectively). Several signals have been invoked to regulate the import of preproteins. In our study, we were interested in redox-based import regulation mediated by two signals: regulation based on thiols and on the metabolic NADP+/NADPH ratio. We sought to identify the proteins participating in the regulation of these transport pathways and to characterize the preprotein subgroups whose import is redox-dependent. Our results provide evidence that the formation and reduction of disulfide bridges in the Toc receptors and Toc translocation channel have a strong influence on import yield of all tested preproteins that depend on the Toc complex for translocation. Furthermore, the metabolic NADP+/NADPH ratio influences not only the composition of the Tic complex, but also the import efficiency of most, but not all, preproteins tested. Thus, several Tic subcomplexes appear to participate in the translocation of different preprotein subgroups, and the redox-active components of these complexes likely play a role in regulating transport.
Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response
Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J
2016-01-01
Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process. PMID:27831555
Jiang, Wang; Muhammad, Fawad; Ma, Pengjuan; Liu, Xiyu; Long, Gang
2018-06-01
Hepatitis A virus (HAV) infection remains a major cause of acute hepatitis worldwide and even leads to fulminant hepatitis. For screening antivirals against HAV in vitro, we develop a cell-based fluorescent reporter system named Huh-7.5.1-GA, in which HAV infection is visualized by green fluorescence protein (GFP) translocation from the cytosol into the nucleus. The reliability of Huh-7.5.1-GA for antiviral studies is validated by IFN-α, a known inhibitor of HAV replication, which impedes GFP translocation. Utilizing this in-vitro reporter system, we find that sofosbuvir, an FDA approved prodrug for the treatment of chronic hepatitis C, disturbs GFP translocation and inhibits HAV replication efficiently. In addition, we find that inhibition of HAV by sofosbuvir is hepatic-cell dependent, with IC50 (half-maximal inhibitory concentration) being 6.3 μM and 9.9 μM in Huh-7.5.1, quantified separately by RT-qPCR and image-based analysis. Therefore, our reporter system may serve as a high-throughput platform for screening potent antivirals against HAV. Sofosbuvir may be considered for treatment of hepatitis A, especially in re-infected patients who undergo liver transplantation due to HAV-induced liver failure. Copyright © 2018 Elsevier B.V. All rights reserved.
Selectivity and permeation of alkali metal ions in K+-channels.
Furini, Simone; Domene, Carmen
2011-06-24
Ion conduction in K(+)-channels is usually described in terms of concerted movements of K(+) progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K(+)-channels are known to be highly selective for K(+) over Na(+), some K(+) channels conduct Na(+) in the absence of K(+). Other ions are known to permeate K(+)-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K(+)-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb(+) translocation show at atomic level why experimental Rb(+) conductance is slightly lower than that of K(+). In contrast to K(+) or Rb(+), external Na(+) block K(+) currents, and the sites where Na(+) transport is hindered are characterized. Translocation of K(+)/Na(+) mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na(+), excluding Na(+) from a channel already loaded with K(+). Copyright © 2011 Elsevier Ltd. All rights reserved.
Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response.
Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J
2016-11-10
Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.
von Laffert, M; Schirmacher, P; Warth, A; Weichert, W; Büttner, R; Huber, R M; Wolf, J; Griesinger, F; Dietel, M; Grohé, Ch
2017-01-01
The EML4-ALK pathway plays an important role in a significant subset of non-small cell lung cancer patients. Treatment options such as ALK tyrosine kinase inhibitors lead to improved progression free survival and overall survival. These therapeutic options are chosen on the basis of the identification of the underlying genetic signature of the EML-ALK translocation. Efficient and easily accessible testing tools are required to identify eligible patients in a timely fashion. While FISH techniques are commonly used to detect this translocation, the broad implementation of this type of ALK testing into routine diagnostics is not optimal due to technical, structural and financial reasons. Immunohistochemical techniques to screen for EML4-ALK translocations may therefore play an important role in the near future. This consensus paper provides recommendations for the test algorithm and quality of the respective test approaches, which are discussed in the light of the current literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tailoring particle translocation via dielectrophoresis in pore channels
Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji
2016-01-01
Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126
Enhancing magnetic nanoparticle-based DNA transfection: Intracellular-active cassette features
NASA Astrophysics Data System (ADS)
Vernon, Matthew Martin
Efficient plasmid DNA transfection of embryonic stem cells, mesenchymal stem cells, neural cell lines and the majority of primary cell lines is a current challenge in gene therapy research. Magnetic nanoparticle-based DNA transfection is a gene vectoring technique that is promising because it is capable of outperforming most other non-viral transfection methods in terms of both transfection efficiency and cell viability. The nature of the DNA vector implemented depends on the target cell phenotype, where the particle surface chemistry and DNA binding/unbinding kinetics of the DNA carrier molecule play a critical role in the many steps required for successful gene transfection. Accordingly, Neuromag, an iron oxide/polymer nanoparticle optimized for transfection of neural phenotypes, outperforms many other nanoparticles and lipidbased DNA carriers. Up to now, improvements to nanomagnetic transfection techniques have focused mostly on particle functionalization and transfection parameter optimization (cell confluence, growth media, serum starvation, magnet oscillation parameters, etc.). None of these parameters are capable of assisting the nuclear translocation of delivered plasmid DNA once the particle-DNA complex is released from the endosome and dissociates in the cell's cytoplasm. In this study, incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid DNA confers improved nuclear translocation, demonstrating significant improvement in nanomagnetic transfection efficiency in differentiated SH-SY5Y neuroblastoma cells. Other parameters, such as days in vitro, are also found to play a role and represent potential targets for further optimization.
NASA Astrophysics Data System (ADS)
Li, Guanghao; Zhao, Bin; Dong, Shuting; Zhang, Jiwang; Liu, Peng; Vyn, Tony J.
2017-10-01
To investigate the interactive effects of water and N from controlled release urea (CRU) on N metabolism, accumulation, translocation, and yield in Zhengdan958 (a summer maize cultivar planted widely in China), three water levels (adequate water W3, mild water stress W2, severe water stress W1) and four amounts of CRU (N) (N0, N1, N2, and N3 were 0, 105, 210, and 315 kg N ha-1, respectively) were carried out under the waterproof shed and soil column conditions. The results showed that yield, N metabolism, accumulation, and translocation were significantly affected by water, CRU, and their interactions after tasseling. Yields showed an increasing trend in response to N rates from 100.2 to 128.8 g plant-1 under severe water stress (W1), from 124.7 to 174.6 g plant-1 under mild water stress (W2), and from 143.7 to 177.0 g plant-1 under adequate water conditions (W3). There was an associated optimum amount of N for each water level. Under W1 and W2, N3 treatments showed significant advantages in three N metabolism enzymes' activities and the N accumulations, and yield and its components were highest. But the nitrogen harvest index (NHI) of N3 had no significant difference with other nitrogen treatments. Under W3, the N translocation efficiency (NTE) and N translocation conversion rate (NTCR) of N2 in stem and leaf were higher than those of N3, but the N metabolism enzymes' activities and yields of N2 and N3 had no significant difference, which indicated that N2 was superior to N3. The N3 treatment under W2 and N2 under W3 increased the N accumulation capacity in maize grain as well as the N translocation to grain that contributed to the increase of 1000-gain weight and grains per ear after tasseling. Under this experimental condition, a CRU rate of 225 kg ha-1 was the best treatment when the soil moisture content was 75 ± 5% of field capacity, but an N rate of 300 kg ha-1 was superior when soil moisture content was maintained at 55 ± 5% of field capacity during the entire growing season.
Comparison of Upward and Downward Translocation of 14C From a Single Leaf of Sunflower
Shiroya, Michi
1968-01-01
When single leaves attached at a given node were allowed to carry on photosynthesis in 14CO2 for 30 min, younger plants showed a higher proportion of upward translocation than did older plants. Downward translocation of 14C-photosynthate was stimulated by ATP pre-treatment of the translocating leaf, while upward translocation was not affected by ATP. A similar phenomenon was observed in the translocation of 14C-sucrose infiltrated into a leaf with or without ATP. Downward translocation of photosynthate was inhibited by DNP pre-treatment of a fed leaf. Upward translocation, however, was not affected by DNP. Thirty min after infiltration of 14C-glucose into a leaf, almost all the 14C translocated upwards was found to be in the form of glucose, while a great part of the 14C translocated downwards was in the form of sucrose. In the case of translocation of infiltrated 14C-sucrose, 14C found both above and below the fed leaf was mainly in the form of sucrose. PMID:16656944
Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala
2011-01-01
Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuan; Zou, Xuan; Cao, Ke
2013-11-01
Curcumin, a phytochemical agent in the spice turmeric, has received increasing attention for its anticancer, anti-inflammatory and antioxidant properties. However, application of curcumin has been limited due to its insolubility in water and poor bioavailability both clinically and experimentally. In addition, the protective effects and mechanisms of curcumin in eye diseases have been poorly studied. In the present study, we synthesized a curcumin analog, 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one (C3), which displayed improved protective effect against acrolein-induced toxicity in a human retinal pigment epithelial cell line (ARPE-19). At 5 μM, curcumin completely protected against acrolein-induced cell oxidative damage and preserved GSHmore » levels and mitochondrial function. Surprisingly, C3 displayed a complete protective effect at 0.5 μM, which was much more efficient than curcumin. Both 0.5 μM C3 and 5 μM curcumin induced Nrf2 nuclear translocation and Nrf2 target genes transcription similarly. Experiments using Nrf2 siRNA showed that the protective effects of curcumin and C3 were eliminated by Nrf2 knockdown. Additionally, both curcumin and C3 activated the PI3/Akt pathway, however, Nrf2 activation was independent of this pathway, and therefore, we hypothesized that both curcumin and C3 activated phase II enzymes via directly disrupting the Nrf2/Keap1 complex and promoting Nrf2's nuclear translocation. Since acrolein challenge of ARPE-19 cells has been used as a model of smoking and age-related macular degeneration (AMD), we concluded that the curcumin analog, C3, may be a more promising drug candidate for its potential application for the prevention and treatment of eye diseases, such as AMD. - Highlights: • We examine toxicity effects of cigarette smoking component acrolein in retina cells. • We report a more efficient curcumin analog (C3) protecting cellular function. • Mitochondrial function and phase II enzyme activation are the major targets of C3. • C3 is ten-fold more potent than curcumin on activating Nrf2 nuclear translocation. • Nrf2 translocation and Phase II enzyme induction are independent of PI3K/Akt pathway.« less
Suitability of amphibians and reptiles for translocation.
Germano, Jennifer M; Bishop, Phillip J
2009-02-01
Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.
Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes
Beckers, Veronique; Kiep, Katina; Becker, Horst; Bläsing, Oliver Ernst; Fuchs, Regine
2016-01-01
Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of 13CO2 and 15NH4NO3. The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, 13CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous 13CO2 and 15NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong 13C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping. PMID:26966172
Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes.
Dersch, Lisa Maria; Beckers, Veronique; Rasch, Detlev; Melzer, Guido; Bolten, Christoph; Kiep, Katina; Becker, Horst; Bläsing, Oliver Ernst; Fuchs, Regine; Ehrhardt, Thomas; Wittmann, Christoph
2016-05-01
Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of (13)CO2 and (15)NH4NO3 The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, (13)CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous (13)CO2 and (15)NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong (13)C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping. © 2016 American Society of Plant Biologists. All Rights Reserved.
Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.
Lin, Hsin Hung; Pan, Yih Jiuan; Hsu, Shen Hsing; Van, Ru Chuan; Hsiao, Yi Yuong; Chen, Jiun Hsien; Pan, Rong Long
2005-10-15
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.
Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter.
Romsicki, Y; Sharom, F J
2001-06-12
The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.
Impa, Somayanda M.; Morete, Mark J.; Ismail, Abdelbagi M.; Schulin, Rainer; Johnson-Beebout, Sarah E.
2013-01-01
Zn deficiency is a widespread problem in rice (Oryza sativa L.) grown under flooded conditions, limiting growth and grain Zn accumulation. Genotypes with Zn deficiency tolerance or high grain Zn have been identified in breeding programmes, but little is known about the physiological mechanisms conferring these traits. A protocol was developed for growing rice to maturity in agar nutrient solution (ANS), with optimum Zn-sufficient growth achieved at 1.5 μM ZnSO4.7H2O. The redox potential in ANS showed a decrease from +350 mV to −200 mV, mimicking the reduced conditions of flooded paddy soils. In subsequent experiments, rice genotypes contrasting for Zn deficiency tolerance and grain Zn were grown in ANS with sufficient and deficient Zn to assess differences in root uptake of Zn, root-to-shoot Zn translocation, and in the predominant sources of Zn accumulation in the grain. Zn efficiency of a genotype was highly influenced by root-to-shoot translocation of Zn and total Zn uptake. Translocation of Zn from root to shoot was more limiting at later growth stages than at the vegetative stage. Under Zn-sufficient conditions, continued root uptake during the grain-filling stage was the predominant source of grain Zn loading in rice, whereas, under Zn-deficient conditions, some genotypes demonstrated remobilization of Zn from shoot and root to grain in addition to root uptake. Understanding the mechanisms of grain Zn loading in rice is crucial in selecting high grain Zn donors for target-specific breeding and also to establish fertilizer and water management strategies for achieving high grain Zn. PMID:23698631
Biopersistence and Brain Translocation of Aluminum Adjuvants of Vaccines
Gherardi, Romain Kroum; Eidi, Housam; Crépeaux, Guillemette; Authier, François Jerome; Cadusseau, Josette
2015-01-01
Aluminum oxyhydroxide (alum) is a crystalline compound widely used as an immunological adjuvant of vaccines. Concerns linked to the use of alum particles emerged following recognition of their causative role in the so-called macrophagic myofasciitis (MMF) lesion detected in patients with myalgic encephalomyelitis/chronic fatigue/syndrome. MMF revealed an unexpectedly long-lasting biopersistence of alum within immune cells in presumably susceptible individuals, stressing the previous fundamental misconception of its biodisposition. We previously showed that poorly biodegradable aluminum-coated particles injected into muscle are promptly phagocytosed in muscle and the draining lymph nodes, and can disseminate within phagocytic cells throughout the body and slowly accumulate in brain. This strongly suggests that long-term adjuvant biopersistence within phagocytic cells is a prerequisite for slow brain translocation and delayed neurotoxicity. The understanding of basic mechanisms of particle biopersistence and brain translocation represents a major health challenge, since it could help to define susceptibility factors to develop chronic neurotoxic damage. Biopersistence of alum may be linked to its lysosome-destabilizing effect, which is likely due to direct crystal-induced rupture of phagolysosomal membranes. Macrophages that continuously perceive foreign particles in their cytosol will likely reiterate, with variable interindividual efficiency, a dedicated form of autophagy (xenophagy) until they dispose of alien materials. Successful compartmentalization of particles within double membrane autophagosomes and subsequent fusion with repaired and re-acidified lysosomes will expose alum to lysosomal acidic pH, the sole factor that can solubilize alum particles. Brain translocation of alum particles is linked to a Trojan horse mechanism previously described for infectious particles (HIV, HCV), that obeys to CCL2, signaling the major inflammatory monocyte chemoattractant. PMID:25699008
Tian, R N; Yu, S; Wang, S G; Zhang, Y; Tang, J Y; Liu, Y L; Nie, Y H
2013-01-01
In this study, we report the tolerance and accumulation of Triarrhena sacchariflora to copper (Cu) and cadmium (Cd). The results show that T. sacchariflora had strong tolerance to Cu and Cd stress. The tolerance indexes (TI) were greater than 0.5 for all treatments. The bioconcentration factors (BCFs) to Cu and Cd were both above 1.0. The accumulation ability of roots was stronger than that of shoots, and ranges of BCF to Cu and Cd in roots were 37.89-79.08 and 83.96-300.57, respectively. However, the translocation ability to Cu and Cd was weak, with more than 86% of Cu or Cd accumulated in roots, suggesting an exclusion strategy for heavy metal tolerance. The uptake efficiency (UE) and translocation efficiency (TE) to Cu and Cd increased linearly as the Cu and Cd concentration in the substrate increased. UE was higher than TE, with a maximum of 2,118.90 μg g(-1) root dry weight (DW) (50 mg L(-1) Cu) and 1,847.51 μg g(-1) root DW (20 mg L(-1)Cd), respectively. The results indicate that T. sacchariflora is a Cu- and Cd-tolerant non-hyperaccumulator plant, suggesting that T. sacchariflora could play an important role in phytoremediation in areas contaminated with Cu and Cd.
Smolinska, Beata; Szczodrowska, Agnieszka
2017-09-25
In this study, Lepidium sativum L. was used in repeated phytoextraction processes to remove Hg from contaminated soil, assisted by combined use of compost and iodide (KI). L. sativum L. is sensitive to changes in environmental conditions and has been used in environmental tests. Its short vegetation period and ability to accumulate heavy metals make it suitable for use in repeated phytoextraction. The antioxidant enzymatic system of the plant (catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and glutathione S-transferase (GST)) was analysed, to understand the effects of increasing Hg accumulation and translocation. Phytoextraction was repeated six times to decrease Hg contamination in soil, and the efficiency of each step was assessed. The results indicate that L. sativum L. is able to take up and accumulate Hg from contaminated soil. A corresponding increase in enzymatic antioxidants shows that the plant defence system is activated in response to Hg stress. Using compost and KI increases total Hg accumulation and translocation to the above-ground parts of L. sativum L. Repeating the process decreases Hg contamination in pot experiments in all variants of the process. The combined use of compost and KI during repeated phytoextraction increases the efficiency of Hg removal from contaminated soil. Copyright © 2016 Elsevier B.V. All rights reserved.
Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli
Ullers, Ronald S.; Ang, Debbie; Schwager, Françoise; Georgopoulos, Costa; Genevaux, Pierre
2007-01-01
Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30°C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon. PMID:17360615
Heiken, Kory H; Brusch, George A; Gartland, Sarah; Escallón, Camilo; Moore, Ignacio T; Taylor, Emily N
2016-10-01
Translocation is an increasingly common conservation tool used to augment declining populations or to remove nuisance animals from areas of human conflict. Studies show that venomous snakes translocated long distances may wander and experience increased mortality. However, potential sub-lethal physiological effects on translocated snakes remain unknown. We conducted an experimental study on free-ranging rattlesnakes to test the hypothesis that long distance translocation is stressful. The glucocorticoid response to translocation was variable among snakes. There was some evidence that translocation may be stressful, as baseline corticosterone levels in most snakes rose following translocation, whereas levels remained consistent in control snakes. Interestingly, testosterone levels rose dramatically following translocation, possibly reflecting effects of interaction with new environmental cues and/or resident snakes, or effects of navigation in a new environment. Corticosterone and testosterone were positively correlated. Our study shows that long distance translocation can affect steroid hormone concentrations in rattlesnakes, a result that should be taken into consideration when managing nuisance snakes or repatriating animals to the wild. Copyright © 2016 Elsevier Inc. All rights reserved.
Shi, Yu; Yu, Zhen-wen; He, Jian-ning; Zhang, Yong-li
2016-02-01
Field experiments were conducted during 2012-2014 wheat growing seasons. With no irrigation in the whole stage (WO) treatment as control, three supplemental irrigation treatments were designed based on average relative soil moisture contents at 0-140-cm layer, at jointing and anthesis stages (65% for treatment W1 ; 70% for treatment W2; 75% for treatment W3; respectively), to examine effects of supplemental irrigation on nitrogen accumulation and translocation, grain yield, water use efficiency, and soil nitrate nitrogen leaching in wheat field., Soil water consumption amount, the percentage of soil water consumption and water irrigation to total water consumption in W2 were higher, and soil water consumption of W2 in 100-140 cm soil layer was also higher. The nitrogen accumulation before anthesis and after anthesis were presented as W2, W3>W1>W0, the nitrogen accumulation in vegetative organs at maturity as W3>W2>Wl>W0, and the nitrogen translocation from vegetative organs to grain and the nitrogen accumulation in grain at maturity as W2> W3>W1>W0. At maturity, soil NO3(-)-N content in 0-60 cm soil layer was presented. as W0>W1>W2>W3, that in 80-140 cm soil layer was significantly higher in W3 than in the other treatments, and no significant difference was found in 140-200 cm soil layer among all treatments. W treatment obtained the highest grain yield, water use efficiency, nitrogen uptake efficiency and partial productivity of applied nitrogen. As far as grain yield, water use efficiency, nitrogen uptake efficiency and soil NO3(1)-N leaching were concerned, the W2 regime was the optimal irrigation treatment in this experiment.
Financial Costs of Large Carnivore Translocations – Accounting for Conservation
Weise, Florian J.; Stratford, Ken J.; van Vuuren, Rudolf J.
2014-01-01
Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis. PMID:25126849
Financial costs of large carnivore translocations--accounting for conservation.
Weise, Florian J; Stratford, Ken J; van Vuuren, Rudolf J
2014-01-01
Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.
Stress and translocation: alterations in the stress physiology of translocated birds
Dickens, Molly J.; Delehanty, David J.; Romero, L. Michael
2009-01-01
Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar. We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool. PMID:19324794
Aiello, Christina M.; Nussear, Kenneth E.; Walde, Andrew D.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, S.; Hudson, Peter J.
2014-01-01
Wildlife managers consider animal translocation a means of increasing the viability of a local population. However, augmentation may disrupt existing resident disease dynamics and initiate an outbreak that would effectively offset any advantages the translocation may have achieved. This paper examines fundamental concepts of disease ecology and identifies the conditions that will increase the likelihood of a disease outbreak following translocation. We highlight the importance of susceptibility to infection, population size and population connectivity – a characteristic likely affected by translocation but not often considered in risk assessments – in estimating outbreak risk due to translocation. We then explore these features in a species of conservation concern often translocated in the presence of infectious disease, the Mojave Desert tortoise, and use data from experimental tortoise translocations to detect changes in population connectivity that may influence pathogen transmission. Preliminary analyses comparing contact networks inferred from spatial data at control and translocation plots and infection simulation results through these networks suggest increased outbreak risk following translocation due to dispersal-driven changes in contact frequency and network structure. We outline future research goals to test these concepts and aid managers in designing effective risk assessment and intervention strategies that will improve translocation success.
KIreeva, Maria; Trang, Cyndi; Matevosyan, Gayane; Turek-Herman, Joshua; Chasov, Vitaly; Lubkowska, Lucyna; Kashlev, Mikhail
2018-06-20
Translocation of RNA polymerase (RNAP) along DNA may be rate-limiting for transcription elongation. The Brownian ratchet model posits that RNAP rapidly translocates back and forth until the post-translocated state is stabilized by NTP binding. An alternative model suggests that RNAP translocation is slow and poorly reversible. To distinguish between these two models, we take advantage of an observation that pyrophosphorolysis rates directly correlate with the abundance of the pre-translocated fraction. Pyrophosphorolysis by RNAP stabilized in the pre-translocated state by bacteriophage HK022 protein Nun was used as a reference point to determine the pre-translocated fraction in the absence of Nun. The stalled RNAP preferentially occupies the post-translocated state. The forward translocation rate depends, among other factors, on melting of the RNA-DNA base pair at the upstream edge of the transcription bubble. DNA-DNA base pairing immediately upstream from the RNA-DNA hybrid stabilizes the post-translocated state. This mechanism is conserved between E. coli RNAP and S. cerevisiae RNA polymerase II and is partially dependent on the lid domain of the catalytic subunit. Thus, the RNA-DNA hybrid and DNA reannealing at the upstream edge of the transcription bubble emerge as targets for regulation of the transcription elongation rate.
Orisme, Wilda; Li, Jian; Goldmann, Tobias; Bolch, Susan; Wolfrum, Uwe; Smith, W Clay
2010-03-01
Partitioning of cellular components is a critical mechanism by which cells can regulate their activity. In rod photoreceptors, light induces a large-scale translocation of arrestin from the inner segments to the outer segments. The purpose of this project is to elucidate the signaling pathway necessary to initiate arrestin translocation to the outer segments and the mechanism for arrestin translocation. Mouse retinal organotypic cultures and eyes from transgenic Xenopus tadpoles expressing a fusion of GFP and rod arrestin were treated with both activators and inhibitors of proteins in the phosphoinositide pathway. Confocal microscopy was used to image the effects of the pharmacological agents on arrestin translocation in rod photoreceptors. Retinas were also depleted of ATP using potassium cyanide to assess the requirement for ATP in arrestin translocation. In this study, we demonstrate that components of the G-protein-linked phospholipase C (PLC) pathway play a role in initiating arrestin translocation. Our results show that arrestin translocation can be stimulated by activators of PLC and protein kinase C (PKC), and by cholera toxin in the absence of light. Arrestin translocation to the outer segments is significantly reduced by inhibitors of PLC and PKC. Importantly, we find that treatment with potassium cyanide inhibits arrestin translocation in response to light. Collectively, our results suggest that arrestin translocation is initiated by a G-protein-coupled cascade through PLC and PKC signaling. Furthermore, our results demonstrate that at least the initiation of arrestin translocation requires energy input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Hyun-Yoo; Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-713; Woo, Seon Rang
2012-08-10
Highlights: Black-Right-Pointing-Pointer SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. Black-Right-Pointing-Pointer When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. Black-Right-Pointing-Pointer Upon irradiation, SIRT1 interacts with GAPDH. Black-Right-Pointing-Pointer SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. Black-Right-Pointing-Pointer SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggeredmore » nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.« less
De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M
2013-05-01
Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata closure and epinasty in needles and root development.
Wei, Yuping; Ma, Liang; Zhang, Liang; Xu, Xia
2017-01-01
An effective drug delivery system requires efficient drug uptake and release inside cancer cells. Here, we report a novel drug delivery system, in which paclitaxel (PTX) interacts with a novel cell penetrating peptide (CPP) through noncovalent interaction designed based on molecular simulations. This CPP/PTX complex confers high efficiency in delivering PTX into cancer cells not by endocytosis but by an energy-independent pathway. Once inside cells, the noncovalent interaction between PTX and the CPP may allow fast release of PTX within cells due to the direct translocation of CPP/PTX. This drug delivery system exhibits strong capacity for inhibition of tumor growth and offers a new avenue for the development of advanced drug delivery systems for anticancer therapy.
Zelko, Igor; Sueyoshi, Tatsuya; Kawamoto, Takeshi; Moore, Rick; Negishi, Masahiko
2001-01-01
In response to phenobarbital (PB) and other PB-type inducers, the nuclear receptor CAR translocates to the mouse liver nucleus (T. Kawamoto et al., Mol. Cell. Biol. 19:6318–6322, 1999). To define the translocation mechanism, fluorescent protein-tagged human CAR (hCAR) was expressed in the mouse livers using the in situ DNA injection and gene delivery systems. As in the wild-type hCAR, the truncated receptor lacking the C-terminal 10 residues (i.e., AF2 domain) translocated to the nucleus, indicating that the PB-inducible translocation is AF2 independent. Deletion of the 30 C-terminal residues abolished the receptor translocation, and subsequent site-directed mutagenesis delineated the PB-inducible translocation activity of the receptor to the peptide L313GLL316AEL319. Ala mutations of Leu313, Leu316, or Leu319 abrogated the translocation of CAR in the livers, while those of Leu312 or Leu315 did not affect the nuclear translocation. The leucine-rich peptide dictates the nuclear translocation of hCAR in response to various PB-type inducers and appears to be conserved in the mouse and rat receptors. PMID:11283262
Chromosomal translocations and palindromic AT-rich repeats
Kato, Takema; Kurahashi, Hiroki; Emanuel1, Beverly S.
2012-01-01
Repetitive DNA sequences constitute 30% of the human genome, and are often sites of genomic rearrangement. Recently, it has been found that several constitutional translocations, especially those that involve chromosome 22, take place utilizing palindromic sequences on 22q11 and on the partner chromosome. Analysis of translocation junction fragments shows that the breakpoints of such palindrome-mediated translocations are localized at the center of palindromic AT-rich repeats (PATRRs). The presence of PATRRs at the breakpoints, indicates a palindrome-mediated mechanism involved in the generation of these constitutional translocations. Identification of these PATRR-mediated translocations suggests a universal pathway for gross chromosomal rearrangement in the human genome. De novo occurrences of PATRR-mediated translocations can be detected by PCR in normal sperm samples but not somatic cells. Polymorphisms of various PATRRs influence their propensity for adopting a secondary structure, which in turn affects de novo translocation frequency. We propose that the PATRRs form an unstable secondary structure, which leads to double-strand breaks at the center of the PATRR. The double-strand breaks appear to be followed by a non-homologous end-joining repair pathway, ultimately leading to the translocations. This review considers recent findings concerning the mechanism of meiosis-specific, PATRR-mediated translocations. PMID:22402448
Dul, Elsbeth; van Echten-Arends, Jannie; Groen, Henk; Kastrop, Peter; Amory-van Wissen, Lucie; Engelen, John; Land, Jolande; Coonen, Edith; van Ravenswaaij-Arts, Conny
2014-01-01
Translocation carriers have an increased risk of miscarriage or the birth of a child with congenital anomalies. Preimplantation genetic diagnosis (PGD) is performed in translocation carriers to select for balanced embryos and, thus, increase the chance of an ongoing pregnancy. However, a common experience is that reciprocal translocation carriers produce a high percentage of unbalanced embryos, which cannot be transferred. Therefore, the pregnancy rates in PGD in this patient group are low. In a cohort of 85 reciprocal translocation carriers undergoing PGD we have searched for cytogenetic characteristics of the translocations that can predict the percentage of balanced embryos. Using shape algorithms, the most likely segregation mode per translocation was determined. Shape algorithm, breakpoint location, and relative chromosome segment sizes proved not to be independent predictors of the percentage of balanced embryos. The ratio of the relative sizes of the translocated segments of both translocation chromosomes can give some insight into the chance of transferable embryos: Very asymmetrical translocations have a higher risk of unbalanced products (p = 0.048). Counseling of the couples on the pros and cons of all their reproductive options remains very important. PMID:26237378
Dul, Elsbeth; van Echten-Arends, Jannie; Groen, Henk; Kastrop, Peter; Wissen, Lucie Amory-van; Engelen, John; Land, Jolande; Coonen, Edith; van Ravenswaaij-Arts, Conny
2014-04-02
Translocation carriers have an increased risk of miscarriage or the birth of a child with congenital anomalies. Preimplantation genetic diagnosis (PGD) is performed in translocation carriers to select for balanced embryos and, thus, increase the chance of an ongoing pregnancy. However, a common experience is that reciprocal translocation carriers produce a high percentage of unbalanced embryos, which cannot be transferred. Therefore, the pregnancy rates in PGD in this patient group are low. In a cohort of 85 reciprocal translocation carriers undergoing PGD we have searched for cytogenetic characteristics of the translocations that can predict the percentage of balanced embryos. Using shape algorithms, the most likely segregation mode per translocation was determined. Shape algorithm, breakpoint location, and relative chromosome segment sizes proved not to be independent predictors of the percentage of balanced embryos. The ratio of the relative sizes of the translocated segments of both translocation chromosomes can give some insight into the chance of transferable embryos: Very asymmetrical translocations have a higher risk of unbalanced products (p = 0.048). Counseling of the couples on the pros and cons of all their reproductive options remains very important.
Upshall, Alan; Käfer, Etta
1974-01-01
A meiotic technique for visual detection of translocations has been applied to ten mitotically identified interchanges, and three new translocations were discovered using this method. Testcrosses between "standard" strains and potential translocation strains—e.g. strains with newly induced mutants or descendants from translocation crosses—are inspected for the frequency of abnormal-looking colonies. In all heterozygous translocation crosses "abnormals" are increased at least tenfold compared to the average control level of 0.15%. Most of these are disomics, and can be recognized by their characteristic phenotypes. Each translocation produces a few specific types, since nondisjunction is increased mainly in the linkage groups involved in the translocation (50–100-fold over control values). Therefore, translocations were not only detected but often tentatively assigned to linkage groups from the analysis of the disomic progeny in crosses. In addition, this technique allows reciprocal and nonreciprocal translocations to be distinguished, since only the latter produce one-third phenotypically abnormal duplication progeny. While results are clearcut in most cases, occasionally problems are encountered, e.g. when morphological mutants segregate in crosses, or when other genetic factors which increase or reduce the frequency of nondisjunction are present in certain strains. PMID:4594334
Survival of translocated sharp-tailed grouse: Temporal threshold and age effects
Mathews, Steven; Coates, Peter S.; Delehanty, David J.
2016-01-01
Context: The Columbian sharp-tailed grouse (Tympanuchus phasianellus columbianus) is a subspecies of conservation concern in the western United States, currently occupying ≤10% of its historic range. Land and management agencies are employing translocation techniques to restore Columbian sharp-tailed grouse (CSTG) populations. However, establishing self-sustaining populations by translocating grouse often is unsuccessful, owing, in part, to low survivorship of translocated grouse following release.Aims: We measured and modelled patterns of CSTG mortality for 150 days following translocation into historic range, to better understand patterns and causes of success or failure in conservation efforts to re-establish grouse populations.Methods: We conducted two independent multi-year translocations and evaluated individual and temporal factors associated with CSTG survival up to 150 days following their release. Both translocations were reintroduction attempts in Nevada, USA, to establish viable populations of CSTG into their historic range.Key results: We observed a clear temporal threshold in survival probability, with CSTG mortality substantially higher during the first 50 days following release than during the subsequent 100 days. Additionally, translocated yearling grouse exhibited higher overall survival (0.669 ± 0.062) than did adults (0.420 ± 0.052) across the 150-day period and higher survival than adults both before and after the 50-day temporal threshold.Conclusions: Translocated CSTG are especially vulnerable to mortality for 50 days following release, whereas translocated yearling grouse are more resistant to mortality than are adult grouse. On the basis of the likelihood of survival, yearling CSTG are better candidates for population restoration through translocation than are adult grouse.Implications: Management actions that ameliorate mortality factors for 50 days following translocation and translocations that employ yearling grouse will increase the likelihood of population establishment.
Pawar, Sumit; Ungricht, Rosemarie; Tiefenboeck, Peter; Leroux, Jean-Christophe
2017-01-01
Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER. PMID:28826471
Problems with mitigation translocation of herpetofauna.
Sullivan, Brian K; Nowak, Erika M; Kwiatkowski, Matthew A
2015-02-01
Mitigation translocation of nuisance animals is a commonly used management practice aimed at resolution of human-animal conflict by removal and release of an individual animal. Long considered a reasonable undertaking, especially by the general public, it is now known that translocated subjects are negatively affected by the practice. Mitigation translocation is typically undertaken with individual adult organisms and has a much lower success rate than the more widely practiced conservation translocation of threatened and endangered species. Nonetheless, the public and many conservation practitioners believe that because population-level conservation translocations have been successful that mitigation translocation can be satisfactorily applied to a wide variety of human-wildlife conflict situations. We reviewed mitigation translocations of reptiles, including our own work with 3 long-lived species (Gila monsters [Heloderma suspectum], Sonoran desert tortoises [Gopherus morafkai], and western diamond-backed rattlesnakes [Crotalus atrox]). Overall, mitigation translocation had a low success rate when judged either by effects on individuals (in all studies reviewed they exhibited increased movement or increased mortality) or by the success of the resolution of the human-animal conflict (translocated individuals often returned to the capture site). Careful planning and identification of knowledge gaps are critical to increasing success rates in mitigation translocations in the face of increasing pressure to find solutions for species threatened by diverse anthropogenic factors, including climate change and exurban and energy development. © 2014 Society for Conservation Biology.
Brichieri-Colombi, Typhenn A; Lloyd, Natasha A; Mcpherson, Jana M; Moehrenschlager, Axel
2018-06-19
With the loss of biodiversity accelerating, conservation translocations such as reintroductions are becoming an increasingly common conservation tool. Conservation translocations must source individuals for release from either wild or captive-bred populations. We asked what proportion of North American conservation translocations rely on captive breeding, and to what extent zoos and aquaria (hereafter zoos) fulfill captive breeding needs. Our comprehensive literature review indicates that North American conservation translocations published before 2014 involved captive breeding for 162 (58%) of the 279 animal species translocated. Fifty-four zoos contributed animals for release; the fourty species of animals bred for release by zoos represents only 14% of all animal species for which conservation translocations were published, and only 25% of all animal species that were bred for releases occurring in North America. Zoo contributions varied by taxon, ranging from zoo-bred animals released in 42% of amphibian conservation translocations to zero contributions for marine invertebrates. Proportional involvement of zoos in captive breeding programs for release has increased over time as has the proportion of translocation-focused scientific papers co-authored by zoo professionals. While zoos also contribute to conservation translocations through education, funding, and professional expertise, increasing the contribution of animals for release in responsible conservation translocation programs presents a future conservation need and opportunity. We especially encourage increased dialogue and planning between the zoo community, academic institutions, and governments to optimize the direct contribution zoos can make to wildlife conservation through conservation translocations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Newly translated proteins are substrates for ubiquitin, ISG15, and FAT10.
Spinnenhirn, Valentina; Bitzer, Annegret; Aichem, Annette; Groettrup, Marcus
2017-01-01
The ubiquitin-like modifier, FAT10, is involved in proteasomal degradation and antigen processing. As ubiquitin and the ubiquitin-like modifier, ISG15, cotranslationally modify proteins, we investigated whether FAT10 could also be conjugated to newly synthesized proteins. Indeed, we found that nascent proteins are modified with FAT10, but not with the same preference for newly synthesized proteins as observed for ISG15. Our data show that puromycin-labeled polypeptides are strongly modified by ISG15 and less intensely by ubiquitin and FAT10. Nevertheless, conjugates of all three modifiers copurify with ribosomes. Taken together, we show that unlike ISG15, ubiquitin and FAT10 are conjugated to a similar degree to newly translated and pre-existing proteins. © 2016 Federation of European Biochemical Societies.
Argani, Pedram; Zhong, Minghao; Reuter, Victor E.; Fallon, John T.; Epstein, Jonathan I.; Netto, George J.; Antonescu, Cristina R.
2016-01-01
Xp11 translocation cancers include Xp11 translocation renal cell carcinoma (RCC), Xp11 translocation perivascular epithelioid cell tumor (PEComa), and melanotic Xp11 translocation renal cancer. In Xp11 translocation cancers, oncogenic activation of TFE3 is driven by the fusion of TFE3 with a number of different gene partners, however, the impact of individual fusion variant on specific clinicopathologic features of Xp11 translocation cancers has not been well defined. In this study, we analyze 60 Xp11 translocation cancers by fluorescence in situ hybridization (FISH) using custom BAC probes to establish their TFE3 fusion gene partner. In 5 cases RNA sequencing (RNA-seq) was also used to further characterize the fusion transcripts. The 60 Xp11 translocation cancers included 47 Xp11 translocation RCC, 8 Xp11 translocation PEComas, and 5 melanotic Xp11 translocation renal cancers. A fusion partner was identified in 53/60 (88%) cases, including 18 SFPQ (PSF), 16 PRCC, 12 ASPSCR1 (ASPL), 6 NONO, and 1 DVL2. We provide the first morphologic description of the NONO-TFE3 RCC, which frequently demonstrates sub-nuclear vacuoles leading to distinctive suprabasal nuclear palisading. Similar sub-nuclear vacuolization was also characteristic of SFPQ-TFE3 RCC, creating overlapping features with clear cell papillary RCC. We also describe the first RCC with a DVL2-TFE3 gene fusion, in addition to an extrarenal pigmented PEComa with a NONO-TFE3 gene fusion. Furthermore, among neoplasms with the SFPQ-TFE3, NONO-TFE3, DVL2-TFE3 and ASPL-TFE3 gene fusions, the RCC are almost always PAX8-positive, cathepsin K-negative by immunohistochemistry, whereas the mesenchymal counterparts (Xp11 translocation PEComas, melanotic Xp11 translocation renal cancers, and alveolar soft part sarcoma) are PAX8-negative, cathepsin K-positive. These findings support the concept that despite an identical gene fusion, the RCCs are distinct from the corresponding mesenchymal neoplasms, perhaps due to the cellular context in which the translocation occurs. We corroborate prior data showing that the PRCC-TFE3 RCC are the only known Xp11 translocation RCC molecular subtype which is consistently cathepsin K positive. In summary, our data expand further the clinicopathologic features of cancers with specific TFE3 gene fusions, and should allow for more meaningful clinicopathologic associations to be drawn. PMID:26975036
Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael
2015-08-01
The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.
Rose, Terry J.; Liu, Lei; Wissuwa, Matthias
2013-01-01
Given the non-renewable nature of global phosphate reserves, there is a push to increase the phosphorus (P) efficiency of agricultural crops. Research has typically focussed on investigating P acquisition efficiency or internal P utilization efficiency to reduce crop fertilizer requirements. A novel option that would reduce the amount of P exported from fields at harvest, and may ultimately reduce P fertilizer requirements, would be to reduce the amount of P translocated to grains to minimize grain P concentrations. While such a trait has been mentioned in a number of studies over the years, there has not been a concerted effort to target this trait in breeding programs. In this perspective piece we explore the reasons why a low grain P trait has not been pursued, and discuss the potential benefits and drawbacks of such a trait in the context of breeding to improve the P efficiency of cropping systems. PMID:24204376
Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma.
Graham, Rondell P; Barr Fritcher, Emily G; Pestova, Ekaterina; Schulz, John; Sitailo, Leonid A; Vasmatzis, George; Murphy, Stephen J; McWilliams, Robert R; Hart, Steven N; Halling, Kevin C; Roberts, Lewis R; Gores, Gregory J; Couch, Fergus J; Zhang, Lizhi; Borad, Mitesh J; Kipp, Benjamin R
2014-08-01
Patients with cholangiocarcinoma often present with locally advanced or metastatic disease. There is a need for effective therapeutic strategies for advanced stage cholangiocarcinoma. Recently, FGFR2 translocations have been identified as a potential target for tyrosine kinase inhibitor therapies. This study evaluated 152 cholangiocarcinomas and 4 intraductal papillary biliary neoplasms of the bile duct for presence of FGFR2 translocations by fluorescence in situ hybridization and characterized the clinicopathologic features of cases with FGFR2 translocations. Thirteen (10 women, 3 men; 8%) of 156 biliary tumors harbored FGFR2 translocations, including 12 intrahepatic cholangiocarcinomas (12/96; 13%) and 1 intraductal papillary neoplasm of the bile duct. Histologically, cholangiocarcinomas with FGFR2 translocations displayed prominent intraductal growth (62%) or anastomosing tubular glands with desmoplasia (38%). Immunohistochemically, the tumors with FGFR2 translocations frequently showed weak and patchy expression of CK19 (77%). Markers of the stem cell phenotype in cholangiocarcinoma, HepPar1 and CK20, were negative in all cases. The median cancer-specific survival for patients whose tumors harbored FGFR2 translocations was 123 months compared to 37 months for cases without FGFR2 translocations (P = .039). This study also assessed 100 cholangiocarcinomas for ERBB2 amplification and ROS1 translocations. Of the cases tested, 3% and 1% were positive for ERBB2 amplification and ROS1 translocation, respectively. These results confirm that FGFR2, ERRB2, and ROS1 alterations are potential therapeutic targets for intrahepatic cholangiocarcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.
Xp11.2 translocation renal cell carcinomas in young adults.
Xu, Linfeng; Yang, Rong; Gan, Weidong; Chen, Xiancheng; Qiu, Xuefeng; Fu, Kai; Huang, Jin; Zhu, Guancheng; Guo, Hongqian
2015-07-01
Little is known about the biological behavior of Xp11.2 translocation renal cell carcinomas (RCCs) as few clinical studies have been performed using a large sample size. This study included 103 consecutive young adult patients (age ≤ 45 years) with RCC who underwent partial or radical nephrectomy at our institution from 2008 to 2013. Five patients without complete clinical data were excluded. Of the 98 remaining patients, 16 and 82 patients were included in the Xp11.2 translocation and non-Xp11.2 translocation groups, respectively. Clinicopathologic data were collected, including age, gender, tumor size, laterality, symptoms at diagnosis, surgical procedure, pathologic stage, tumor grade, time of recurrence and death. Xp11.2 translocation RCCs were associated with higher tumor grade and pathologic stage (P < 0.05, Fisher's exact test). During the median follow-up of 36 months (range: 3-71 months), the number of cancer-related deaths was 4 (4.9%) and 3 (18.7%) in the non-Xp11.2 translocation and Xp11.2 translocation groups, respectively. The Kaplan-Meier cancer specific survival curves revealed a significant difference between non-Xp11.2 translocation RCCs and Xp11.2 translocation RCCs in young adults (P = 0.042). Compared with non-Xp11.2 translocation RCCs, the Xp11.2 translocation RCCs seemingly showed a higher tumor grade and pathologic stage and have similar recurrence-free survival rates but poorer cancer-specific survival rates in young adults.
Deciphering the Role of Alternative nonhomologous End Joining (Alt NHEJ) DNA Repair in Breast Cancer
2016-10-01
carrying mutations in homology-directed repair genes. Here we report that PolQ inhibition can be used to increase the efficiency of CRISPR targeting...Telomeres. • Poly-ADP-ribose polymerase 1, PARP1. • Chromosomal translocation. • Chromosomal aberrancies. • Chromosomal fusions. • CRISPR ...showed that PolQ promotes A-NHEJ while suppresses HR and I have analyzed the impact of PolQ on CRISPR targeting when HR is required to
Absorption and translocation of nitrogen in rhizomes of Leymus chinensis.
Liu, Hongsheng; Liu, Huajie; Song, Youhong
2011-03-15
Leymus chinensis is a dominant species in the Inner Mongolia steppe, northern China. Plant growth in northern China grassland is often limited by low soil nitrogen availability. The objective of this study is to investigate whether rhizomes of Leymus chinensis are involved in the contribution of N uptake. The N concentration, (15)N concentration and (15)N proportion in roots, rhizomes and shoots after 48 h exposure of roots (L(root)) and rhizomes (L(rhizo)) separately and roots and rhizomes together (L(r+r)) to 0.1 mM (15)NH (4)(15)NO(3) solution were measured using root-splitting equipment and stable isotope ((15)N) techniques, respectively. The N content and dry mass were not affected by the labeling treatment. In contrast, the (15)N concentration in shoots, rhizomes and roots was significantly increased by the labeling in rhizomes, indicating that the inorganic nitrogen was absorbed via rhizomes from the solution and can be transported to other tissues, with preference to shoots rather than roots. Meanwhile, the absolute N absorption and translocation among compartments were also calculated. The N absorption via rhizomes was much smaller than via roots; however, the uptake efficiency per surface unit via rhizomes was greater than via roots. The capacity and high efficiency to absorb N nutrient via rhizomes enable plants to use transient nutrient supplies in the top soil surface. Copyright © 2011 John Wiley & Sons, Ltd.
Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun
2016-08-01
This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.
A strategy for generation and balancing of autosome: Y chromosome translocations.
Joshi, Sonal S; Cheong, Han; Meller, Victoria H
2014-01-01
We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced ( 2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.
Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125
Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions
Leblon, G.; Zickler, D.; Lebilcot, S.
1986-01-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.—Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.—Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms. PMID:17246312
Leblon, G; Zickler, D; Lebilcot, S
1986-02-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.
Lee, Vivian C Y; Chow, Judy F C; Lau, Estella Y L; Yeung, William S B; Ho, P C; Ng, Ernest H Y
2015-02-01
To compare the pregnancy outcome of the fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis of translocation carriers. Historical cohort. A teaching hospital in Hong Kong. All preimplantation genetic diagnosis treatment cycles performed for translocation carriers from 2001 to 2013. Overall, 101 treatment cycles for preimplantation genetic diagnosis in translocation were included: 77 cycles for reciprocal translocation and 24 cycles for Robertsonian translocation. Fluorescent in-situ hybridisation and array comparative genomic hybridisation were used in 78 and 11 cycles, respectively. The ongoing pregnancy rate per initiated cycle after array comparative genomic hybridisation was significantly higher than that after fluorescent in-situ hybridisation in all translocation carriers (36.4% vs 9.0%; P=0.010). The miscarriage rate was comparable with both techniques. The testing method (array comparative genomic hybridisation or fluorescent in-situ hybridisation) was the only significant factor affecting the ongoing pregnancy rate after controlling for the women's age, type of translocation, and clinical information of the preimplantation genetic diagnosis cycles by logistic regression (odds ratio=1.875; P=0.023; 95% confidence interval, 1.090-3.226). This local retrospective study confirmed that comparative genomic hybridisation is associated with significantly higher pregnancy rates versus fluorescent in-situ hybridisation in translocation carriers. Array comparative genomic hybridisation should be the technique of choice in preimplantation genetic diagnosis cycles in translocation carriers.
Fève, Katia; Foissac, Sylvain; Pinton, Alain; Mompart, Florence; Esquerré, Diane; Faraut, Thomas; Yerle, Martine
2017-01-01
Reciprocal translocations are the most frequently occurring constitutional structural rearrangements in mammalian genomes. In phenotypically normal pigs, an incidence of 1/200 is estimated for such rearrangements. Even if constitutional translocations do not necessarily induce defects and diseases, they are responsible for significant economic losses in domestic animals due to reproduction failures. Over the last 30 years, advances in molecular and cytogenetic technologies have led to major improvements in the resolution of the characterization of translocation events. Characterization of translocation breakpoints helps to decipher the mechanisms that lead to such rearrangements and the functions of the genes that are involved in the translocation. Here, we describe the fine characterization of a reciprocal translocation t(3;4) (p1.3;q1.5) detected in a pig line. The breakpoint was identified at the base-pair level using a positional cloning and chromosome walking strategy in somatic cell hybrids that were generated from an animal that carries this translocation. We show that this translocation occurs within the ADAMTSL4 gene and results in a loss of expression in homozygous carriers. In addition, by taking this translocation as a model, we used a whole-genome next-generation mate-pair sequencing approach on pooled individuals to evaluate this strategy for high-throughput screening of structural rearrangements. PMID:29121641
Saini, Deepak Kumar; Kalyanaraman, Vani; Chisari, Mariangela; Gautam, Narasimhan
2008-01-01
The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein γ subunit family translocate specifically from the PM to endomembranes. The γ subunits translocate as βγ complexes, whereas the α subunit is retained on the PM. Depending on the γ subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the γ subunit type. Different γ subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various γ subunits and their translocation properties. γ subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092–24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein βγ subunits to intracellular membranes. PMID:17581822
Translocation time of a polymer chain through an energy gradient nanopore
NASA Astrophysics Data System (ADS)
Luo, Meng-Bo; Zhang, Shuang; Wu, Fan; Sun, Li-Zhen
2017-06-01
The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker-Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.
Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana
2015-12-29
The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.
Anderson, Lindsay E; Cree, Alison; Towns, David R; Nelson, Nicola J
2015-01-01
Translocations are an important conservation tool used to restore at-risk species to their historical range. Unavoidable procedures during translocations, such as habitat disturbance, capture, handling, processing, captivity, transport and release to a novel environment, have the potential to be stressful for most species. In this study, we examined acute and chronic stress (through the measurement of the glucocorticoid corticosterone) in a rare reptile (the tuatara, Sphenodon punctatus). We found that: (i) the acute corticosterone response remains elevated during the initial translocation process but is not amplified by cumulative stressors; and (ii) the long-term dynamics of corticosterone secretion are similar in translocated and source populations. Taken together, our results show that translocated tuatara are generally resistant to cumulative acute stressors and show no hormonal sign of chronic stress. Translocation efforts in tuatara afford the potential to reduce extinction risk and restore natural ecosystems.
Polymer translocation under a pulling force: Scaling arguments and threshold forces
NASA Astrophysics Data System (ADS)
Menais, Timothée
2018-02-01
DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .
Jeffrey C. Lewis; Roger A. Powell; William J. Zielinski
2012-01-01
Translocations are frequently used to restore extirpated carnivore populations. Understanding the factors that influence translocation success is important because carnivore translocations can be time consuming, expensive, and controversial. Using population viability software, we modeled reintroductions of the fisher, a candidate for endangered or threatened status in...
Kida, Yuichiro; Morimoto, Fumiko; Sakaguchi, Masao
2007-01-01
During protein integration into the endoplasmic reticulum, the N-terminal domain preceding the type I signal-anchor sequence is translocated through a translocon. By fusing a streptavidin-binding peptide tag to the N terminus, we created integration intermediates of multispanning membrane proteins. In a cell-free system, N-terminal domain (N-domain) translocation was arrested by streptavidin and resumed by biotin. Even when N-domain translocation was arrested, the second hydrophobic segment mediated translocation of the downstream hydrophilic segment. In one of the defined intermediates, two hydrophilic segments and two hydrophobic segments formed a transmembrane disposition in a productive state. Both of the translocating hydrophilic segments were crosslinked with a translocon subunit, Sec61α. We conclude that two translocating hydrophilic segment in a single membrane protein can span the membrane during multispanning topogenesis flanking the translocon. Furthermore, even after six successive hydrophobic segments entered the translocon, N-domain translocation could be induced to restart from an arrested state. These observations indicate the remarkably flexible nature of the translocon. PMID:18166653
Does translocation influence physiological stress in the desert tortoise?
Drake, K.K.; Nussear, K.E.; Esque, T.C.; Barber, A.M.; Vittum, K.M.; Medica, P.A.; Tracy, C.R.; Hunter, K.W.
2012-01-01
Wildlife translocation is increasingly used to mitigate disturbances to animals or habitat due to human activities, yet little is known about the extent to which translocating animals causes stress. To understand the relationship between physiological stress and translocation, we conducted a multiyear study (2007–2009) using a population of desert tortoises (Gopherus agassizii) near Fort Irwin, California. Blood samples were collected from adult tortoises in three treatment groups (resident, translocated and control) for 1 year prior to and 2 years after translocation. Samples were analyzed by radioimmunoassay for plasma total corticosterone (CORT), a glucocorticoid hormone commonly associated with stress responses in reptiles. CORT values were analyzed in relation to potential covariates (animal sex, date, behavior, treatment, handling time, air temperature, home-range size, precipitation and annual plant production) among seasons and years. CORT values in males were higher than in females, and values for both varied monthly throughout the activity season and among years. Year and sex were strong predictors of CORT, and translocation explained little in terms of CORT. Based on these results, we conclude that translocation does not elicit a physiological stress response in desert tortoises.
Mathas, Stephan; Kreher, Stephan; Meaburn, Karen J; Jöhrens, Korinna; Lamprecht, Björn; Assaf, Chalid; Sterry, Wolfram; Kadin, Marshall E; Daibata, Masanori; Joos, Stefan; Hummel, Michael; Stein, Harald; Janz, Martin; Anagnostopoulos, Ioannis; Schrock, Evelin; Misteli, Tom; Dörken, Bernd
2009-04-07
Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL.
Mathas, Stephan; Kreher, Stephan; Meaburn, Karen J.; Jöhrens, Korinna; Lamprecht, Björn; Assaf, Chalid; Sterry, Wolfram; Kadin, Marshall E.; Daibata, Masanori; Joos, Stefan; Hummel, Michael; Stein, Harald; Janz, Martin; Anagnostopoulos, Ioannis; Schrock, Evelin; Misteli, Tom; Dörken, Bernd
2009-01-01
Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL. PMID:19321746
Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study
NASA Technical Reports Server (NTRS)
Tian, Pu; Smith, Grant D.
2003-01-01
We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.
Azpiazu, Inaki; Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling β2 adrenergic receptors causes rapid reversible translocation of the G protein γ11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the β1 subunit suggests that γ11 translocates as a βγ complex. Pertussis toxin ADP ribosylation of the αi subunit type or substitution of the C terminal domain of αo with the corresponding region of αs inhibits γ11 translocation demonstrating that α subunit interaction with a receptor and its activation are requirements for the translocation. The rate of γ11 translocation is sensitive to the rate of activation of the G protein α subunit. α subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of γ11 translocation compared to α subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of γ11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of γ11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and α subunit types in a live cell. PMID:16242307
Kong, Christina; Clarke, Nicole; Gilks, Thea; Lipsick, Joe; Cao, Hongbin; Kwok, Shirley; Montgomery, Kelli D.; Varma, Sushama; Le, Quynh-Thu
2011-01-01
Background Adenoid cystic carcinoma is a locally aggressive salivary gland neoplasm which has a poor long term prognosis. A chromosomal translocation involving the genes encoding the transcription factors MYB and NFIB has been recently discovered in these tumors. Methods MYB translocation and protein expression was studied in 37 adenoid cystic carcinomas, 112 other salivary gland neoplasms, and 409 non salivary gland neoplasms by FISH and immunohistochemistry. MYB translocation and expression status in adenoid cystic carcinoma was correlated with clinicopathologic features including outcome, with a median follow up of 77.1 months (range: 23.2–217.5) for living patients. Results A balanced translocation between MYB and NFIB is present in 49% of adenoid cystic carcinomas but is not identified in other salivary gland tumors or non-salivary gland neoplasms. There is no apparent translocation of MYB in 35% of the cases. Strong Myb immunostaining is very specific for adenoid cystic carcinomas but is only present in 65% of all cases. Interestingly, Myb immunostaining is confined to the basal cell component though the translocation is present in all the cells. Neoplasms with MYB translocation demonstrate a trend towards higher local relapse rates, but the results are not statistically significant with current case numbers. Conclusions MYB translocation and expression are useful diagnostic markers for a subset of adenoid cystic carcinomas. The presence of the translocation may be indicative of local aggressive behavior but a larger cohort may be required to demonstrate statistical significance. PMID:21164292
HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells.
Bocsanczy, Ana M; Nissinen, Riitta M; Oh, Chang-Sik; Beer, Steven V
2008-07-01
The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.
Translocations of amphibians: Proven management method or experimental technique
Seigel, Richard A.; Dodd, C. Kenneth
2002-01-01
In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.
Saleeb, Rola M; Srigley, John R; Sweet, Joan; Doucet, Cedric; Royal, Virginie; Chen, Ying-Bei; Brimo, Fadi; Evans, Andrew
2017-11-01
MiT family translocation tumors are a group of neoplasms characterized by translocations involving MiT family transcription factors. The translocation renal cell carcinomas, TFE3 (Xp11.2) and TFEB (t6;11) are known members of this family. Melanotic Xp11 translocation renal cancer is a more recently described entity. To date only 14 cases have been described. It is characterized by a distinct set of features including a nested epithelioid morphology, melanin pigmentation, labeling for markers of melanocytic differentiation, lack of labeling for markers of renal tubular differentiation, predominance in a younger age population and association with aggressive clinical behavior. There are noted similarities between that entity and TFE3 associated PEComas. There are no cases reported of equivalent melanotic TFEB translocation renal cancer. We report 2 rare cases of melanotic translocation renal neoplasms. The first is a melanotic TFE3 translocation renal cancer with an indolent clinical course, occurring in a patient more than 3-decades older than the usual average age in which such tumors have been described. The other case is, to our knowledge, the first reported melanotic TFEB translocation cancer of the kidney. Both cases exhibit the same H&E morphology as previously reported in melanotic translocation renal cancers and label accordingly with HMB45 and Melan-A. While the TFE3 melanotic tumor lacked any evidence of renal tubular differentiation, the TFEB melanotic cancer exhibited some staining for renal tubular markers. Based on the unique features noted above, these two cases expand the clinical and molecular spectrum of the melanotic translocation renal cancers. Copyright © 2017 Elsevier GmbH. All rights reserved.
Physiology in conservation translocations
Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.
2014-01-01
Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term ‘translocation physiology’ and represent an important sub-discipline within conservation physiology generally. PMID:27293675
Physiology in conservation translocations.
Tarszisz, Esther; Dickman, Christopher R; Munn, Adam J
2014-01-01
Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term 'translocation physiology' and represent an important sub-discipline within conservation physiology generally.
NASA Astrophysics Data System (ADS)
Vélez Pérez, José Antonio; Guzmán, Orlando; Navarro-García, Fernando
2013-07-01
Protein translocation from the cytosol to the endoplasmic reticulum (ER) or vice versa, an essential process for cell function, includes the transport of preproteins destined to become secretory, luminal, or integral membrane proteins (translocation) or misfolded proteins returned to the cytoplasm to be degraded (retrotranslocation). An important aspect in this process that has not been fully studied is the molecular crowding at both sides of the ER membrane. By using models of polymers crossing a membrane through a pore, in an environment crowded by either static or dynamic spherical agents, we computed the following transport properties: the free energy, the activation energy, the force, and the transport times for translocation and retrotranslocation. Using experimental protein crowding data for the cytoplasm and ER sides, we showed that dynamic crowding, which resembles biological environments where proteins are translocated or retrotranslocated, increases markedly all the physical properties of translocation and retrotranslocation as compared with translocation in a diluted system. By contrast, transport properties in static crowded systems were similar to those in diluted conditions. In the dynamic regime, the effects of crowding were more notorious in the transport times, leading to a huge difference for large chains. We indicate that this difference is the result of the synergy between the free energy and the diffusivity of the translocating chain. That synergy leads to translocation rates similar to experimental measures in diluted systems, which indicates that the effects of crowding can be measured. Our data also indicate that effects of crowding cannot be neglected when studying translocation because protein dynamic crowding has a relevant steric contribution, which changes the properties of translocation.
[Using Molecular Simulations to Understand Complex Nanoscale Dynamic Phenomena in Polymer Solutions
NASA Technical Reports Server (NTRS)
Smith, Grant
2004-01-01
The first half of the project concentrated on molecular simulation studies of the translocation of model molecules for single-stranded DNA through a nanosized pore. This has resulted in the publication, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, by Pu Tian and Grant D. Smith, JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 21 1 DECEMBER 2003, which is attached to this report. In this work we carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient) designed to mimic an electrostatic field. The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient). We focused on the latter case in our studies. Calculation of radius of gyration of the translocating chain at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tube-like pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied. Attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.
The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly
Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.
2015-01-01
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. PMID:26067441
Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.
Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc
2017-08-01
High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [ 13 C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart. NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation reverses leucine's action, suggesting acetylation involvement in this phenomenon.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/leucine-metabolism-inhibits-cardiac-glucose-uptake/. Copyright © 2017 the American Physiological Society.
Alignment of threat, effort, and perceived success in North American conservation translocations.
Brichieri-Colombi, Typhenn A; Moehrenschlager, Axel
2016-12-01
The use of conservation translocations to mitigate human effects on biodiversity is increasing, but how these efforts are allocated remains unclear. Based on a comprehensive literature review and online author survey, we sought to determine the goals of translocation efforts, whether they focus on species and regions with high threat and likelihood of perceived success, and how success might be improved. We systematically searched the ISI Web of Knowledge and Academic Search Complete databases to determine the species and regions of conservation translocations and found 1863 articles on conservation translocations in the United States, Canada, Mexico, Central America, and Caribbean published from 1974 to 2013. We questioned 330 relevant authors to determine the motivation for translocations, how translocations were evaluated, and obstacles encountered. Conservation translocations in North America were geographically widespread (in 21 countries), increased in frequency over time for all animal classes (from 1 in 1974 to 84 in 2013), and included 279 different species. Reintroductions and reinforcements were more common in the United States than in Canada and Mexico, Central America, or the Caribbean, and their prevalence was correlated with the number of species at risk at national and state or provincial levels. Translocated species had a higher threat status at state and provincial levels than globally (International Union for Conservation of Nature Red List categorization), suggesting that translocations may have been motivated by regional priorities rather than global risk. Our survey of authors was consistent with these results; most translocations were requested, supported, or funded by government agencies and downlisting species at national or state or provincial levels was the main goal. Nonetheless, downlisting was the least reported measure of success, whereas survival and reproduction of translocated individuals were the most reported. Reported barriers to success included biological factors such as animal mortality and nonbiological factors, such as financial constraints, which were less often considered in the selection of release sites. Our review thus highlights discrepancies between project goals and evaluation criteria and between risk factors considered and obstacles encountered, indicating room to further optimize translocation projects. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Stavreva, Diana A; Varticovski, Lyuba; Levkova, Ludmila; George, Anuja A; Davis, Luke; Pegoraro, Gianluca; Blazer, Vicki; Iwanowicz, Luke; Hager, Gordon L
2016-08-10
Even though the presence of endocrine disrupting chemicals (EDCs) with thyroid hormone (TH)-like activities in the environment is a major health concern, the methods for their efficient detection and monitoring are still limited. Here we describe a novel cell assay, based on the translocation of a green fluorescent protein (GFP)-tagged chimeric molecule of glucocorticoid receptor (GR) and the thyroid receptor beta (TRβ) from the cytoplasm to the nucleus in the presence of TR ligands. Unlike the constitutively nuclear TRβ, this GFP-GR-TRβ chimera is cytoplasmic in the absence of hormone while translocating to the nucleus in a time- and concentration-dependent manner upon stimulation with triiodothyronine (T3) and thyroid hormone analogue, TRIAC, while the reverse triiodothyronine (3,3',5'-triiodothyronine, or rT3) was inactive. Moreover, GFP-GR-TRβ chimera does not show any cross-reactivity with the GR-activating hormones, thus providing a clean system for the screening of TR beta-interacting EDCs. Using this assay, we demonstrated that Bisphenol A (BPA) and 3,3',5,5'-Tetrabromobisphenol (TBBPA) induced GFP-GR-TRβ translocation at micro molar concentrations. We screened over 100 concentrated water samples from different geographic locations in the United States and detected a low, but reproducible contamination in 53% of the samples. This system provides a novel high-throughput approach for screening for endocrine disrupting chemicals (EDCs) interacting with TR beta. Published by Elsevier Ireland Ltd.
Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan
2015-04-01
Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Novel cell-based assay for detection of thyroid receptor beta-interacting environmental contaminants
Stavreva, Diana A.; Varticovski, Lyuba; Levkova, Ludmila; George, Anuja A.; Davis, Luke; Pegoraro, Gianluca; Blazer, Vicki S.; Iwanowicz, Luke R.; Hager, Gordon L.
2016-01-01
Even though the presence of endocrine disrupting chemicals (EDCs) with thyroid hormone (TH)-like activities in the environment is a major health concern, the methods for their efficient detection and monitoring are still limited. Here we describe a novel cell assay, based on the translocation of a green fluorescent protein (GFP)—tagged chimeric molecule of glucocorticoid receptor (GR) and the thyroid receptor beta (TRβ) from the cytoplasm to the nucleus in the presence of TR ligands. Unlike the constitutively nuclear TRβ, this GFP-GR-TRβ chimera is cytoplasmic in the absence of hormone while translocating to the nucleus in a time- and concentration-dependent manner upon stimulation with triiodothyronine (T3) and thyroid hormone analogue, TRIAC, while the reverse triiodothyronine (3,3′,5′-triiodothyronine, or rT3) was inactive. Moreover, GFP-GR-TRβ chimera does not show any cross-reactivity with the GR-activating hormones, thus providing a clean system for the screening of TR beta-interacting EDCs. Using this assay, we demonstrated that Bisphenol A (BPA) and 3,3′,5,5′-Tetrabromobisphenol (TBBPA) induced GFP-GR-TRβ translocation at micro molar concentrations. We screened over 100 concentrated water samples from different geographic locations in the United States and detected a low, but reproducible contamination in 53% of the samples. This system provides a novel high-throughput approach for screening for endocrine disrupting chemicals (EDCs) interacting with TR beta.
Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko
2008-07-01
To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.
Novel cell-based assay for detection of thyroid receptor beta-interacting environmental contaminants
Stavreva, Diana A.; Varticovski, Lyuba; Levkova, Ludmila; George, Anuja A.; Davis, Luke; Pegoraro, Gianluca; Blazer, Vicki; Iwanowicz, Luke; Hager, Gordon L.
2016-01-01
Even though the presence of endocrine disrupting chemicals (EDCs) with thyroid hormone (TH)-like activities in the environment is a major health concern, the methods for their efficient detection and monitoring are still limited. Here we describe a novel cell assay, based on the translocation of a green fluorescent protein (GFP) - tagged chimeric molecule of glucocorticoid receptor (GR) and the thyroid receptor beta (TRβ) from the cytoplasm to the nucleus in the presence of TR ligands. Unlike the constitutively nuclear TRβ, this GFP-GR-TRβ chimera is cytoplasmic in the absence of hormone while translocating to the nucleus in a time- and concentration-dependent manner upon stimulation with triiodothyronine (T3) and thyroid hormone analogue, TRIAC, while the reverse triiodothyronine (3,3′,5′-triiodothyronine, or rT3) was inactive. Moreover, GFP-GR-TRβ chimera does not show any cross-reactivity with the GR-activating hormones, thus providing a clean system for the screening of TR beta -interacting EDCs. Using this assay, we demonstrated that Bisphenol A (BPA) and 3,3′,5,5′-Tetrabromobisphenol (TBBPA) induced GFP-GR-TRβ translocation at micro molar concentrations. We screened over 100 concentrated water samples from different geographic locations in the United States and detected a low, but reproducible contamination in 53 % of the samples. This system provides a novel high-throughput approach for screening for endocrine disrupting chemicals (EDCs) interacting with TR beta. PMID:27528272
de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M
2018-04-01
Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.
K. E. Nussear; C. R. Tracy; P. A. Medica; D. S. Wilson; R. W. Marlow; P. S. Corn
2012-01-01
We translocated 120 Agassiz's desert tortoises to 5 sites in Nevada and Utah to evaluate the effects of translocation on tortoise survivorship, reproduction, and habitat use. Translocation sites included several elevations, and extended to sites with vegetation assemblages not typically associated with desert tortoises in order to explore the possibility of moving...
NOS1 mediates AP1 nuclear translocation and inflammatory response.
Srivastava, Mansi; Baig, Mirza S
2018-06-01
A hallmark of the AP1 functioning is its nuclear translocation, which induces proinflammatory cytokine expression and hence the inflammatory response. After endotoxin shock AP1 transcription factor, which comprises Jun, ATF2, and Fos family of proteins, translocates into the nucleus and induces proinflammatory cytokine expression. In the current study, we found, NOS1 inhibition prevents nuclear translocation of the AP1 transcription factor subunits. Pharmacological inhibition of NOS1 impedes translocation of subunits into the nucleus, suppressing the transcription of inflammatory genes causing a diminished inflammatory response. In conclusion, the study shows the novel mechanism of NOS1- mediated AP1 nuclear translocation, which needs to be further explored. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Within-Range Translocations and Their Consequences in European Larch
Wagner, Stefanie; Liepelt, Sascha; Gerber, Sophie; Petit, Rémy J.
2015-01-01
In contrast to biological invasions, translocations of individuals within a species range are understudied, due to difficulties in systematically detecting them. This results in limited knowledge about the corresponding processes and uncertainties regarding the status of extant populations. European larch, a forest tree whose fragmented native distribution is restricted to the Alps and to other Central European mountains, has been massively planted for at least 300 years. Here we focus on the genetic characterization of translocations having taken place within its native range. Microsatellite variation at 13 nuclear loci and sequence data of two mitochondrial DNA fragments were analyzed on the basis of a comprehensive range-wide population sample. Two complementary methods (Geneclass and Structure) were used to infer translocation events based on nuclear data whereas mitochondrial data were used for validation of these inferences. Using Geneclass, we found translocation events in a majority of populations. Additional cases of translocation and many instances of admixture were identified using Structure, thanks to the clear-cut ancestral genetic structure detected in this species. In particular, a strong divide between Alpine and Central European populations, also apparent at mitochondrial markers, helped uncover details on translocation events and related processes. Translocations and associated admixture events were found to be heterogeneously distributed across the species range, with a particularly high frequency in Central Europe. Furthermore, translocations frequently involved multiple geographic sources, some of which were over-represented. Our study illustrates the importance of range-wide investigations for tracing translocations back to their origins and for revealing some of their consequences. It provides some first clues for developing suitable conservation and management strategies. PMID:26000791
NASA Astrophysics Data System (ADS)
Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong
2016-11-01
Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.
Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong
2016-11-09
Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.
Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong
2016-01-01
Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow. PMID:27827400
Ghosh, S; Das, P J; Avila, F; Thwaits, B K; Chowdhary, B P; Raudsepp, T
2016-02-01
Balanced autosomal translocations are a known cause for repeated early embryonic loss (REEL) in horses. In most cases, carriers of such translocations are phenotypically normal, but the chromosomal aberration negatively affects gametogenesis giving rise to both genetically balanced and unbalanced gametes. The latter, if involved in fertilization, result in REEL, whereas gametes with the balanced form of translocation will pass the defect into next generation. Therefore, in order to reduce the incidence of REEL, identification of translocation carriers is critical. Here, we report about a phenotypically normal 3-year-old Arabian mare that had repeated resorption of conceptuses prior to day 45 of gestation and was diagnosed with REEL. Conventional and molecular cytogenetic analyses revealed that the mare had normal chromosome number 64,XX but carried a non-mosaic and non-reciprocal autosomal translocation t(4;10)(q21;p15). This is a novel translocation described in horses with REEL and the first such report in Arabians. Previous cases of REEL due to autosomal translocations have exclusively involved Thoroughbreds. The findings underscore the importance of routine cytogenetic screening of breeding animals. © 2015 Blackwell Verlag GmbH.
Peeters, B W M M; Ruigt, G S F; Craighead, M; Kitchener, P
2008-12-01
Glucocorticoid agonists bind to cytoplasmic glucocorticoid receptors (GRs) and subsequently translocate as an agonist-GR complex into the nucleus. In the nucleus the complex regulates the transcription of target genes. A number of GR antagonists (RU486, progesterone, RU40555) have also been shown to induce receptor translocation. These compounds should be regarded as partial agonists. For the nonselective progesterone receptor antagonists, RTI3021-012 and RTI3021-022, it was shown that GR antagonism is possible without the induction of GR translocation. In the present studies, the new GR antagonist, ORG 34517, was investigated for its potential to induce GR translocation and to antagonize corticosterone-induced GR translocation in the AtT20 (mouse pituitary) cell line. ORG 34517 was compared to RU486. In contrast to RU486, ORG 34517 (at doses up to 3 x 10(-7) M) did not induce GR translocation, but was able to block corticosterone (3 x 10(-8) M) induced GR translocation. ORG 34517 can be regarded as a true competitive GR antagonist without partial agonistic activities.
Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.
Ghosh, Bappa; Chaudhury, Srabanti
2018-01-11
We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.
A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes
Liu, TingYu; Yu, BuChin; Kakino, Mamoru; Fujimoto, Hitoshi; Ando, Yasutoshi; Hakuno, Fumihiko; Takahashi, Shin-Ichiro
2016-01-01
Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity. PMID:27739494
Pala, Halil Gursoy; Artunc-Ulkumen, Burcu; Uyar, Yildiz; Bal, Filiz; Baytur, Yesim Bulbul; Koyuncu, Faik Mumtaz
2015-02-01
This is a case of a prenatally diagnosed non-immune hydrops fetalis (NIHF) associated with translocation t(5;11)(q22;p15). An association between NIHF and this translocation has not been reported previously. The patient was referred to the perinatology clinic with hydrops fetalis diagnosis at 23 weeks' gestation. We noted that the fetus had bilateral pleural effusion, ascites, widespread subcutaneous edema, membranous ventricular septal defect, hypoplastic fifth finger middle phalanx, clinodactyly, single umbilical artery. We performed cordocentesis. Chromosomal analysis on blood showed a balanced translocation between the long arm of chromosome 5 and the short arm of chromosome 11 with karyotype of 46,XX,t(5;11)(q22;p15). We present prenatal diagnosis of a de novo translocation (5;11) in a hydropic fetus with ultrason abnormalities. In our case, karyotype analysis of the fetus, mother and father provided evidence of a de novo translocation, that might explain the NIHF.
Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana
2015-01-01
The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107
Wilson, Natalie L.; Vance, David E.; Moneyham, Linda D.; Raper, James L.; Mugavero, Michael J.; Heath, Sonya L.; Kempf, Mirjam-Colette
2017-01-01
Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. PMID:25305025
Wilson, Natalie L; Vance, David E; Moneyham, Linda D; Raper, James L; Mugavero, Michael J; Heath, Sonya L; Kempf, Mirjam-Colette
2014-01-01
Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. Published by Elsevier Inc.
Microbial translocation and microbiome dsybiosis in HIV-associated immune activation
Zevin, Alexander S.; McKinnon, Lyle; Burgener, Adam; Klatt, Nichole R.
2016-01-01
Purpose of Review To describe the mechanisms and consequences of both microbial translocation and microbial dysbiosis in HIV infection. Recent Findings Microbes in HIV are likely playing a large role in contributing to HIV pathogenesis, morbidities and mortality. Two major disruptions to microbial systems in HIV infection include microbial translocation and microbiome dysbiosis. Microbial translocation occurs when the bacteria (or bacterial products) that should be in the lumen of the intestine translocate across the tight epithelial barrier into systemic circulation, where they contribute to inflammation and pathogenesis. This is associated with poorer health outcomes in HIV infected individuals. In addition, microbial populations in the GI tract are also altered after HIV infection, resulting in microbiome dysbiosis, which further exacerbates microbial translocation, epithelial barrier disruption, inflammation, and mucosal immune functioning. Summary Altered microbial regulation in HIV infection can lead to poor health outcomes, and understanding the mechanisms underlying microbial dysbiosis and translocation may result in novel pathways for therapeutic interventions. PMID:26679414
1992-01-01
We have isolated mutants that inhibit membrane protein insertion into the ER membrane of Saccharomyces cerevisiae. The mutants were contained in three complementation groups, which we have named SEC70, SEC71, and SEC72. The mutants also inhibited the translocation of soluble proteins into the lumen of the ER, indicating that they pleiotropically affect protein transport across and insertion into the ER membrane. Surprisingly, the mutants inhibited the translocation and insertion of different proteins to drastically different degrees. We have also shown that mutations in SEC61 and SEC63, which were previously isolated as mutants inhibiting the translocation of soluble proteins, also affect the insertion of membrane proteins into the ER. Taken together our data indicate that the process of protein translocation across the ER membrane involves a much larger number of gene products than previously appreciated. Moreover, different translocation substrates appear to have different requirements for components of the cellular targeting and translocation apparatus. PMID:1730771
Fatty acid transport and transporters in muscle are critically regulated by Akt2.
Jain, Swati S; Luiken, Joost J F P; Snook, Laelie A; Han, Xiao Xia; Holloway, Graham P; Glatz, Jan F C; Bonen, Arend
2015-09-14
Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome
NASA Astrophysics Data System (ADS)
Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.
2015-06-01
The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.
Substrate degradation by the proteasome: a single-molecule kinetic analysis
Lu, Ying; Lee, Byung-hoon; King, Randall W; Finley, Daniel; Kirschner, Marc W
2015-01-01
To address how the configuration of conjugated ubiquitins determines the recognition of substrates by the proteasome, we analyzed the degradation kinetics of substrates with chemically defined ubiquitin configurations. Contrary to the view that a tetraubiquitin chain is the minimal signal for efficient degradation, we find that distributing the ubiquitins as diubiquitin chains provides a more efficient signal. To understand how the proteasome actually discriminates among ubiquitin configurations, we developed single-molecule assays that distinguished intermediate steps of degradation kinetically. The level of ubiquitin on a substrate drives proteasome-substrate interaction, whereas the chain structure of ubiquitin affects translocation into the axial channel on the proteasome. Together these two features largely determine the susceptibility of substrates for proteasomal degradation. PMID:25859050
Ultrasensitive detection of protein translocated through toxin pores in droplet-interface bilayers
Fischer, Audrey; Holden, Matthew A.; Pentelute, Brad L.; Collier, R. John
2011-01-01
Many bacterial toxins form proteinaceous pores that facilitate the translocation of soluble effector proteins across cellular membranes. With anthrax toxin this process may be monitored in real time by electrophysiology, where fluctuations in ionic current through these pores inserted in model membranes are used to infer the translocation of individual protein molecules. However, detecting the minute quantities of translocated proteins has been a challenge. Here, we describe use of the droplet-interface bilayer system to follow the movement of proteins across a model membrane separating two submicroliter aqueous droplets. We report the capture and subsequent direct detection of as few as 100 protein molecules that have translocated through anthrax toxin pores. The droplet-interface bilayer system offers new avenues of approach to the study of protein translocation. PMID:21949363
A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs.
Matthews, G; Colman, A
1991-01-01
We describe the use of a Xenopus laevis egg extract for the in vitro translation and post translational modification of membrane and secretory proteins. This extract is capable of the translation and segregation into membranes of microgram per millilitre levels of protein from added mRNAs. Signal sequences of segregated proteins are efficiently cleaved and appropriate N-linked glycosylation patterns are produced. The extract also supports the quantitative assembly of murine immunoglobulin heavy and light chains into tetramers, and two events which take place beyond the endoplasmic reticulum, mannose 6 phosphorylation of murine cathepsin D and O-linked glycosylation of coronavirus E1 protein, also occur, but at reduced efficiency. The stability of the membranes allows protease protection studies and quantitative centrifugal fractionation of segregated and unsegregated proteins to be performed. Conditions for the use of stored extract have also been determined. Images PMID:1754376
Xp11.2 translocation renal carcinoma with placental metastasis: a case report.
Bovio, Ian M; Allan, Robert W; Oliai, Bahram R; Hampton, Troy; Rush, Demaretta S
2011-02-01
Renal cell carcinomas with sporadic Xp11.2 translocations are uncommon malignancies in children and young adults associated with several different reciprocal translocations involving the TFE3 gene located on chromosome Xp11.2. Placental metastases are extremely rare, with only a handful of cases reported. This study reports the case of a 20-year-old woman with an Xp11.2 translocation renal carcinoma that metastasized to the placenta. This is the first reported case of a renal cell carcinoma metastatic to the placenta and highlights the aggressive behavior of Xp11 translocation renal cell carcinomas.
Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research
Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is little doubt that chromosomal translocations can contribute to cancer, there is an active "chicken and the egg" discussion about the role translocations and other chromosomal abnormalities play—do they actually cause cancer or merely occur because of other changes within the cancer cell.
REN, WEIHONG; ZHANG, BO; MA, JIE; LI, WENCAI; LAN, JIANYUN; MEN, HUI; ZHANG, QINXIAN
2015-01-01
Non-small-cell lung cancer (NSCLC) with echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) translocation is resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, but responds to the ALK-TKI crizotinib. Characterization of EML4-ALK translocation may provide invaluable information to facilitate disease diagnosis and improve the outcome of customized treatment. Although the occurrence of EML4-ALK translocation is likely to be affected by the smoking habits and gender of patients, the translocation has not been characterized extensively in female never-smokers with NSCLC. Therefore, 280 female never-smokers that were diagnosed with NSCLC were enrolled in the present study, and characteristics of EML4-ALK translocation, including the frequency, were determined in these NSCLC patients. EML4-ALK fusion variants were detected using Multiplex one-step reverse transcription-polymerase chain reaction and subsequently confirmed by DNA sequencing and Vysis ALK Break Apart fluorescence in situ hybridization analysis. The EML4-ALK fusion variants were detected in 21 carcinoma tissue specimens, accounting for 7.5% of the enrolled patients. Out of these patients with EML4-ALK fusion variants, EML4-ALK fusion variant 1 was identified in 12 patients, indicating that variant 1 is the most common type of EML4-ALK fusion gene in the present cohort of patients. ALK mRNA was aberrantly expressed in all the tissues with EML4-ALK translocation, but not in the carcinoma tissues without EML4-ALK translocation. In addition, the EML4-ALK translocation was more frequently found in younger patients. The median age of patients with EML4-ALK translocation was 50.95±2.29 years, which was significantly younger (P<0.01) than the median age of the patients without EML4-ALK translocation (57.15±0.56). The EML4-ALK translocation was detected exclusively in undifferentiated tumors that were graded as poorly- or moderately-differentiated carcinomas and suspected to be more malignant compared with well-differentiated tumors. In summary, the present study found that 7.5% of patients with NSCLC that are female never-smokers harbor EML4-ALK translocations, which are associated with the aberrant expression of ALK mRNA, early onset of disease and undifferentiated carcinomas. PMID:26788139
Ren, Weihong; Zhang, B O; Ma, Jie; Li, Wencai; Lan, Jianyun; Men, Hui; Zhang, Qinxian
2015-12-01
Non-small-cell lung cancer (NSCLC) with echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) translocation is resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, but responds to the ALK-TKI crizotinib. Characterization of EML4-ALK translocation may provide invaluable information to facilitate disease diagnosis and improve the outcome of customized treatment. Although the occurrence of EML4-ALK translocation is likely to be affected by the smoking habits and gender of patients, the translocation has not been characterized extensively in female never-smokers with NSCLC. Therefore, 280 female never-smokers that were diagnosed with NSCLC were enrolled in the present study, and characteristics of EML4-ALK translocation, including the frequency, were determined in these NSCLC patients. EML4-ALK fusion variants were detected using Multiplex one-step reverse transcription-polymerase chain reaction and subsequently confirmed by DNA sequencing and Vysis ALK Break Apart fluorescence in situ hybridization analysis. The EML4-ALK fusion variants were detected in 21 carcinoma tissue specimens, accounting for 7.5% of the enrolled patients. Out of these patients with EML4-ALK fusion variants, EML4-ALK fusion variant 1 was identified in 12 patients, indicating that variant 1 is the most common type of EML4-ALK fusion gene in the present cohort of patients. ALK mRNA was aberrantly expressed in all the tissues with EML4-ALK translocation, but not in the carcinoma tissues without EML4-ALK translocation. In addition, the EML4-ALK translocation was more frequently found in younger patients. The median age of patients with EML4-ALK translocation was 50.95±2.29 years, which was significantly younger (P<0.01) than the median age of the patients without EML4-ALK translocation (57.15±0.56). The EML4-ALK translocation was detected exclusively in undifferentiated tumors that were graded as poorly- or moderately-differentiated carcinomas and suspected to be more malignant compared with well-differentiated tumors. In summary, the present study found that 7.5% of patients with NSCLC that are female never-smokers harbor EML4-ALK translocations, which are associated with the aberrant expression of ALK mRNA, early onset of disease and undifferentiated carcinomas.
Park, Se Won; Schonhoff, Christopher M.; Webster, Cynthia R. L.
2012-01-01
Cyclic AMP stimulates translocation of Na+/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation. PMID:22744337
Park, Se Won; Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat
2012-09-01
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.
Knott, Brandon C; Crowley, Michael F; Himmel, Michael E; Zimmer, Jochen; Beckham, Gregg T
2016-05-01
The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations to the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal/mol. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro ). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called `finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and may be widely relevant to polysaccharide synthesizing or degrading enzymes that couple catalysis with chain translocation.
Effects of calcium at toxic concentrations of cadmium in plants.
Huang, Danlian; Gong, Xiaomin; Liu, Yunguo; Zeng, Guangming; Lai, Cui; Bashir, Hassan; Zhou, Lu; Wang, Dafei; Xu, Piao; Cheng, Min; Wan, Jia
2017-05-01
This review provides new insight that calcium plays important roles in plant growth, heavy metal accumulation and translocation, photosynthesis, oxidative damage and signal transduction under cadmium stress. Increasing heavy metal pollution problems have raised word-wide concerns. Cadmium (Cd), being a highly toxic metal, poses potential risks both to ecosystems and human health. Compared with conventional technologies, phytoremediation, being cost-efficient, highly stable and environment-friendly, is believed to be a promising green technology for Cd decontamination. However, Cd can be easily taken up by plants and may cause severe phytotoxicity to plants, thus limiting the efficiency of phytoremediation. Various researches are being done to investigate the effects of exogenous substances on the mitigation of Cd toxicity to plants. Calcium (Ca) is an essential plant macronutrient that involved in various plant physiological processes, such as plant growth and development, cell division, cytoplasmic streaming, photosynthesis and intracellular signaling transduction. Due to the chemical similarity between Ca and Cd, Ca may mediate Cd-induced physiological or metabolic changes in plants. Recent studies have shown that Ca could be used as an exogenous substance to protect plants against Cd stress by the alleviation of growth inhibition, regulation of metal uptake and translocation, improvement of photosynthesis, mitigation of oxidative damages and the control of signal transduction in the plants. The effects of Ca on toxic concentrations of Cd in plants are reviewed. This review also provides new insight that plants with enhanced Ca level have improved resistance to Cd stress.
Production and Identification of Wheat-Agropyron cristatum 2P Translocation Lines
Li, Huanhuan; Lv, Mingjie; Song, Liqiang; Zhang, Jinpeng; Gao, Ainong; Li, Lihui; Liu, Weihua
2016-01-01
Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable traits that can be transferred to common wheat through breeding programs. The wheat-A. cristatum disomic addition and translocation lines can be used as bridge materials to introduce alien chromosomal segments to wheat. Wheat-A. cristatum 2P disomic addition line II-9-3 was highly resistant to powdery mildew and leaf rust, which was reported in our previous study. However, some translocation lines induced from II-9-3 have not been reported. In this study, some translocation lines were induced from II-9-3 by 60Co-γ irradiation and gametocidal chromosome 2C and then identified by cytological methods. Forty-nine wheat-A. cristatum translocation lines were obtained and various translcoation types were identified by GISH (genomic in situ hybridization), such as whole-arm, segmental and intercalary translocations. Dual-color FISH (fluorescent in situ hybridization) was applied to identify the wheat chromosomes involved in the translocations, and the results showed that A. cristatum 2P chromosome segments were translocated to the different wheat chromosomes, including 1A, 2A, 3A, 4A, 5A, 6A, 7A, 3B, 5B, 7B, 1D, 4D and 6D. Many different types of wheat-A. cristatum alien translocation lines would be valuable for not only identifying and cloning A. cristatum 2P-related genes and understanding the genetics and breeding effects of the translocation between A. cristatum chromosome 2P and wheat chromosomes, but also providing new germplasm resources for the wheat genetic improvement. PMID:26731742
Ji, Hongtao; Dong, Hansong
2015-09-01
Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed
2006-05-01
The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.
Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam
2015-01-01
The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.
Can hunting of translocated nuisance Canada geese reduce local conflicts?
Holevinski, R.A.; Malecki, R.A.; Curtis, P.D.
2006-01-01
Resident Canada geese (Branta canadensis) nest or reside in the temperate latitudes of North America. In past years, translocation-the capture and subsequent release of geese at distant locations-has been used to establish resident goose populations and to reduce nuisance problems. However, with new special hunting seasons designed to target resident Canada geese, we can now evaluate translocation as a management tool when hunting is allowed at release sites. We selected 2 study sites, representative of urban and suburban locations with nuisance resident geese, in central and western New York, USA. In June 2003, we translocated 80 neck-banded adult geese, 14 radiomarked adult females, and 83 juveniles 150 km east and southwest from urban and suburban problem sites in western New York to state-owned Wildlife Management Areas. At these same capture sites, we used 151 neck-banded adult geese, 12 radiomarked females, and 100 juveniles as controls to compare dispersal movements and harvest vulnerability to translocated geese. All observations (n = 45) of translocated radiomarked geese were <20 km from release sites, in areas where hunting was permitted. Only 25 of 538 observations (4.6%) of radiomarked geese at control sites were in areas open to hunting. The remainder of observations occurred at nonhunting locations within 10 km of control sites. More translocated adult geese (23.8%) were harvested than control geese (6.6%; ??2 = 72.98, P = 0.0009). More translocated juvenile geese were harvested (22.9%) than juvenile controls (5.0%; ??2 = 72.30, P = 0.0005). Only 7 (8.8%) translocated adult geese returned to the original capture sites during Canada goose hunting seasons. Translocation of adult and juvenile geese in family groups may alleviate nuisance problems at conflict sites through increased harvest, reducing the number of birds returning in subsequent years.
Noda, Natsumi; Awais, Raheela; Sutton, Robert; Awais, Muhammad; Ozawa, Takeaki
2017-12-01
Intracellular protein translocation plays a pivotal role in regulating complex biological processes, including cell death. The tumor suppressor p53 is a transcription factor activated by DNA damage and oxidative stress that also translocates from the cytosol into the mitochondrial matrix to facilitate necrotic cell death. However, specific inhibitors of p53 mitochondrial translocation are largely unknown. To explore the inhibitors of p53, we developed a bioluminescent probe to monitor p53 translocation from cytosol to mitochondria using luciferase fragment complementation assays. The probe is composed of a novel pair of luciferase fragments, the N-terminus of green click beetle luciferase CBG68 (CBGN) and multiple-complement luciferase fragment (McLuc1). The combination of luciferase fragments showed significant luminescence intensity and high signal-to-background ratio. When the p53 connected with McLuc1 translocates from cytosol into mitochondrial matrix, CBGN in mitochondrial matrix enables to complement with McLuc1, resulting in the restoration of the luminescence. The luminescence intensity was significantly increased under hydrogen peroxide-induced oxidative stress following the complementation of CBGN and McLuc1. Pifithrin-μ, a selective inhibitor of p53 mitochondrial translocation, prevented the mitochondrial translocation of the p53 probe in a concentration-dependent manner. Furthermore, the high luminescence intensity made it easier to visualize the p53 translocation at a single cell level under a bioluminescence microscope. This p53 mitochondrial translocation assay is a new tool for high-throughput screening to identify novel p53 inhibitors, which could be developed as drugs to treat diseases in which necrotic cell death is a major contributor. © 2017 Wiley Periodicals, Inc.
Myers, C R; Nealson, K H
1990-01-01
An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1. Cells grown anaerobically with fumarate or nitrate as the electron acceptor translocated protons in response to manganese (IV), fumarate, or oxygen. Cells grown anaerobically with fumarate also translocated protons in response to iron(III) and thiosulfate, whereas those grown with nitrate did not. Aerobically grown cells translocated protons only in response to oxygen. Proton translocation with all electron acceptors was abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (20 microM) and was partially to completely inhibited by the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (50 microM). PMID:2172208
Directed translocation of a flexible polymer through a cone-shaped nano-channel
NASA Astrophysics Data System (ADS)
Nikoofard, Narges; Khalilian, Hamidreza; Fazli, Hossein
2013-08-01
Translocation of a flexible polymer through a cone-shaped channel is studied, theoretically and using computer simulations. Our simulations show that the shape of the channel causes the polymer translocation to be a driven process. The effective driving force of entropic origin acting on the polymer is calculated as a function of the length and the apex-angle of the channel, theoretically. It is found that the translocation time is a non-monotonic function of the apex-angle of the channel. By increasing the apex-angle from zero, the translocation time shows a minimum and then a maximum. Also, it is found that regardless of the value of the apex-angle, the translocation time is a uniformly decreasing function of the channel length. The results of the theory and the simulation are in good qualitative agreement.
Range-wide success of red-cockaded woodpecker translocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, John W; Costa, Ralph
2004-12-31
Edwards, John W.; Costa, Ralph. 2004. Range-wide success of red-cockaded woodpecker translocations. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 6. Translocation. Pp 307-311. Abstract: Red-cockaded woodpeckers (Picoides borealis) have declined range-wide during the past century, suffering from habitat loss and the effects of fire exclusion in older southern pine forests. Red-cockaded woodpecker translocations are a potentially important tool in conservation efforts to reestablish red-cockaded woodpeckers in areas from which they have been extirpated. Currently, translocations are critical in ongoing efforts to savemore » and restore the many existing small populations. We examined the effects of demographic and environmental factors on the range-wide success of translocations between 1989 and 1995.« less
Nikitin, Dmitri; Tosato, Valentina; Zavec, Apolonija Bedina; Bruschi, Carlo V.
2008-01-01
Saccharomyces cerevisiae strains harboring a nonreciprocal, bridge-induced translocation (BIT) between chromosomes VIII and XV exhibited an abnormal phenotype comprising elongated buds and multibudded, unevenly nucleated pseudohyphae. In these cells, we found evidence of molecular effects elicited by the translocation event and specific for its particular genomic location. Expression of genes flanking both translocation breakpoints increased up to five times, correlating with an increased RNA polymerase II binding to their promoters and with their histone acetylation pattern. Microarray data, CHEF, and quantitative PCR confirmed the data on the dosage of genes present on the chromosomal regions involved in the translocation, indicating that telomeric fragments were either duplicated or integrated mostly on chromosome XI. FACS analysis revealed that the majority of translocant cells were blocked in G1 phase and a few of them in G2. Some cells showed a posttranslational decrease of cyclin B1, in agreement with elongated buds diagnostic of a G2/M phase arrest. The actin1 protein was in some cases modified, possibly explaining the abnormal morphology of the cells. Together with the decrease in Rad53p and the lack of its phosphorylation, these results indicate that these cells have undergone adaptation after checkpoint-mediated G2/M arrest after chromosome translocation. These BIT translocants could serve as model systems to understand further the cellular and molecular effects of chromosome translocation and provide fundamental information on its etiology of neoplastic transformation in mammals. PMID:18599460
Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan
2014-03-01
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.
Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan
2014-01-01
Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616
Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor.
Liu, Yifan; Yobas, Levent
2016-04-26
Here, we present an experimental demonstration of slowing DNA translocation across a nanochannel by modulating the channel surface charge through an externally applied gate bias. The experiments were performed on a nanofluidic field-effect transistor, which is a monolithic integrated platform featuring a 50 nm-diameter in-plane alumina nanocapillary whose entire length is surrounded by a gate electrode. The field-effect transistor behavior was validated on the gating of ionic conductance and protein transport. The gating of DNA translocation was subsequently studied by measuring discrete current dips associated with single λ-DNA translocation events under a source-to-drain bias of 1 V. The translocation speeds under various gate bias conditions were extracted by fitting event histograms of the measured translocation time to the first passage time distributions obtained from a simple 1D biased diffusion model. A positive gate bias was observed to slow the translocation of single λ-DNA chains markedly; the translocation speed was reduced by an order of magnitude from 18.4 mm/s obtained under a floating gate down to 1.33 mm/s under a positive gate bias of 9 V. Therefore, a dynamic and flexible regulation of the DNA translocation speed, which is vital for single-molecule sequencing, can be achieved on this device by simply tuning the gate bias. The device is realized in a conventional semiconductor microfabrication process without the requirement of advanced lithography, and can be potentially further developed into a compact electronic single-molecule sequencer.
Bergmanis, Ugis; Langgemach, Torsten; Graszynski, Kai; Hinz, Arno; Börner, Ingo; Meyburg, Christiane; Vansteelant, Wouter M. G.
2017-01-01
ABSTRACT The ontogeny of migration routines used by wild birds remains unresolved. Here we investigated the migratory orientation of juvenile lesser spotted eagles (LSE; Clanga pomarina) based on translocation and satellite tracking. Between 2004 and 2016, 85 second-hatched juveniles (Abels) were reared in captivity for release into the declining German population, including 50 birds that were translocated 940 km from Latvia. In 2009, we tracked 12 translocated juveniles, as well as eight native juveniles and nine native adults, to determine how inexperienced birds come to use strategic migration routes. Native juveniles departed around the same time as the adults and six of eight used the eastern flyway around the Mediterranean, which was used by all adults. In contrast, translocated juveniles departed on average 6 days before native LSEs, and five travelled southward and died in the central Mediterranean region. Consequently, fewer translocated juveniles (4/12) than native juveniles (7/8) reached Africa. We conclude that juvenile LSEs have a much better chance of learning the strategic southeastern flyway if they leave at an appropriate time to connect with experienced elders upon departure. It is not clear why translocated juveniles departed so early. Regardless, by the end of the year, most juveniles had perished, whether they were translocated (10/12) or not (6/8). The small number of surviving translocated juveniles thus still represents a significant increase in the annual productivity of the German LSE population in 2009. PMID:28768749
Molecular Marker Systems for Oenothera Genetics
Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G.; Greiner, Stephan
2008-01-01
The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome–genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9·8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed. PMID:18791241
Paz, S Alexis; Maragliano, Luca; Abrams, Cameron F
2018-05-08
We introduce a two-dimensional version of the method called on-the-fly free energy parametrization (OTFP) to reconstruct free-energy surfaces using Molecular Dynamics simulations, which we name OTFP-2D. We first test the new method by reconstructing the well-known dihedral angles free energy surface of solvated alanine dipeptide. Then, we use it to investigate the process of K + ions translocation inside the Kv1.2 channel. By comparing a series of two-dimensional free energy surfaces for ion movement calculated with different conditions on the intercalated water molecules, we first recapitulate the widely accepted knock-on mechanism for ion translocation and then confirm that permeation occurs with water molecules alternated among the ions, in accordance with the latest experimental findings. From a methodological standpoint, our new OTFP-2D algorithm demonstrates the excellent sampling acceleration of temperature-accelerated molecular dynamics and the ability to efficiently compute 2D free-energy surfaces. It will therefore be useful in large variety complex biomacromolecular simulations.
Shaulov, Lihi; Gershberg, Jenia; Deng, Wanyin; Finlay, B. Brett
2017-01-01
ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. PMID:28049143
Molecular marker systems for Oenothera genetics.
Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan
2008-11-01
The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.
Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.
Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda
2017-12-04
Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.
Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain
Yang, Yu-Ting; Yu, Jia-Ray; Tai, Yilin
2017-01-01
Throughout life, stem cells in the ventricular–subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts’ morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase–RhoA–interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. PMID:29089377
Probing the structure of Nun transcription arrest factor bound to RNA polymerase
Mustaev, Arkady; Vitiello, Christal L.; Gottesman, Max E.
2016-01-01
The coliphage HK022 protein Nun transcription elongation arrest factor inhibits RNA polymerase translocation. In vivo, Nun acts specifically to block transcription of the coliphage λ chromosome. Using in vitro assays, we demonstrate that Nun cross-links RNA in an RNA:DNA hybrid within a ternary elongation complex (TEC). Both the 5′ and the 3′ ends of the RNA cross-link Nun, implying that Nun contacts RNA polymerase both at the upstream edge of the RNA:DNA hybrid and in the vicinity of the catalytic center. This finding suggests that Nun may inhibit translocation by more than one mechanism. Transcription elongation factor GreA efficiently blocked Nun cross-linking to the 3′ end of the transcript, whereas the highly homologous GreB factor did not. Surprisingly, both factors strongly suppressed Nun cross-linking to the 5′ end of the RNA, suggesting that GreA and GreB can enter the RNA exit channel as well as the secondary channel, where they are known to bind. These findings extend the known action mechanism for these ubiquitous cellular factors. PMID:27436904
Tsukazaki, Tomoya; Mori, Hiroyuki; Fukai, Shuya; Numata, Tomoyuki; Perederina, Anna; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo; Vassylyev, Dmitry G.; Nureki, Osamu; Ito, Koreaki
2006-01-01
Thermus thermophilus has a multi-path membrane protein, TSecDF, as a single-chain homologue of Escherichia coli SecD and SecF, which form a translocon-associated complex required for efficient preprotein translocation and membrane-protein integration. Here, the cloning, expression in E. coli, purification and crystallization of TSecDF are reported. Overproduced TSecDF was solubilized with dodecylmaltoside, chromatographically purified and crystallized by vapour diffusion in the presence of polyethylene glycol. The crystals yielded a maximum resolution of 4.2 Å upon X-ray irradiation, revealing that they belonged to space group P43212. Attempts were made to improve the diffraction quality of the crystals by combinations of micro-stirring, laser-light irradiation and dehydration, which led to the eventual collection of complete data sets at 3.74 Å resolution and preliminary success in the single-wavelength anomalous dispersion analysis. These results provide information that is essential for the determination of the three-dimensional structure of this important membrane component of the protein-translocation machinery. PMID:16582489
Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles.
Pellé, Karell G; Jiang, Rays H Y; Mantel, Pierre-Yves; Xiao, Yu-Ping; Hjelmqvist, Daisy; Gallego-Lopez, Gina M; O T Lau, Audrey; Kang, Byung-Ho; Allred, David R; Marti, Matthias
2015-11-01
Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal-mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host-targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal-mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal-mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM. © 2015 John Wiley & Sons Ltd.
Malboubi, Majid; Jayo, Asier; Parsons, Maddy; Charras, Guillaume
2015-08-16
During metastasis, cancerous cells leave the primary tumour, pass into the circulatory system, and invade into new tissues. To migrate through the wide variety of environments they encounter, the cells must be able to remodel their cell shape efficiently to squeeze through small gaps in the extracellular matrix or extravasate into the blood stream or lymphatic system. Several studies have shown that the nucleus is the main limiting factor to migration through small gaps (Wolf et al., 2013; Harada et al., 2014; Mak et al., 2013). To understand the physical limits of cancer cell translocation in confined environments, we have fabricated a microfluidic device to study their ability to adapt their nuclear and cellular shape when passing through small gaps. The device is open access for ease of use and enables examination of the effect of different levels of spatial confinement on cell behaviour and morphology simultaneously. The results show that increasing cell confinement decreases the ability of cells to translocate into small gaps and that cells cannot penetrate into the microchannels below a threshold cross-section.
Weeds ability to phytoremediate cadmium-contaminated soil.
Hammami, Hossein; Parsa, Mehdi; Mohassel, Mohammad Hassan Rashed; Rahimi, Salman; Mijani, Sajad
2016-01-01
An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil.
Ducos, Alain; Pinton, Alain; Yerle, Martine; Séguéla, Anne; Berland, Hélène-Marie; Brun-Baronnat, Corinne; Bonnet, Nathalie; Darré, Roland
2002-01-01
Eight new cases of reciprocal translocation in the domestic pig are described. All the rearrangements were highlighted using GTG banding techniques. Chromosome painting experiments were also carried out to confirm the proposed hypotheses and to accurately locate the breakpoints. Three translocations, rcp(4;6)(q21;p14), rcp(2;6)(p17;q27) and rcp(5;17)(p12;q13) were found in boars siring small litters (8.3 and 7.4 piglets born alive per litter, on average, for translocations 2/6 and 5/17, respectively). The remaining five, rcp(5;8)(p12;q21), rcp(15;17)(q24;q21), rcp(7;8)(q24;p21), rcp(5;8)(p11;p23) and rcp(3;15)(q27;q13) were identified in young boars controlled before entering reproduction. A decrease in prolificacy of 22% was estimated for the 3/15 translocation after reproduction of the boar carrier. A parental origin by inheritance of the translocation was established for the (5;8)(p11;p23) translocation. The overall incidence of reciprocal translocations in the French pig populations over the 2000/2001 period was estimated (0.34%).
Translocation of a heterogeneous polymer
Mirigian, Stephen; Wang, Yanbo; Muthukumar, Murugappan
2012-01-01
We present results on the sequence dependence of translocation kinetics for a partially charged heteropolymer moving through a very thin pore using theoretical tools and Langevin dynamics simulational techniques. The chain is composed of two types of monomers of differing frictional interaction with the pore and charge. We present exact analytical expressions for passage probability, mean first passage time, and mean successful passage times for both reflecting/absorbing and absorbing/absorbing boundary conditions, showing rich and unexpected dependence of translocation behavior on charge fraction, distribution along the chain, and electric field configuration. We find excellent qualitative and good quantitative agreement between theoretical and simulation results. Surprisingly, there emerges a threshold charge fraction of a diblock copolymer beyond which the success rate of translocation is independent of charge fraction. Also, the mean successful translocation time of a diblock copolymer displays non-monotonic behavior with increasing length of the charged block; there is an optimum length of the charged block where the mean translocation rate is the slowest; and there can be a substantial range of higher charge fractions which make the translocation slower than even a minimally charged chain. Additionally, we find for a fixed total charge on the chain, finer distribution along the backbone significantly decreases mean translocation time. PMID:22897308
Manthey, Glenn M.; Naik, Nilan; Bailis, Adam M.
2009-01-01
Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage. PMID:19834615
Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids.
Shows, T B; Brown, J A
1975-01-01
Human genes coding for hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8; IMP:pyrophosphate phosphoribosyltransferase), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49; D-glucose-6-phosphate:NADP+ 1-oxidoreductase), and phosphoglycerate kinase (PGK, EC 2.7.2.3; ATP:3-phospho-D-glycerate 1-phosphotransferase) have been assigned to specific regions on the long arm of the X chromosome by somatic cell gentic techniques. Gene assignment and linear order were determined by employing human somatic cells possessing an X/9 translocation or an X/22 translocation in man-mouse cell hybridization studies. The X/9 translocation involved the majority of the X long arm translocated to chromosome 9 and the X/22 translocation involved the distal half of the X long arm translocated to 22. In each case these rearrangements appeared to be reciprocal. Concordant segregation of X-linked enzymes and segments of the X chromosome generated by the translocations indicated assignment of the PGK gene to a proximal long arm region (q12-q22) and the HPRT and G6PD genes to the distal half (q22-qter) of the X long arm. Further evidence suggests a gene order on the X long arm of centromere-PGK-HPRT-G6PD. Images PMID:1056018
A fluorescence assay for peptide translocation into mitochondria.
Martinez-Caballero, Sonia; Peixoto, Pablo M V; Kinnally, Kathleen W; Campo, María Luisa
2007-03-01
Translocation of the presequence is an early event in import of preproteins across the mitochondrial inner membrane by the TIM23 complex. Import of signal peptides, whose sequences mimic mitochondrial import presequences, was measured using a novel, qualitative, fluorescence assay in about 1h. This peptide assay was used in conjunction with classical protein import analyses and electrophysiological approaches to examine the mechanisms underlying the functional effects of depleting two TIM23 complex components. Tim23p forms, at least in part, the pore of this complex while Tim44p forms part of the translocation motor. Depletion of Tim23p eliminates TIM23 channel activity, which interferes with both peptide and preprotein translocation. In contrast, depletion of Tim44p disrupts preprotein but not peptide translocation, which has no effect on TIM23 channel activity. Two conclusions were made. First, this fluorescence peptide assay was validated as two different mutants were accurately identified. Hence, this assay could provide a rapid means of screening mutants to identify those that fail an initial step in import, i.e., translocation of the presequence. Second, translocation of signal peptides required normal channel activity and disruption of the presequence translocase-associated motor complex did not modify TIM23 channel activity nor prevent presequence translocation.
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.
Wang, Lin; Ge, Yan
2016-01-01
Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267
Gao, Zhan-Guo; Jacobson, Kenneth A
2008-04-01
Structurally diverse ligands were studied in A(3) adenosine receptor (AR)-mediated beta-arrestin translocation in engineered CHO cells. The agonist potency and efficacy were similar, although not identical, to their G protein signaling. However, differences have also been found. MRS542, MRS1760, and other adenosine derivatives, A(3)AR antagonists in cyclic AMP assays, were partial agonists in beta-arrestin translocation, indicating possible biased agonism. The xanthine 7-riboside DBXRM, a full agonist, was only partially efficacious in beta-arrestin translocation. DBXRM was shown to induce a lesser extent of desensitization compared with IB-MECA. In kinetic studies, MRS3558, a potent and selective A(3)AR agonist, induced beta-arrestin translocation significantly faster than IB-MECA and Cl-IB-MECA. Non-nucleoside antagonists showed similar inhibitory potencies as previously reported. PTX pretreatment completely abolished ERK1/2 activation, but not arrestin translocation. Thus, lead candidates for biased agonists at the A(3)AR have been identified with this arrestin-translocation assay, which promises to be an effective tool for ligand screening.
Activation of Elongation Factor G by Phosphate Analogues
Salsi, Enea; Farah, Elie
2016-01-01
EF-G is a universally conserved translational GTPase that promotes the translocation of tRNA and mRNA through the ribosome. EF-G binds to the ribosome in a GTP-bound form and subsequently catalyzes GTP hydrolysis. The contribution of the ribosome-stimulated GTP hydrolysis by EF-G to tRNA/mRNA translocation remains debated. Here, we show that while EF-G•GDP does not stably bind to the ribosome and induce translocation, EFG• GDP in complex with phosphate group analogues BeF3− and AlF4− promotes the translocation of tRNA and mRNA. Furthermore, the rates of mRNA translocation induced by EF-G in the presence of GTP and a non-hydrolysable analogue of GTP, GDP•BeF3−are similar. Our results are consistent with the model suggesting that GTP hydrolysis is not directly coupled to mRNA/tRNA translocation. Hence, GTP binding is required to induce the activated, translocation-competent conformation of EF-G while GTP hydrolysis triggers EF-G release from the ribosome. PMID:27063503
Electrostatics of polymer translocation events in electrolyte solutions.
Buyukdagli, Sahin; Ala-Nissila, T
2016-07-07
We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.
Comparative Assessment of Response to Cadmium in Heavy Metal-Tolerant Shrubs Cultured In Vitro.
Wiszniewska, A; Hanus-Fajerska, E; Muszyńska, E; Smoleń, S
2017-01-01
Two species of Pb-adapted shrubs, Alyssum montanum and Daphne jasminea , were evaluated in vitro for their tolerance to elevated concentrations of cadmium. Shoot cultures were treated with 0.5, 2.5, and 5.0 μM CdCl 2 for 16 weeks and analyzed for their organogenic response, biomass accretion, pigment content, and macronutrient status. Cadmium accumulation and its root-to-shoot translocation were also determined. In both species, rooted microplantlets, suitable for acclimatization, were obtained in the presence of Cd applied as selection agent. In A. montanum , low and moderate dose of Cd stimulated multiplication, rooting, and biomass production. Growth tolerance index (GTI) in Cd-treated shoots ranged from 120 to 215%, while in the roots 51-202%. In turn, in Cd-treated D. jasminea proliferation and rooting were inhibited, and GTI for shoots decreased with increasing doses of Cd. However, roots exposed to Cd had higher biomass accretion. Both species accumulated Cd in developed organs, and its content increased with increasing CdCl 2 dose. Interestingly, D. jasminea accumulated higher amounts of Cd in the roots than A. montanum and immobilized this metal in the root system. On the contrary, A. montanum translocated some part of accumulated Cd to the shoots, but with low efficiency. In the presence of Cd, A. montanum maintained macronutrient homeostasis and synthesized higher amounts of phytosynthetic pigments in the shoots. D. jasminea accumulated root biomass, immobilized Cd, and restricted its translocation at the expense of nutrient balance. Considering remediation potential, A. montanum could be exploited in phytoextraction, while D. jasminea in phytostabilization of polluted substrate.
Acanthus ilicifolius L. a promising candidate for phytostabilization of zinc.
Shackira, A M; Puthur, Jos T; Nabeesa Salim, E
2017-06-01
The potential of a halophyte species-Acanthus ilicifolius L.-to phytostabilize zinc (Zn) grown under hydroponics culture conditions was critically evaluated in this study. The propagules after treating with ZnSO 4 (4 mM) were analysed for the bioaccumulation pattern, translocation rate of Zn to the shoot, effects of Zn accumulation on organic solutes and the antioxidant defence system. It was found that most of the Zn absorbed by the plant was retained in the root (47%) and only a small portion was transported to stem (12%) and leaves (11%). This is further confirmed by the high BCF root (bioconcentration factor) value (1.99) and low TF shoot/root (translocation factor) value (0.5), which indicates the increased retention of Zn in the root itself. Moreover, treatment with Zn resulted in an increased accumulation of organic solutes (proline, free amino acids and soluble sugars) and non-enzymatic antioxidants (ascorbate, glutathione and phenol) in the leaf and root tissue. Likewise, the activity of antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) recorded an enhanced activity upon exposure to Zn as compared to the control plants. Thus, the increased tolerance for Zn in A. ilicifolius may be attributed to the efficient free radical scavenging mechanisms operating under excess Zn. In addition, being a high accumulator (53.7 mg of Zn) and at the same time a poor translocator of Zn to the aerial parts of the plant, A. ilicifolius can be recommended as a potential candidate for the phytostabilization of Zn in the contaminated wetlands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douds, D.D. Jr.; Johnson, C.R.; Koch, K.E.
Translocation of {sup 14}C-photosynthates to mycorrhizal (++), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata (L.) Raf. {times} Citrus sinensis (L.) Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to {sup 14}CO{sub 2} for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves weremore » colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (++) versus (00) plants. In low nutrient media, roots of (0+) and (++) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (++) plants. Root systems of (++) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the {sup 14}C-photosynthate to the mycorrhiza as did (0+) root systems.« less
Interaction of Zwitterionic Penicillins with the OmpF Channel Facilitates Their Translocation
Danelon, Christophe; Nestorovich, Ekaterina M.; Winterhalter, Mathias; Ceccarelli, Matteo; Bezrukov, Sergey M.
2006-01-01
To study translocation of β-lactam antibiotics of different size and charge across the outer bacterial membrane, we combine an analysis of ion currents through single trimeric outer membrane protein F (OmpF) porins in planar lipid bilayers with molecular dynamics simulations. Because the size of penicillin molecules is close to the size of the narrowest part of the OmpF pore, penicillins occlude the pore during their translocation. Favorably interacting penicillins cause time-resolvable transient blockages of the small-ion current through the channel and thereby provide information about their dynamics within the pore. Analyzing these random fluctuations, we find that ampicillin and amoxicillin have a relatively high affinity for OmpF. In contrast, no or only a weak interaction is detected for carbenicillin, azlocillin, and piperacillin. Molecular dynamics simulations suggest a possible pathway of these drugs through the OmpF channel and rationalize our experimental findings. For zwitterionic ampicillin and amoxicillin, we identify a region of binding sites near the narrowest part of the channel pore. Interactions with these sites partially compensate for the entropic cost of drug confinement by the channel. Whereas azlocillin and piperacillin are clearly too big to pass through the channel constriction, dianionic carbenicillin does not find an efficient binding region in the constriction zone. Carbenicillin's favorable interactions are limited to the extracellular vestibule. These observations confirm our earlier suggestion that a set of high-affinity sites at the narrowest part of the OmpF channel improves a drug's ability to cross the membrane via the pore. PMID:16339889
Sharma, Shailendra; Sharma, Shiveta; Hirabuchi, Akiko; Yoshida, Kentaro; Fujisaki, Koki; Ito, Akiko; Uemura, Aiko; Terauchi, Ryohei; Kamoun, Sophien; Sohn, Kee Hoon; Jones, Jonathan D G; Saitoh, Hiromasa
2013-05-01
Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Barz, W P; Walter, P
1999-04-01
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchored protein transport"), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Delta dgt1Delta cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non-GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Delta dgt1Delta cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Delta dgt1Delta cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.
Barz, Wolfgang P.; Walter, Peter
1999-01-01
Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δ cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins. PMID:10198056
Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors.
Kumarathilaka, Prasanna; Seneweera, Saman; Meharg, Andrew; Bundschuh, Jochen
2018-06-13
Arsenic (As) elevation in paddy soils will have a negative impact on both the yield and grain quality of rice (Oryza sativa L.). The mechanistic understanding of As uptake, translocation, and grain filling is an important aspect to produce rice grains with low As concentrations through agronomical, physico-chemical, and breeding approaches. A range of factors (i.e. physico-chemical, biological, and environmental) govern the speciation and mobility of As in paddy soil-water systems. Major As uptake transporters in rice roots, such as phosphate and aquaglyceroporins, assimilate both inorganic (As(III) and As(V)) and organic As (DMA(V) and MMA(V)) species from the rice rhizosphere. A number of metabolic pathways (i.e. As (V) reduction, As(III) efflux, and As(III)-thiol complexation and subsequent sequestration) are likely to play a key role in determining the translocation and substantial accumulation of As species in rice tissues. The order of translocation efficiency (caryopsis-to-root) for different As species in rice plants is comprehensively evaluated as follows: DMA(V) > MMA(V) > inorganic As species. The loading patterns of both inorganic and organic As species into the rice grains are largely dependent on the genetic makeup and maturity stage of the rice plants together with environmental interactions. The knowledge of As metabolism in rice plants and how it is affected by plant genetics and environmental factors would pave the way to develop adaptive strategies to minimize the accumulation of As in rice grains. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of the α clamp in the protein translocation mechanism of anthrax toxin
Brown, Michael J.; Thoren, Katie L.; Krantz, Bryan A.
2015-01-01
Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins—protective antigen (PA), lethal factor (LF), and edema factor (EF). Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds LF and EF and translocates them into the host cytosol. Translocation is driven by the proton motive force, comprised of the chemical potential, the proton-gradient (ΔpH), and the membrane potential (ΔΨ). A crystal structure of the lethal toxin core complex revealed an “α clamp” structure that binds to substrate helices nonspecifically. Here we test the hypothesis that through the recognition of unfolding helical structure the α clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an α helix was crosslinked into the α clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the α clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence the α clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the α clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. PMID:26344833
NASA Astrophysics Data System (ADS)
Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly
1999-06-01
The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in the nucleus. To facilitate the detection, DNA probes for breakpoints on different chromosomes are labeled in different colors, so the translocation event can be detected as a fusion of red and green hybridization domains. We applied this scheme successfully for the analysis of somatic and germ cells from more than 20 translocation patients, each with individual breakpoints, and provide summaries of our experience as well as strategies, cost and time frames to prepare case-specific translocation probes.
2009-01-01
Membrane protein integration occurs predominantly at the endoplasmic reticulum and is mediated by the translocon, which is formed by the Sec61p complex. The translocon binds to the ribosome at the polypeptide exit site such that integration occurs in a cotranslational manner. Ribosomal protein Rpl17 is positioned such that it contacts both the ribosome exit tunnel and the surface of the ribosome near the exit site, where it is intimately associated with the translocon. The presence of a trans-membrane (TM) segment inside the ribosomal exit tunnel leads to the recruitment of RAMP4 to the translocon at a site adjacent to Rpl17. This suggests a signaling function for Rpl17 such that it can recognize a TM segment inside the ribosome and triggers rearrangements of the translocon, priming it for subsequent TM segment integration. PMID:19468070
Beta-Barrel Scaffold of Fluorescent Proteins: Folding, Stability and Role in Chromophore Formation
Stepanenko, Olesya V.; Stepanenko, Olga V.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.; Turoverov, Konstantin K.
2013-01-01
This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain. PMID:23351712
Chaste, Damien; Vian, Emmanuel; Verhoest, Gregory; Blanchet, Pascal
2014-02-01
Translocation renal cell carcinoma (RCC) is a family of rare tumors recently identified in the pediatric and young adult population. We report the first case of a young woman from French West Indies with sickle cell anemia who developed a translocation RCC t(6;11)(p21;q12). Usually people with the sickle cell condition are known to develop renal medullary carcinoma (RMC). To our knowledge, this is the first case described in the literature of a translocation RCC associated with sickle cell disease. Here we discuss the relation between translocation RCC, RMC, and sickle cell disease.
Zatz, M; Vianna-Morgante, A M; Campos, P; Diament, A J
1981-01-01
A female with Duchenne muscular dystrophy who was a carrier of a balanced translocation t(X;6)(p21;q21) is reported. Four other previously described (X;A) translocations associated with DMD share with the present case a breakpoint at Xp21. The extremely low probability of five independent (X;A) translocations having a breakpoint at Xp21 points to a non-rand association of this site with the DMD phenotype. A DMD locus at Xp21 could be damaged by the translocation, giving rise to Duchenne muscular dystrophy. Alternatively, a pre-existing DMD gene could weaken the chromosome, favouring breaks at Xp21. Images PMID:7334502
Zankl, H; Weiss, A F; Zang, K D
1975-12-23
The recently detected reciprocal translocations in chronic myeloic leucemia (CML) and Burkitt's lymphoma (BL) made it necessary to clarify if meningiomas really show the described monosomy 22 or also a translocation. In 10 out of 12 meningiomas a total or partial translocation of the missing chromosome 22 to another chromosome could be ruled out by fluorescence banding analysis. Two meningiomas showed marker chromosomes of such a complex composition that it was impossible to decide if a 22 translocation was present or not. From these results it was concluded that meningioma cells, in contrast to CML and BL, show almost regularly a loss of a definitive part of their genome.
Carbon nanotubes as anti-bacterial agents.
Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian
2017-10-01
Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.
Lan, Tian; Yan, Xia; Li, Zhuo; Xu, Xin; Mao, Qi; Ma, Weijie; Hong, Zhenfei; Chen, Xi; Yuan, Yufeng
2017-06-01
Hepatocellular carcinoma is third leading cause of cancer-related death globally. Long non-coding RNA plasmacytoma variant translocation 1 has been reported to be dysregulated and plays a crucial role in various cancers. In this study, we investigated the interactions between plasmacytoma variant translocation 1 and miR-186-5p in the progression of hepatocellular carcinoma and explored the functional significance of plasmacytoma variant translocation 1. It was determined that plasmacytoma variant translocation 1 was significantly higher, while miR-186-5p was statistically lower in the hepatocellular carcinoma tissues than that in the adjacent normal tissues. Using gain-of-function and loss-of-function methods, our results revealed that plasmacytoma variant translocation 1 affected hepatocellular carcinoma cells proliferation, invasion, and migration. It was found that there was direct interaction between miR-186-5p and the binding site of plasmacytoma variant translocation 1 by performing dual-luciferase assay and RNA immunoprecipitation assay. Furthermore, it was identified that plasmacytoma variant translocation 1 regulated the expression of the miR-186-5p target gene, yes-associated protein 1. Taken together, plasmacytoma variant translocation 1 served as an endogenous sponge for miR-186-5p to reduce its inhibiting effect on yes-associated protein 1 and thus promoted the tumorigenesis of hepatocellular carcinoma.
Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W
2017-08-10
DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.
Translocation of a polymer through a nanopore across a viscosity gradient.
de Haan, Hendrick W; Slater, Gary W
2013-04-01
The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.
Dermatoglyphics and Reproductive Risk in a Family with Robertsonian Translocation 14q;21q.
Kolgeci, Selim; Kolgeci, Jehona; Azemi, Mehmedali; Daka, Aferdita; Shala-Beqiraj, Ruke; Kurtishi, Ilir; Sopjani, Mentor
2015-06-01
The present study is carried out to evaluate the risk of giving birth to children with Down syndrome in a family with Robertsonian translocation 14q;21q, and to find the dermatoglyphic changes present in carriers of this translocation. Cytogenetics diagnosis has been made according to Moorhead and Seabright method, while the analysis of prints (dermatoglyphics analysis) was made with the Cummins and Midlo method. Cytogenetic diagnosis has been made in a couple who suffered the spontaneous miscarriages and children with Down syndrome. Robertsonian translocation between chromosomes 14 and 21 (45, XX, der (14; 21) (q10; q10)) was found in a female partner who had four pregnancies, in two of which was found fetus karyotype with trisomy in chromosome 21 and pregnancies were terminated. The outcome of fourth pregnancy was twin birth, one of them with normal karyotype and another with Down syndrome due to Robertsonian translocation inherited by mother side. Specific dermatoglyphics traits are found in the child carrying Down syndrome, whereas several traits of dermatoglyphics characteristic of Down syndrome have been displayed among the silent carriers of Robertsonian translocation 14q;21q. Robertsonian translocation found in female partner was the cause of spontaneous miscarriages, of giving birth to a child with Down syndrome, and of trisomy of chromosome 21 due to translocation in two pregnancies.
Dermatoglyphics and Reproductive Risk in a Family with Robertsonian Translocation 14q;21q
Kolgeci, Selim; Kolgeci, Jehona; Azemi, Mehmedali; Daka, Aferdita; Shala-Beqiraj, Ruke; Kurtishi, Ilir; Sopjani, Mentor
2015-01-01
Aim: The present study is carried out to evaluate the risk of giving birth to children with Down syndrome in a family with Robertsonian translocation 14q;21q, and to find the dermatoglyphic changes present in carriers of this translocation. Methods: Cytogenetics diagnosis has been made according to Moorhead and Seabright method, while the analysis of prints (dermatoglyphics analysis) was made with the Cummins and Midlo method. Results: Cytogenetic diagnosis has been made in a couple who suffered the spontaneous miscarriages and children with Down syndrome. Robertsonian translocation between chromosomes 14 and 21 (45, XX, der (14; 21) (q10; q10)) was found in a female partner who had four pregnancies, in two of which was found fetus karyotype with trisomy in chromosome 21 and pregnancies were terminated. The outcome of fourth pregnancy was twin birth, one of them with normal karyotype and another with Down syndrome due to Robertsonian translocation inherited by mother side. Specific dermatoglyphics traits are found in the child carrying Down syndrome, whereas several traits of dermatoglyphics characteristic of Down syndrome have been displayed among the silent carriers of Robertsonian translocation 14q;21q. Conclusion: Robertsonian translocation found in female partner was the cause of spontaneous miscarriages, of giving birth to a child with Down syndrome, and of trisomy of chromosome 21 due to translocation in two pregnancies. PMID:26236088
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these ‘bound’ proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites. The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions. PMID:28450873
Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; ...
2016-01-29
The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations tomore » the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and may be widely relevant to polysaccharide synthesizing or degrading enzymes that couple catalysis with chain translocation.« less
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Agius, L
1994-02-15
In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation.
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Agius, L
1994-01-01
In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation. PMID:8129726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.
The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations tomore » the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and may be widely relevant to polysaccharide synthesizing or degrading enzymes that couple catalysis with chain translocation.« less
Dahl, Joseph M; Wang, Hongyun; Lázaro, José M; Salas, Margarita; Lieberman, Kate R
2014-03-07
The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.
Translocation of threatened plants as a conservation measure in China.
Liu, Hong; Ren, Hai; Liu, Qiang; Wen, XiangYing; Maunder, Michael; Gao, JiangYun
2015-12-01
We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely small populations, which is expected to stimulate conservation translocations for many species in the near future. © 2015 Society for Conservation Biology.
Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam
2015-01-01
The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth ‘conflict bears’ from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape. PMID:26267280
TMED6-COG8 is a novel molecular marker of TFE3 translocation renal cell carcinoma
Xu, Yongcan; Rao, Qiu; Xia, Qiuyuan; Shi, Shanshan; Shi, Qunli; Ma, Henghui; Lu, Zhenfeng; Chen, Hui; Zhou, Xiaojun
2015-01-01
TFE3 translocation renal cell carcinoma is a highly aggressive malignancy which often occurs primarily in children and young adults. The pathognomonic molecular lesion in this subtype is a translocation event involving the TFE3 transcription factor at chromosome Xp11.2. Hence, the pathological diagnosis of an Xp11.2 translocation RCC is based upon morphology, TFE3 immunohistochemistry, or genetic analyses. However, due to the false-positive immunoreactivity for TFE3 IHC and expensive for TFE3 break-apart FISH assay, additional molecular markers are necessary to help provide early diagnose and individualization treatment. Owing to recent advances in microarray and RNA-Seq, Pflueger et al. have discovered that TMED6-COG8 is dramatically increased in TFE3 translocation RCCs, compared with clear cell RCCs and papillary RCCs, implying that TMED6-COG8 might be a new molecular tumor marker of TFE3 translocation RCCs. To extend this observation, we firstly validated the TMED6-COG8 expression level by qRT-PCR in RCCs including Xp11.2 translocation RCCs (n = 5), clear cell RCCs (n = 7) and papillary RCCs (n = 5). Then, we also examined the expression level of TMED6-COG8 chimera in Xp11.2 translocation alveolar soft part sarcoma. We found that TMED6-COG8 chimera expression level was higher in Xp11.2 translocation RCCs than in ASPS (P < 0.05). What’s more, the expression levels of TMED6-COG8 chimera in esophagus cancers (n = 32), gastric cancers (n = 11), colorectal cancers (n = 12), hepatocellular carcinomas (n = 10) and non-small-cell lung cancers (n = 12) were assessed. Unexpectedly, TMED6-COG8 chimera was decreased in these five human types. Therefore, our observations from this study indicated that TMED6-COG8 chimera might act as a novel diagnostic marker in Xp11.2 translocation RCCs. PMID:26045774
Timing of translocation influences birth rate and population dynamics in a forest carnivore
Facka, Aaron N; Lewis, Jeffrey C.; Happe, Patricia; Jenkins, Kurt J.; Callas, Richard; Powell, Roger A.
2016-01-01
Timing can be critical for many life history events of organisms. Consequently, the timing of management activities may affect individuals and populations in numerous and unforeseen ways. Translocations of organisms are used to restore or expand populations but the timing of translocations is largely unexplored as a factor influencing population success. We hypothesized that the process of translocation negatively influences reproductive rates of individuals that are moved just before their birthing season and, therefore, the timing of releases could influence translocation success. Prior to reintroducing fishers (Pekania pennanti) into northern California and onto the Olympic Peninsula of Washington, we predicted that female fishers released in November and December (early) would have a higher probability of giving birth to kits the following March or April than females released in January, February, and March (late), just prior to or during the period of blastocyst implantation and gestation. Over four winters (2008–2011), we translocated 56 adult female fishers that could have given birth in the spring immediately after release. Denning rates, an index of birth rate, for females released early were 92% in California and 38% in Washington. In contrast, denning rates for females released late were 40% and 11%, in California and Washington, a net reduction in denning rate of 66% across both sites. To understand how releasing females nearer to parturition could influence population establishment and persistence, we used stochastic population simulations using three-stage Lefkovitch matrices. These simulations showed that translocating female fishers early had long-term positive influences on the mean population size and on quasi-extinction thresholds compared to populations where females were released late. The results from both empirical data and simulations show that the timing of translocation, with respect to life history events, should be considered during planning of translocations and implemented before the capture, movement, and release of organisms for translocation.
Population demographics and genetic diversity in remnant and translocated populations of sea otters
Bodkin, James L.; Ballachey, Brenda E.; Cronin, M.A.; Scribner, K.T.
1999-01-01
The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter (Enhydra lutris) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Metochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size (r = -0.741, p = 0.038) and minimum population size (r = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, altough growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.
Forejt, J; Gregorová, S; Goetz, P
1981-01-01
Analysis of the chromosome behaviour at pachytene has been performed by means of the silver staining technique visualizing the synaptonemal complexes (SCs) in male mice heterozygous for the male-sterile translocations T(5;12)31Hm T(16;17)43H and T(7;19)145H, respectively. the T(9;17)138Ca male heterozygotes and T43H/T43H homozygous males were used as fertile controls. The sterile mice displayed a high frequency (about 60%) of pachytene spermatocytes with autosomal translocation configuration located in close vicinity of the XY pair. The dense round body (XAB), normally located near the X-chromosome axis in fertile males, exhibited abnormal affinity to translocation configuration in the sterile translocation heterozygotes. The incomplete synapsis of autosomes involved in translocation configuration was observed in more than 70% of the pachytene spermatocytes with the male-sterile translocations but less than 20% of the cells from T138Ca fertile male.s. A hypothesis relating the spermatogenic arrest of carriers of male-sterile rearrangements to the presumed interference with X chromosome inactivation in male meiosis is discussed.
Kumar, Ashish; Shaha, Chandrima
2018-01-12
Mitophagy, the selective degradation of mitochondria by autophagy, is crucial for the maintenance of healthy mitochondrial pool in cells. The critical event in mitophagy is the translocation of cytosolic Parkin, a ubiquitin ligase, to the surface of defective mitochondria. This study elucidates a novel role of SESN2/Sestrin2, a stress inducible protein, in mitochondrial translocation of PARK2/Parkin during mitophagy. The data demonstrates that SESN2 downregulation inhibits BECN1/Beclin1 and Parkin interaction, thereby preventing optimum mitochondrial accumulation of Parkin. SESN2 interacts with ULK1 (unc-51 like kinase 1) and assists ULK1 mediated phosphorylation of Beclin1 at serine-14 position required for binding with Parkin prior to mitochondrial translocation. The trigger for SESN2 activation and regulation of Parkin translocation is the generation of mitochondrial superoxide. Scavenging of mitochondrial superoxide lower the levels of SESN2, resulting in retardation of Parkin translocation. Importantly, we observe that SESN2 mediated cytosolic interaction of Parkin and Beclin1 is PINK1 independent but mitochondrial translocation of Parkin is PINK1 dependent. Together, these findings suggest the role of SESN2 as a positive regulator of Parkin mediated mitophagy.
Papoff, Paola; Ceccarelli, Giancarlo; d'Ettorre, Gabriella; Cerasaro, Carla; Caresta, Elena; Midulla, Fabio; Moretti, Corrado
2012-01-01
Bacterial translocation as a direct cause of sepsis is an attractive hypothesis that presupposes that in specific situations bacteria cross the intestinal barrier, enter the systemic circulation, and cause a systemic inflammatory response syndrome. Critically ill children are at increased risk for bacterial translocation, particularly in the early postnatal age. Predisposing factors include intestinal obstruction, obstructive jaundice, intra-abdominal hypertension, intestinal ischemia/reperfusion injury and secondary ileus, and immaturity of the intestinal barrier per se. Despite good evidence from experimental studies to support the theory of bacterial translocation as a cause of sepsis, there is little evidence in human studies to confirm that translocation is directly correlated to bloodstream infections in critically ill children. This paper provides an overview of the gut microflora and its significance, a focus on the mechanisms employed by bacteria to gain access to the systemic circulation, and how critical illness creates a hostile environment in the gut and alters the microflora favoring the growth of pathogens that promote bacterial translocation. It also covers treatment with pre- and pro biotics during critical illness to restore the balance of microbial communities in a beneficial way with positive effects on intestinal permeability and bacterial translocation. PMID:22934115
Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome
Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.
2013-01-01
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233
Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.
Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y
2013-01-01
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.
Visually Tracking Translocations in Living Cells | Center for Cancer Research
Chromosomal translocations, the fusion of pieces of DNA from different chromosomes, are often observed in cancer cells and can even cause cancer. However, little is known about the dynamics and regulation of translocation formation. To investigate this critical process, Tom Misteli, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleague Vassilis Roukos, Ph.D., developed a novel experimental system that allowed the researchers to see, for the first time, translocations form in individual, live cells.
Short-Term Space-Use Patterns of Translocated Mojave Desert Tortoise in Southern California
Farnsworth, Matthew L.; Dickson, Brett G.; Zachmann, Luke J.; Hegeman, Ericka E.; Cangelosi, Amanda R.; Jackson, Thomas G.; Scheib, Amanda F.
2015-01-01
Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii), we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use. PMID:26352691
Short-Term Space-Use Patterns of Translocated Mojave Desert Tortoise in Southern California.
Farnsworth, Matthew L; Dickson, Brett G; Zachmann, Luke J; Hegeman, Ericka E; Cangelosi, Amanda R; Jackson, Thomas G; Scheib, Amanda F
2015-01-01
Increasingly, renewable energy comprises a larger share of global energy production. Across the western United States, public lands are being developed to support renewable energy production. Where there are conflicts with threatened or endangered species, translocation can be used in an attempt to mitigate negative effects. For the threatened Mojave desert tortoise (Gopherus agassizii), we sought to compare habitat- and space-use patterns between short-distance translocated, resident, and control groups. We tested for differences in home range size based on utilization distributions and used linear mixed-effects models to compare space-use intensity, while controlling for demographic and environmental variables. In addition, we examined mean movement distances as well as home range overlap between years and for male and female tortoises in each study group. During the first active season post-translocation, home range size was greater and space-use intensity was lower for translocated tortoises than resident and control groups. These patterns were not present in the second season. In both years, there was no difference in home range size or space-use intensity between control and resident groups. Translocation typically resulted in one active season of questing followed by a second active season characterized by space-use patterns that were indistinguishable from control tortoises. Across both years, the number of times a tortoise was found in a burrow was positively related to greater space-use intensity. Minimizing the time required for translocated tortoises to exhibit patterns similar to non-translocated individuals may have strong implications for conservation by reducing exposure to adverse environmental conditions and predation. With ongoing development, our results can be used to guide future efforts aimed at understanding how translocation strategies influence patterns of animal space use.
Vera, Carolina Andrea; Oróstica, Lorena; Gabler, Fernando; Ferreira, Arturo; Selman, Alberto; Vega, Margarita; Romero, Carmen Aurora
2017-04-01
Ovarian cancer is the seventh most common cancer among women worldwide, causing approximately 120,000 deaths every year. Immunotherapy, designed to boost the body's natural defenses against cancer, appears to be a promising option against ovarian cancer. Calreticulin (CRT) is an endoplasmic reticulum (ER) resident chaperone that, translocated to the cell membrane after ER stress, allows cancer cells to be recognized by the immune system. The nerve growth factor (NGF) is a pro-angiogenic molecule overexpressed in this cancer. In the present study, we aimed to determine weather NGF has an effect in CRT translocation induced by cytotoxic and ER stress. We treated A2780 ovarian cancer cells with NGF, thapsigargin (Tg), an ER stress inducer and mitoxantrone (Mtx), a chemotherapeutic drug; CRT subcellular localization was analyzed by immunofluorescence followed by confocal microscopy. In order to determine NGF effect on Mtx and Tg-induced CRT translocation from the ER to the cell membrane, cells were preincubated with NGF prior to Mtx or Tg treatment and CRT translocation to the cell surface was determined by flow cytometry. In addition, by western blot analyses, we evaluated proteins associated with the CRT translocation pathway, both in A2780 cells and human ovarian samples. We also measured NGF effect on cell apoptosis induced by Mtx. Our results indicate that Mtx and Tg, but not NGF, induce CRT translocation to the cell membrane. NGF, however, inhibited CRT translocation induced by Mtx, while it had no effect on Tg-induced CRT exposure. NGF also diminished cell death induced by Mtx. NGF effect on CRT translocation could have consequences in immunotherapy, potentially lessening the effectiveness of this type of treatment.
Increased frequency of chromosome translocations in airline pilots with long-term flying experience
Yong, L C; Sigurdson, A J; Ward, E M; Waters, M A; Whelan, E A; Petersen, M R; Bhatti, P; Ramsey, M J; Ron, E; Tucker, J D
2008-01-01
Background Chromosome translocations are an established biomarker of cumulative exposure to external ionising radiation. Airline pilots are exposed to cosmic ionising radiation, but few flight crew studies have examined translocations in relation to flight experience. Methods We determined the frequency of translocations in the peripheral blood lymphocytes of 83 airline pilots and 50 comparison subjects (mean age 47 and 46 years, respectively). Translocations were scored in an average of 1039 cell equivalents (CE) per subject using fluorescence in situ hybridisation (FISH) whole chromo-some painting and expressed per 100 CE. Negative binomial regression models were used to assess the relationship between translocation frequency and exposure status and flight years, adjusting for age, diagnostic x ray procedures, and military flying. Results There was no significant difference in the adjusted mean translocation frequency of pilots and comparison subjects (0.37 (SE 0.04) vs 0.38 (SE 0.06) translocations/100 CE, respectively). However, among pilots, the adjusted translocation frequency was significantly associated with flight years (p = 0.01) with rate ratios of 1.06 (95% CI 1.01 to 1.11) and 1.81 (95% CI 1.16 to 2.82) for a 1- and 10-year incremental increase in flight years, respectively. The adjusted rate ratio for pilots in the highest compared to the lowest quartile of flight years was 2.59 (95% CI 1.26 to 5.33). Conclusions This data suggests that pilots with long-term flying experience may be exposed to biologically significant doses of ionising radiation. Epidemiological studies with longer follow-up of larger cohorts of pilots with a wide range of radiation exposure levels are needed to clarify the relationship between cosmic radiation exposure and cancer risk. PMID:19074211
Survival of mountain quail translocated from two distinct source populations
Troy, Ronald J.; Coates, Peter S.; Connelly, John W.; Gillette, Gifford; Delehanty, David J.
2013-01-01
Translocation of mountain quail (Oreortyx pictus) to restore viable populations to their former range has become a common practice. Because differences in post-release vital rates between animals from multiple source populations has not been well studied, wildlife and land managers may arbitrarily choose the source population or base the source population on immediate availability when planning translocation projects. Similarly, an understanding of the optimal proportion of individuals from different age and sex classes for translocation would benefit translocation planning. During 2006 and 2007, we captured and translocated 125 mountain quail from 2 ecologically distinct areas: 38 from southern California and 87 from southwestern Oregon. We released mountain quail in the Bennett Hills of south-central Idaho. We radio-marked and monitored a subsample of 58 quail and used them for a 2-part survival analysis. Cumulative survival probability was 0.23 ± 0.05 (SE) at 150 days post-release. We first examined an a priori hypothesis (model) that survival varied between the 2 distinct source populations. We found that source population did not explain variation in survival. This result suggests that wildlife managers have flexibility in selecting source populations for mountain quail translocation efforts. In a post hoc examination, we pooled the quail across source populations and evaluated differences in survival probabilities between sex and age classes. The most parsimonious model indicated that adult male survival was substantially less than survival rates of other mountain quail age and sex classes (i.e., interaction between sex and age). This result suggests that translocation success could benefit by translocating yearling males rather than adult males, perhaps because adult male breeding behavior results in vulnerability to predators
NASA Astrophysics Data System (ADS)
Zarrouk, Anis; Romdhane, Mohamed Salah; Espinosa, Free
2018-03-01
Patella ferruginea is the most endangered marine invertebrate of western Mediterranean rocky shores. After a study of one of its most important populations in the Zembra Archipelago National Park (Tunisia), a new protocol for the translocation of the species (size: 4-8 cm) was adopted. The first translocation was made in June 2014 in the same archipelago, where 94 specimens were moved from Zembretta to Zembra Island and marked (62 protected by cages, 20 with no cages and 60 as controls). The second translocation was performed in August 2014 (110 specimens) from Zembra to La Galite Island (185 km away). High mortality was registered during transport. The remaining individuals (39) were marked and placed in cages on the rocky shores of Galite Island, then monitored until November 2015. Growth and survival rates were measured in both translocated and control populations. The highest mortality rates were observed during the initial three days after translocation, especially for individuals with no cage protection. After a 697-day survey on Zembra Island, survival rates of 58%, 25% and 85% were observed for cage, no-cage and control populations, respectively. After a 457-day survey on La Galite Island, the survival rate was 18%. Limpets>6 cm in size had the highest survival rate among Zembra-translocated populations, whereas translocated limpets of 4-6 cm in size showed the highest survival rate in La Galite. The growth rates for both translocated populations were higher than the rate observed for controls. Our translocation experiment shows the importance of cage protection and initial limpet size for survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com
Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3.more » Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.« less
Increased frequency of chromosome translocations in airline pilots with long-term flying experience.
Yong, L C; Sigurdson, A J; Ward, E M; Waters, M A; Whelan, E A; Petersen, M R; Bhatti, P; Ramsey, M J; Ron, E; Tucker, J D
2009-01-01
Chromosome translocations are an established biomarker of cumulative exposure to external ionising radiation. Airline pilots are exposed to cosmic ionising radiation, but few flight crew studies have examined translocations in relation to flight experience. We determined the frequency of translocations in the peripheral blood lymphocytes of 83 airline pilots and 50 comparison subjects (mean age 47 and 46 years, respectively). Translocations were scored in an average of 1039 cell equivalents (CE) per subject using fluorescence in situ hybridisation (FISH) whole chromosome painting and expressed per 100 CE. Negative binomial regression models were used to assess the relationship between translocation frequency and exposure status and flight years, adjusting for age, diagnostic x ray procedures, and military flying. There was no significant difference in the adjusted mean translocation frequency of pilots and comparison subjects (0.37 (SE 0.04) vs 0.38 (SE 0.06) translocations/100 CE, respectively). However, among pilots, the adjusted translocation frequency was significantly associated with flight years (p = 0.01) with rate ratios of 1.06 (95% CI 1.01 to 1.11) and 1.81 (95% CI 1.16 to 2.82) for a 1- and 10-year incremental increase in flight years, respectively. The adjusted rate ratio for pilots in the highest compared to the lowest quartile of flight years was 2.59 (95% CI 1.26 to 5.33). Our data suggests that pilots with long-term flying experience may be exposed to biologically significant doses of ionising radiation. Epidemiological studies with longer follow-up of larger cohorts of pilots with a wide range of radiation exposure levels are needed to clarify the relationship between cosmic radiation exposure and cancer risk.
Haque, Farzin; Wang, Shaoying; Stites, Chris; Chen, Li; Wang, Chi; Guo, Peixuan
2015-01-01
The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ~35-fold slower speed of translocation per base pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ~32% of channel current blockage and ~64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine. PMID:25890769
Mustaev, Arkady; Roberts, Jeffrey; Gottesman, Max
2017-05-27
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Dangkulwanich, Manchuta; Ishibashi, Toyotaka; Liu, Shixin; ...
2013-09-24
During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limitingmore » steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation.« less
Ikonen, Timo; Shin, Jaeoh; Sung, Wokyung; Ala-Nissila, Tapio
2012-05-28
We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.
The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase
Shu, Bo; Gong, Peng
2017-01-01
ABSTRACT The nucleotide addition cycle of nucleic acid polymerases includes 2 major events: the pre-chemistry active site closure leading to the addition of one nucleotide to the product chain; the post-chemistry translocation step moving the polymerase active site one position downstream on its template. In viral RNA-dependent RNA polymerases (RdRPs), structural and biochemical evidences suggest that these 2 events are not tightly coupled, unlike the situation observed in A-family polymerases such as the bacteriophage T7 RNA polymerase. Recently, an RdRP translocation intermediate crystal structure of enterovirus 71 shed light on how translocation may be controlled by elements within RdRP catalytic motifs, and a series of poliovirus apo RdRP crystal structures explicitly suggest that a motif B loop may assist the movement of the template strand in late stages of transcription. Implications of RdRP catalysis-translocation uncoupling and the remaining challenges to further elucidate RdRP translocation mechanism are also discussed. PMID:28277928
Wang, Jun; Fei, Bei; Geahlen, Robert L.
2010-01-01
Protein translocation, or the change in a protein’s location between different subcellular compartments, is a critical process by which intracellular proteins carry out their cellular functions. Aberrant translocation events contribute to various diseases ranging from metabolic disorders to cancer. In this study, we demonstrate the use of a newly developed single-cell tool, microfluidic total internal reflection fluorescence flow cytometry (TIRF-FC), for detecting both cytosol to plasma membrane and cytosol to nucleus translocations using the tyrosine kinase Syk and the transcription factor NF-κB as models. This technique detects fluorescent molecules at the plasma membrane and in the membrane-proximal cytosol in single cells. We were able to record quantitatively changes in the fluorescence density in the evanescent field associated with these translocation processes for large cell populations with single cell resolution. We envision that TIRF-FC will provide a new approach to explore the molecular biology and clinical relevance of protein translocations. PMID:20820633
Human Lymphoid Translocation Fragile Zones Are Hypomethylated and Have Accessible Chromatin
Lu, Zhengfei; Tsai, Albert G.; Pardo, Carolina E.; Müschen, Markus; Kladde, Michael P.
2015-01-01
Chromosomal translocations are a hallmark of hematopoietic malignancies. CG motifs within translocation fragile zones (typically 20 to 600 bp in size) are prone to chromosomal translocation in lymphomas. Here we demonstrate that the CG motifs in human translocation fragile zones are hypomethylated relative to the adjacent DNA. Using a methyltransferase footprinting assay on isolated nuclei (in vitro), we find that the chromatin at these fragile zones is accessible. We also examined in vivo accessibility using cellular expression of a prokaryotic methylase. Based on this assay, which measures accessibility over a much longer time interval than is possible with in vitro methods, these fragile zones were found to be more accessible than the adjacent DNA. Because DNA within the fragile zones can be methylated by both cellular and exogenous methyltransferases, the fragile zones are predominantly in a duplex DNA conformation. These observations permit more-refined models for why these zones are 100- to 1,000-fold more prone to undergo chromosomal translocation than the adjacent regions. PMID:25624348
Translocation and Endocytosis for Cell-penetrating Peptide Internalization
Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine
2009-01-01
Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724
Experimental test of genetic rescue in isolated populations of brook trout
Robinson, Zachary L.; Coombs, Jason A.; Hudy, Mark; Nislow, Keith H.; Letcher, Benjamin H.; Whiteley, Andrew R.
2017-01-01
Genetic rescue is an increasingly considered conservation measure to address genetic erosion associated with habitat loss and fragmentation. The resulting gene flow from facilitating migration may improve fitness and adaptive potential, but is not without risks (e.g., outbreeding depression). Here, we conducted a test of genetic rescue by translocating ten (five of each sex) brook trout (Salvelinus fontinalis) from a single source to four nearby and isolated stream populations. To control for the demographic contribution of translocated individuals, ten resident individuals (five of each sex) were removed from each recipient population. Prior to the introduction of translocated individuals, the two smallest above-barrier populations had substantially lower genetic diversity, and all populations had reduced effective number of breeders relative to adjacent below-barrier populations. In the first reproductive bout following translocation, 31 of 40 (78%) translocated individuals reproduced successfully. Translocated individuals contributed to more families than expected under random mating and generally produced larger full-sibling families. We observed relatively high (>20%) introgression in three of the four recipient populations. The translocations increased genetic diversity of recipient populations by 45% in allelic richness and 25% in expected heterozygosity. Additionally, strong evidence of hybrid vigour was observed through significantly larger body sizes of hybrid offspring relative to resident offspring in all recipient populations. Continued monitoring of these populations will test for negative fitness effects beyond the first generation. However, these results provide much-needed experimental data to inform the potential effectiveness of genetic rescue-motivated translocations.
Chen, Xiancheng; Gan, Weidong; Ye, Qing; Yang, Jun; Guo, Hongqian; Li, Dongmei
2014-12-16
To explore the value of self-designed fluorescent in situ hybridization (FISH) polyclonal break-apart probes specific for TFE3 gene in the diagnosis of Xp11.2 translocation renal cell carcinoma. All tissue samples were collected from 2006 to 2013, including Xp11.2 translocation renal cell carcinoma (n = 10), renal clear cell carcinoma (n = 10) and renal papillary cell carcinoma (n = 10). FISH was conducted for paraffin-embedded tumor tissue sections with probes. The types of fluorescence were observed by fluorescent microscopy to determine the existence or non-existence of translocated TFE3 gene. All sections were successfully probed. The split red and green signals within a single nucleus were detected simultaneously in 9 cases of Xp11.2 translocation renal cell carcinoma as diagnosed by traditional pathological and immunohistochemical methods. And it was consistent with the initial diagnosis. Detection of fusion signal in 1/10 and negative FISH result did not conform to the initial diagnosis. The fluorescent types of renal clear cell carcinoma and renal papillary cell carcinoma were all fusion signals. FISH tests were negative for renal clear and papillary cell carcinomas. Xp11.2 translocation renal cell carcinomas diagnosed by traditional pathological and immunohistochemical methods are sometimes misdiagnosed. Detecting the translocation of TFE3 gene with FISH polyclonal break-apart probes is both accurate and reliable for diagnosing Xp11.2 translocation renal cell carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran, D.; Eswaramoorthy, S; Furey, W
2009-01-01
Clostridium botulinum produces seven antigenically distinct neurotoxins [C. botulinum neurotoxins (BoNTs) A-G] sharing a significant sequence homology. Based on sequence and functional similarity, it was believed that their three-dimensional structures will also be similar. Indeed, the crystal structures of BoNTs A and B exhibit similar fold and domain association where the translocation domain is flanked on either side by binding and catalytic domains. Here, we report the crystal structure of BoNT E holotoxin and show that the domain association is different and unique, although the individual domains are similar to those of BoNTs A and B. In BoNT E, bothmore » the binding domain and the catalytic domain are on the same side of the translocation domain, and all three have mutual interfaces. This unique association may have an effect on the rate of translocation, with the molecule strategically positioned in the vesicle for quick entry into cytosol. Botulism, the disease caused by BoNT E, sets in faster than any other serotype because of its speedy internalization and translocation, and the present structure offers a credible explanation. We propose that the translocation domain in other BoNTs follows a two-step process to attain translocation-competent conformation as in BoNT E. We also suggest that this translocation-competent conformation in BoNT E is a probable reason for its faster toxic rate compared to BoNT A. However, this needs further experimental elucidation.« less
Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering
Shiba-Fukushima, Kahori; Arano, Taku; Matsumoto, Gen; Inoshita, Tsuyoshi; Yoshida, Shigeharu; Ishihama, Yasushi; Ryu, Kwon-Yul; Nukina, Nobuyuki; Hattori, Nobutaka; Imai, Yuzuru
2014-01-01
The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. PMID:25474007
Experimental test of genetic rescue in isolated populations of brook trout.
Robinson, Zachary L; Coombs, Jason A; Hudy, Mark; Nislow, Keith H; Letcher, Benjamin H; Whiteley, Andrew R
2017-09-01
Genetic rescue is an increasingly considered conservation measure to address genetic erosion associated with habitat loss and fragmentation. The resulting gene flow from facilitating migration may improve fitness and adaptive potential, but is not without risks (e.g., outbreeding depression). Here, we conducted a test of genetic rescue by translocating ten (five of each sex) brook trout (Salvelinus fontinalis) from a single source to four nearby and isolated stream populations. To control for the demographic contribution of translocated individuals, ten resident individuals (five of each sex) were removed from each recipient population. Prior to the introduction of translocated individuals, the two smallest above-barrier populations had substantially lower genetic diversity, and all populations had reduced effective number of breeders relative to adjacent below-barrier populations. In the first reproductive bout following translocation, 31 of 40 (78%) translocated individuals reproduced successfully. Translocated individuals contributed to more families than expected under random mating and generally produced larger full-sibling families. We observed relatively high (>20%) introgression in three of the four recipient populations. The translocations increased genetic diversity of recipient populations by 45% in allelic richness and 25% in expected heterozygosity. Additionally, strong evidence of hybrid vigour was observed through significantly larger body sizes of hybrid offspring relative to resident offspring in all recipient populations. Continued monitoring of these populations will test for negative fitness effects beyond the first generation. However, these results provide much-needed experimental data to inform the potential effectiveness of genetic rescue-motivated translocations. © 2017 John Wiley & Sons Ltd.
Henrich, Erik; Ma, Yi; Engels, Ina; Münch, Daniela; Otten, Christian; Schneider, Tanja; Henrichfreise, Beate; Sahl, Hans-Georg; Dötsch, Volker; Bernhard, Frank
2016-01-01
Screening of new compounds directed against key protein targets must continually keep pace with emerging antibiotic resistances. Although periplasmic enzymes of bacterial cell wall biosynthesis have been among the first drug targets, compounds directed against the membrane-integrated catalysts are hardly available. A promising future target is the integral membrane protein MraY catalyzing the first membrane associated step within the cytoplasmic pathway of bacterial peptidoglycan biosynthesis. However, the expression of most MraY homologues in cellular expression systems is challenging and limits biochemical analysis. We report the efficient production of MraY homologues from various human pathogens by synthetic cell-free expression approaches and their subsequent characterization. MraY homologues originating from Bordetella pertussis, Helicobacter pylori, Chlamydia pneumoniae, Borrelia burgdorferi, and Escherichia coli as well as Bacillus subtilis were co-translationally solubilized using either detergent micelles or preformed nanodiscs assembled with defined membranes. All MraY enzymes originating from Gram-negative bacteria were sensitive to detergents and required nanodiscs containing negatively charged lipids for obtaining a stable and functionally folded conformation. In contrast, the Gram-positive B. subtilis MraY not only tolerates detergent but is also less specific for its lipid environment. The MraY·nanodisc complexes were able to reconstitute a complete in vitro lipid I and lipid II forming pipeline in combination with the cell-free expressed soluble enzymes MurA-F and with the membrane-associated protein MurG. As a proof of principle for future screening platforms, we demonstrate the inhibition of the in vitro lipid II biosynthesis with the specific inhibitors fosfomycin, feglymycin, and tunicamycin. PMID:26620564
Conformational dynamics of bacterial trigger factor in apo and ribosome-bound states.
Can, Mehmet Tarik; Kurkcuoglu, Zeynep; Ezeroglu, Gokce; Uyar, Arzu; Kurkcuoglu, Ozge; Doruker, Pemra
2017-01-01
The chaperone trigger factor (TF) binds to the ribosome exit tunnel and helps cotranslational folding of nascent chains (NC) in bacterial cells and chloroplasts. In this study, we aim to investigate the functional dynamics of fully-atomistic apo TF and its complex with 50S. As TF accomodates a high percentage of charged residues on its surface, the effect of ionic strength on TF dynamics is assessed here by performing five independent molecular dynamics (MD) simulations (total of 1.3 micro-second duration) at 29 mM and 150 mM ionic strengths. At both concentrations, TF exhibits high inter- and intra-domain flexibility related to its binding (BD), core (CD), and head (HD) domains. Even though large oscillations in gyration radius exist during each run, we do not detect the so-called 'fully collapsed' state with both HD and BD collapsed upon the core. In fact, the extended conformers with relatively open HD and BD are highly populated at the physiological concentration of 150 mM. More importantly, extended TF snapshots stand out in terms of favorable docking onto the 50S subunit. Elastic network modeling (ENM) indicates significant changes in TF's functional dynamics and domain decomposition depending on its conformation and positioning on the 50S. The most dominant slow motions are the lateral sweeping and vertical opening/closing of HD relative to 50S. Finally, our ENM-based efficient technique -ClustENM- is used to sample atomistic conformers starting with an extended TF-50S complex. Specifically, BD and CD motions are restricted near the tunnel exit, while HD is highly mobile. The atomistic conformers generated without an NC are in agreement with the cryo-EM maps available for TF-ribosome-NC complex.
Liu, Xin; Ropp, Susan L.; Jackson, Richard J.; Frey, Teryl K.
1998-01-01
The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit reticulocyte lysate system, although all of the other viral PCPs do so. However, in the presence of divalent cations such as Zn2+, Cd2+, and Co2+, the RUB NS protease functioned efficiently, indicating that these cations are required either as direct cofactors in catalytic activity or for correct acquisition of three-dimensional conformation of the protease. Since other viral and cell PCPs do not require cations for activity and the RUB NS protease contains a putative zinc binding motif, the latter possibility is more likely. Previous in vivo expression studies of the RUB NS protease failed to demonstrate trans cleavage activity (J.-P. Chen et al., J. Virol. 70:4707–4713, 1996). To study whether trans cleavage could be detected in vitro, a protease catalytic site mutant and a mutant in which the C-terminal 31 amino acids of P90 were deleted were independently introduced into plasmid constructs that express the complete NSP-ORF. Cotranslation of these mutants in vitro yielded both the native and the mutated forms of P90, indicating that the protease present in the mutated construct cleaved the catalytic-site mutant precursor. Thus, RUB NS protease can function in trans. PMID:9557742
Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.
Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping
2017-07-25
Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an effective alternative to lengthy conventional diagnostic procedures requiring both cytogenetic analysis followed by targeted quantitative reverse transcription (qRT-PCR) methods, thus allowing timely patient management.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... the Southern Sea Otter Translocation Program; Revised Draft Supplemental Environmental Impact Statement on the Translocation of Southern Sea Otters AGENCY: Fish and Wildlife Service, Interior. ACTION... draft supplemental environmental impact statement on the translocation of southern sea otters (revised...
Slack, Barbara E.; Siniaia, Marina S.
2008-01-01
The mitogen-activated protein kinases (MAPKs) are activated by extracellular signals, and translocate to the nucleus where they modulate transcription. Integrin-mediated cell adhesion to extracellular matrix (ECM) proteins is required for efficient transmission of MAPK-based signals initiated by growth factors. However, the modulation of G protein-coupled receptor (GPCR) signaling by adhesion is less well understood. In the present study we assessed the impact of cell adhesion on MAPK activation by muscarinic M3 receptors. The muscarinic agonist carbachol more efficiently promoted stress fiber formation and tyrosine phosphorylation of focal adhesion-associated proteins in M3 receptor-expressing cells adherent to fibronectin or collagen type I, as compared to polylysine. Overall MAPK activation was robust in cells adherent to all three substrata. However, total levels of MAPK and mitogen-activated protein kinase kinase (MEK) in the nucleus were significantly greater in cells adherent to ECM proteins for 2.5 hours, and levels of activated MAPK and MEK in the nuclei of these cells were higher following carbachol stimulation, relative to levels in cells adherent to polylysine. MEK inhibitors did not prevent adhesion-dependent translocation of MAPK and MEK to the nucleus, and increased nuclear phospho-MEK levels in carbachol-stimulated cells. The results suggest that adhesion of cells to ECM triggers the redistribution of MAPK and MEK to the nucleus, possibly as a result of the cytoskeletal rearrangements that accompany cell spreading. This may represent a mechanism for priming the nucleus with MEK and MAPK, leading to more rapid and pronounced increases in intranuclear phospho-MAPK upon GPCR stimulation. PMID:15779001
Large-scale translocation strategies for reintroducing red-cockaded woodpeckers
Daniel Saenz; Kristen A. Baum; Richard N. Conner; D. Craig Rudolph; Ralph Costa
2002-01-01
Translocation of wild birds is a potential conservation strategy for the endangered red-cockaded woodpecker (Picoides borealis). We developed and tested 8 large-scale translocation strategy models for a regional red-cockaded woodpecker reintroduction program. The purpose of the reintroduction program is to increase the number of red-cockaded...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... the Southern Sea Otter Translocation Program; Final Supplemental Environmental Impact Statement on the Translocation of Southern Sea Otters AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability... Supplemental Environmental Impact Statement on the Translocation of Southern Sea Otters (final SEIS). The final...
A 14/28 dicentric Robertsonian translocation in a Holstein cow.
Ellsworth, S M; Paul, S R; Bunch, T D
1979-02-01
A new dicentric Robertsonian translocation is described in a Holstein cow. The translocation appears to have arisen spontaneously from the centric fusion of autosomal acro centrics 14 and 28 which resulted in a diploid chromosome number of 59. Behavioral and phenotypic anomalies of the affected cow are discussed.
Xp11.2 Translocation Renal Cell Carcinoma Diagnosed by Immunohistochemistry and Cytogenetics.
Dey, Biswajit; Badhe, Bhawana; Govindarajan, Krishna Kumar; Ramesh, Ranjith Arumbakkam
2016-01-01
Xp11.2 translocation renal cell carcinomas (TRCCs) are a group of neoplasms with distinct clinical, histopathological appearance, immunohistochemical, and cytogenetic profile. We report a case of Xp11.2 translocation TRCC in an 11-year-old male diagnosed based on immunohistochemistry and fluorescence in situ hybridization.
Mechanisms Leading to Nonrandom, Nonhomologous Chromosomal Translocations in Leukemia
Gollin, Susanne M.
2007-01-01
Nonrandom, reciprocal translocations between nonhomologous chromosomes are critical cellular events that lead to malignant transformation. Therefore, understanding the mechanisms involved in these chromosomal rearrangements is essential for understanding the process of carcinogenesis. There has been substantial discussion in the literature over the past ten years about mechanisms involved in constitutional chromosomal rearrangements, including deletions, duplications, and translocations. Yet our understanding of the mechanisms of chromosomal rearrangements in cancer is still developing. This review presents what is known about the mechanisms involved in selected nonrandom chromosomal translocations in leukemia. PMID:17157028
[Research advances in Xp11.2 translocation renal cell carcinoma].
Huang, Jian-Hua; Zhou, Fang-Jian
2008-09-01
Xp11.2 translocation renal cell carcinoma (RCC) is a newly identified category of RCC described in the 2004 WHO Classification of Kidney Tumors. Although the incidence is very rare, it accounts about one third of pediatric RCCs. It is different from other RCCs in clinical manifestations, histopathologic features, biological behaviour and prognosis. At present, Xp11.2 translocation RCC has seldom been reported. This review analyzed recent researches on Xp11.2 translocation RCC, described its classification and summarized the characteristics of epidemiology, clinical manifestations, histopathology, diagnosis, treatment and prognosis.
Gustavsson, Peter; Förster, Alisa; Hofmeister, Wolfgang; Wincent, Josephine; Zachariadis, Vasilios; Anderlid, Britt-Marie; Nordgren, Ann; Mäkitie, Outi; Wirta, Valtteri; Käller, Max; Vezzi, Francesco; Lupski, James R; Nordenskjöld, Magnus; Lundberg, Elisabeth Syk; Carvalho, Claudia M. B.; Lindstrand, Anna
2016-01-01
Most balanced translocations are thought to result mechanistically from non-homologous endjoining (NHEJ) or, in rare cases of recurrent events, by nonallelic homologous recombination (NAHR). Here, we use low coverage mate pair whole genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n=4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated-insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by the error prone replication-based repair mechanisms (RBMs). Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events. PMID:27862604
Fitzsimons, Carlos P.; Ahmed, Suaad; Wittevrongel, Christiaan F. W.; Schouten, Theo G.; Dijkmans, Thomas F.; Scheenen, Wim J. J. M.; Schaaf, Marcel J. M.; Ronald de Kloet, E.; Vreugdenhil, Erno
2008-01-01
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus. PMID:17975023
NASA Astrophysics Data System (ADS)
Tremblay, P.; Grover, R.; Maguer, J. F.; Hoogenboom, M.; Ferrier-Pagès, C.
2014-03-01
Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m-2 s-1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 --enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral-dinoflagellate symbioses depend critically on environmental conditions.
Soman, Raunak; Yuan, Jijun; Kuhn, Andreas; Dalbey, Ross E
2014-01-10
During membrane biogenesis, the M13 procoat protein is inserted into the lipid bilayer in a strictly YidC-dependent manner with both the hydrophobic signal sequence and the membrane anchor sequence promoting translocation of the periplasmic loop via a hairpin mechanism. Here, we find that the translocase requirements can be altered for PClep in a predictable manner by changing the polarity and charge of the peptide region that is translocated across the membrane. When the polarity of the translocated peptide region is lowered and the charged residues in this region are removed, translocation of this loop region occurs largely by a YidC- and Sec-independent mechanism. When the polarity is increased to that of the wild-type procoat protein, the YidC insertase is essential for translocation. Further increasing the polarity, by adding charged residues, switches the insertion pathway to a YidC/Sec mechanism. Conversely, we find that increasing the hydrophobicity of the transmembrane segments of PClep can decrease the translocase requirement for translocation of the peptide chain. This study provides a framework to understand why the YidC and Sec machineries exist in parallel and demonstrates that the YidC insertase has a limited capacity to translocate a peptide chain on its own.
Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S
2014-05-01
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S
2014-01-01
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. PMID:24689851
Chara, Osvaldo; Borges, Augusto; Milhiet, Pierre-Emmanuel; Nöllmann, Marcelo; Cattoni, Diego I
2018-03-27
Transport of cellular cargo by molecular motors requires directionality to ensure proper biological functioning. During sporulation in Bacillus subtilis, directionality of chromosome transport is mediated by the interaction between the membrane-bound DNA translocase SpoIIIE and specific octameric sequences (SRS). Whether SRS regulate directionality by recruiting and orienting SpoIIIE or by simply catalyzing its translocation activity is still unclear. By using atomic force microscopy and single-round fast kinetics translocation assays we determined the localization and dynamics of diffusing and translocating SpoIIIE complexes on DNA with or without SRS. Our findings combined with mathematical modelling revealed that SpoIIIE directionality is not regulated by protein recruitment to SRS but rather by a fine-tuned balance among the rates governing SpoIIIE-DNA interactions and the probability of starting translocation modulated by SRS. Additionally, we found that SpoIIIE can start translocation from non-specific DNA, providing an alternative active search mechanism for SRS located beyond the exploratory length defined by 1D diffusion. These findings are relevant in vivo in the context of chromosome transport through an open channel, where SpoIIIE can rapidly explore DNA while directionality is modulated by the probability of translocation initiation upon interaction with SRS versus non-specific DNA.
Measuring peptide translocation into large unilamellar vesicles.
Spinella, Sara A; Nelson, Rachel B; Elmore, Donald E
2012-01-27
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
Skoczinski, Pia; Volkenborn, Kristina; Fulton, Alexander; Bhadauriya, Anuseema; Nutschel, Christina; Gohlke, Holger; Knapp, Andreas; Jaeger, Karl-Erich
2017-09-25
Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an optimization target for successful protein production. Our results further suggest that variants with improved properties might be identified much faster and easier if mutagenesis is prioritized towards elements that contribute to enzymatic activity or structural integrity.
Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.
The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast,more » amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.« less
Spurgeon, Jonathan J.; Paukert, Craig P.; Healy, Brian D.; Trammell, Melissa; Speas, Dave; Smith, Emily Omana
2015-01-01
The Humpback Chub Gila cypha, a large-bodied, endangered cyprinid endemic to the Colorado River basin, is in decline throughout most of its range due largely to anthropogenic factors. Translocation of Humpback Chub into tributaries of the Colorado River is one conservation activity that may contribute to the expansion of the species’ current range and eventually provide population redundancy. We evaluated growth, survival, and dispersal following translocation of approximately 900 Humpback Chub over a period of 3 years (2009, 2010, and 2011) into Shinumo Creek, a tributary stream of the Colorado River within Grand Canyon National Park. Growth and condition of Humpback Chub in Shinumo Creek were consistent among year-classes and equaled or surpassed growth estimates from both the main-stem Colorado River and the Little Colorado River, where the largest (and most stable) Humpback Chub aggregation remains. Based on passive integrated tag recoveries, 53% ( = 483/902) of translocated Humpback Chub dispersed from Shinumo Creek into the main-stem Colorado River as of January 2013, 35% leaving within 25 d following translocation. Annual apparent survival estimates within Shinumo Creek ranged from 0.22 to 0.41, but were strongly influenced by emigration. Results indicate that Shinumo Creek provides favorable conditions for growth and survival of translocated Humpback Chub and could support a new population if reproduction and recruitment occur in the future. Adaptation of translocation strategies of Humpback Chub into tributary streams ultimately may refine the role translocation plays in recovery of the species.
Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin
2015-10-13
Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.
Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong
2016-12-01
Complex chromosome rearrangements (CCRs) are defined as structural abnormalities involving more than two chromosome breaks, coupled with exchanges of chromosomal segments. Information on CCRs in plants is limited. In the present study, a plant (26-4) harboring translocation chromosomes 1RS.1BL and 4RS.4DL was selected from a double monosomic (1R and 4R) addition line, which was derived from the hybrid between wheat cultivar MY11 and a Chinese local rye variety. The genome of the plant with double alien translocation chromosomes in the monosomic form showed more instability than that harboring a single translocation. The CCRs involving chromosomes 1RS.1BL and 3B, which were generated de novo in this plant, showed double monosomic translocation chromosomes. A new CCR line with balanced reciprocal translocations 1RS.3BL and 3BS.1BL was developed, which presented normal morphological traits of wheat and underwent rapid growth in the field. A new 1RS.1BL translocation line was also selected from the progeny of plant 26-4. The CCRs and simple 1RS.1BL translocation lines showed significant improvement in grain yield, number of spikes per square meter, kernel number per spike, and resistance to stripe rust and powdery mildew. The CCR line exhibited better agronomic traits and adult plant resistance in the field than its sister line, which harbored a simple 1RS.1BL translocation. The CCRs are remarkable genetic resources for crop improvement.
Baglieri, Jacopo; Beck, Daniel; Vasisht, Nishi; Smith, Corinne J.; Robinson, Colin
2012-01-01
The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ∼50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70–90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6–8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed. PMID:22190680
Burger, Claudia; Nord, Andreas; Nilsson, Jan-Åke; Gilot-Fromont, Emmanuelle; Both, Christiaan
2013-01-01
Climate change leads to rapid, differential changes in phenology across trophic levels, often resulting in temporal mismatches between predators and their prey. If a species cannot easily adjust its timing, it can adapt by choosing a new breeding location with a later phenology of its prey. In this study, we experimentally investigated whether long-distance dispersal to northern breeding grounds with a later phenology could be a feasible process to restore the match between timing of breeding and peak food abundance and thus improve reproductive success. Here, we report the successful translocation of pied flycatchers (Ficedula hypoleuca) to natural breeding sites 560 km to the Northeast. We expected translocated birds to have a fitness advantage with respect to environmental phenology, but to potentially pay costs through the lack of other locally adapted traits. Translocated individuals started egg laying 11 days earlier than northern control birds, which were translocated only within the northern site. The number of fledglings produced was somewhat lower in translocated birds, compared to northern controls, and fledglings were in lower body condition. Translocated individuals were performing not significantly different to control birds that remained at the original southern site. The lack of advantage of the translocated individuals most likely resulted from the exceptionally cold spring in which the experiment was carried out. Our results, however, suggest that pied flycatchers can successfully introduce their early breeding phenotype after dispersing to more northern areas, and thus that adaptation through dispersal is a viable option for populations that get locally maladapted through climate change.
The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.
Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K
2017-11-01
Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.
Martin-Tumasz, Stephen; Brow, David A
2015-09-18
In the yeast Saccharomyces cerevisiae, the essential nuclear helicase Sen1 is required for efficient termination of transcription of short noncoding RNA genes by RNA polymerase II. However, the mechanism by which Sen1 promotes transcription termination is not known. Prior biochemical studies on the Sen1 homolog from Schizosaccharomyces pombe showed that it can bind and unwind both DNA and RNA, but the S. pombe protein is not essential and has not been demonstrated to function in transcription. Furthermore, Sen1 from either yeast has not previously been expressed as a recombinant protein, due to its large molecular mass (252 kDa in S. cerevisiae). Here, we report the purification and characterization of the 89-kDa S. cerevisiae Sen1 helicase domain (Sen1-HD) produced in Escherichia coli. Sen1-HD binds single-stranded RNA and DNA with similar affinity in the absence of ATP, but it binds RNA more stably than DNA in the presence of ATP, apparently due to a slower translocation rate on RNA. Translocation occurs in the 5' to 3' direction, as for the S. pombe protein. When purified from E. coli at a moderate salt concentration, Sen1-HD was associated with short RNAs that are enriched for the trinucleotide repeat (CAN)4. We propose that Sen1 binds to RNAs and prevents their stable pairing with DNA, consistent with in vivo studies by others showing increased R-loop (RNA/DNA hybrid) formation when Sen1 activity is impaired by mutations. Our results are consistent with a model in which Sen1 promotes transcription termination by resolving R-loops. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System
Elder, Alison; Gelein, Robert; Silva, Vanessa; Feikert, Tessa; Opanashuk, Lisa; Carter, Janet; Potter, Russell; Maynard, Andrew; Ito, Yasuo; Finkelstein, Jacob; Oberdörster, Günter
2006-01-01
Background Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. Methods To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 μg/m3) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. Results After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-α mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. Conclusions We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans. PMID:16882521
León-Mejía, Grethel; Machado, Mariana Nascimento; Okuro, Renata Tiemi; Silva, Luis F O; Telles, Claudia; Dias, Johnny; Niekraszewicz, Liana; Da Silva, Juliana; Henriques, João Antônio Pêgas; Zin, Walter Araujo
2018-06-01
Continuous exposure to coal mining particles can cause a variety of lung diseases. We aimed to evaluate the outcomes of exposure to detailed characterized coal and coal fly ash (CFA) particles on DNA, lung and extrapulmonary tissues. Coal samples (COAL11 and COAL16) and CFA samples (CFA11 and CFA16) were included in this study. Intending to enhance the combustion process COAL16 was co-fired with a mixture of fuel oil and diesel oil, producing CFA16. Male BALB/c mice were intratracheally instilled with coal and CFA particles. Measurements were done 24h later. Results showed significant rigidity and obstruction of the central airways only for animals acutely exposed to coal particles. The COAL16 group also showed obstruction of the peripheral airways. Mononuclear cells were recruited in all treatment groups and expression of cytokines, particularly TNF-α and IL-1β, was observed. Only animals exposed to COAL16 showed a significant expression of IL-6 and recruitment of polymorphonuclear cells. DNA damage was demonstrated by Comet assay for all groups. Cr, Fe and Ni were detected in liver, spleen and brain, showing the efficient translocation of metals from the bloodstream to extrapulmonary organs. These effects were associated with particle composition (oxides, hydroxides, phosphates, sulfides, sulphates, silciates, organic-metalic compounds, and polycyclic aromatic hidrocarbons) rather than their size. This work provides state of knowledge on the effects of acute exposure to coal and CFA particles on respiratory mechanics, DNA damage, translocation of metals to other organs and related inflammatory processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.
Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning
2013-06-14
The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.
Kreidler, Anna-Maria; Benz, Roland; Barth, Holger
2017-03-01
The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B 7 ) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B 7 components of C2 toxin and LT, C2IIa and PA 63 , respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA 63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA 63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA 63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA 63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.
Delivery of CdiA Nuclease Toxins into Target Cells during Contact-Dependent Growth Inhibition
Webb, Julia S.; Nikolakakis, Kiel C.; Willett, Julia L. E.; Aoki, Stephanie K.
2013-01-01
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell cytoplasm to interact with their substrates. To analyze CdiA transfer to target bacteria, we used the CDI system of uropathogenic Escherichia coli 536 (UPEC536) as a model. Antibodies recognizing the amino- and carboxyl-termini of CdiAUPEC536 were used to visualize transfer of CdiA from CDIUPEC536+ inhibitor cells to target cells using fluorescence microscopy. The results indicate that the entire CdiAUPEC536 protein is deposited onto the surface of target bacteria. CdiAUPEC536 transfer to bamA101 mutants is reduced, consistent with low expression of the CDI receptor BamA on these cells. Notably, our results indicate that the C-terminal CdiA-CT toxin region of CdiAUPEC536 is translocated into target cells, but the N-terminal region remains at the cell surface based on protease sensitivity. These results suggest that the CdiA-CT toxin domain is cleaved from CdiAUPEC536 prior to translocation. Delivery of a heterologous Dickeya dadantii CdiA-CT toxin, which has DNase activity, was also visualized. Following incubation with CDI+ inhibitor cells targets became anucleate, showing that the D.dadantii CdiA-CT was delivered intracellularly. Together, these results demonstrate that diverse CDI toxins are efficiently translocated across target cell envelopes. PMID:23469034
Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research
Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is
Xp11.2 Translocation Renal Cell Carcinoma Diagnosed by Immunohistochemistry and Cytogenetics
Dey, Biswajit; Badhe, Bhawana; Govindarajan, Krishna Kumar; Ramesh, Ranjith Arumbakkam
2016-01-01
Xp11.2 translocation renal cell carcinomas (TRCCs) are a group of neoplasms with distinct clinical, histopathological appearance, immunohistochemical, and cytogenetic profile. We report a case of Xp11.2 translocation TRCC in an 11-year-old male diagnosed based on immunohistochemistry and fluorescence in situ hybridization. PMID:27365924
Delayed reproduction of translocated red-cockaded woodpeckers
James R. McCormick; Richard N. Conner; Daniel Saenz; Brent Burt
2001-01-01
Twelve pairs of Red-cockaded Woodpeckers were translocated to the Angelina National Forest from 21 October 1998 to 17 December 1998. Five breeding pairs (consisting of at least one trnnslocated bird) produced eggs/nestlings within the first breeding season after translocation. Clutch initiation dates for all five pairs were later than those of resident breeders. The...
Vera Tomé, F; Blanco Rodríguez, P; Lozano, J C
2009-01-01
Seedlings of Helianthus annuus L. (HA) and Brassica juncea (BJ) were used to test the effect of the pH, the presence of phosphates, and the addition of ethylene-diamine-tetraacetic acid (EDTA) or citrate on the uptake and the translocation of uranium isotopes ((238)U, (235)U, and (234)U) and (226)Ra. The results indicated that the presence of phosphates generally reduces the uptake and transfer of uranium from the roots to the shoots of HA. In the case of BJ, while phosphate enhanced the retention of uranium by roots, the translocation was poorer. Likewise, for (226)Ra, the best translocation was in the absence of phosphates for both species. The addition of citrate increased the translocation of uranium for both species, but had no clear effect on the transfer of (226)Ra. The effect of EDTA was much more moderate both for uranium and for (226)Ra, and for both plant species. Only noticeable was a slightly better uptake of (226)Ra by BJ at neutral pH, although the translocation was lower.
Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises
Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa
2008-01-01
Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.
Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne
2012-01-01
Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689
Klatte, Tobias; Streubel, Berthold; Wrba, Friedrich; Remzi, Mesut; Krammer, Barbara; de Martino, Michela; Waldert, Matthias; Marberger, Michael; Susani, Martin; Haitel, Andrea
2012-05-01
We studied the characteristics and prognosis of renal cell carcinoma (RCC) associated with Xp11.2 translocation and transcription factor E3 (TFE3) expression and determined the need for genetic analysis in routine diagnostics. Of 848 consecutive cases, 75 showed microscopic features suggestive of Xp11.2 translocation RCC or occurred in patients 40 years or younger. Of these cases, 17 (23%) showed strong nuclear TFE3 immunostaining, which was associated with more advanced tumors and inverse prognosis in univariate (P = .032) but not multivariate (P = .404) analysis. With fluorescence in situ hybridization and polymerase chain reaction, only 2 cases showed alterations of the X chromosome and the ASPL-TFE3 gene fusion, respectively. In our laboratory, the predictive value of TFE3 expression for the Xp11.2 translocation was 12%. Strong nuclear TFE3 expression is associated with metastatic spread and a poor prognosis. In our laboratory, TFE3 is not diagnostic for Xp11.2 translocation RCC. Diagnosis of Xp11.2 translocation RCC may be made only genetically.
Melanosome transfer to and translocation in the keratinocyte.
Boissy, Raymond E
2003-01-01
Complexion coloration in humans is primarily regulated by the amount and type of melanin synthesized by the epidermal melanocyte. However, additional and equally contributing factors consist of (1) efficient transfer of melanin from the melanocytes to the neighboring keratinocytes and (2) distribution and degradation of the transferred melanosomes by the recipient keratinocytes. Once synthesized in the cell body of the epidermal melanocyte, pigmented melanosomes are translocated down the dendrites and captured at the dendritic tips via various cytoskeletal elements. Molecules recently identified that participate in this process consist of Rab27a, myosin-Va and melanophilin. Eventually, these peripherally localized melanosomes are transferred to keratinocytes by a presently undefined mechanism. The protease-activated receptor-2 (PAR-2) and unidentified surface lectins and glycoproteins facilitate this transfer process. Once incorporated into the keratinocytes, melanosomes are distributed individually or as clusters, aggregated towards the apical pole of the nucleus, and degraded as the keratinocytes undergo terminal differentiation and desquamation. Ultraviolet irradiation (UVR) can modulate the process of melanosome transfer from the melanocytes to the keratinocytes. UVR can upregulate expression of PAR-2 and lectin-binding receptors and increase phagocytic activity of cultured keratinocytes. Therefore, many cellular and molecular events that occur after melanogenesis contribute to skin color.
Bio-remediation of Pb and Cd polluted soils by switchgrass: A case study in India.
Arora, Kalpana; Sharma, Satyawati; Monti, Andrea
2016-01-01
In the present study bioremediation potential of a high biomass yielding grass, Panicum virgatum (switchgrass), along with plant associated microbes (AM fungi and Azospirillum), was tested against lead and cadmium in pot trials. A pot trial was set up in order to evaluate bioremediation efficiency of P. virgatum in association with PAMs (Plant Associated Microbes). Growth parameters and bioremediation potential of endomycorrhizal fungi (AMF) and Azospirillum against different concentrations of Pb and Cd were compared. AM fungi and Azospirillum increased the root length, branches, surface area, and root and shoot biomass. The soil pH was found towards neutral with AMF and Azospirillum inoculations. The bioconcentration factor (BCF) for Pb (12 mg kg(-1)) and Cd (10 mg kg(-1)) were found to be 0.25 and 0.23 respectively and translocation index (Ti) was 17.8 and 16.7 respectively (approx 45% higher than control). The lower values of BCF and Ti, even at highest concentration of Pb and Cd, revealed the capability of switchgrass of accumulating high concentration of Pb and Cd in the roots, while preventing the translocation of Pb and Cd to aerial biomass.
Johnson, Anthea; Singhal, Naresh
2015-01-01
The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA)), transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency. PMID:26512647
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Martinez, Cristina; Grueso, Esther; Carroll, Miles
The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaicmore » MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.« less
Feyt, Christine; Kienlen-Campard, Pascal; Leroy, Karelle; N'Kuli, Francisca; Courtoy, Pierre J; Brion, Jean-Pierre; Octave, Jean-Noël
2005-09-30
Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.
Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing.
Romanova, Tamara E; Shuvaeva, Olga V; Belchenko, Ludmila A
2016-01-01
The ability of water hyacinth (Eichhornia crassipes) to uptake Ag, Ba, Cd, Mo, and Pb from waters in gold mine tailing area was studied. All experiments were carried out in the field conditions without using of model system. Bioconcentration (BCF) and translocation factors (TF) as well as elements accumulation by plant in different points of tailings-impacted area were evaluated. It has been shown that water hyacinth demonstrates high ability to accumulate Mo, Pb, and Ba with BCF values 24,360 ± 3600, 18,800 ± 2800 and 10,040 ± 1400, respectively and is efficient in translocation of Mo and Cd. The general trend of the plant accumulation ability in relation to the studied elements corresponds to their concentration in the medium. As the distance from tailings increases, concentration of Ag, Ba and Pb in plant decreases more clearly than that of Cd, while the amount of Mo accumulated by plant doesn't drop significantly in accordance with its concentration in water. Under the conditions of the confluence of river Ur and drainage stream Ba and Ag can be considered as potential candidates for phytomining.
Luan, Mingda; Tang, Ren-Jie; Tang, Yumei; Tian, Wang; Hou, Congong; Zhao, Fugeng; Lan, Wenzhi; Luan, Sheng
2017-06-01
Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.
Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less
Assessing the benefits and risks of translocations in changing environments: a genetic perspective
Weeks, Andrew R; Sgro, Carla M; Young, Andrew G; Frankham, Richard; Mitchell, Nicki J; Miller, Kim A; Byrne, Margaret; Coates, David J; Eldridge, Mark D B; Sunnucks, Paul; Breed, Martin F; James, Elizabeth A; Hoffmann, Ary A
2011-01-01
Translocations are being increasingly proposed as a way of conserving biodiversity, particularly in the management of threatened and keystone species, with the aims of maintaining biodiversity and ecosystem function under the combined pressures of habitat fragmentation and climate change. Evolutionary genetic considerations should be an important part of translocation strategies, but there is often confusion about concepts and goals. Here, we provide a classification of translocations based on specific genetic goals for both threatened species and ecological restoration, separating targets based on ‘genetic rescue’ of current population fitness from those focused on maintaining adaptive potential. We then provide a framework for assessing the genetic benefits and risks associated with translocations and provide guidelines for managers focused on conserving biodiversity and evolutionary processes. Case studies are developed to illustrate the framework. PMID:22287981
Wells, David B; Bhattacharya, Swati; Carr, Rogan; Maffeo, Christopher; Ho, Anthony; Comer, Jeffrey; Aksimentiev, Aleksei
2012-01-01
Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA-ion interactions, and the ionic current through a nanopore.
Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation.
De Falco, Giulia; Ambrosio, Maria Raffaella; Fuligni, Fabio; Onnis, Anna; Bellan, Cristiana; Rocca, Bruno Jim; Navari, Mohsen; Etebari, Maryam; Mundo, Lucia; Gazaneo, Sara; Facchetti, Fabio; Pileri, Stefano A; Leoncini, Lorenzo; Piccaluga, Pier Paolo
2015-10-09
The oncogenic transcription factor MYC is pathologically activated in many human malignancies. A paradigm for MYC dysregulation is offered by Burkitt lymphoma, where chromosomal translocations leading to Immunoglobulin gene-MYC fusion are the crucial initiating oncogenic events. However, Burkitt lymphoma cases with no detectable MYC rearrangement but maintaining MYC expression have been identified and alternative mechanisms can be involved in MYC dysregulation in these cases. We studied the microRNA profile of MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases in order to uncover possible differences at the molecular level. Data was validated at the mRNA and protein level by quantitative Real-Time polymerase chain reaction and immunohistochemistry, respectively. We identified four microRNAs differentially expressed between the two groups. The impact of these microRNAs on the expression of selected genes was then investigated. Interestingly, in MYC translocation-negative cases we found over-expression of DNA-methyl transferase family members, consistent to hypo-expression of the hsa-miR-29 family. This finding suggests an alternative way for the activation of lymphomagenesis in these cases, based on global changes in methylation landscape, aberrant DNA hypermethylation, lack of epigenetic control on transcription of targeted genes, and increase of genomic instability. In addition, we observed an over-expression of another MYC family gene member, MYCN that may therefore represent a cooperating mechanism of MYC in driving the malignant transformation in those cases lacking an identifiable MYC translocation but expressing the gene at the mRNA and protein levels. Collectively, our results showed that MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases are slightly different in terms of microRNA and gene expression. MYC translocation-negative Burkitt lymphoma, similarly to other aggressive B-cell non Hodgkin's lymphomas, may represent a model to understand the intricate molecular pathway responsible for MYC dysregulation in cancer.
Production and identification of wheat - Agropyron cristatum (1.4P) alien translocation lines.
Liu, Wei-Hua; Luan, Yang; Wang, Jing-Chang; Wang, Xiao-Guang; Su, Jun-Ji; Zhang, Jin-Peng; Yang, Xin-Ming; Gao, Ai-Nong; Li, Li-Hui
2010-06-01
The P genome of Agropyron Gaertn., a wild relative of wheat, contains an abundance of desirable genes that can be utilized as genetic resources to improve wheat. In this study, wheat - Aegilops cylindrica Host gametocidal chromosome 2C addition lines were crossed with wheat - Agropyron cristatum (L.) Gaertn. disomic addition line accession II-21 with alien recombinant chromosome (1.4)P. We successfully induced wheat - A. cristatum alien chromosomal translocations for the first time. The frequency of translocation in the progeny was 3.75%, which was detected by molecular markers and genomic in situ hybridization (GISH). The translocation chromosomes were identified by dual-color GISH /fluorescence in situ hybridization (FISH). The P genomic DNA was used as probe to detect the (1.4)P chromosome fragment, and pHvG39, pAs1, or pSc119.2 repeated sequences were used as probes to identify wheat translocated chromosomes. The results showed that six types of translocations were identified in the three wheat - A. cristatum alien translocation lines, including the whole arm or terminal portion of a (1.4)P chromosome. The (1.4)P chromosome fragments were translocated to wheat chromosomes 1B, 2B, 5B, and 3D. The breakpoints were located at the centromeres of 1B and 2B, the pericentric locations of 5BS, and the terminals of 5BL and 3DS. In addition, we obtained 12 addition-deletion lines that contained alien A. cristatum chromosome (1.4)P in wheat background. All of these wheat - A. cristatum alien translocation lines and addition-deletion lines would be valuable for identifying A. cristatum chromosome (1.4)P-related genes and providing genetic resources and new germplasm accessions for the genetic improvement of wheat. The specific molecular markers of A. cristatum (1.4)P chromosome have been developed and used to track the (1.4)P chromatin.
Effects of age and sex ratios on offspring recruitment rates in translocated black rhinoceros.
Gedir, Jay V; Law, Peter R; du Preez, Pierre; Linklater, Wayne L
2018-06-01
Success of animal translocations depends on improving postrelease demographic rates toward establishment and subsequent growth of released populations. Short-term metrics for evaluating translocation success and its drivers, like postrelease survival and fecundity, are unlikely to represent longer-term outcomes. We used information theory to investigate 25 years of data on black rhinoceros (Diceros bicornis) translocations. We used the offspring recruitment rate (ORR) of translocated females-a metric integrating survival, fecundity, and offspring recruitment at sexual maturity-to detect determinants of success. Our unambiguously best model (AICω = 0.986) predicted that ORR increases with female age at release as a function of lower postrelease adult rhinoceros sex ratio (males:females). Delay of first postrelease reproduction and failure of some females to recruit any calves to sexual maturity most influenced the pattern of ORRs, and the leading causes of recruitment failure were postrelease female death (23% of all females) and failure to calve (24% of surviving females). We recommend translocating older females (≥6 years old) because they do not exhibit the reproductive delay and low ORRs of juveniles (<4 years old) or the higher rates of recruitment failure of juveniles and young adults (4-5.9 years old). Where translocation of juveniles is necessary, they should be released into female-biased populations, where they have higher ORRs. Our study offers the unique advantage of a long-term analysis across a large number of replicate populations-a science-by-management experiment as a proxy for a manipulative experiment, and a rare opportunity, particularly for a large, critically endangered taxon such as the black rhinoceros. Our findings differ from previous recommendations, reinforce the importance of long-term data sets and comprehensive metrics of translocation success, and suggest attention be shifted from ecological to social constraints on population growth and species recovery, particularly when translocating species with polygynous breeding systems. © 2017 Society for Conservation Biology.
Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization
Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro
2014-01-01
The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell. PMID:24599031
Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.
Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn
2016-01-01
The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.
Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells
Hornstein, Benjamin D.; Roman, Dany; Arévalo-Soliz, Lirio M.; Engevik, Melinda A.
2016-01-01
The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery. PMID:27918590
The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation
NASA Astrophysics Data System (ADS)
Alejo, Jose Luis
In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.
NASA Technical Reports Server (NTRS)
Hatton, Jason P.; Gaubert, Francois; Cazenave, Jean-Pierre; Schmitt, Didier; Hashemi, B. B. (Principal Investigator); Hughes-Fulford, M. (Principal Investigator)
2002-01-01
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.
Ezure, Toru; Nanatani, Kei; Sato, Yoko; Suzuki, Satomi; Aizawa, Keishi; Souma, Satoshi; Ito, Masaaki; Hohsaka, Takahiro; von Heijine, Gunnar; Utsumi, Toshihiko; Abe, Keietsu; Ando, Eiji; Uozumi, Nobuyuki
2014-01-01
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.
Clinicopathological features of Xp11.2 translocation renal cell carcinoma.
Lim, Bumjin; You, Dalsan; Jeong, In Gab; Kwon, Taekmin; Hong, Sungwoo; Song, Cheryn; Cho, Yong Mee; Hong, Bumsik; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung Soo
2015-03-01
Xp11.2 translocation renal cell carcinoma (RCC) is characterized by various translocations of the TFE3 transcription factor gene. These rare cancers occur predominantly in children and young adults. Here, we review the clinicopathological features of Xp11.2 translocation RCC. We identified 21 patients with Xp11.2 translocation RCC. We retrospectively analyzed patient characteristics, clinical manifestations, and specific pathological features to assess definitive diagnosis, surgical and systemic treatments, and clinical outcomes. The mean age at diagnosis was 43.4±20.0 years (range, 8-80 years; 8 males and 13 females). Eleven patients were incidentally diagnosed, nine patients presented with local symptoms, and one patient presented with systemic symptoms. The mean tumor size was 6.2±3.8 cm (range, 1.9-14 cm). At the time of diagnosis, 11, 1, and 5 patients showed stage I, II, and III, respectively. Four patients showed distant metastasis. At analysis, 15 patients were disease-free after a median follow-up period of 30.0 months. Four patients received target therapy but not effectively. Xp11 translocation RCC tends to develop in young patients with lymph node metastasis. Targeted therapy did not effectively treat our patients. Surgery is the only effective therapy for Xp11 translocation RCC, and further studies are needed to assess systemic therapy and long-term prognosis.
Clinicopathological features of Xp11.2 translocation renal cell carcinoma
Lim, Bumjin; You, Dalsan; Jeong, In Gab; Kwon, Taekmin; Hong, Sungwoo; Song, Cheryn; Cho, Yong Mee; Hong, Bumsik; Hong, Jun Hyuk; Ahn, Hanjong
2015-01-01
Purpose Xp11.2 translocation renal cell carcinoma (RCC) is characterized by various translocations of the TFE3 transcription factor gene. These rare cancers occur predominantly in children and young adults. Here, we review the clinicopathological features of Xp11.2 translocation RCC. Materials and Methods We identified 21 patients with Xp11.2 translocation RCC. We retrospectively analyzed patient characteristics, clinical manifestations, and specific pathological features to assess definitive diagnosis, surgical and systemic treatments, and clinical outcomes. Results The mean age at diagnosis was 43.4±20.0 years (range, 8-80 years; 8 males and 13 females). Eleven patients were incidentally diagnosed, nine patients presented with local symptoms, and one patient presented with systemic symptoms. The mean tumor size was 6.2±3.8 cm (range, 1.9-14 cm). At the time of diagnosis, 11, 1, and 5 patients showed stage I, II, and III, respectively. Four patients showed distant metastasis. At analysis, 15 patients were disease-free after a median follow-up period of 30.0 months. Four patients received target therapy but not effectively. Conclusions Xp11 translocation RCC tends to develop in young patients with lymph node metastasis. Targeted therapy did not effectively treat our patients. Surgery is the only effective therapy for Xp11 translocation RCC, and further studies are needed to assess systemic therapy and long-term prognosis. PMID:25763125
Cazaux, Benoîte; Catalan, Josette; Claude, Julien; Britton-Davidian, Janice
2014-01-01
The house mouse, Mus musculus domesticus, shows extraordinary chromosomal diversity driven by fixation of Robertsonian (Rb) translocations. The high frequency of this rearrangement, which involves the centromeric regions, has been ascribed to the architecture of the satellite sequence (high quantity and homogeneity). This promotes centromere-related translocations through unequal recombination and gene conversion. A characteristic feature of Rb variation in this subspecies is the non-random contribution of different chromosomes to the translocation frequency, which, in turn, depends on the chromosome size. Here, the association between satellite quantity and Rb frequency was tested by PRINS of the minor satellite which is the sequence involved in the translocation breakpoints. Five chromosomes with different translocation frequencies were selected and analyzed among wild house mice from 8 European localities. Using a relative quantitative measurement per chromosome, the analysis detected a large variability in signal size most of which was observed between individuals and/or localities. The chromosomes differed significantly in the quantity of the minor satellite, but these differences were not correlated with their translocation frequency. However, the data uncovered a marginally significant correlation between the quantity of the minor satellite and chromosome size. The implications of these results on the evolution of the chromosomal architecture in the house mouse are discussed. © 2014 S. Karger AG, Basel.
Uptake and translocation of imidacloprid, clothianidin and flupyradifurone in seed-treated soybeans.
Stamm, Mitchell D; Heng-Moss, Tiffany M; Baxendale, Frederick P; Siegfried, Blair D; Blankenship, Erin E; Nauen, Ralf
2016-06-01
Seed treatment insecticides have become a popular management option for early-season insect control. This study investigated the total uptake and translocation of seed-applied [(14) C]imidacloprid, [(14) C]clothianidin and [(14) C]flupyradifurone into different plant parts in three soybean vegetative stages (VC, V1 and V2). The effects of soil moisture stress on insecticide uptake and translocation were also assessed among treatments. We hypothesized that (1) uptake and translocation would be different among the insecticides owing to differences in water solubility, and (2) moisture stress would increase insecticide uptake and translocation. Uptake and translocation did not follow a clear trend in the three vegetative stages. Initially, flupyradifurone uptake was greater than clothianidin uptake in VC soybeans. In V1 soybeans, differences in uptake among the three insecticides were not apparent and unaffected by soil moisture stress. Clothianidin was negatively affected by soil moisture stress in V2 soybeans, while imidacloprid and flupyradifurone were unaffected. Specifically, soil moisture stress had a positive effect on the distribution of flupyradifurone in leaves. This was not observed with the neonicotinoids. This study enhances our understanding of the uptake and distribution of insecticides used as seed treatments in soybean. The uptake and translocation of these insecticides differed in response to soil moisture stress. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Lau, Julia B; Stork, Simone; Moog, Daniel; Sommer, Maik S; Maier, Uwe G
2015-05-01
Nuclear-encoded pre-proteins being imported into complex plastids of red algal origin have to cross up to five membranes. Thereby, transport across the second outermost or periplastidal membrane (PPM) is facilitated by SELMA (symbiont-specific ERAD-like machinery), an endoplasmic reticulum-associated degradation (ERAD)-derived machinery. Core components of SELMA are enzymes involved in ubiquitination (E1-E3), a Cdc48 ATPase complex and Derlin proteins. These components are present in all investigated organisms with four membrane-bound complex plastids of red algal origin, suggesting a ubiquitin-dependent translocation process of substrates mechanistically similar to the process of retro-translocation in ERAD. Even if, according to the current model, translocation via SELMA does not end up in the classical poly-ubiquitination, transient mono-/oligo-ubiquitination of pre-proteins might be required for the mechanism of translocation. We investigated the import mechanism of SELMA and were able to show that protein transport across the PPM depends on lysines in the N-terminal but not in the C-terminal part of pre-proteins. These lysines are predicted to be targets of ubiquitination during the translocation process. As proteins lacking the N-terminal lysines get stuck in the PPM, a 'frozen intermediate' of the translocation process could be envisioned and initially characterized. © 2015 John Wiley & Sons Ltd.
Translocation of Candida albicans is related to the blood flow of individual intestinal villi.
Gianotti, L; Alexander, J W; Fukushima, R; Childress, C P
1993-08-01
Splanchnic ischemia is associated with increased bacterial translocation, but previous observations showed that translocation of Candida albicans did not occur uniformly among individual intestinal villi. This study was performed to investigate the relationship between the degree of Candida translocation and the microcirculation of individual villi. Thiry-Vella intestinal loops were created in eight guinea pigs. One week later, the distal aorta and right carotid artery were cannulated, and systemic blood pressure was recorded throughout the entire experiment. C. albicans (1 x 10(10)) was introduced into the Thiry-Vella loop, and the animals underwent a 40% full-thickness burn. Systolic hypotension was observed in the first 75 minutes postburn; then the systemic blood pressure returned to a normal range. Four hours after burn, 8 x 10(7) microspheres (10 microns) were injected into the aorta. The animals were sacrificed, and the Thiry-Vella loops were harvested and processed for light microscopy. At the microscopic level, within each villus, both the number of beads trapped in the arterioles and the number of Candida translocated into the enterocytes were counted. An inverse linear correlation between number of beads and number of translocated yeast per individual villus was found (r = -0.78; P < 0.005). These data provide further evidence that blood flow is an important determinant of the magnitude of microbial translocation, even within individual villi.
Visually Tracking Translocations in Living Cells | Center for Cancer Research
Chromosomal translocations, the fusion of pieces of DNA from different chromosomes, are often observed in cancer cells and can even cause cancer. However, little is known about the dynamics and regulation of translocation formation. To investigate this critical process, Tom Misteli, Ph.D., in CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleague Vassilis
Factors that influence translocation success in the red-cockaded woodpecker
Kathleen E. Franzreb
1999-01-01
To restore a population that had declined to 4 individuals by late 1985, 54 red-cockaded woodpeckers (Picoides borealis) were translocated at the Savannah River Site in South Carolina between 1986 and 1995. Translocation success was evaluated by sex, age, and distance between the capture and release site. For moves involving females, the presence of...
Factors that Influence Translocation Succcess on the Red-Cockaded Woodpecker
Kathleen E. Franzreb
1999-01-01
To restore a population that had declined to 4 individuals by late 1985, 54 Red-cockaded Woodpeckers (Picoides borealis) were translocated at the Savannah River Site in South Carolina between 1986 and 1995. Translocation success was evaluated by sex, age, and distance between the capture and release site. For moves involving females, the presence of...
The effect of using a "soft" release on translocation success of red-cockaded woodpeckers
Kathleen E. Franzreb
2004-01-01
Translocations of the endangered red-cockaded woodpecker have been conducted since 1986 to enhance critically small subpopulations, to minimize the likelihood of local extirpations, and to reduce the adverse effects of fragmentation and isolation among existing populations. Such attempts have resulted in mixed success as many translocated birds either disappeared...
Tamura, A; Miura, I; Iida, S; Yokota, S; Horiike, S; Nishida, K; Fujii, H; Nakamura, S; Seto, M; Ueda, R; Taniwaki, M
2001-08-01
To detect immunoglobulin heavy chain (IGH) gene translocations with specific oncogene loci, we established an interphase cytogenetic approach using double-color fluorescence in situ hybridization (DC-FISH), which we used to analyze 173 patients with B-cell lymphoma. DC-FISH using the IGH gene (14q32.3) in combination with c-MYC (8q24.1), BCL1 (11q13.3), BCL2 (18q21.3), BCL6 (3q27), and PAX-5 (9p13) gene probes detected IGH translocations in 70 (40.5%) of 173 patients. The partner genes involved in IGH translocations were identified in 56 (80%) of 70 patients, and fusion of the IGH gene with specific oncogenes was detected in 53 of 56 patients, particularly in interphase nuclei of 28 patients for whom cytogenetic analysis was not informative. The most common partner gene was BCL2 (19 patients; 27% of IGH translocation-positive patients), followed by BCL6 (16; 23%), BCL1 (11; 16%), c-MYC (7; 10%), and PAX-5 (2; 3%). These oncogenes were closely associated with subtypes of B-cell lymphoma. The other partners were 19q13 (BCL3), 6p25 (MUM1/IRF4), 1q36, and chromosome 8 identified in one patient each. Six of the nine patients with add(14)(q32) showed a BCL6/IGH translocation. Double translocations of the IGH gene were found in three patients; c-MYC+BCL1, c-MYC+BCL2, and c-MYC+BCL6 in each one. Interphase FISH using specific IGH-translocation probes is valuable for defining clinically meaningful subgroups of B-cell lymphoma.
Xia, Qiu-Yuan; Wang, Xiao-Tong; Ye, Sheng-Bing; Wang, Xuan; Li, Rui; Shi, Shan-Shan; Fang, Ru; Zhang, Ru-Song; Ma, Heng-Hui; Lu, Zhen-Feng; Shen, Qin; Bao, Wei; Zhou, Xiao-Jun; Rao, Qiu
2018-04-01
MITF, TFE3, TFEB and TFEC belong to the same microphthalmia-associated transcription factor family (MiT). Two transcription factors in this family have been identified in two unusual types of renal cell carcinoma (RCC): Xp11 translocation RCC harbouring TFE3 gene fusions and t(6;11) RCC harbouring a MALAT1-TFEB gene fusion. The 2016 World Health Organisation classification of renal neoplasia grouped these two neoplasms together under the category of MiT family translocation RCC. RCCs associated with the other two MiT family members, MITF and TFEC, have rarely been reported. Herein, we identify a case of MITF translocation RCC with the novel PRCC-MITF gene fusion by RNA sequencing. Histological examination of the present tumour showed typical features of MiT family translocation RCCs, overlapping with Xp11 translocation RCC and t(6;11) RCC. However, this tumour showed negative results in TFE3 and TFEB immunochemistry and split fluorescence in-situ hybridisation (FISH) assays. The other MiT family members, MITF and TFEC, were tested further immunochemically and also showed negative results. RNA sequencing and reverse transcription-polymerase chain reaction confirmed the presence of a PRCC-MITF gene fusion: a fusion of PRCC exon 5 to MITF exon 4. We then developed FISH assays covering MITF break-apart probes and PRCC-MITF fusion probes to detect the MITF gene rearrangement. This study both proves the recurring existence of MITF translocation RCC and expands the genotype spectrum of MiT family translocation RCCs. © 2017 John Wiley & Sons Ltd.
Meyer, Damien; Cunnac, Sébastien; Guéneron, Mareva; Declercq, Céline; Van Gijsegem, Frédérique; Lauber, Emmanuelle; Boucher, Christian; Arlat, Matthieu
2006-01-01
Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similarities with TTSS translocators of the YopB family from animal-pathogenic bacteria. Both popF1 and popF2 belong to the HrpB regulon and are required for the interaction with plants, but PopF1 seems to play a more important role in virulence and hypersensitive response (HR) elicitation than PopF2 under our experimental conditions. PopF1 and PopF2 are not necessary for the secretion of effector proteins, but they are required for the translocation of AvrA avirulence protein into tobacco cells. We conclude that PopF1 and PopF2 are type III translocators belonging to the HrpF/NopX family. The hrpF gene of Xanthomonas campestris pv. campestris partially restored HR-inducing ability to popF1 popF2 mutants of R. solanacearum, suggesting that translocators of R. solanacearum and Xanthomonas are functionally conserved. Finally, R. solanacearum strain UW551, which does not belong to the same phylotype as GMI1000, also possesses two putative translocator proteins. However, although one of these proteins is clearly related to PopF1 and PopF2, the other seems to be different and related to NopX proteins, thus showing that translocators might be variable in R. solanacearum. PMID:16788199
Moisio, J E; Piili, J; Linna, R P
2016-08-01
We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.
Trinkel, Martina; Cooper, Dave; Packer, Craig; Slotow, Rob
2011-07-01
Disease can dramatically influence the dynamics of endangered wildlife populations, especially when they are small and isolated, with increased risk of inbreeding. In Hluhluwe-iMfolozi Park (HiP), a small, enclosed reserve in South Africa, a large lion (Panthera leo) population arose from a small founder group in the 1960s and started showing conspicuous signs of inbreeding. To restore the health status of the HiP lion population, outbred lions were translocated into the existing population. In this study, we determined the susceptibility to bovine tuberculosis (bTB), and the prevalence of antibody to feline viruses of native lions, and compared the findings with those from translocated outbred lions and their offspring. Antibodies to feline herpesvirus, feline calicivirus, feline parvovirus, and feline coronavirus were present in the lion population, but there was no significant difference in antibody prevalence between native and translocated lions and their offspring, and these feline viruses did not appear to have an effect on the clinical health of HiP lions. However, feline immunodeficiency virus (FIV), which was previously absent from HiP, appears to have been introduced into the lion population through translocation. Within 7 yr, the prevalence of antibody to FIV increased up to 42%. Bovine tuberculosis posed a major threat to the inbred native lion population, but not to translocated lions and their offspring. More than 30% of the native lion population died from bTB or malnutrition compared with <2% of the translocated lions and their offspring. We have demonstrated that management of population genetics through supplementation can successfully combat a disease that threatens population persistence. However, great care must be taken not to introduce new diseases into populations through translocation.
Ishida, Hisashi; Matsumoto, Atsushi
2014-01-01
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999
Ferfouri, Fatma; Selva, Jacqueline; Boitrelle, Florence; Gomes, Denise Molina; Torre, Antoine; Albert, Martine; Bailly, Marc; Clement, Patrice; Vialard, François
2011-12-01
To study the chromosomal risk in sperm from Robertsonian translocation (RobT) carriers as a function of the sperm count and translocation type. Prospective study. Departments of reproductive biology, cytogenetics, gynecology, and obstetrics. A total of 29 RobT patients (8 normozoospermic and 21 oligozoospermic) and 20 46,XY patients (10 normozoospermic and 10 oligozoospermic). Sperm fluorescence in situ hybridization with probes for translocation malsegregation and chromosome 13, 18, 21, X, and Y probes for studying the interchromosomal effect (ICE). Translocation malsegregation and ICE aneuploidy rates. In RobT carriers, the sperm translocation malsegregation rate was significantly lower in normozoospermic patients (9.7%) than in oligozoospermic patients (18.0%). Considering only oligozoospermic patients, sperm malsegregation rates were significantly lower for rob(14;21) than for rob(13;14) (11.4% vs. 18.9%). In turn, the rates were significantly lower for rob(13;14) than for rare RobTs (18.9% vs. 25.3%). In sperm from normozoospermic RobT, an ICE was suggested by higher chromosome 13 and 21 aneuploidy rates than in control sperm. Conversely, chromosome 13 and 21 sperm aneuploidy rates were lower in oligozoospermic RobT patients than in oligozoospermic 46,XY patients, but higher than in control subjects. Both translocation type and sperm count influence the RobT malsegregation risk. Of the chromosomes analyzed (13, 18, 21, X, and Y), only chromosomes 13 and 21 were found to be associated with an ICE. Relative to the RobT effect, idiopathic alterations in spermatogenesis in 46,XY patients appear to be more harmful for meiosis. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Li, Guohui; Pan, Junfeng; Cui, Kehui; Yuan, Musong; Hu, Qiuqian; Wang, Wencheng; Mohapatra, Pravat K.; Nie, Lixiao; Huang, Jianliang; Peng, Shaobing
2017-01-01
Remobilisation of non-structural carbohydrates (NSC) from leaves and stems and unloading into developing grains are essential for yield formation of rice. In present study, three recombinant inbred lines of rice, R91, R156 and R201 have been tested for source-flow-sink related attributes determining the nature of NSC accumulation and translocation at two nitrogen levels in the field. Compared to R91 and R156, R201 had lower grain filling percentage, harvest index, and grain yield. Meanwhile, R201 had significantly lower stem NSC translocation during grain filling stage. Grain filling percentage, harvest index, and grain yield showed the consistent trend with stem NSC translocation among the three lines. In comparison with R91 and R156, R201 had similarity in leaf area index, specific leaf weight, stem NSC concentration at heading, biomass, panicles m-2, spikelets per panicle, remobilization capability of assimilation in stems, sink capacity, sink activity, number and cross sectional area of small vascular bundles, greater number and cross sectional area of large vascular bundles, and higher SPAD, suggesting that source, flow, and sink were not the limiting factors for low stem NSC translocation and grain filling percentage of R201. However, R201 had significant higher stem and rachis NSC concentrations at maturity, which implied that unloading in the developing grains might result in low NSC translocation in R201. The results indicate that stem NSC translocation could be beneficial for enhancement of grain yield potential, and poor unloading into caryopsis may be the possible cause of low stem NSC translocation, poor grain filling and yield formation in R201. PMID:28848573
The effect of S100A6 on nuclear translocation of CacyBP/SIP in colon cancer cells
Yang, Bo; Li, Qianqian; Liu, Aiqin; Zhao, Yingying; Qiu, Changqing; Ge, Jun
2018-01-01
Background Calcyclin Binding Protein/(Siah-1 interacting protein) (CacyBP/SIP) acts as an oncogene in colorectal cancer. The nuclear accumulation of CacyBP/SIP has been linked to the proliferation of cancer cells. It has been reported that intracellular Ca2+ induces the nuclear translocation of CacyBP/SIP. However, the molecular mechanism of CacyBP/SIP nuclear translocation has yet to be elucidated. The purpose of this study was to test whether the Ca2+-dependent binding partner S100 protein is involved in CacyBP/SIP nuclear translocation in colon cancer SW480 cells. Methods The subcellular localization of endogenous CacyBP/SIP was observed following the stimulation of ionomycin or BAPTA/AM by immunofluorescence staining in SW480 cells. S100A6 small interfering RNAs (siRNA) were transfected into SW480 cells. Immunoprecipitation assays detected whether S100 protein is relevant to the nuclear translocation of CacyBP/SIP in response to changes in [Ca2+]i. Results We observed that endogenous CacyBP/SIP is translocated from the cytosol to the nucleus following the elevation of [Ca2+]i by ionomycin in SW480 cells. Co-immunoprecipitation experiments showed that the interaction between S100A6 and CacyBP/SIP was increased simultaneously with elevated Ca2+. Knockdown of S100A6 abolished the Ca2+ effect on the subcellular translocation of CacyBP/SIP. Conclusion Thus, we demonstrated that S100A6 is required for the Ca2+-dependent nuclear translocation of CacyBP/SIP in colon cancer SW480 cells. PMID:29534068
Ishida, Hisashi; Matsumoto, Atsushi
2014-01-01
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.
Jackson, R J; Smith, S D; Wadowsky, R M; DePudyt, L; Rowe, M I
1991-04-01
In the surgical neonate, three factors that promote bacterial translocation and systemic infection are: (1) intestinal bacterial colonization and overgrowth; (2) compromised host defenses; and (3) disruption of the mucosal epithelial barrier. The newborn rabbit provides an excellent model to study these factors. Like the human, there is early closure of the gut mucosa to macromolecules, and nutrition can be maintained by breast or formula feeding. This study examines translocation and systemic sepsis after colonization with virulent K1 and avirulent K100 strains of Escherichia coli. New Zealand white rabbit pups (2 to 5 days old) were studied. The gastrointestinal tracts of 12 were colonized with K1 E coli; 14 were colonized with K100 E coli; 12 control animals were not inoculated. Mesenteric lymph node (MLN), liver, spleen, and colon homogenate were cultured 72 hours postinoculation. No bacteria were isolated from the colons of all but one control animal. Translocation or systemic sepsis did not occur. Translocation to the MLN was significantly increased (P less than .03) in K1 (50%) and K100 (36%) groups compared with controls (0%). Translocation to liver and spleen (systemic sepsis) was significantly increased (P less than .03) in K1 animals (67%) compared with K100 (0%) or controls (0%). Colonization by both strains of E coli led to translocation to the MLN, but only K1 E coli caused systemic sepsis. This suggests that although colonization by E coli in the newborn leads to translocation to the MLN, progression to systemic sepsis is the result of characteristics of the bacteria and/or neonatal host responses.
Puckett, Emily E.; Kristensen, Thea V.; Wilton, Clay M.; Lyda, Sara B.; Noyce, Karen V.; Holahan, Paula M.; Leslie,, David M.; Beringer, J.; Belant, Jerrold L.; White, D.; Eggert, L.S.
2014-01-01
Bottlenecks, founder events, and genetic drift often result in decreased genetic diversity and increased population differentiation. These events may follow abundance declines due to natural or anthropogenic perturbations, where translocations may be an effective conservation strategy to increase population size. American black bears (Ursus americanus) were nearly extirpated from the Central Interior Highlands, USA by 1920. In an effort to restore bears, 254 individuals were translocated from Minnesota, USA, and Manitoba, Canada, into the Ouachita and Ozark Mountains from 1958 to 1968. Using 15 microsatellites and mitochondrial haplotypes, we observed contemporary genetic diversity and differentiation between the source and supplemented populations. We inferred four genetic clusters: Source, Ouachitas, Ozarks, and a cluster in Missouri where no individuals were translocated. Coalescent models using approximate Bayesian computation identified an admixture model as having the highest posterior probability (0.942) over models where the translocation was unsuccessful or acted as a founder event. Nuclear genetic diversity was highest in the source (AR = 9.11) and significantly lower in the translocated populations (AR = 7.07-7.34; P = 0.004). The Missouri cluster had the lowest genetic diversity (AR = 5.48) and served as a natural experiment showing the utility of translocations to increase genetic diversity following demographic bottlenecks. Differentiation was greater between the two admixed populations than either compared to the source, suggesting that genetic drift acted strongly over the eight generations since the translocation. The Ouachitas and Missouri were previously hypothesized to be remnant lineages. We observed a pretranslocation remnant signature in Missouri but not in the Ouachitas.
Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR.
Russell, R R; Bergeron, R; Shulman, G I; Young, L H
1999-08-01
Insulin increases glucose uptake through the translocation of GLUT-4 via a pathway mediated by phosphatidylinositol 3-kinase (PI3K). In contrast, myocardial glucose uptake during ischemia and hypoxia is stimulated by the translocation of GLUT-4 to the surface of cardiac myocytes through a PI3K-independent pathway that has not been characterized. AMP-activated protein kinase (AMPK) activity is also increased by myocardial ischemia, and we examined whether AMPK stimulates glucose uptake and GLUT-4 translocation. In isolated rat ventricular papillary muscles, 5-aminoimidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, as well as cyanide-induced chemical hypoxia and insulin, increased 2-[(3)H]deoxyglucose uptake two- to threefold. Wortmannin, a PI3K inhibitor, did not affect either the AICAR- or the cyanide-stimulated increase in deoxyglucose uptake but eliminated the insulin-stimulated increase in deoxyglucose uptake. Immunofluorescence studies demonstrated translocation of GLUT-4 to the myocyte sarcolemma in response to stimulation with AICAR, cyanide, or insulin. Preincubation of papillary muscles with the kinase inhibitor iodotubercidin or adenine 9-beta-D-arabinofuranoside (araA), a precursor of araATP (a competitive inhibitor of AMPK), decreased AICAR- and cyanide-stimulated glucose uptake but did not affect basal or insulin-stimulated glucose uptake. In vivo infusion of AICAR caused myocardial AMPK activation and GLUT-4 translocation in the rat. We conclude that AMPK activation increases cardiac muscle glucose uptake through translocation of GLUT-4 via a pathway that is independent of PI3K. These findings suggest that AMPK activation may be important in ischemia-induced translocation of GLUT-4 in the heart.
NASA Astrophysics Data System (ADS)
Edmonds, Christopher M.; Hesketh, Peter J.; Nair, Sankar
2013-11-01
We present a Brownian dynamics investigation of 3-D Rouse and Zimm polymer translocation through solid-state nanopores. We obtain different scaling exponents α for both polymers using two initial configurations: minimum energy, and 'steady-state'. For forced translocation, Rouse polymers (no hydrodynamic interactions), shows a large dependence of α on initial configuration and voltage. Higher voltages result in crowding at the nanopore exit and reduced α. When the radius of gyration is in equilibrium at the beginning and end of translocation, α = 1 + υ where υ is the Flory exponent. For Zimm polymers (including hydrodynamic interactions), crowding is reduced and α = 2υ. Increased pore diameter does not affect α at moderate voltages that reduce diffusion effects. For unforced translocation using narrow pores, both polymers give α = 1 + 2υ. Due to increased polymer-pore interactions in the narrow pore, hydrodynamic drag effects are reduced, resulting in identical scaling.
Kato, Hiroki; Kanematsu, Masayuki; Yokoi, Shigeaki; Miwa, Kousei; Horie, Kengo; Deguchi, Takashi; Hirose, Yoshinobu
2011-01-01
The authors describe the computed tomography (CT) and magnetic resonance imaging (MRI) findings of an 18-year-old man with renal cell carcinoma (RCC) associated with the Xp11.2 translocation/transcription factor E3 (TFE3) gene fusion (Xp11 translocation carcinoma). The lesion was hyperdense on unenhanced CT, hypovascular on contrast-enhanced studies, hypointense on T2-weighted MR images, and hemosiderin deposition was suspected on phase-shift gradient-echo MR images. Histopathological specimens revealed pathological findings resembling papillary RCC predominantly and exhibited immunoreactivity for TFE3. Because there is often considerable morphological overlap between this carcinoma and papillary RCC, the imaging findings of Xp11 translocation carcinoma may be similar to those of the papillary subtype. Therefore, Xp11 translocation carcinoma should be considered, particularly in young patients when radiologic images demonstrate a renal tumor mimicking the papillary subtype. Copyright © 2010 Wiley-Liss, Inc.
A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase.
Levin, Mikhail K; Gurjar, Madhura; Patel, Smita S
2005-05-01
Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.
Bousquet, Marina; Quelen, Cathy; Rosati, Roberto; Mansat-De Mas, Véronique; La Starza, Roberta; Bastard, Christian; Lippert, Eric; Talmant, Pascaline; Lafage-Pochitaloff, Marina; Leroux, Dominique; Gervais, Carine; Viguié, Franck; Lai, Jean-Luc; Terre, Christine; Beverlo, Berna; Sambani, Costantina; Hagemeijer, Anne; Marynen, Peter; Delsol, Georges; Dastugue, Nicole; Mecucci, Cristina; Brousset, Pierre
2008-10-27
Most chromosomal translocations in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) involve oncogenes that are either up-regulated or form part of new chimeric genes. The t(2;11)(p21;q23) translocation has been cloned in 19 cases of MDS and AML. In addition to this, we have shown that this translocation is associated with a strong up-regulation of miR-125b (from 6- to 90-fold). In vitro experiments revealed that miR-125b was able to interfere with primary human CD34(+) cell differentiation, and also inhibited terminal (monocytic and granulocytic) differentiation in HL60 and NB4 leukemic cell lines. Therefore, miR-125b up-regulation may represent a new mechanism of myeloid cell transformation, and myeloid neoplasms carrying the t(2;11) translocation define a new clinicopathological entity.
Xp11.2 translocation tumor: a rare cause of gross hematuria.
Asaki, Howard E; Moshero, Gianni; Stanton, Melissa L; Humphreys, Mitchell R
2014-02-01
Xp11.2 translocation tumor is a rare but aggressive form of renal cell carcinoma that predominantly occurs in children but also may be found in young adults. Because this type of cancer is diagnosed via histologic and chromosomal analysis, clinicians should consider translocation tumor in the differential diagnosis of patients with renal lesions and gross hematuria.
High-speed detection of DNA translocation in nanopipettes.
Fraccari, Raquel L; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim
2016-04-14
We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.
Fluorescence In Situ Hybridization–Based Karyotyping of Soybean Translocation Lines
Findley, Seth D.; Pappas, Allison L.; Cui, Yaya; Birchler, James A.; Palmer, Reid G.; Stacey, Gary
2011-01-01
Soybean (Glycine max [L.] Merr.) is a major crop species and, therefore, a major target of genomic and genetic research. However, in contrast to other plant species, relatively few chromosomal aberrations have been identified and characterized in soybean. This is due in part to the difficulty of cytogenetic analysis of its small, morphologically homogeneous chromosomes. The recent development of a fluorescence in situ hybridization –based karyotyping system for soybean has enabled our characterization of most of the chromosomal translocation lines identified to date. Utilizing genetic data from existing translocation studies in soybean, we identified the chromosomes and approximate breakpoints involved in five translocation lines. PMID:22384324
Ribosomal Translocation: One Step Closer to the Molecular Mechanism
Shoji, Shinichiro; Walker, Sarah E.; Fredrick, Kurt
2010-01-01
Protein synthesis occurs in ribosomes, the targets of numerous antibiotics. How these large and complex machines read and move along mRNA have proven to be challenging questions. In this Review, we focus on translocation, the last step of the elongation cycle in which movement of tRNA and mRNA is catalyzed by elongation factor G. Translocation entails large-scale movements of the tRNAs and conformational changes in the ribosome that require numerous tertiary contacts to be disrupted and reformed. We highlight recent progress toward elucidating the molecular basis of translocation and how various antibiotics influence tRNA–mRNA movement. PMID:19173642
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Hui; Yang, Jinfeng; Xing, Wenjing
2016-02-05
Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered bymore » EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. - Highlights: • Nuclear translocation of EGFRvIII contributes to GBM cell apoptotic resistance by hypoxia. • Nuclear ERK1/2 facilitates EGFRvIII in hypoxia resistance. • EGFRvIII nuclear translocation is not dependent on ERK1/2.« less
Cox, B D; Lyon, M F
1975-07-01
Translocations induced by X-rays in post-meiotic germ cells of male guinea-pigs, golden hamsters and rabbits were studied cytologically in the F1 sons of the irradiated males. The percentage of spermatocytes displaying multivalent configurations varied with the translocation, but the average percentage appeared to depend on the species: fewer quadrivalents were observed in hamster than in guinea-pig heterozygotes and most were recorded for rabbit heterozygotes. Chain quadrivalents were more abundant than ring quadrivalents at meiosis for the guinea-pig and hamster, in contrast to the mouse. Too few translocation heterozygotes were examined to determine which meiotic configuration was the more prevalent in the rabbit. In all three species, as in the mouse, translocations were found which caused male sterility, due to partial or complete failure of spermatogenesis, although most translocations caused semi-sterility. For these semi-sterile males both the frequency and time of embryonic death in the progeny appeared to be the same as in the mouse. It is concluded that similar types of chromosome aberrations are induced by X-rays in post-meiotic germ cells of male guinea-pigs, rabbits, golden hamsters and mice.
The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation.
Ninio, Shira; Zuckman-Cholon, Deborah M; Cambronne, Eric D; Roy, Craig R
2005-02-01
The intracellular pathogen Legionella pneumophila can infect and replicate within macrophages of a human host. To establish infection, Legionella require the Dot/Icm secretion system to inject protein substrates directly into the host cell cytoplasm. The mechanism by which substrate proteins are engaged and translocated by the Dot/Icm system is not well understood. Here we show that two cytosolic components of the Dot/Icm secretion machinery, the proteins IcmS and IcmW, play an important role in substrate translocation. Biochemical analysis indicates that IcmS and IcmW form a stable protein complex. In Legionella, the IcmW protein is rapidly degraded in the absence of the IcmS protein. Substrate proteins translocated into mammalian host cells by the Dot/Icm system were identified using the IcmW protein as bait in a yeast two-hybrid screen. It was determined that the IcmS-IcmW complex interacts with these substrates and plays an important role in translocation of these proteins into mammalian cells. These data are consistent with the IcmS-IcmW complex being involved in the recognition and Dot/Icm-dependent translocation of substrate proteins during Legionella infection of host cells.
Lethal factor unfolding is the most force-dependent step of anthrax toxin translocation
Thoren, Katie L.; Worden, Evan J.; Yassif, Jaime M.; Krantz, Bryan A.
2009-01-01
Cellular compartmentalization requires machinery capable of translocating polypeptides across membranes. In many cases, transported proteins must first be unfolded by means of the proton motive force and/or ATP hydrolysis. Anthrax toxin, which is composed of a channel-forming protein and two substrate proteins, is an attractive model system to study translocation-coupled unfolding, because the applied driving force can be externally controlled and translocation can be monitored directly by using electrophysiology. By controlling the driving force and introducing destabilizing point mutations in the substrate, we identified the barriers in the transport pathway, determined which barrier corresponds to protein unfolding, and mapped how the substrate protein unfolds during translocation. In contrast to previous studies, we find that the protein's structure next to the signal tag is not rate-limiting to unfolding. Instead, a more extensive part of the structure, the amino-terminal β-sheet subdomain, must disassemble to cross the unfolding barrier. We also find that unfolding is catalyzed by the channel's phenylalanine-clamp active site. We propose a broad molecular mechanism for translocation-coupled unfolding, which is applicable to both soluble and membrane-embedded unfolding machines. PMID:19926859
Theory of Passive Polymer Translocation Through Amphiphilic Membranes
NASA Astrophysics Data System (ADS)
Werner, Marco; Bathmann, Jasper; Baulin, Vladimir; Sommer, Jens-Uwe; ITN-SNAL''Smart Nano-ObjectsAlteration of Lipid-Bilayers''Team
We propose a theoretical framework for examining the translocation of flexible polymers through amphiphilic membranes: A generic model for monomer-membrane interactions is formulated and the Edwards equation is employed for calculating the free energy landscape of a polymer in a membrane environment. By the example of homopolymers it is demonstrated that polymer adsorption and the symmetry of conformations with respect to the membrane's mid-plane trigger passive polymer translocation in a narrow window of polymer hydrophobicity. We demonstrate that globular conformations can be taken into account by means of a screening of the external potential, which leads to excellent agreement of predicted translocation times with dynamic lattice Monte Carlo (MC) simulations. The work opens a theoretical road-map on how to design translocating flexible polymers by referring to universal phenomena only: adsorption and conformational symmetry. As confirmed by MC simulations on amphiphilic polymers, promising candidates of translocating polymers in practice are short-block amphiphilic copolymers, which in the limit of small block sizes resemble homopolymers on a coarse grained level. We gratefully thank the European Union's funding of the Initial Training Network SNAL (Grant agreement no. 608184) under the 7th Framework Programme.
Long-distance translocations to create a second millerbird population and reduce extinction risk
Holly Freifeld,; Sheldon Plentovich,; Chris Farmer,; Charles Kohley,; Peter Luscomb,; Work, Thierry M.; Daniel Tsukayama,; George Wallace,; Mark MacDonald,; Sheila Conant,
2016-01-01
Translocation is a conservation tool used with increasing frequency to create additional populations of threatened species. In addition to following established general guidelines for translocations, detailed planning to account for unique circumstances and intensive post-release monitoring to document outcomes and guide management are essential components of these projects. Recent translocation of the critically endangered Nihoa millerbird (Acrocephalus familiaris kingi) provides an example of this planning and monitoring. The Nihoa millerbird is a passerine bird endemic to Nihoa Island in the remote Northwestern Hawaiian Islands. The closely related, ecologically similar Laysan millerbird (Acrocephalus familiaris familiaris) went extinct on Laysan Island in the early 20th century when the island was denuded by introduced rabbits. To reduce extinction risk, we translocated 50 adult Nihoa millerbirds more than 1000 km by sea to Laysan, which has recovered substantially in the past century and has ample habitat and a rich prey-base for millerbirds. Following five years of intensive background research and planning, including development of husbandry techniques, fundraising, and regulatory compliance, translocations occurred in 2011 and 2012. Of 11 females in each cohort, 8 (2011 cohort) and 11 (2012 cohort) produced at least one brood of fledglings during their first year on Laysan. At the conclusion of monitoring in September 2014, 37 of the translocated birds were known to survive, and the population was estimated at 164 birds. The reintroduction of millerbirds to Laysan represents a milestone in the island's ongoing restoration.
Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.
Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng
2011-01-01
NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, A.K.; Schlessinger, D.; Kere, J.
1994-09-01
The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosomemore » from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.« less
Dermatoglyphs in carriers of a balanced 15;21 translocation.
Rodewald, A; Zankl, M; Zankl, H; Zang, K D
1980-08-01
Cytogenetic and dermatoglyphic features were studied in a large family with an inherited 15;21 translocation. Of 35 healthy members of the family, 21 carried the translocation chromosome and 14 were chromosomally normal. There were six members with Down's syndrome who had the translocation. Dermatoglyphic studies showed that carriers of this balanced translocation had the following peculiarities significantly more often than the general population. On the hands, they had ulnar loops on the fingertips, symmetrical high terminations of the A line, symmetrical ulnar loops on the hypothenar areas, distal loops in the 3rd interdigital areas, open fields in the 4th interdigital areas, axial triradii in the distal position, and single transverse palmar creases (Sydney lines). On the feet, they had small distal loops on the hallucal area and distal loops in the 4th interdigital areas. The translocation carriers also had significantly more often than non-carrier relatives symmetrical high terminations of the A line, open fields in the 4th interdigital areas, distal axial triradii, and Sydney lines. On the feet, they had small distal loops on the hallucal areas, distal loops in the 4th interdigital areas, and tibial loops on the proximal hypothenar areas. The data obtained from this study, and especially the values of the Walker and general indices, indicate that some of the dermatoglyphic stigmata of Down's syndrome are directly associated with the 15;21 translocation carrier state and can therefore be used for predicting that state.
Wu, Bao-Qiang; Jiang, Yong; Zhu, Feng; Sun, Dong-Lin
2017-01-01
Background and Aim: Long noncoding RNA-plasmacytoma variant translocation 1 is identified to be highly expressed and exhibits oncogenic activity in a variety of human malignancies, including pancreatic cancer. However, little is known about the overall biological role and mechanism of plasmacytoma variant translocation 1 in pancreatic cancer so far. In this study, we investigated the effect of plasmacytoma variant translocation 1 on pancreatic cancer cell proliferation and migration as well as epithelial–mesenchymal transition. Methods: Pancreatic cancer tissue specimens and cell line were used in this study, with normal tissue and cell line acting as control. Results: It showed that plasmacytoma variant translocation 1 expression was significantly upregulated in pancreatic cancer tissues or cell line compared to normal groups. Plasmacytoma variant translocation 1 downregulation significantly inhibited zinc finger E-box-binding protein 1/Snail expression but promoted p21 expression, and it also inhibited the cell proliferation and migration. Additionally, p21 downregulation enhanced, and p21 overexpression repressed, zinc finger E-box-binding protein 1/Snail expression and cells proliferation in PANC-1 cells. However, p21 downregulation reversed the effect of plasmacytoma variant translocation 1 downregulation on zinc finger E-box-binding protein 1/Snail expression and cell proliferation and migration. Conclusion: Plasmacytoma variant translocation 1 promoted epithelial–mesenchymal transition and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. PMID:28355965