Improvements in the efficiency of turboexpanders in cryogenic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Lin, M.C.; Ershaghi, B.
1996-12-31
Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.
Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam
2015-01-01
The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.
Benefits of Efficient Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup
2009-01-01
For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.
NASA Astrophysics Data System (ADS)
Pasetti Monizza, G.; Matt, D. T.; Benedetti, C.
2016-11-01
According to Wortmann classification, the Building Industry (BI) can be defined as engineer-to-order (ETO) industry: the engineering-process starts only when an order is acquired. This definition implies that every final product (building) is almost unique’ and processes cannot be easily standardized or automated. Because of this, BI is one of the less efficient industries today’ mostly leaded by craftsmanship. In the last years’ several improvements in process efficiency have been made focusing on manufacturing and installation processes only. In order to improve the efficiency of design and engineering processes as well, the scientific community agrees that the most fruitful strategy should be Front-End Design (FED). Nevertheless, effective techniques and tools are missing. This paper discusses outcomes of a research activity that aims at highlighting whether Parametric and Generative Design techniques allow reducing wastes of resources and improving the overall efficiency of the BI, by pushing the Digitalization of design and engineering processes of products. Focusing on the Glued-Laminated-Timber industry, authors will show how Parametric and Generative Design techniques can be introduced in a standard supply-chain system, highlighting potentials and criticism on the supply-chain system as a whole.
Process-based organization design and hospital efficiency.
Vera, Antonio; Kuntz, Ludwig
2007-01-01
The central idea of process-based organization design is that organizing a firm around core business processes leads to cost reductions and quality improvements. We investigated theoretically and empirically whether the implementation of a process-based organization design is advisable in hospitals. The data came from a database compiled by the Statistical Office of the German federal state of Rheinland-Pfalz and from a written questionnaire, which was sent to the chief executive officers (CEOs) of all 92 hospitals in this federal state. We used data envelopment analysis (DEA) to measure hospital efficiency, and factor analysis and regression analysis to test our hypothesis. Our principal finding is that a high degree of process-based organization has a moderate but significant positive effect on the efficiency of hospitals. The main implication is that hospitals should implement a process-based organization to improve their efficiency. However, to actually achieve positive effects on efficiency, it is of paramount importance to observe some implementation rules, in particular to mobilize physician participation and to create an adequate organizational culture.
Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.
Kablitz, Caroline Désirée; Urbanetz, Nora Anne
2013-02-01
A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.
NASA Technical Reports Server (NTRS)
Ziese, James M.
1992-01-01
A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.
High efficiency solar cell processing
NASA Technical Reports Server (NTRS)
Ho, F.; Iles, P. A.
1985-01-01
At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.
DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES
The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...
Processing technology for high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Spitzer, M. B.; Keavney, C. J.
1985-01-01
Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.
Guidelines for Energy-Efficient Sustainable Schools.
ERIC Educational Resources Information Center
Nicklas, Michael; Bailey, Gary; Rosemain, Pascale; Olin, Samuel
These guidelines present optional strategies to be considered in designing schools to be more energy efficient and sustainable. The guidelines are organized by the following design and construction process: site selection; selection of A & E design team; programming and goal setting; schematic design; design development; construction…
Integrated aerodynamic-structural design of a forward-swept transport wing
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.
NASA Astrophysics Data System (ADS)
Khalqihi, K. I.; Rahayu, M.; Rendra, M.
2017-12-01
PT Perkebunan Nusantara VIII Ciater is a company produced black tea orthodox more or less 4 tons every day. At the production section, PT Perkebunan Nusantara VIII will use local exhaust ventilation specially at sortation area on sieve machine. To maintain the quality of the black tea orthodox, all machine must be scheduled for maintenance every once a month and takes time 2 hours in workhours, with additional local exhaust ventilation, it will increase time for maintenance process, if maintenance takes time more than 2 hours it will caused production process delayed. To support maintenance process in PT Perkebunan Nusantara VIII Ciater, designing local exhaust ventilation using design for assembly approach with Boothroyd and Dewhurst method, design for assembly approach is choosen to simplify maintenance process which required assembly process. There are 2 LEV designs for this research. Design 1 with 94 components, assembly time 647.88 seconds and assembly efficiency level 23.62%. Design 2 with 82 components, assembly time 567.84 seconds and assembly efficiency level 24.83%. Design 2 is choosen for this research based on DFA goals, minimum total part that use, optimization assembly time, and assembly efficiency level.
Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity
Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.
2010-01-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183
Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.
Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L
2010-02-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.
Energy-Efficient Design for Florida Educational Facilities.
ERIC Educational Resources Information Center
Florida Solar Energy Center, Cape Canaveral.
This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…
Graphic Design in Libraries: A Conceptual Process
ERIC Educational Resources Information Center
Ruiz, Miguel
2014-01-01
Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…
Benchmark Lisp And Ada Programs
NASA Technical Reports Server (NTRS)
Davis, Gloria; Galant, David; Lim, Raymond; Stutz, John; Gibson, J.; Raghavan, B.; Cheesema, P.; Taylor, W.
1992-01-01
Suite of nonparallel benchmark programs, ELAPSE, designed for three tests: comparing efficiency of computer processing via Lisp vs. Ada; comparing efficiencies of several computers processing via Lisp; or comparing several computers processing via Ada. Tests efficiency which computer executes routines in each language. Available for computer equipped with validated Ada compiler and/or Common Lisp system.
Planar Inlet Design and Analysis Process (PINDAP)
NASA Technical Reports Server (NTRS)
Slater, John W.; Gruber, Christopher R.
2005-01-01
The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.
Design Considerations | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Selection Process for New Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Selection Process for Replacement Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Efficiency improvement of technological preparation of power equipment manufacturing
NASA Astrophysics Data System (ADS)
Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.
2017-11-01
Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.
Design Guidance for New Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Design Guidance for Replacement Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Energy Efficiency and Universal Design in Home Renovations - A Comparative Review.
Kapedani, Ermal; Herssens, Jasmien; Verbeeck, Griet
2016-01-01
Policy and societal objectives indicate a large need for housing renovations that both accommodate lifelong living and significantly increase energy efficiency. However, these two areas of research are not yet examined in conjunction and this paper hypothesizes this as a missed opportunity to create better renovation concepts. The paper outlines a comparative review on research in Energy Efficiency and Universal Design in order to find the similarities and differences in both depth and breadth of knowledge. Scientific literature in the two fields reveals a disparate depth of knowledge in areas of theory, research approach, and degree of implementation in society. Universal Design and Energy Efficiency are part of a trajectory of expanding scope towards greater sustainability and, although social urgency has been a driver of the research intensity and approach in both fields, in energy efficiency there is an engineering, problem solving approach while Universal Design has a more sociological, user-focused one. These different approaches are reflected in the way home owners in Energy Efficiency research are viewed as consumers and decision makers whose drivers are studied, while Universal Design treats home owners as informants in the design process and studies their needs. There is an inherent difficulty in directly merging Universal Design and Energy Efficiency at a conceptual level because Energy Efficiency is understood as a set of measures, i.e. a product, while Universal Design is part of a (design) process. The conceptual difference is apparent in their implementation as well. Internationally energy efficiency in housing has been largely imposed through legislation, while legislation directly mandating Universal Design is either non-existent or it has an explicit focus on accessibility. However, Energy Efficiency and Universal Design can be complementary concepts and, even though it is more complex than expected, the combination offers possibilities to advance knowledge in both fields.
Patziger, Miklos; Günthert, Frank Wolfgang; Jardin, Norbert; Kainz, Harald; Londong, Jörg
2016-11-01
In state of the art wastewater treatment, primary settling tanks (PSTs) are considered as an integral part of the biological wastewater and sludge treatment process, as well as of the biogas and electric energy production. Consequently they strongly influence the efficiency of the entire wastewater treatment plant. However, in the last decades the inner physical processes of PSTs, largely determining their efficiency, have been poorly addressed. In common practice PSTs are still solely designed and operated based on the surface overflow rate and the hydraulic retention time (HRT) as a black box. The paper shows the results of a comprehensive investigation programme, including 16 PSTs. Their removal efficiency and inner physical processes (like the settling process of primary sludge), internal flow structures within PSTs and their impact on performance were investigated. The results show that: (1) the removal rates of PSTs are generally often underestimated in current design guidelines, (2) the removal rate of different PSTs shows a strongly fluctuating pattern even in the same range of the HRT, and (3) inlet design of PSTs becomes highly relevant in the removal efficiency at rather high surface overflow rates, above 5 m/h, which is the upper design limit of PSTs for dry weather load.
Optimal cost design of water distribution networks using a decomposition approach
NASA Astrophysics Data System (ADS)
Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon
2016-12-01
Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.
Modeling induction heater temperature distribution in polymeric material
NASA Astrophysics Data System (ADS)
Sorokin, A. G.; Filimonova, O. V.
2017-10-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. The main interesting area of the induction heating process is the efficiency of the usage of energy, choice of the plate material and different coil configurations based on application. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The paper describes how the induction heating system in plastic injection molding is designed. The use of numerical simulation in order to get the optimum design of the induction coil is shown. The purpose of this work is to consider various coil configurations used in the induction heating process, which is widely used in plastic molding. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The results of calculation are in the numerical model.
Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Lee, Dong-Kuk; Lee, Eun-Sang
2016-01-01
The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…
Gas Fills | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Understanding Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Books & Publications | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Efficient Windows Collaborative | Home
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Resources | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Provide Views | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Links | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Reducing Condensation | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Reduced Fading | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
EWC Membership | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Visible Transmittance | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
EWC Members | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Financing & Incentives | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
NASA Astrophysics Data System (ADS)
Donders, S.; Pluymers, B.; Ragnarsson, P.; Hadjit, R.; Desmet, W.
2010-04-01
In the vehicle design process, design decisions are more and more based on virtual prototypes. Due to competitive and regulatory pressure, vehicle manufacturers are forced to improve product quality, to reduce time-to-market and to launch an increasing number of design variants on the global market. To speed up the design iteration process, substructuring and component mode synthesis (CMS) methods are commonly used, involving the analysis of substructure models and the synthesis of the substructure analysis results. Substructuring and CMS enable efficient decentralized collaboration across departments and allow to benefit from the availability of parallel computing environments. However, traditional CMS methods become prohibitively inefficient when substructures are coupled along large interfaces, i.e. with a large number of degrees of freedom (DOFs) at the interface between substructures. The reason is that the analysis of substructures involves the calculation of a number of enrichment vectors, one for each interface degree of freedom (DOF). Since large interfaces are common in vehicles (e.g. the continuous line connections to connect the body with the windshield, roof or floor), this interface bottleneck poses a clear limitation in the vehicle noise, vibration and harshness (NVH) design process. Therefore there is a need to describe the interface dynamics more efficiently. This paper presents a wave-based substructuring (WBS) approach, which allows reducing the interface representation between substructures in an assembly by expressing the interface DOFs in terms of a limited set of basis functions ("waves"). As the number of basis functions can be much lower than the number of interface DOFs, this greatly facilitates the substructure analysis procedure and results in faster design predictions. The waves are calculated once from a full nominal assembly analysis, but these nominal waves can be re-used for the assembly of modified components. The WBS approach thus enables efficient structural modification predictions of the global modes, so that efficient vibro-acoustic design modification, optimization and robust design become possible. The results show that wave-based substructuring offers a clear benefit for vehicle design modifications, by improving both the speed of component reduction processes and the efficiency and accuracy of design iteration predictions, as compared to conventional substructuring approaches.
Inverse design of near unity efficiency perfectly vertical grating couplers
NASA Astrophysics Data System (ADS)
Michaels, Andrew; Yablonovitch, Eli
2018-02-01
Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of integrated photonics. While many solutions exist, perfectly vertical grating couplers which scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiency, however, has proven difficult. In this paper, we use electromagnetic inverse design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of over 99% (-0.04 dB) at 1550 nm. Using this base design, we apply subsequent constrained optimizations to achieve vertical couplers with over 96% efficiency which are fabricable using a 65 nm process.
It Takes a Village to Design a Course: Embedding a Librarian in Course Design
ERIC Educational Resources Information Center
Mudd, Alex; Summey, Terri; Upson, Matt
2015-01-01
Often associated with online learning, instructional design is a process utilized in efficiently designing training and instruction to help ensure effectiveness. Typically, the instructional systems design (ISD) process uses a team-based approach, consisting of an instructor, a facilitator, a designer and a subject matter expert. Although library…
The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...
A multi-stage oil-water-separating process design for the sea oil spill recovery robot
NASA Astrophysics Data System (ADS)
Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming
2018-03-01
Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.
Increased Light & View | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Windows for New Construction | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Performance Standards for Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Window Selection Tool | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Air Leakage (AL) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
State Fact Sheets | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Fact Sheets & Publications | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Condensation Resistance (CR) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Assessing Window Replacement Options | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
National Fenestration Rating Council (NFRC) | Efficient Windows
Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring
Low Conductance Spacers | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Energy & Cost Savings | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
U-Factor (U-value) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Barrett, Jeffrey S; Jayaraman, Bhuvana; Patel, Dimple; Skolnik, Jeffrey M
2008-06-01
Previous exploration of oncology study design efficiency has focused on Markov processes alone (probability-based events) without consideration for time dependencies. Barriers to study completion include time delays associated with patient accrual, inevaluability (IE), time to dose limiting toxicities (DLT) and administrative and review time. Discrete event simulation (DES) can incorporate probability-based assignment of DLT and IE frequency, correlated with cohort in the case of DLT, with time-based events defined by stochastic relationships. A SAS-based solution to examine study efficiency metrics and evaluate design modifications that would improve study efficiency is presented. Virtual patients are simulated with attributes defined from prior distributions of relevant patient characteristics. Study population datasets are read into SAS macros which select patients and enroll them into a study based on the specific design criteria if the study is open to enrollment. Waiting times, arrival times and time to study events are also sampled from prior distributions; post-processing of study simulations is provided within the decision macros and compared across designs in a separate post-processing algorithm. This solution is examined via comparison of the standard 3+3 decision rule relative to the "rolling 6" design, a newly proposed enrollment strategy for the phase I pediatric oncology setting.
Production technology for high efficiency ion implanted solar cells
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.
1978-01-01
Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.
Solar Heat Gain Coefficient (SHGC) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Resource Efficient Metal and Material Recycling
NASA Astrophysics Data System (ADS)
Reuter, Markus A.; van Schaik, Antoinette
Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.
Improved InGaN LED System Efficacy and Cost via Droop Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildeson, Isaac
Efficiency droop is a non-thermal process intrinsic to indium gallium nitride light emitting diodes (LEDs) in which the external quantum efficiency (EQE) decreases with increasing drive current density. Mitigating droop would allow one to reduce the size of LEDs driven at a given current or to drive LEDs of given size at higher current while maintaining high efficiencies. In other words, droop mitigation can lead to significant gains in light output per dollar and/or light output per watt of input power. This project set an EQE improvement goal at high drive current density which was to be attained by improvingmore » the LED active region design and growth process following a droop mitigation strategy. The interactions between LED active region design parameters and efficiency droop were studied by modeling and experiments. The crystal defects that tend to form in more complex LED designs intended to mitigate droop were studied with advanced characterization methods that provided insight into the structural and electronic properties of the material. This insight was applied to improve the epitaxy process both in terms of active region design and optimization of growth parameters. The final project goals were achieved on schedule and an epitaxy process leading to LEDs with EQE exceeding the project target was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.
2012-03-13
Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.« less
Design of the storage location based on the ABC analyses
NASA Astrophysics Data System (ADS)
Jemelka, Milan; Chramcov, Bronislav; Kříž, Pavel
2016-06-01
The paper focuses on process efficiency and saving storage costs. Maintaining inventory through putaway strategy takes personnel time and costs money. The aim is to control inventory in the best way. The ABC classification based on Villefredo Pareto theory is used for a design of warehouse layout. New design of storage location reduces the distance of fork-lifters, total costs and it increases inventory process efficiency. The suggested solutions and evaluation of achieved results are described in detail. Proposed solutions were realized in real warehouse operation.
Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook
2014-11-01
To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... performance test for those control techniques in accordance with paragraph (b)(6) of this section. The design..., immediately preceding the use of the control technique. A design evaluation shall also address other vent... paragraph (f)(1)(i) of this section, the design evaluation shall document the control efficiency and address...
Boston-Fleischhauer, Carol
2008-01-01
The design and implementation of efficient, effective, and safe processes are never-ending challenges in healthcare. Less than optimal performance levels and rising concerns about patient safety suggest that traditional process design methods are insufficient to meet design requirements. In this 2-part series, the author presents human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare. An examination of these theories, application approaches, and examples are presented.
Optimal design study of high efficiency indium phosphide space solar cells
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Flood, Dennis J.
1990-01-01
Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.
Design, Test, Redesign: Simulation in Technology, Engineering, and Design Education Classrooms
ERIC Educational Resources Information Center
Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin
2016-01-01
Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…
ACT Payload Shroud Structural Concept Analysis and Optimization
NASA Technical Reports Server (NTRS)
Zalewski, Bart B.; Bednarcyk, Brett A.
2010-01-01
Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented.
[A design of software for management of hospital equipment maintenance process].
Xie, Haiyuan; Liu, Yiqing
2010-03-01
According to the circumstance of hospital equipment maintenance, we designed a computer program for management of hospital equipment maintenance process by Java programming language. This program can control the maintenance process, increase the efficiency; and be able to fix the equipment location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheib, J.; Pless, S.; Torcellini, P.
NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2006-10-24
Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2010-01-26
Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.
2007-09-18
Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
NASA Astrophysics Data System (ADS)
Reuter, Markus; van Schaik, Antoinette
In this paper the link between process metallurgy, classical minerals processing, product centric recycling and urban/landfill mining is discussed. The depth that has to be achieved in urban mining and recycling must glean from the wealth of theoretical knowledge and insight that have been developed in the past in minerals and metallurgical processing. This background learns that recycling demands a product centric approach, which considers simultaneously the multi-material interactions in man-made complex `minerals'. Fast innovation in recycling and urban mining can be achieved by further evolving from this well developed basis, evolving the techniques and tools that have been developed over the years. This basis has already been used for many years to design, operate and control industrial plants for metal production. This has been the basis for Design for Recycling rules for End-of-Life products. Using, among others, the UNEP Metal Recycling report as a basis (authors are respectively Lead and Main authors of report), it is demonstrated that a common theoretical basis as developed in metallurgy and minerals processing can help much to level the playing field between primary processing, secondary processing, recycling, and urban/landfill mining and product design hence enhancing resource efficiency. Thus various scales of detail link product design with metallurgical process design and its fundamentals.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
Quantitative Analysis of the Efficiency of OLEDs.
Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo
2016-12-07
We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
A systems-based approach for integrated design of materials, products and design process chains
NASA Astrophysics Data System (ADS)
Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh
2007-12-01
The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.
Manufacturing Squares: An Integrative Statistical Process Control Exercise
ERIC Educational Resources Information Center
Coy, Steven P.
2016-01-01
In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…
NASA Technical Reports Server (NTRS)
Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.
1985-01-01
Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.
Design of A Cyclone Separator Using Approximation Method
NASA Astrophysics Data System (ADS)
Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee
2017-12-01
A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.
O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor
2012-08-01
Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.
NASA Astrophysics Data System (ADS)
Urfianto, Mohammad Zalfany; Isshiki, Tsuyoshi; Khan, Arif Ullah; Li, Dongju; Kunieda, Hiroaki
This paper presentss a Multiprocessor System-on-Chips (MPSoC) architecture used as an execution platform for the new C-language based MPSoC design framework we are currently developing. The MPSoC architecture is based on an existing SoC platform with a commercial RISC core acting as the host CPU. We extend the existing SoC with a multiprocessor-array block that is used as the main engine to run parallel applications modeled in our design framework. Utilizing several optimizations provided by our compiler, an efficient inter-communication between processing elements with minimum overhead is implemented. A host-interface is designed to integrate the existing RISC core to the multiprocessor-array. The experimental results show that an efficacious integration is achieved, proving that the designed communication module can be used to efficiently incorporate off-the-shelf processors as a processing element for MPSoC architectures designed using our framework.
DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...
DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...
Improving Quality and Efficiency of Postpartum Hospital Education
Buchko, Barbara L.; Gutshall, Connie H.; Jordan, Elizabeth T.
2012-01-01
The purpose of this study was to investigate the implementation of an evidence-based, streamlined, education process (comprehensive education booklet, individualized education plan, and integration of education into the clinical pathway) and nurse education to improve the quality and efficiency of postpartum education during hospitalization. A one-group pretest–posttest design was used to measure the quality of discharge teaching for new mothers and efficiency of the education process for registered nurses before and after implementation of an intervention. Results indicated that a comprehensive educational booklet and enhanced documentation can improve efficiency in the patient education process for nurses. PMID:23997552
Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design
Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.
2017-07-27
We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less
Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.
We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less
NASA Astrophysics Data System (ADS)
Kaiser, C.; Roll, K.; Volk, W.
2017-09-01
In the automotive industry, the manufacturing of automotive outer panels requires hemming processes in which two sheet metal parts are joined together by bending the flange of the outer part over the inner part. Because of decreasing development times and the steadily growing number of vehicle derivatives, an efficient digital product and process validation is necessary. Commonly used simulations, which are based on the finite element method, demand significant modelling effort, which results in disadvantages especially in the early product development phase. To increase the efficiency of designing hemming processes this paper presents a hemming-specific metamodel approach. The approach includes a part analysis in which the outline of the automotive outer panels is initially split into individual segments. By doing a para-metrization of each of the segments and assigning basic geometric shapes, the outline of the part is approximated. Based on this, the hemming parameters such as flange length, roll-in, wrinkling and plastic strains are calculated for each of the geometric basic shapes by performing a meta-model-based segmental product validation. The metamodel is based on an element similar formulation that includes a reference dataset of various geometric basic shapes. A random automotive outer panel can now be analysed and optimized based on the hemming-specific database. By implementing this approach into a planning system, an efficient optimization of designing hemming processes will be enabled. Furthermore, valuable time and cost benefits can be realized in a vehicle’s development process.
CFD studies on biomass thermochemical conversion.
Wang, Yiqun; Yan, Lifeng
2008-06-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
CFD Studies on Biomass Thermochemical Conversion
Wang, Yiqun; Yan, Lifeng
2008-01-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
Power processing for electric propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Herron, B. G.; Gant, G. D.
1975-01-01
The inclusion of electric thruster systems in spacecraft design is considered. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. Electron bombardment ion thruster requirements are presented, and the performance characteristics of present power processing systems are reviewed. Design philosophies and alternatives in areas such as inverter type, arc protection, and control methods are discussed along with future performance potentials for meeting goals in the areas of power process or weight (10 kg/kW), efficiency (approaching 92 percent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).
Design of bridge deck drainage : HEC 21
DOT National Transportation Integrated Search
1993-05-01
The manual provides guidelines and procedures for designing bridge deck drainage systems, inclusing illustrative examples. Should the design process indicate a drainage system is needed, utilization of the most hydraulically efficient and maintenance...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Tillotson, R.D.; Todd, T.A.
2002-09-19
The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen
2002-09-01
The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less
Computer Aided Design of Computer Generated Holograms for electron beam fabrication
NASA Technical Reports Server (NTRS)
Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid
1989-01-01
Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.
NASA Astrophysics Data System (ADS)
Lebedev, V. A.; Serga, G. V.; Khandozhko, A. V.
2018-03-01
The article proposes technical solutions for increasing the efficiency of finishing-cleaning and hardening processing of parts on the basis of rotor-screw technological systems. The essence, design features and technological capabilities of the rotor-screw technological system with a rotating container are disclosed, which allows one to expand the range of the resulting displacement vectors, granules of the abrasive medium and processed parts. Ways of intensification of the processing on their basis by means of vibration activation of the process providing a combined effect on the mass of loading of large and small amplitude low-frequency oscillations are proposed. The results of the experimental studies of the movement of bulk materials in a screw container are presented, which showed that Kv = 0.5-0.6 can be considered the optimal value of the container filling factor. The estimation of screw containers application efficiency proceeding from their design features is given.
Energy efficiency technologies in cement and steel industry
NASA Astrophysics Data System (ADS)
Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo
2018-02-01
In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.
Design and fabrication of wraparound contact silicon solar cells
NASA Technical Reports Server (NTRS)
Goodelle, G.
1972-01-01
Work is reported on the development and production of 1,000 N+/P wraparound solar cells of two different design configurations: Design 1, a bar configuration wraparound and Design 2, a corner pad configuration wraparound. The project goal consisted of determining which of the two designs was better with regard to production cost where the typical cost of a conventional solar cell was considered as the norm. Emphasis was also placed on obtaining the highest possible output efficiency, although a minumum efficiency of 10.5% was required. Five hundred cells of Design 1 and 500 cells of Design 2 were fabricated. Design 1 which used similar procedures to those used in the fabrication of conventional cells, was the less expensive with a cost very close to that of a conventional cell. Design 2 was more expensive mainly because the more exotic process procedures used were less developed than those used for Design 1. However, Design 2 processing technology demonstrated a feasibility that should warrant future investigation toward improvement and refinement.
International Conference on Stiff Computation Held at Park City, Utah on April 12, 13 and 14, 1982.
1983-05-31
algorithm should be designed which can analyse a system description and find out for the user ~to which class of problems his system belongs... Dove...processors designed to implement aspecific solution process. yrne: IEE floating point chip design " used by INE and others is an example (Xahan)...the...hardware speciaList has designed his computer such that the paraL#L features can be addressed convenientLy and !! ’) efficientLy, and 4;) the software
Flow Chemistry for Designing Sustainable Chemical Synthesis (journal article)
An efficiently designed continuous flow chemical process can lead to significant advantages in developing a sustainable chemical synthesis or process. These advantages are the direct result of being able to impart a higher degree of control on several key reactor and reaction par...
Study of a Fine Grained Threaded Framework Design
NASA Astrophysics Data System (ADS)
Jones, C. D.
2012-12-01
Traditionally, HEP experiments exploit the multiple cores in a CPU by having each core process one event. However, future PC designs are expected to use CPUs which double the number of processing cores at the same rate as the cost of memory falls by a factor of two. This effectively means the amount of memory per processing core will remain constant. This is a major challenge for LHC processing frameworks since the LHC is expected to deliver more complex events (e.g. greater pileup events) in the coming years while the LHC experiment's frameworks are already memory constrained. Therefore in the not so distant future we may need to be able to efficiently use multiple cores to process one event. In this presentation we will discuss a design for an HEP processing framework which can allow very fine grained parallelization within one event as well as supporting processing multiple events simultaneously while minimizing the memory footprint of the job. The design is built around the libdispatch framework created by Apple Inc. (a port for Linux is available) whose central concept is the use of task queues. This design also accommodates the reality that not all code will be thread safe and therefore allows one to easily mark modules or sub parts of modules as being thread unsafe. In addition, the design efficiently handles the requirement that events in one run must all be processed before starting to process events from a different run. After explaining the design we will provide measurements from simulating different processing scenarios where the processing times used for the simulation are drawn from processing times measured from actual CMS event processing.
Using task analysis to improve the requirements elicitation in health information system.
Teixeira, Leonor; Ferreira, Carlos; Santos, Beatriz Sousa
2007-01-01
This paper describes the application of task analysis within the design process of a Web-based information system for managing clinical information in hemophilia care, in order to improve the requirements elicitation and, consequently, to validate the domain model obtained in a previous phase of the design process (system analysis). The use of task analysis in this case proved to be a practical and efficient way to improve the requirements engineering process by involving users in the design process.
A synthetic design environment for ship design
NASA Technical Reports Server (NTRS)
Chipman, Richard R.
1995-01-01
Rapid advances in computer science and information system technology have made possible the creation of synthetic design environments (SDE) which use virtual prototypes to increase the efficiency and agility of the design process. This next generation of computer-based design tools will rely heavily on simulation and advanced visualization techniques to enable integrated product and process teams to concurrently conceptualize, design, and test a product and its fabrication processes. This paper summarizes a successful demonstration of the feasibility of using a simulation based design environment in the shipbuilding industry. As computer science and information science technologies have evolved, there have been many attempts to apply and integrate the new capabilities into systems for the improvement of the process of design. We see the benefits of those efforts in the abundance of highly reliable, technologically complex products and services in the modern marketplace. Furthermore, the computer-based technologies have been so cost effective that the improvements embodied in modern products have been accompanied by lowered costs. Today the state-of-the-art in computerized design has advanced so dramatically that the focus is no longer on merely improving design methodology; rather the goal is to revolutionize the entire process by which complex products are conceived, designed, fabricated, tested, deployed, operated, maintained, refurbished and eventually decommissioned. By concurrently addressing all life-cycle issues, the basic decision making process within an enterprise will be improved dramatically, leading to new levels of quality, innovation, efficiency, and customer responsiveness. By integrating functions and people with an enterprise, such systems will change the fundamental way American industries are organized, creating companies that are more competitive, creative, and productive.
Fostering learners' interaction with content: A learner-centered mobile device interface
NASA Astrophysics Data System (ADS)
Abdous, M.
2015-12-01
With the ever-increasing omnipresence of mobile devices in student life, leveraging smart devices to foster students' interaction with course content is critical. Following a learner-centered design iterative approach, we designed a mobile interface that may enable learners to access and interact with online course content efficiently and intuitively. Our design process leveraged recent technologies, such as bootstrap, Google's Material Design, HTML5, and JavaScript to design an intuitive, efficient, and portable mobile interface with a variety of built-in features, including context sensitive bookmarking, searching, progress tracking, captioning, and transcript display. The mobile interface also offers students the ability to ask context-related questions and to complete self-checks as they watch audio/video presentations. Our design process involved ongoing iterative feedback from learners, allowing us to refine and tweak the interface to provide learners with a unified experience across platforms and devices. The innovative combination of technologies built around well-structured and well-designed content seems to provide an effective learning experience to mobile learners. Early feedback indicates a high level of satisfaction with the interface's efficiency, intuitiveness, and robustness from both students and faculty.
Occupants' Perceptions of Amenity and Efficiency for Verification of Spatial Design Adequacy.
Lee, Sangwon; Wohn, Kwangyun
2016-01-14
The best spatial design condition to satisfy the occupancy needs of amenity and efficiency is determined through analyzing the spatial design adequacy (SDA). In this study, the relationship between the space design elements and space on future occupants' perception are analyzed. The thirty-three participants reported their self-evaluated SDA that describes the quality of eight alternative housing living rooms with different spatial factors. The occupants were guided through the perception processing elaboration in order for them to evaluate the actual perception in the real space. The findings demonstrated that the spatial size (e.g., width, depth, and height) is significantly correlated with the overall satisfaction of amenity. It is also found that the spatial shape (e.g., the width-to-depth ratio, the height-to-area ratio, and room shape) may significantly influence the overall satisfaction of efficiency. The findings also demonstrate that the causal relationship between the spatial factors and space is clearly present in the occupants' perception, reflecting the time-sequential characteristics of the actual experience divided into amenity and efficiency. This result indicates that the correlation between the spatial factors and space of SDA under the occupants' perception processing elaboration can be a useful guide to predict the occupancy satisfaction of amenity and efficiency in real spaces.
Occupants’ Perceptions of Amenity and Efficiency for Verification of Spatial Design Adequacy
Lee, Sangwon; Wohn, Kwangyun
2016-01-01
The best spatial design condition to satisfy the occupancy needs of amenity and efficiency is determined through analyzing the spatial design adequacy (SDA). In this study, the relationship between the space design elements and space on future occupants’ perception are analyzed. The thirty-three participants reported their self-evaluated SDA that describes the quality of eight alternative housing living rooms with different spatial factors. The occupants were guided through the perception processing elaboration in order for them to evaluate the actual perception in the real space. The findings demonstrated that the spatial size (e.g., width, depth, and height) is significantly correlated with the overall satisfaction of amenity. It is also found that the spatial shape (e.g., the width-to-depth ratio, the height-to-area ratio, and room shape) may significantly influence the overall satisfaction of efficiency. The findings also demonstrate that the causal relationship between the spatial factors and space is clearly present in the occupants’ perception, reflecting the time-sequential characteristics of the actual experience divided into amenity and efficiency. This result indicates that the correlation between the spatial factors and space of SDA under the occupants’ perception processing elaboration can be a useful guide to predict the occupancy satisfaction of amenity and efficiency in real spaces. PMID:26784211
Design and Control of Integrated Systems for Hydrogen Production and Power Generation
NASA Astrophysics Data System (ADS)
Georgis, Dimitrios
Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.
Goh, Tenghooi; Huang, Jing -Shun; Yager, Kevin G.; ...
2016-08-11
The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Förster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor–acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, itmore » is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. Finally, these results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs.« less
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1990-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Multidisciplinary optimization of aeroservoelastic systems using reduced-size models
NASA Technical Reports Server (NTRS)
Karpel, Mordechay
1992-01-01
Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.
Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle
NASA Astrophysics Data System (ADS)
Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun
2018-05-01
The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
Mechanical properties of porous and cellular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, K.; Green, D.J.; Gibson, L.J.
1991-01-01
This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less
An Intelligent Automation Platform for Rapid Bioprocess Design.
Wu, Tianyi; Zhou, Yuhong
2014-08-01
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.
An Intelligent Automation Platform for Rapid Bioprocess Design
Wu, Tianyi
2014-01-01
Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user’s inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. PMID:24088579
Progress in integrated-circuit horn antennas for receiver applications. Part 1: Antenna design
NASA Technical Reports Server (NTRS)
Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.
1992-01-01
The purpose of this work is to present a systematic method for the design of multimode quasi-integrated horn antennas. The design methodology is based on the Gaussian beam approach and the structures are optimized for achieving maximum fundamental Gaussian coupling efficiency. For this purpose, a hybrid technique is employed in which the integrated part of the antennas is treated using full-wave analysis, whereas the machined part is treated using an approximate method. This results in a simple and efficient design process. The developed design procedure has been applied for the design of a 20, a 23, and a 25 dB quasi-integrated horn antennas, all with a Gaussian coupling efficiency exceeding 97 percent. The designed antennas have been tested and characterized using both full-wave analysis and 90 GHz/370 GHz measurements.
System analysis through bond graph modeling
NASA Astrophysics Data System (ADS)
McBride, Robert Thomas
2005-07-01
Modeling and simulation form an integral role in the engineering design process. An accurate mathematical description of a system provides the design engineer the flexibility to perform trade studies quickly and accurately to expedite the design process. Most often, the mathematical model of the system contains components of different engineering disciplines. A modeling methodology that can handle these types of systems might be used in an indirect fashion to extract added information from the model. This research examines the ability of a modeling methodology to provide added insight into system analysis and design. The modeling methodology used is bond graph modeling. An investigation into the creation of a bond graph model using the Lagrangian of the system is provided. Upon creation of the bond graph, system analysis is performed. To aid in the system analysis, an object-oriented approach to bond graph modeling is introduced. A framework is provided to simulate the bond graph directly. Through object-oriented simulation of a bond graph, the information contained within the bond graph can be exploited to create a measurement of system efficiency. A definition of system efficiency is given. This measurement of efficiency is used in the design of different controllers of varying architectures. Optimal control of a missile autopilot is discussed within the framework of the calculated system efficiency.
Qi, Weiwei; Zhu, Tong; Tian, Zhongrui; Li, Chaobin; Zhang, Wei; Song, Rentao
2016-08-11
CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding.
Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells
NASA Astrophysics Data System (ADS)
Chowdhury, Ahrar Ahmed
Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our best fabricated result of FSF cell achieved ˜18.40% efficiency. Characterizations on such cells provide that, cell performance can be further improved by utilizing high lifetime base wafer. We showed a step by step improvement on the device parameters to achieve ˜22% efficiency FSF cell. Finally, bifacial cells were fabricated with 13.32% front and 9.65% rear efficiency. The efficiency limitation is due to the quality of base wafer. Detail resistance breakdown was conducted on these cells to analyze parasitic resistance losses. It was found that base and gridline resistances dominated the FF loss. However, very low contact resistance of 20 mO-cm 2 at front side and 2 mO-cm2 at the rear side was observed by utilizing same Ag paste for front and rear contact formation. This might provide a pathway towards the search of an optimized Ag paste to attain high efficiency screen-printed bifacial cell. Detail investigations needs to be carried out to unveil the property of this Ag paste. In future work, more focus will be given on the metallization design to incorporate further reduction in Ag cost. Al2O3 passivation layer will be incorporated as a means to attain ˜23% screen-printed bifacial cell.
ERIC Educational Resources Information Center
Türker, Fatih Mehmet
2016-01-01
In today's world, where online learning environments have increased their efficiency in education and training, the design of the websites prepared for education and training purposes has become an important process. This study is about the teaching process of the online learning environments created to teach Turkish in web based environments, and…
Rismanchian, Farhood; Lee, Young Hoon
2017-07-01
This article proposes an approach to help designers analyze complex care processes and identify the optimal layout of an emergency department (ED) considering several objectives simultaneously. These objectives include minimizing the distances traveled by patients, maximizing design preferences, and minimizing the relocation costs. Rising demand for healthcare services leads to increasing demand for new hospital buildings as well as renovating existing ones. Operations management techniques have been successfully applied in both manufacturing and service industries to design more efficient layouts. However, high complexity of healthcare processes makes it challenging to apply these techniques in healthcare environments. Process mining techniques were applied to address the problem of complexity and to enhance healthcare process analysis. Process-related information, such as information about the clinical pathways, was extracted from the information system of an ED. A goal programming approach was then employed to find a single layout that would simultaneously satisfy several objectives. The layout identified using the proposed method improved the distances traveled by noncritical and critical patients by 42.2% and 47.6%, respectively, and minimized the relocation costs. This study has shown that an efficient placement of the clinical units yields remarkable improvements in the distances traveled by patients.
Replacement Windows for Existing Homes Homes | Efficient Windows
Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Selection Tool will take you through a series of design conditions pertaining to your design and location
Design of efficient stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Majumder, D. K.; Thornton, W. A.
1976-01-01
A method to produce efficient piecewise uniform stiffened shells of revolution is presented. The approach uses a first order differential equation formulation for the shell prebuckling and buckling analyses and the necessary conditions for an optimum design are derived by a variational approach. A variety of local yielding and buckling constraints and the general buckling constraint are included in the design process. The local constraints are treated by means of an interior penalty function and the general buckling load is treated by means of an exterior penalty function. This allows the general buckling constraint to be included in the design process only when it is violated. The self-adjoint nature of the prebuckling and buckling formulations is used to reduce the computational effort. Results for four conical shells and one spherical shell are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Brandon, Jay M.
2017-01-01
Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.
Design and implementation for integrated UAV multi-spectral inspection system
NASA Astrophysics Data System (ADS)
Zhu, X.; Li, X.; Yan, F.
2018-04-01
In order to improve the working efficiency of the transmission line inspection and reduce the labour intensity of the inspectors, this paper presents an Unmanned Aerial Vehicle (UAV) inspection system architecture for the transmission line inspection. In this document, the light-duty design for different inspection equipment and processing terminals is completed. It presents the reference design for the information-processing terminal, supporting the inspection and interactive equipment accessing, and obtains all performance indicators of the inspection information processing through the tests. Practical application shows that the UAV inspection system supports access and management of different types of mainstream fault detection equipment, and can implement the independent diagnosis of the detected information to generate inspection reports in line with industry norms, which can meet the fast, timely, and efficient requirements for the power line inspection work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.
2010-06-30
This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less
Processing mechanics of alternate twist ply (ATP) yarn technology
NASA Astrophysics Data System (ADS)
Elkhamy, Donia Said
Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The successful results of this work have led to the filing of a US patent disclosing the method for producing ATP yarns with high yarn twist efficiency using a high convergence angle at the self ply point together with applying ply torque.
Ultrafast laser direct hard-mask writing for high efficiency c-Si texture designs
NASA Astrophysics Data System (ADS)
Kumar, Kitty; Lee, Kenneth K. C.; Nogami, Jun; Herman, Peter R.; Kherani, Nazir P.
2013-03-01
This study reports a high-resolution hard-mask laser writing technique to facilitate the selective etching of crystalline silicon (c-Si) into an inverted-pyramidal texture with feature size and periodicity on the order of the wavelength which, thus, provides for both anti-reflection and effective light-trapping of infrared and visible light. The process also enables engineered positional placement of the inverted-pyramid thereby providing another parameter for optimal design of an optically efficient pattern. The proposed technique, a non-cleanroom process, is scalable for large area micro-fabrication of high-efficiency thin c-Si photovoltaics. Optical wave simulations suggest the fabricated textured surface with 1.3 μm inverted-pyramids and a single anti-reflective coating increases the relative energy conversion efficiency by 11% compared to the PERL-cell texture with 9 μm inverted pyramids on a 400 μm thick wafer. This efficiency gain is anticipated to improve further for thinner wafers due to enhanced diffractive light trapping effects.
Silicon solar cell efficiency improvement: Status and outlook
NASA Technical Reports Server (NTRS)
Wolf, M.
1985-01-01
Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required.
DOT National Transportation Integrated Search
1998-04-01
Human factors can be defined as "designing to match the capabilities and limitations of the human user." The objectives of this human-centered design process are to maximize the effectiveness and efficiency of system performance, ensure a high level ...
Reasoning with case histories of process knowledge for efficient process development
NASA Technical Reports Server (NTRS)
Bharwani, Seraj S.; Walls, Joe T.; Jackson, Michael E.
1988-01-01
The significance of compiling case histories of empirical process knowledge and the role of such histories in improving the efficiency of manufacturing process development is discussed in this paper. Methods of representing important investigations as cases and using the information from such cases to eliminate redundancy of empirical investigations in analogous process development situations are also discussed. A system is proposed that uses such methods to capture the problem-solving framework of the application domain. A conceptual design of the system is presented and discussed.
Sanocki, Thomas; Dyson, Mary C
2012-01-01
Letter identification is a critical front end of the reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading.
Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment
NASA Astrophysics Data System (ADS)
Rinawati, Dyah Ika; Sriyanto; Sari, Diana Puspita; Prayodha, Andana Cantya
2018-02-01
Furniture is one of Indonesia's main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.
Navarrete-Bolaños, J L; Téllez-Martínez, M G; Miranda-López, R; Jiménez-Islas, H
2017-07-03
For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.
Study on light weight design of truss structures of spacecrafts
NASA Astrophysics Data System (ADS)
Zeng, Fuming; Yang, Jianzhong; Wang, Jian
2015-08-01
Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.
New Design Tool Can Help Cut building Energy Use
help almost any architect or engineer evaluate passive solar and efficiency design strategies in a tool that enables them to walk through the design process and understand the consequences of design , a feature that tells designers how large of a heating, ventilation and air conditioning (HVAC
DOT National Transportation Integrated Search
1998-04-01
Human factors can be defined as "designing to match the capabilities and limitations of the human user." The objectives of this human-centered design process are to maximize the effectiveness and efficiency of system performance, ensure a high level ...
On the next generation of reliability analysis tools
NASA Technical Reports Server (NTRS)
Babcock, Philip S., IV; Leong, Frank; Gai, Eli
1987-01-01
The current generation of reliability analysis tools concentrates on improving the efficiency of the description and solution of the fault-handling processes and providing a solution algorithm for the full system model. The tools have improved user efficiency in these areas to the extent that the problem of constructing the fault-occurrence model is now the major analysis bottleneck. For the next generation of reliability tools, it is proposed that techniques be developed to improve the efficiency of the fault-occurrence model generation and input. Further, the goal is to provide an environment permitting a user to provide a top-down design description of the system from which a Markov reliability model is automatically constructed. Thus, the user is relieved of the tedious and error-prone process of model construction, permitting an efficient exploration of the design space, and an independent validation of the system's operation is obtained. An additional benefit of automating the model construction process is the opportunity to reduce the specialized knowledge required. Hence, the user need only be an expert in the system he is analyzing; the expertise in reliability analysis techniques is supplied.
Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings
NASA Astrophysics Data System (ADS)
Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna
2017-10-01
Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.
Process and assembly plans for low cost commercial fuselage structure
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, Stephen; Starkey, Val
1991-01-01
Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.
Cook, Richard J; Wei, Wei
2003-07-01
The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).
Guiding bioprocess design by microbial ecology.
Volmer, Jan; Schmid, Andreas; Bühler, Bruno
2015-06-01
Industrial bioprocess development is driven by profitability and eco-efficiency. It profits from an early stage definition of process and biocatalyst design objectives. Microbial bioprocess environments can be considered as synthetic technical microbial ecosystems. Natural systems follow Darwinian evolution principles aiming at survival and reproduction. Technical systems objectives are eco-efficiency, productivity, and profitable production. Deciphering technical microbial ecology reveals differences and similarities of natural and technical systems objectives, which are discussed in this review in view of biocatalyst and process design and engineering strategies. Strategies for handling opposing objectives of natural and technical systems and for exploiting and engineering natural properties of microorganisms for technical systems are reviewed based on examples. This illustrates the relevance of considering microbial ecology for bioprocess design and the potential for exploitation by synthetic biology strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design and implementation of H.264 based embedded video coding technology
NASA Astrophysics Data System (ADS)
Mao, Jian; Liu, Jinming; Zhang, Jiemin
2016-03-01
In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].
Resource Analysis of Cognitive Process Flow Used to Achieve Autonomy
2016-03-01
to be used as a decision - making aid to guide system designers and program managers not necessarily familiar with cognitive pro- cessing, or resource...implementing end-to-end cognitive processing flows multiplies and the impact of these design decisions on efficiency and effectiveness increases [1]. The...end-to-end cognitive systems and alternative computing technologies, then system design and acquisition personnel could make systematic analyses and
Master of Puppets: Cooperative Multitasking for In Situ Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Lukic, Zarija
2016-01-01
Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. Here, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of ourmore » design, and illustrate its versatility by tackling analysis tasks with different computational requirements. This design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The techniques we present can also be integrated into other in situ frameworks.« less
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Nagasawa, Shuichi; China, Fumihiro; Ando, Takumi; Hidaka, Mutsuo; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2017-03-01
Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power consumption and very small switching energy. In this paper, we report a new AQFP cell library designed using the AIST 10 kA cm-2 Nb high-speed standard process (HSTP), which is a high-critical-current-density version of the AIST 2.5 kA cm-2 Nb standard process (STP2). Since the intrinsic damping of the Josephson junction (JJ) of HSTP is relatively strong, shunt resistors for JJs were removed and the energy efficiency improved significantly. Also, excitation transformers in the new cells were redesigned so that the cells can operate in a four-phase excitation mode. We described the detail of HSTP and the AQFP cell library designed using HSTP, and showed experimental results of cell test circuits.
Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei
2017-03-01
In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minimizing energy dissipation of matrix multiplication kernel on Virtex-II
NASA Astrophysics Data System (ADS)
Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook
2002-07-01
In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.
Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.
2001-01-01
Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.
NASA Technical Reports Server (NTRS)
Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.
1995-01-01
Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.
Treatment of TFT-LCD wastewater containing ethanolamine by fluidized-bed Fenton technology.
Anotai, Jin; Chen, Chia-Min; Bellotindos, Luzvisminda M; Lu, Ming-Chun
2012-06-01
The objectives of this study are: (1) to determine the effect of pH, initial concentration of Fe(2+) and H(2)O(2) dosage on the removal efficiency of MEA by fluidized-bed Fenton process and Fenton process, (2) to determine the optimal conditions for the degradation of ethanolamine from TFT-LCD wastewater by fluidized-bed Fenton process. In the design of experiment, the Box-Behnken design was used to optimize the operating conditions. A removal efficiency of 98.9% for 5mM MEA was achieved after 2h under optimal conditions of pH3, [Fe(2+)]=5mM and [H(2)O(2)]=60mM. Copyright © 2011 Elsevier Ltd. All rights reserved.
High performance cryogenic turboexpanders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Ershaghi, B.; Lin, M.C.
1996-12-31
The use of turboexpanders for deep cryogenic temperatures has been constrained because of thermal efficiency limitations. This limited thermal efficiency was mostly due to mechanical constraints. Recent improvements in analytical techniques, bearing technology, and design features have made it possible to design and operate turboexpanders at more favorable conditions, such as of higher rotational speeds. Several turboexpander installations in helium and hydrogen processes have shown a significant improvement in plant performance over non-turboexpander options.
An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application
Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio
2015-01-01
Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10−12 < D < 10−11 m2/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis. PMID:26658848
An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application
NASA Astrophysics Data System (ADS)
Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio
2015-12-01
Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10-12 < D < 10-11 m2/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.
An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application.
Cosentino, Armando; Madadi, Hojjat; Vergara, Paola; Vecchione, Raffaele; Causa, Filippo; Netti, Paolo Antonio
2015-12-14
Micromixers are the key component that allow lab-on-a-chip and micro total analysis systems to reach the correct level of mixing for any given process. This paper proposes a novel, simple, passive micromixer design characterized by a planar accordion-shape geometry. The geometrical characteristics of the presented design were analyzed numerically in the range of 0.01 < Re < 100 based on the micromixer performance. The performance of the most efficient design was experimentally investigated by means of fluorescence microscopy for a range of low diffusion coefficients, 10(-12) < D < 10(-11) m(2)/s. The micromixer structure was fabricated in a simple single-step process using maskless lithography and soft lithography. The experimental results showed a very good agreement with the predicted numerical results. This micromixer design including a single serpentine unit (1-SERP) displayed an efficiency higher than 90% (mixing length = 6.4 mm) creating a pressure drop of about 500 Pa at Re = 0.1 and 60 kPa at Re = 10. A mixing efficiency of almost 100% was readily reached when three serpentine units were included (3-SERP). Finally, the potential diagnostic value of the presented microdevice was validated experimentally for Red Blood Cell (RBC) lysis.
Process optimization by use of design of experiments: Application for liposomalization of FK506.
Toyota, Hiroyasu; Asai, Tomohiro; Oku, Naoto
2017-05-01
Design of experiments (DoE) can accelerate the optimization of drug formulations, especially complexed formulas such as those of drugs, using delivery systems. Administration of FK506 encapsulated in liposomes (FK506 liposomes) is an effective approach to treat acute stroke in animal studies. To provide FK506 liposomes as a brain protective agent, it is necessary to manufacture these liposomes with good reproducibility. The objective of this study was to confirm the usefulness of DoE for the process-optimization study of FK506 liposomes. The Box-Behnken design was used to evaluate the effect of the process parameters on the properties of FK506 liposomes. The results of multiple regression analysis showed that there was interaction between the hydration temperature and the freeze-thaw cycle on both the particle size and encapsulation efficiency. An increase in the PBS hydration volume resulted in an increase in encapsulation efficiency. Process parameters had no effect on the ζ-potential. The multiple regression equation showed good predictability of the particle size and the encapsulation efficiency. These results indicated that manufacturing conditions must be taken into consideration to prepare liposomes with desirable properties. DoE would thus be promising approach to optimize the conditions for the manufacturing of liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
Improving Initiation and Tracking of Research Projects at an Academic Health Center: A Case Study.
Schmidt, Susanne; Goros, Martin; Parsons, Helen M; Saygin, Can; Wan, Hung-Da; Shireman, Paula K; Gelfond, Jonathan A L
2017-09-01
Research service cores at academic health centers are important in driving translational advancements. Specifically, biostatistics and research design units provide services and training in data analytics, biostatistics, and study design. However, the increasing demand and complexity of assigning appropriate personnel to time-sensitive projects strains existing resources, potentially decreasing productivity and increasing costs. Improving processes for project initiation, assigning appropriate personnel, and tracking time-sensitive projects can eliminate bottlenecks and utilize resources more efficiently. In this case study, we describe our application of lean six sigma principles to our biostatistics unit to establish a systematic continual process improvement cycle for intake, allocation, and tracking of research design and data analysis projects. The define, measure, analyze, improve, and control methodology was used to guide the process improvement. Our goal was to assess and improve the efficiency and effectiveness of operations by objectively measuring outcomes, automating processes, and reducing bottlenecks. As a result, we developed a web-based dashboard application to capture, track, categorize, streamline, and automate project flow. Our workflow system resulted in improved transparency, efficiency, and workload allocation. Using the dashboard application, we reduced the average study intake time from 18 to 6 days, a 66.7% reduction over 12 months (January to December 2015).
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Scholz, A. L.; Hart, M. T.; Lowry, D. J.
1987-01-01
Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.
Overview of CMOS process and design options for image sensor dedicated to space applications
NASA Astrophysics Data System (ADS)
Martin-Gonthier, P.; Magnan, P.; Corbiere, F.
2005-10-01
With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.
GaAs shallow-homojunction solar cells
NASA Technical Reports Server (NTRS)
Fan, J. C. C.
1981-01-01
The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.
NASA Astrophysics Data System (ADS)
Kobayashi, Takashi; Komoda, Norihisa
The traditional business process design methods, in which the usecase is the most typical, have no useful framework to design the activity sequence with. Therefore, the design efficiency and quality vary widely according to the designer’s experience and skill. In this paper, to solve this problem, we propose the business events and their state transition model (a basic business event model) based on the language/action perspective, which is the result in the cognitive science domain. In the business process design, using this model, we decide event occurrence conditions so that every event synchronizes with each other. We also propose the design pattern to decide the event occurrence condition (a business event improvement strategy). Lastly, we apply the business process design method based on the business event model and the business event improvement strategy to the credit card issue process and estimate its effect.
NASA Technical Reports Server (NTRS)
Baker, C. R.
1975-01-01
Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.
Failing to Learn: Towards a Unified Design Approach for Failure-Based Learning
ERIC Educational Resources Information Center
Tawfik, Andrew A.; Rong, Hui; Choi, Ikseon
2015-01-01
To date, many instructional systems are designed to support learners as they progress through a problem-solving task. Often these systems are designed in accordance with instructional design models that progress the learner efficiently through the problem-solving process. However, theories from various fields have discussed failure as a strategic…
Designing the accident and emergency system: lessons from manufacturing.
Walley, P
2003-03-01
To review the literature on manufacturing process design and demonstrate applicability in health care. Literature review and application of theory using two years activity data from two healthcare communities and extensive observation of activities over a six week period by seven researchers. It was possible to identify patient flows that could be used to design treatment processes around the needs of the patient. Some queues are built into existing treatment processes and can be removed by better process design. Capacity imbalance, not capacity shortage, causes some unnecessary waiting in accident and emergency departments. Clinicians would find that modern manufacturing theories produce more acceptable designs of systems. In particular, good quality is seen as a necessary pre-requisite of fast, efficient services.
Yoon, Hyejin; Leitner, Thomas
2014-12-17
Analyses of entire viral genomes or mtDNA requires comprehensive design of many primers across their genomes. In addition, simultaneous optimization of several DNA primer design criteria may improve overall experimental efficiency and downstream bioinformatic processing. To achieve these goals, we developed PrimerDesign-M. It includes several options for multiple-primer design, allowing researchers to efficiently design walking primers that cover long DNA targets, such as entire HIV-1 genomes, and that optimizes primers simultaneously informed by genetic diversity in multiple alignments and experimental design constraints given by the user. PrimerDesign-M can also design primers that include DNA barcodes and minimize primer dimerization. PrimerDesign-Mmore » finds optimal primers for highly variable DNA targets and facilitates design flexibility by suggesting alternative designs to adapt to experimental conditions.« less
Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.
1994-01-01
In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong
2018-01-01
Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.
DOT National Transportation Integrated Search
1998-04-01
Human factors can be defined as "designing to match the capabilities and limitations of the human user." The objectives of this human-centered design process are to maximize the effectiveness and efficiency of system performance, ensure a high level ...
NASA Astrophysics Data System (ADS)
Pham, John Dinh Chuong
In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.
Bayesian experimental design for models with intractable likelihoods.
Drovandi, Christopher C; Pettitt, Anthony N
2013-12-01
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.
CAD/CAM interface design of excimer laser micro-processing system
NASA Astrophysics Data System (ADS)
Jing, Liang; Chen, Tao; Zuo, Tiechuan
2005-12-01
Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.
A hierarchical approach for the design improvements of an Organocat biorefinery.
Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H
2015-04-01
Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy modelling in sensor networks
NASA Astrophysics Data System (ADS)
Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.
2007-06-01
Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.
Stirling heat pump external heat systems - An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, Andrew D.; Thomas, John F.
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Stirling heat pump external heat systems: An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, A. D.; Thomas, J. F.
1992-08-01
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Lee, Seung-Mok; Kim, Young-Gyu; Cho, Il-Hyoung
2005-01-01
Optimal operating conditions in order to treat dyeing wastewater were investigated by using the factorial design and responses surface methodology (RSM). The experiment was statistically designed and carried out according to a 22 full factorial design with four factorial points, three center points, and four axial points. Then, the linear and nonlinear regression was applied on the data by using SAS package software. The independent variables were TiO2 dosage, H2O2 concentration and total organic carbon (TOC) removal efficiency of dyeing wastewater was dependent variable. From the factorial design and responses surface methodology (RSM), maximum removal efficiency (85%) of dyeing wastewater was obtained at TiO2 dosage (1.82 gL(-1)), H2O2 concentration (980 mgL(-1)) for oxidation reaction (20 min).
Requirements for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Sah, C. T.
1986-01-01
Minimum recombination and low injection level are essential for high efficiency. Twenty percent AM1 efficiency requires a dark recombination current density of 2 x 10 to the minus 13th power A/sq cm and a recombination center density of less than 10 to the 10th power /cu cm. Recombination mechanisms at thirteen locations in a conventional single crystalline silicon cell design are reviewed. Three additional recombination locations are described at grain boundaries in polycrystalline cells. Material perfection and fabrication process optimization requirements for high efficiency are outlined. Innovative device designs to reduce recombination in the bulk and interfaces of single crystalline cells and in the grain boundary of polycrystalline cells are reviewed.
An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System
NASA Astrophysics Data System (ADS)
Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed
PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian
2017-11-23
Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah
2011-03-01
The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists
NASA Astrophysics Data System (ADS)
Quirin, Sean Albert
The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.
Evaluation of selected chemical processes for production of low-cost silicon, phase 3
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Seifert, D. A.
1981-01-01
A Process Development Unit (PDU), which consisted of the four major units of the process, was designed, installed, and experimentally operated. The PDU was sized to 50MT/Yr. The deposition took place in a fluidized bed reactor. As a consequences of the experiments, improvements in the design an operation of these units were undertaken and their experimental limitations were partially established. A parallel program of experimental work demonstrated that Zinc can be vaporized for introduction into the fluidized bed reactor, by direct induction-coupled r.f. energy. Residual zinc in the product can be removed by heat treatment below the melting point of silicon. Current efficiencies of 94 percent and above, and power efficiencies around 40 percent are achievable in the laboratory-scale electrolysis of ZnCl2.
Design and DSP implementation of star image acquisition and star point fast acquiring and tracking
NASA Astrophysics Data System (ADS)
Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang
2006-02-01
Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.
Evaluating two process scale chromatography column header designs using CFD.
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.
Design-Build Process for the Research Support Facility (RSF) (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-06-01
An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.
Biofiltration: Fundamentals, design and operations principles and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, W.J.; Loehr, R.C.
1997-06-01
Biofiltration is a biological air pollution control technology for volatile organic compounds (VOCs). This paper summarizes the fundamentals, design and operation, and application of the process. Biofiltration has been demonstrated to be an effective technology for VOCs from many industries. Large and full-scale systems are in use in Europe and the US. With proper design and operation, VOC removal efficiencies of 95--99% have been achieved. Important parameters for design and performance are empty-bed contact time, gas surface loading, mass loading, elimination capacity, and removal efficiency. Key design and operation factors include chemical and media properties, moisture, pH, temperature, nutrient availability,more » gas pretreatment, and variations in loading.« less
Characteristics of a semi-custom library development system
NASA Technical Reports Server (NTRS)
Yancey, M.; Cannon, R.
1990-01-01
Standard cell and gate array macro libraries are in common use with workstation computer aided design (CAD) tools for application specific integrated circuit (ASIC) semi-custom application and have resulted in significant improvements in the overall design efficiencies as contrasted with custom design methodologies. Similar design methodology enhancements in providing for the efficient development of the library cells is an important factor in responding to the need for continuous technology improvement. The characteristics of a library development system that provides design flexibility and productivity enhancements for the library development engineer as he provides libraries in the state-of-the-art process technologies are presented. An overview of Gould's library development system ('Accolade') is also presented.
Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-gas Turbine
NASA Astrophysics Data System (ADS)
Barsi, Dario; Perrone, Andrea; Qu, Yonglei; Ratto, Luca; Ricci, Gianluca; Sergeev, Vitaliy; Zunino, Pietro
2018-06-01
Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery components efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial inflow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fully 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh generation and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.
Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Mishra, Prashant Kumar; Chattopadhyay, Manju K.
2018-03-01
Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.
NASA Astrophysics Data System (ADS)
Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.
2018-03-01
An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.
Robust design of microchannel cooler
NASA Astrophysics Data System (ADS)
He, Ye; Yang, Tao; Hu, Li; Li, Leimin
2005-12-01
Microchannel cooler has offered a new method for the cooling of high power diode lasers, with the advantages of small volume, high efficiency of thermal dissipation and low cost when mass-produced. In order to reduce the sensitivity of design to manufacture errors or other disturbances, Taguchi method that is one of robust design method was chosen to optimize three parameters important to the cooling performance of roof-like microchannel cooler. The hydromechanical and thermal mathematical model of varying section microchannel was calculated using finite volume method by FLUENT. A special program was written to realize the automation of the design process for improving efficiency. The optimal design is presented which compromises between optimal cooling performance and its robustness. This design method proves to be available.
Sander, S; Behnisch, J; Wagner, M
2017-02-01
With the MBBR IFAS (moving bed biofilm reactor integrated fixed-film activated sludge) process, the biomass required for biological wastewater treatment is either suspended or fixed on free-moving plastic carriers in the reactor. Coarse- or fine-bubble aeration systems are used in the MBBR IFAS process. In this study, the oxygen transfer efficiency (OTE) of a coarse-bubble aeration system was improved significantly by the addition of the investigated carriers, even in-process (∼1% per vol-% of added carrier material). In a fine-bubble aeration system, the carriers had little or no effect on OTE. The effect of carriers on OTE strongly depends on the properties of the aeration system, the volumetric filling rate of the carriers, the properties of the carrier media, and the reactor geometry. This study shows that the effect of carriers on OTE is less pronounced in-process compared to clean water conditions. When designing new carriers in order to improve their effect on OTE further, suppliers should take this into account. Although the energy efficiency and cost effectiveness of coarse-bubble aeration systems can be improved significantly by the addition of carriers, fine-bubble aeration systems remain the more efficient and cost-effective alternative for aeration when applying the investigated MBBR IFAS process.
Fay, Lindsey; Carll-White, Allison; Schadler, Aric; Isaacs, Kathy B; Real, Kevin
2017-10-01
The focus of this research was to analyze the impact of decentralized and centralized hospital design layouts on the delivery of efficient care and the resultant level of caregiver satisfaction. An interdisciplinary team conducted a multiphased pre- and postoccupancy evaluation of a cardiovascular service line in an academic hospital that moved from a centralized to decentralized model. This study examined the impact of walkability, room usage, allocation of time, and visibility to better understand efficiency in the care environment. A mixed-methods data collection approach was utilized, which included pedometer measurements of staff walking distances, room usage data, time studies in patient rooms and nurses' stations, visibility counts, and staff questionnaires yielding qualitative and quantitative results. Overall, the data comparing the centralized and decentralized models yielded mixed results. This study's centralized design was rated significantly higher in its ability to support teamwork and efficient patient care with decreased staff walking distances. The decentralized unit design was found to positively influence proximity to patients in a larger design footprint and contribute to increased visits to and time spent in patient rooms. Among the factors contributing to caregiver efficiency and satisfaction are nursing station design, an integrated team approach, and the overall physical layout of the space on walkability, allocation of caregiver time, and visibility. However, unit design alone does not solely impact efficiency, suggesting that designers must consider the broader implications of a culture of care and processes.
Ajayi, Saheed O; Oyedele, Lukumon O
2018-05-01
Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.
GaN-Based Laser Wireless Power Transfer System.
De Santi, Carlo; Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Cesca, Tiziana; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-01-17
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.
GaN-Based Laser Wireless Power Transfer System
Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-01-01
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications. PMID:29342114
Research on High-efficient Remanufacturing Technologies and Application of Electric Motor
NASA Astrophysics Data System (ADS)
Liu, Ren; Zhao, Yuejin; Yang, Xu; Wang, Gen
2017-09-01
The energy conservation of electric motor system is the key of industrial energy conservation. With the implementation and acceleration of electric motor energy efficiency improvement plan, more and more electric motors are knocked out. High-efficient remanufacturing of electric motor refers to improving the efficiency of electric motor and recycling the resources by replacing the winding, iron core and other components of electric motor on the basis of the low-efficient/outdated electric motors, which conforms to China’s policy of circular economy and resource recovery. The remanufacturing of electric motor not only maximizes the use of resources, but also reduces the energy consumption generated by reprocessing of cast iron, silicon steel sheet and other materials in dismantling of electric motor. However, structures and iron core materials used in design and manufacture of electric motors are different, and the degrees of wear of electric motors are also different under different operating conditions, which further result in diversified design schemes, increased remanufacturing cost and reduced remanufacturing efficiency. This paper analyzes the key process technologies for remanufacturing of electric motors are researched by analyzing the remanufacturing technologies of electric motors, and presents the feasibility to replace the cast-aluminum rotor with cast-copper rotor in high-efficient remanufacturing process of electric motor.
Budgeting for Efficiency and Effectiveness
ERIC Educational Resources Information Center
Pereus, Steven C.
2012-01-01
For most districts, budgeting has become a cost-cutting exercise designed to close the gap between revenues and expenses. During this process, decision makers inherently assume that existing operations are efficient and effective--an assumption that is rarely validated by facts. Cutting programs and services balances budgets but does not…
DOT National Transportation Integrated Search
2012-09-01
The final report for the Model Orlando Regionally Efficient Travel Management Coordination Center (MORE TMCC) presents the details of : the 2-year process of the partial deployment of the original MORE TMCC design created in Phase I of this project...
Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale.
Behin, Jamshid; Akbari, Abbas; Mahmoudi, Mohsen; Khajeh, Mehdi
2017-09-15
In present work, the treatment of aromatic compounds of simulated wastewater was performed by Fenton and NaOCl/Fe 2+ processes. The model solution was prepared based on the wastewater composition of Diisocyanate unit of Karoon Petrochemical Company/Iran containing Diamino-toluenes, Nitro-phenol, Mononitro-toluene, Nitro-cresol, and Dinitro-toluene. Experiments were conducted in a batch mode to examine the effects of operating variables such as pH, oxidant dosages, ferrous ion concentration and numbers of feeding on COD removal. Taguchi experimental design was used to determine the optimum conditions. The COD removal efficiency under optimum conditions (suggested by Taguchi design) in Fenton and NaOCl/Fe 2+ processes was 88.7% and 83.4%, respectively. The highest contribution factor in Fenton process belongs to pH (47.47%) and in NaOCl/Fe 2+ process belongs to NaOCl/pollutants (50.26%). High regression coefficient (R 2 : 0.98) obtained for Taguchi method, indicates that models are statistically significant and are in well agreement with each other. The NaOCl/Fe 2+ process utilizing a conventional oxidant, in comparison to hydrogen peroxide, is an efficient cost effective process for COD removal from real wastewater, although the removal efficiency is not as high as in Fenton process; however it is a suitable process to replace Fenton process in industrial scale for wastewater involved aromatic compounds with high COD. This process was successfully applied in Karoon Petrochemical Company/Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.
Designing the accident and emergency system: lessons from manufacturing
Walley, P
2003-01-01
Objectives: To review the literature on manufacturing process design and demonstrate applicability in health care. Methods: Literature review and application of theory using two years activity data from two healthcare communities and extensive observation of activities over a six week period by seven researchers. Results: It was possible to identify patient flows that could be used to design treatment processes around the needs of the patient. Some queues are built into existing treatment processes and can be removed by better process design. Capacity imbalance, not capacity shortage, causes some unnecessary waiting in accident and emergency departments. Conclusions: Clinicians would find that modern manufacturing theories produce more acceptable designs of systems. In particular, good quality is seen as a necessary pre-requisite of fast, efficient services. PMID:12642523
Optimization under uncertainty of parallel nonlinear energy sinks
NASA Astrophysics Data System (ADS)
Boroson, Ethan; Missoum, Samy; Mattei, Pierre-Olivier; Vergez, Christophe
2017-04-01
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations. Through nonlinear stiffness properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper (TMD), NESs do not require a specific tuning and absorb energy over a wider range of frequencies. Nevertheless, they are still only efficient over a limited range of excitations. In order to mitigate this limitation and maximize the efficiency range, this work investigates the optimization of multiple NESs configured in parallel. It is well known that the efficiency of a NES is extremely sensitive to small perturbations in loading conditions or design parameters. In fact, the efficiency of a NES has been shown to be nearly discontinuous in the neighborhood of its activation threshold. For this reason, uncertainties must be taken into account in the design optimization of NESs. In addition, the discontinuities require a specific treatment during the optimization process. In this work, the objective of the optimization is to maximize the expected value of the efficiency of NESs in parallel. The optimization algorithm is able to tackle design variables with uncertainty (e.g., nonlinear stiffness coefficients) as well as aleatory variables such as the initial velocity of the main system. The optimal design of several parallel NES configurations for maximum mean efficiency is investigated. Specifically, NES nonlinear stiffness properties, considered random design variables, are optimized for cases with 1, 2, 3, 4, 5, and 10 NESs in parallel. The distributions of efficiency for the optimal parallel configurations are compared to distributions of efficiencies of non-optimized NESs. It is observed that the optimization enables a sharp increase in the mean value of efficiency while reducing the corresponding variance, thus leading to more robust NES designs.
Application of Two-Sided Matching to Internal Labor of the Hellenic Navy
2012-03-01
were developed, leading to the introduction of various choice programs that allow parents to pick schools for their children within or outside...any nature (i.e., military) plays a crucial role towards the direction of efficiency and effectiveness. A well-designed assignment process is a handy...v ABSTRACT The assignment process in an organization of any nature (i.e., military) plays a crucial role towards the direction of efficiency and
Human Factors Analysis to Improve the Processing of Ares-1 Launch Vehicle
NASA Technical Reports Server (NTRS)
Stambolian, Damon B.; Dippolito, Gregory M.; Nyugen, Bao; Dischinger, Charles; Tran, Donald; Henderson, Gena; Barth, Tim
2011-01-01
This slide presentation reviews the use of Human Factors analysis in improving the ground processing procedures for the Ares-1 launch vehicle. The light vehicle engineering designers for Ares-l launch vehicle had to design the flight vehicle for effective, efficient and safe ground operations in the cramped dimensions in a rocket design. The use of a mockup of the area where the technician would be required to work proved to be a very effective method to promote the collaboration between the Ares-1 designers and the ground operations personnel.
Gu, Bing; Linehan, Brian; Tseng, Yin-Chao
2015-08-01
A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen
2017-11-01
Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.
Efficient simulation of press hardening process through integrated structural and CFD analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek
Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less
Efficient Robust Optimization of Metal Forming Processes using a Sequential Metamodel Based Strategy
NASA Astrophysics Data System (ADS)
Wiebenga, J. H.; Klaseboer, G.; van den Boogaard, A. H.
2011-08-01
The coupling of Finite Element (FE) simulations to mathematical optimization techniques has contributed significantly to product improvements and cost reductions in the metal forming industries. The next challenge is to bridge the gap between deterministic optimization techniques and the industrial need for robustness. This paper introduces a new and generally applicable structured methodology for modeling and solving robust optimization problems. Stochastic design variables or noise variables are taken into account explicitly in the optimization procedure. The metamodel-based strategy is combined with a sequential improvement algorithm to efficiently increase the accuracy of the objective function prediction. This is only done at regions of interest containing the optimal robust design. Application of the methodology to an industrial V-bending process resulted in valuable process insights and an improved robust process design. Moreover, a significant improvement of the robustness (>2σ) was obtained by minimizing the deteriorating effects of several noise variables. The robust optimization results demonstrate the general applicability of the robust optimization strategy and underline the importance of including uncertainty and robustness explicitly in the numerical optimization procedure.
Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)
NASA Astrophysics Data System (ADS)
Raskovic, Dejan
Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.
Lee, Robert H; Bott, Marjorie J; Gajewski, Byron; Taunton, Roma Lee
2009-02-01
To examine the efficiency of the care planning process in nursing homes. We collected detailed primary data about the care planning process for a stratified random sample of 107 nursing homes from Kansas and Missouri. We used these data to calculate the average direct cost per care plan and used data on selected deficiencies from the Online Survey Certification and Reporting System to measure the quality of care planning. We then analyzed the efficiency of the assessment process using corrected ordinary least squares (COLS) and data envelopment analysis (DEA). Both approaches suggested that there was considerable inefficiency in the care planning process. The average COLS score was 0.43; the average DEA score was 0.48. The correlation between the two sets of scores was quite high, and there was no indication that lower costs resulted in lower quality. For-profit facilities were significantly more efficient than not-for-profit facilities. Multiple studies of nursing homes have found evidence of inefficiency, but virtually all have had measurement problems that raise questions about the results. This analysis, which focuses on a process with much simpler measurement issues, finds evidence of inefficiency that is largely consistent with earlier studies. Making nursing homes more efficient merits closer attention as a strategy for improving care. Increasing efficiency by adopting well-designed, reliable processes can simultaneously reduce costs and improve quality.
Product Development and its Comparative Analysis by SLA, SLS and FDM Rapid Prototyping Processes
NASA Astrophysics Data System (ADS)
Choudhari, C. M.; Patil, V. D.
2016-09-01
To grab market and meeting deadlines has increased the scope of new methods in product design and development. Industries continuously strive to optimize the development cycles with high quality and cost efficient products to maintain market competitiveness. Thus the need of Rapid Prototyping Techniques (RPT) has started to play pivotal role in rapid product development cycle for complex product. Dimensional accuracy and surface finish are the corner stone of Rapid Prototyping (RP) especially if they are used for mould development. The paper deals with the development of part made with the help of Selective Laser Sintering (SLS), Stereo-lithography (SLA) and Fused Deposition Modelling (FDM) processes to benchmark and investigate on various parameters like material shrinkage rate, dimensional accuracy, time, cost and surface finish. This helps to conclude which processes can be proved to be effective and efficient in mould development. In this research work the emphasis was also given to the design stage of a product development to obtain an optimum design solution for an existing product.
Reconfigurable Very Long Instruction Word (VLIW) Processor
NASA Technical Reports Server (NTRS)
Velev, Miroslav N.
2015-01-01
Future NASA missions will depend on radiation-hardened, power-efficient processing systems-on-a-chip (SOCs) that consist of a range of processor cores custom tailored for space applications. Aries Design Automation, LLC, has developed a processing SOC that is optimized for software-defined radio (SDR) uses. The innovation implements the Institute of Electrical and Electronics Engineers (IEEE) RazorII voltage management technique, a microarchitectural mechanism that allows processor cores to self-monitor, self-analyze, and selfheal after timing errors, regardless of their cause (e.g., radiation; chip aging; variations in the voltage, frequency, temperature, or manufacturing process). This highly automated SOC can also execute legacy PowerPC 750 binary code instruction set architecture (ISA), which is used in the flight-control computers of many previous NASA space missions. In developing this innovation, Aries Design Automation has made significant contributions to the fields of formal verification of complex pipelined microprocessors and Boolean satisfiability (SAT) and has developed highly efficient electronic design automation tools that hold promise for future developments.
NASA Astrophysics Data System (ADS)
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric De Souza
2017-02-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric de Souza
2017-01-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions). PMID:28145477
Reduction of uranium hexafluoride to tetrafluoride by using the hydrogen atoms
NASA Astrophysics Data System (ADS)
Aleksandrov, B. P.; Gordon, E. B.; Ivanov, A. V.; Kotov, A. A.; Smirnov, V. E.
2016-09-01
We consider the reduction of UF6 to UF4 by chemical reaction with hydrogen atoms originated in the powerful chemical generator. The principal design of such a chemical convertor is described. The results of the mathematical modeling of the thermodynamics and kinetics of the UF6 to UF4 reduction process are analyzed. The few options for the hydrogen atom generator design are proposed. A layout of the experimental setup with the chemical reactor is presented. The high efficiency together with the ability of the process scaling without loss of its efficiency makes this approach to the uranium hexafluoride depletion into tetrafluoride promising for its application in the industry.
The stem cell laboratory: design, equipment, and oversight.
Wesselschmidt, Robin L; Schwartz, Philip H
2011-01-01
This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.
Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.
Qu, Li; Morton, David A V; Zhou, Qi Tony
2015-01-01
Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.
Electrokinetic remediation prefield test methods
NASA Technical Reports Server (NTRS)
Hodko, Dalibor (Inventor)
2000-01-01
Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.
An Ada implementation of the network manager for the advanced information processing system
NASA Technical Reports Server (NTRS)
Nagle, Gail A.
1986-01-01
From an implementation standpoint, the Ada language provided many features which facilitated the data and procedure abstraction process. The language supported a design which was dynamically flexible (despite strong typing), modular, and self-documenting. Adequate training of programmers requires access to an efficient compiler which supports full Ada. When the performance issues for real time processing are finally addressed by more stringent requirements for tasking features and the development of efficient run-time environments for embedded systems, the full power of the language will be realized.
Folgueiras-Amador, Ana A; Philipps, Kai; Guilbaud, Sébastien; Poelakker, Jarno; Wirth, Thomas
2017-11-27
Flow electrochemistry is an efficient methodology to generate radical intermediates. An electrochemical flow microreactor has been designed and manufactured to improve the efficiency of electrochemical flow reactions. With this device only little or no supporting electrolytes are needed, making processes less costly and enabling easier purification. This is demonstrated by the facile synthesis of amidyl radicals used in intramolecular hydroaminations to produce isoindolinones. The combination with inline mass spectrometry facilitates a much easier combination of chemical steps in a single flow process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Silicon Photonics: Challenges and Future
2007-01-01
process or phonon assisted. It directly impacts the internal quantum efficiency through the relationship : ηi = (1+ (τrad/τ non-rad ))-1 There are...linear cavity approach, the reported differential quantum efficiency is currently low. The measured characteristic temperature (To), is lower than...rule changes • package design 4.1.2 Inter-chip interconnects There is a requirement on the circuit card to transfer data more efficiently between
Variable cross-section windings for efficiency improvement of electric machines
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-02-01
Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.
Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites
NASA Technical Reports Server (NTRS)
Blume, Jennifer L.
2010-01-01
Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... these decisionmaking processes will be applied by FDA to help design effective communication strategies..., beliefs, and behaviors--and use risk communications; (2) more efficiently and effectively design messages... provided about the design and methodology of the pretests and the studies to effectively comment on the...
Organizational Learning and Product Design Management: Towards a Theoretical Model.
ERIC Educational Resources Information Center
Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael
2003-01-01
Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…
Computing Interactions Of Free-Space Radiation With Matter
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.; Townsend, L. W.; Badavi, F. F.; Tripathi, R. K.; Silberberg, R.; Tsao, C. H.; Badwar, G. D.
1995-01-01
High Charge and Energy Transport (HZETRN) computer program computationally efficient, user-friendly package of software adressing problem of transport of, and shielding against, radiation in free space. Designed as "black box" for design engineers not concerned with physics of underlying atomic and nuclear radiation processes in free-space environment, but rather primarily interested in obtaining fast and accurate dosimetric information for design and construction of modules and devices for use in free space. Computational efficiency achieved by unique algorithm based on deterministic approach to solution of Boltzmann equation rather than computationally intensive statistical Monte Carlo method. Written in FORTRAN.
Improving Working Memory Efficiency by Reframing Metacognitive Interpretation of Task Difficulty
ERIC Educational Resources Information Center
Autin, Frederique; Croizet, Jean-Claude
2012-01-01
Working memory capacity, our ability to manage incoming information for processing purposes, predicts achievement on a wide range of intellectual abilities. Three randomized experiments (N = 310) tested the effectiveness of a brief psychological intervention designed to boost working memory efficiency (i.e., state working memory capacity) by…
Ergonomics and design: its principles applied in the industry.
Tavares, Ademario Santos; Silva, Francisco Nilson da
2012-01-01
Industrial Design encompasses both product development and optimization of production process. In this sense, Ergonomics plays a fundamental role, because its principles, methods and techniques can help operators to carry out their tasks most successfully. A case study carried out in an industry shows that the interaction among Design, Production Engineering and Materials Engineering departments may improve some aspects concerned security, comfort, efficiency and performance. In this process, Ergonomics had shown to be of essential importance to strategic decision making to the improvement of production section.
Chip Design Process Optimization Based on Design Quality Assessment
NASA Astrophysics Data System (ADS)
Häusler, Stefan; Blaschke, Jana; Sebeke, Christian; Rosenstiel, Wolfgang; Hahn, Axel
2010-06-01
Nowadays, the managing of product development projects is increasingly challenging. Especially the IC design of ASICs with both analog and digital components (mixed-signal design) is becoming more and more complex, while the time-to-market window narrows at the same time. Still, high quality standards must be fulfilled. Projects and their status are becoming less transparent due to this complexity. This makes the planning and execution of projects rather difficult. Therefore, there is a need for efficient project control. A main challenge is the objective evaluation of the current development status. Are all requirements successfully verified? Are all intermediate goals achieved? Companies often develop special solutions that are not reusable in other projects. This makes the quality measurement process itself less efficient and produces too much overhead. The method proposed in this paper is a contribution to solve these issues. It is applied at a German design house for analog mixed-signal IC design. This paper presents the results of a case study and introduces an optimized project scheduling on the basis of quality assessment results.
Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.
La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel
2017-12-15
Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Geng, Zongyu; Yang, Feng; Chen, Xi; Wu, Nianqiang
2016-01-01
It remains a challenge to accurately calibrate a sensor subject to environmental drift. The calibration task for such a sensor is to quantify the relationship between the sensor’s response and its exposure condition, which is specified by not only the analyte concentration but also the environmental factors such as temperature and humidity. This work developed a Gaussian Process (GP)-based procedure for the efficient calibration of sensors in drifting environments. Adopted as the calibration model, GP is not only able to capture the possibly nonlinear relationship between the sensor responses and the various exposure-condition factors, but also able to provide valid statistical inference for uncertainty quantification of the target estimates (e.g., the estimated analyte concentration of an unknown environment). Built on GP’s inference ability, an experimental design method was developed to achieve efficient sampling of calibration data in a batch sequential manner. The resulting calibration procedure, which integrates the GP-based modeling and experimental design, was applied on a simulated chemiresistor sensor to demonstrate its effectiveness and its efficiency over the traditional method. PMID:26924894
Design of quantum efficiency measurement system for variable doping GaAs photocathode
NASA Astrophysics Data System (ADS)
Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang
2008-03-01
To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.
DEVELOPING A CAPE-OPEN COMPLIANT METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (CO-MFFP2T)
The USEPA is developing a Computer Aided Process Engineering (CAPE) software tool for the metal finishing industry that helps users design efficient metal finishing processes that are less polluting to the environment. Metal finishing process lines can be simulated and evaluated...
The United States Environmental Protection Agency is developing a Computer
Aided Process Engineering (CAPE) software tool for the metal finishing
industry that helps users design efficient metal finishing processes that
are less polluting to the environment. Metal finish...
Boston-Fleischhauer, Carol
2008-02-01
The demand to redesign healthcare processes that achieve efficient, effective, and safe results is never-ending. Part 1 of this 2-part series introduced human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare organizations. In part 2, the author applies this knowledge to one of the most common operational processes in healthcare: clinical documentation. Specific implementation strategies and anticipated results are discussed, along with organizational challenges and recommended executive responses.
Earthdata Search Usability Study Process
NASA Technical Reports Server (NTRS)
Reese, Mark
2016-01-01
User experience (UX) design is the process of enhancing user satisfaction by improving various aspects of the user's interaction with an application or website. One aspect of UX design is usability, or the extent to which an application can be used to to accomplish tasks efficiently, effectively, and with satisfaction. NASA's Earthdata Search Client recently underwent a focused usability testing project to measure usability and gain valuable user feedback and insights to increase usability for its end-users. This presentation focuses on the process by which the usability tests were administered and the lessons learned throughout the process.
Pressure Mapping and Efficiency Analysis of an EPPLER 857 Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Clark, Tristan
A conceptual energy ship is presented to provide renewable energy. The ship, driven by the wind, drags a hydrokinetic turbine through the water. The power generated is used to run electrolysis on board, taking the resultant hydrogen back to shore to be used as an energy source. The basin efficiency (Power/thrust*velocity) of the Hydrokinetic Turbine (HTK) plays a vital role in this process. In order to extract the maximum allowable power from the flow, the blades need to be optimized. The structural analysis of the blade is important, as the blade will undergo high pressure loads from the water. A procedure for analysis of a preliminary Hydrokinetic Turbine blade design is developed. The blade was designed by a non-optimized Blade Element Momentum Theory (BEMT) code. Six simulations were run, with varying mesh resolution, turbulence models, and flow region size. The procedure was developed that provides detailed explanation for the entire process, from geometry and mesh generation to post-processing analysis tools. The efficiency results from the simulations are used to study the mesh resolution, flow region size, and turbulence models. The results are compared to the BEMT model design targets. Static pressure maps are created that can be used for structural analysis of the blades.
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes
Simulative design and process optimization of the two-stage stretch-blow molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-22
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less
Simulative design and process optimization of the two-stage stretch-blow molding process
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-01
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.
NASA Astrophysics Data System (ADS)
Sekak, Siti Nor Azniza Ahmad; Rahmat Dr, Ismail, Prof.; Yunus, Julitta; Saád, Sri Rahayu Mohd; Hanafi Azman Ong, Mohd
2017-12-01
The Energy Efficiency (EE) plays an important role over the building life cycle and the implementation of EE in refurbishment projects has a significant potential towards the reduction of greenhouse gas emissions. However, the involvement of the design team at the early stage of the refurbishment projects will determine the success of EE implementations. Thus, a pilot study was conducted at the initial stage of the data collection process of this research to validate and verify the questionnaires.
Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances
Lionta, Evanthia; Spyrou, George; Vassilatis, Demetrios K.; Cournia, Zoe
2014-01-01
Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process. PMID:25262799
Using location tracking data to assess efficiency in established clinical workflows.
Meyer, Mark; Fairbrother, Pamela; Egan, Marie; Chueh, Henry; Sandberg, Warren S
2006-01-01
Location tracking systems are becoming more prevalent in clinical settings yet applications still are not common. We have designed a system to aid in the assessment of clinical workflow efficiency. Location data is captured from active RFID tags and processed into usable data. These data are stored and presented visually with trending capability over time. The system allows quick assessments of the impact of process changes on workflow, and isolates areas for improvement.
[Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].
Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin
2017-07-01
In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.
EBF3 Design and Sustainability Considerations
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.
2015-01-01
Electron beam freeform fabrication (EBF3) is a cross-cutting technology for producing structural metal parts using an electron beam and wire feed in a layer-additive fashion. This process was developed by researchers at NASA Langley to specifically address needs for aerospace applications. Additive manufacturing technologies like EBF3 enable efficient design of materials and structures by tailoring microstructures and chemistries at the local level to improve performance at the global level. Additive manufacturing also facilitates design freedom by integrating assemblies into complex single-piece components, eliminating flanges, fasteners and joints, resulting in reduced size and mass. These same efficiencies that permit new design paradigms also lend themselves to supportability and sustainability. Long duration space missions will require a high degree of self-sustainability. EBF3 is a candidate technology being developed to allow astronauts to conduct repairs and fabricate new components and tools on demand, with efficient use of feedstock materials and energy.
NASA Astrophysics Data System (ADS)
Braun, Robert Joseph
The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.
Investigation of internal elements impaction on particles circulation in a fluidized bed reactor
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Antipin, A. V.; Shamsutdinov, E. V.
2018-01-01
A numerical study of the fluidized bed apparatus in the presence of various internal elements is carried out. A chemical reaction for temperature-dependent processes with heat absorption is considered. The task of incoming heated catalyst granules to the reactor is investigated. The main emphasis is focused on the circulation flows of the catalyst particles, heating of the reactor, and the efficiency of the chemical reaction. The analysis of the impact of various design elements on the efficiency of the reactor is carried out. The influence of feeding heated catalyst device design on the effectiveness of whole reactor heating is educed. The influence of the presence of fine particles on the efficiency of the reaction for different reactor design features is also educed.
Implications of sampling design and sample size for national carbon accounting systems.
Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel
2011-11-08
Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.
An open-loop system design for deep space signal processing applications
NASA Astrophysics Data System (ADS)
Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi
2018-06-01
A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.
An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.
2010-01-01
This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.
Design optimization of a prescribed vibration system using conjoint value analysis
NASA Astrophysics Data System (ADS)
Malinga, Bongani; Buckner, Gregory D.
2016-12-01
This article details a novel design optimization strategy for a prescribed vibration system (PVS) used to mechanically filter solids from fluids in oil and gas drilling operations. A dynamic model of the PVS is developed, and the effects of disturbance torques are detailed. This model is used to predict the effects of design parameters on system performance and efficiency, as quantified by system attributes. Conjoint value analysis, a statistical technique commonly used in marketing science, is utilized to incorporate designer preferences. This approach effectively quantifies and optimizes preference-based trade-offs in the design process. The effects of designer preferences on system performance and efficiency are simulated. This novel optimization strategy yields improvements in all system attributes across all simulated vibration profiles, and is applicable to other industrial electromechanical systems.
Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement
NASA Astrophysics Data System (ADS)
Wołoszyn, Marek Adam
2017-10-01
Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.
Rapid Generation of Large Dimension Photon Sieve Designs
NASA Technical Reports Server (NTRS)
Hariharan, Shravan; Fitzpatrick, Sean; Kim, Hyun Jung; Julian, Matthew; Sun, Wenbo; Tedjojuwono, Ken; MacDonnell, David
2017-01-01
A photon sieve is a revolutionary optical instrument that provides high resolution imaging at a fraction of the weight of typical telescopes (areal density of 0.3 kg/m2 compared to 25 kg/m2 for the James Webb Space Telescope). The photon sieve is a variation of a Fresnel Zone Plate consisting of many small holes spread out in a ring-like pattern, which focuses light of a specific wavelength by diffraction. The team at NASA Langley Research Center has produced a variety of small photon sieves for testing. However, it is necessary to increase both the scale and rate of production, as a single sieve previously took multiple weeks to design and fabricate. This report details the different methods used in producing photon sieve designs in two file formats: CIF and DXF. The difference between these methods, and the two file formats were compared, to determine the most efficient design process. Finally, a step-by-step sieve design and fabrication process was described. The design files can be generated in both formats using an editing tool such as Microsoft Excel. However, an approach using a MATLAB program reduced the computing time of the designs and increased the ability of the user to generate large photon sieve designs. Although the CIF generation process was deemed the most efficient, the design techniques for both file types have been proven to generate complete photon sieves that can be used for scientific applications
Losiak, Anna; Gołębiowska, Izabela; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Boyd, Andrea; Hettrich, Sebastian; Jones, Natalie; Groemer, Gernot
2014-05-01
MARS2013 was an integrated Mars analog field simulation in eastern Morocco performed by the Austrian Space Forum between February 1 and 28, 2013. The purpose of this paper is to discuss the system of data processing and utilization adopted by the Remote Science Support (RSS) team during this mission. The RSS team procedures were designed to optimize operational efficiency of the Flightplan, field crew, and RSS teams during a long-term analog mission with an introduced 10 min time delay in communication between "Mars" and Earth. The RSS workflow was centered on a single-file, easy-to-use, spatially referenced database that included all the basic information about the conditions at the site of study, as well as all previous and planned activities. This database was prepared in Google Earth software. The lessons learned from MARS2013 RSS team operations are as follows: (1) using a spatially referenced database is an efficient way of data processing and data utilization in a long-term analog mission with a large amount of data to be handled, (2) mission planning based on iterations can be efficiently supported by preparing suitability maps, (3) the process of designing cartographical products should start early in the planning stages of a mission and involve representatives of all teams, (4) all team members should be trained in usage of cartographical products, (5) technical problems (e.g., usage of a geological map while wearing a space suit) should be taken into account when planning a work flow for geological exploration, (6) a system that helps the astronauts to efficiently orient themselves in the field should be designed as part of future analog studies.
Macroalgae for CO 2 Capture and Renewable Energy - A Pilot Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, Kristine
2011-01-31
The objective of this project was to demonstrate, at a pilot scale, the beneficial use of carbon dioxide (CO 2) through a technology designed to capture CO 2 from fossil-fuel fired power plant stack gas, generating macroalgae and converting the macroalgae at high efficiency to renewable methane that can be utilized in the power plant or introduced into a natural gas pipeline. The proposed pilot plant would demonstrate the cost-effectiveness and CO 2/ NO x flue-gas removal efficiency of an innovative algal scrubber technology where seaweeds are grown out of water on specially-designed supporting structures contained within greenhouses where themore » plants are constantly bathed by recycled nutrient sprays enriched by flue gas constituents. The work described in this document addresses Phase 1 of the project only. The scope of work for Phase 1 includes the completion of a preliminary design package; the collection of additional experimental data to support the preliminary and detailed design for a pilot scale utilization of CO 2 to cultivate macroalage and to process that algae to produce methane; and a technological and economic analysis to evaluate the potential of the system. Selection criteria for macroalgae that could survive the elevated temperatures and potential periodic desiccation of near desert project sites were identified. Samples of the selected macroalgae species were obtained and then subjected to anaerobic digestion to determine conversions and potential methane yields. A Process Design Package (PDP) was assembled that included process design, process flow diagram, material balance, instrumentation, and equipment list, sizes, and cost for the Phase 2 pilot plant. Preliminary economic assessments were performed under the various assumptions made, which are purposely conservative. Based on the results, additional development work should be conducted to delineate the areas for improving efficiency, reducing contingencies, and reducing overall costs.« less
Providing the Efficiency and Dispersion Characteristics of Aerosols in Ultrasonic Atomization
NASA Astrophysics Data System (ADS)
Khmelev, V. N.; Shalunov, A. V.; Golykh, R. N.; Nesterov, V. A.; Dorovskikh, R. S.; Shalunova, A. V.
2017-07-01
This article is devoted to the investigation of the process of atomization of liquids under the action of ultrasonic vibrations. It has been shown that the ultrasonic atomization parameters are determined by the regimes of action (vibration frequency and amplitude of the atomization surface), the liquid properties (viscosity, surface tension), and the thickness of the liquid layer covering the atomization surface. To reveal the dependences of the efficiency of the process at various dispersion characteristics of produced liquid droplets, we propose a model based on the cavitation-wave theory of droplet formation. The obtained results can be used in designing and using ultrasonic atomizers producing an aerosol with characteristics complying with the requirements on efficiency and dispersivity for the process being realized.
In-vitro engineering of novel bioactivity in the natural enzymes
NASA Astrophysics Data System (ADS)
Tiwari, Vishvanath
2016-10-01
Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.
Hashimoto, S; Fujita, M; Terai, K
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.
2010-09-01
modeling, synthesis , and characterization of several series functional and processable electro-active conjugated polymers with evolving frontier...tasks as a basic obligation of this award: Task #1. Low Band Gap Polymers The awardee (Professor Sun’s group at NSU) shall design, synthesis , and...design, modeling, synthesis , and characterizations of several series functional and processable electro-active conjugated polymers with evolving
HMI conventions for process control graphics.
Pikaar, Ruud N
2012-01-01
Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.
Olive fruits and vacuum impregnation, an interesting combination for dietetic iron enrichment.
Zunin, Paola; Turrini, Federica; Leardi, Riccardo; Boggia, Raffaella
2017-02-01
In this study vacuum impregnation (VI) was employed for the iron enrichment of olive fruits, which are very interesting as food vehicle for VI mineral supplementation for the porosity of their pulp. NaFeEDTA was chosen for olives fortification since it prevents iron from binding with compounds that could hinder it from being efficiently absorbed and since it causes few organoleptic problems. In order to improve the efficiency of the VI process, several parameters of the whole process were studied by design of experiment techniques. First of all D-optimal design was employed for a preliminary screening of the most significant process variables and showed that the concentration of VI solution was by far the most significant process variable, though its time in contact with olives was also significant. A factorial design was then applied to the remaining variables and it showed that the speed of the addition of VI solution was also significant. Finally, the application of a face centered composite design to the three selected variables allowed to detect processing conditions leading to final iron contents of 1.5-3 mg/g, corresponding to an introduction of 10-15 mg Fe with four or five fortified olive fruits. No effect on olive taste was observed at these concentrations. The results showed that olive fruits were the most interesting vehicles for the supplementation of both iron and other minerals.
Merino, Giselle Schmidt Alves Díaz; Teixeira, Clarissa Stefani; Schoenardie, Rodrigo Petry; Merino, Eugenio Andrés Diáz; Gontijo, Leila Amaral
2012-01-01
In product design, human factors are considered as an element of differentiation given that today's consumer demands are increasing. Safety, wellbeing, satisfaction, health, effectiveness, efficiency, and other aspects must be effectively incorporated into the product development process. This work proposes a usability assessment model that can be incorporated as an assessment tool. The methodological approach is settled in two stages. First a literature review focus specifically on usability and developing user-centred products. After this, a model of usability named Usa-Design (U-D©) is presented. Consisted of four phases: understanding the use context, pre-preliminary usability assessment (efficiency/effectiveness/satisfaction); assessment of usability principles and results, U-D© features are modular and flexible, allowing principles used in Phase 3 to be changed according to the needs and scenario of each situation. With qualitative/quantitative measurement scales of easy understanding and application, the model results are viable and applicable throughout all the product development process.
Warehouses information system design and development
NASA Astrophysics Data System (ADS)
Darajatun, R. A.; Sukanta
2017-12-01
Materials/goods handling industry is fundamental for companies to ensure the smooth running of their warehouses. Efficiency and organization within every aspect of the business is essential in order to gain a competitive advantage. The purpose of this research is design and development of Kanban of inventory storage and delivery system. Application aims to facilitate inventory stock checks to be more efficient and effective. Users easily input finished goods from production department, warehouse, customer, and also suppliers. Master data designed as complete as possible to be prepared applications used in a variety of process logistic warehouse variations. The author uses Java programming language to develop the application, which is used for building Java Web applications, while the database used is MySQL. System development methodology that I use is the Waterfall methodology. Waterfall methodology has several stages of the Analysis, System Design, Implementation, Integration, Operation and Maintenance. In the process of collecting data the author uses the method of observation, interviews, and literature.
Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes.
Pandey, Abhijeet P; Karande, Kiran P; Sonawane, Raju O; Deshmukh, Prashant K
2014-03-01
In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study. A separate study was designed to investigate the robustness of the predicted design space. The particle size, %EE and %CE of the optimized CH-NLPs were 111.3 nm, 33.4% and 35.2%, respectively. The observed responses were in accordance with the predicted response, which confirms the suitability and robustness of the design space for CH-NLP formulation. In conclusion, optimization of the selected key variables will help minimize the problems related to size, %EE and %CE that are generally encountered when scaling up processes for NLP formulations. The robustness of the design space will help minimize both intra-batch and inter-batch variations, which are quite common in the pharmaceutical industry.
Influence of operating conditions on the optimum design of electric vehicle battery cooling plates
NASA Astrophysics Data System (ADS)
Jarrett, Anthony; Kim, Il Yong
2014-01-01
The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.
2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions
2017-12-21
modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data
Managing Input during Assistive Technology Product Design
ERIC Educational Resources Information Center
Choi, Young Mi
2011-01-01
Many different sources of input are available to assistive technology innovators during the course of designing products. However, there is little information on which ones may be most effective or how they may be efficiently utilized within the design process. The aim of this project was to compare how three types of input--from simulation tools,…
Gleich, Stephen J; Nemergut, Michael E; Stans, Anthony A; Haile, Dawit T; Feigal, Scott A; Heinrich, Angela L; Bosley, Christopher L; Tripathi, Sandeep
2016-08-01
Ineffective and inefficient patient transfer processes can increase the chance of medical errors. Improvements in such processes are high-priority local institutional and national patient safety goals. At our institution, nonintubated postoperative pediatric patients are first admitted to the postanesthesia care unit before transfer to the PICU. This quality improvement project was designed to improve the patient transfer process from the operating room (OR) to the PICU. After direct observation of the baseline process, we introduced a structured, direct OR-PICU transfer process for orthopedic spinal fusion patients. We performed value stream mapping of the process to determine error-prone and inefficient areas. We evaluated primary outcome measures of handoff error reduction and the overall efficiency of patient transfer process time. Staff satisfaction was evaluated as a counterbalance measure. With the introduction of the new direct OR-PICU patient transfer process, the handoff communication error rate improved from 1.9 to 0.3 errors per patient handoff (P = .002). Inefficiency (patient wait time and non-value-creating activity) was reduced from 90 to 32 minutes. Handoff content was improved with fewer information omissions (P < .001). Staff satisfaction significantly improved among nearly all PICU providers. By using quality improvement methodology to design and implement a new direct OR-PICU transfer process with a structured multidisciplinary verbal handoff, we achieved sustained improvements in patient safety and efficiency. Handoff communication was enhanced, with fewer errors and content omissions. The new process improved efficiency, with high staff satisfaction. Copyright © 2016 by the American Academy of Pediatrics.
A Path to Successful Energy Retrofits: Early Collaboration through Integrated Project Delivery Teams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Kristen
2012-10-01
This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.
NASA Astrophysics Data System (ADS)
Huang, Jinsong
This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C60 based device accidentally. The high PM factor makes it good candidate for photo detector. The high gain was assigned to the trapped-charge induced enhanced-injection at C60/PEDOT:PSS interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monozov, Dmitriy; Lukie, Zarija
2016-04-01
Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. The developers present a novel design for running multiple codes in situ: using coroutines and position-independent executables they enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. They present Henson, an implementation of ourmore » design, and illustrate its versatility by tackling analysis tasks with different computational requirements. Our design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The presented techniques can also be integrated into other in situ frameworks.« less
The Stem Cell Laboratory: Design, Equipment, and Oversight
Wesselschmidt, Robin L.; Schwartz, Philip H.
2013-01-01
This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863
ERIC Educational Resources Information Center
California State Legislature, Sacramento. Joint Legislative Audit Committee.
The California legislature's Joint Legislative Audit Committee has issued a report on the design-build versus the design-bid-build process and offers a hybrid approach combining the two systems as a way of achieving the greatest cost efficiency at the least risk on public agencies. The cost benefits of faster delivery of the design-build method…
Parallel Ada benchmarks for the SVMS
NASA Technical Reports Server (NTRS)
Collard, Philippe E.
1990-01-01
The use of parallel processing paradigm to design and develop faster and more reliable computers appear to clearly mark the future of information processing. NASA started the development of such an architecture: the Spaceborne VHSIC Multi-processor System (SVMS). Ada will be one of the languages used to program the SVMS. One of the unique characteristics of Ada is that it supports parallel processing at the language level through the tasking constructs. It is important for the SVMS project team to assess how efficiently the SVMS architecture will be implemented, as well as how efficiently Ada environment will be ported to the SVMS. AUTOCLASS II, a Bayesian classifier written in Common Lisp, was selected as one of the benchmarks for SVMS configurations. The purpose of the R and D effort was to provide the SVMS project team with the version of AUTOCLASS II, written in Ada, that would make use of Ada tasking constructs as much as possible so as to constitute a suitable benchmark. Additionally, a set of programs was developed that would measure Ada tasking efficiency on parallel architectures as well as determine the critical parameters influencing tasking efficiency. All this was designed to provide the SVMS project team with a set of suitable tools in the development of the SVMS architecture.
Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia
2016-01-01
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber−bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution. PMID:27872280
Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia
2016-12-06
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.
Energy-efficient digital and wireless IC design for wireless smart sensing
NASA Astrophysics Data System (ADS)
Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong
2017-10-01
Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.
A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan
NASA Astrophysics Data System (ADS)
Nemnem, Ahmed Mohamed Farid
The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop. An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum stress below 50% material yield strength using 2D sections thickness and chord multipliers. Once the initial design was mechanically optimized, a CFD optimization was performed to maximize efficiency and/or stall margin. The CFD grid generator (AUTOGRID) reads 3DBGB output and accounts for hub fillets and tip gaps. Single and Multi-objective Genetic Algorithm (SOGA, MOGA) optimization have been used with the CFD analysis system. In SOGA optimization, efficiency was increased by 3.525% from 78.364% to 81.889% while only changing 4 design parameters. For MOGA optimization with higher weighting efficiency than stall margin, the efficiency was increased by 2.651% from 78.364% to 81.015% while the static pressure recovery factor was increased from 0.37407 to 0.4812286 that consequently increases the stall margin. The design process starts with a hot shape design, and then a hot to cold transformation process is explained once the optimization process ends which smoothly subtracts the mechanical deflections from the hot shape. This transformation ensures an accurate tip clearance. The optimization modules can be customized by the user as one full optimization or multiple small ones. This allows the designer not to be eliminated from the design loop which helps in taking the right choice of parameters for the optimization and the final feasible design.
Fuel Cell/Reformers Technology Development
NASA Technical Reports Server (NTRS)
2004-01-01
NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.
NASA Astrophysics Data System (ADS)
Novak, Joseph
Optical biological sensors are widely used in the fields of medical testing, water treatment and safety, gene identification, and many others due to advances in nanofabrication technology. This work focuses on the design of fiber-coupled Mach-Zehnder Interferometer (MZI) based biosensors fabricated on silicon-on-insulator (SOI) wafer. Silicon waveguide sensors are designed with multimode and single-mode dimensions. Input coupling efficiency is investigated by design of various taper structures. Integration processing and packaging is performed for fiber attachment and enhancement of input coupling efficiency. Optical guided-wave sensors rely on single-mode operation to extract an induced phase-shift from the output signal. A silicon waveguide MZI sensor designed and fabricated for both multimode and single-mode dimensions. Sensitivity of the sensors is analyzed for waveguide dimensions and materials. An s-bend structure is designed for the multimode waveguide to eliminate higher-order mode power as an alternative to single-mode confinement. Single-mode confinement is experimentally demonstrated through near field imaging of waveguide output. Y-junctions are designed for 3dB power splitting to the MZI arms and for power recombination after sensing to utilize the interferometric function of the MZI. Ultra-short 10microm taper structures with curved geometries are designed to improve insertion loss from fiber-to-chip without significantly increasing device area and show potential for applications requiring misalignment tolerance. An novel v-groove process is developed for self-aligned integration of fiber grooves for attachment to sensor chips. Thermal oxidation at temperatures from 1050-1150°C during groove processing creates an SiO2 layer on the waveguide end facet to protect the waveguide facet during integration etch processing without additional e-beam lithography processing. Experimental results show improvement of insertion loss compared to dicing preparation and Focused Ion Beam methods using the thermal oxidation process.
More efficient rejection of happy than of angry face distractors in visual search.
Horstmann, Gernot; Scharlau, Ingrid; Ansorge, Ulrich
2006-12-01
In the present study, we examined whether the detection advantage for negative-face targets in crowds of positive-face distractors over positive-face targets in crowds of negative faces can be explained by differentially efficient distractor rejection. Search Condition A demonstrated more efficient distractor rejection with negative-face targets in positive-face crowds than vice versa. Search Condition B showed that target identity alone is not sufficient to account for this effect, because there was no difference in processing efficiency for positive- and negative-face targets within neutral crowds. Search Condition C showed differentially efficient processing with neutral-face targets among positive- or negative-face distractors. These results were obtained with both a within-participants (Experiment 1) and a between-participants (Experiment 2) design. The pattern of results is consistent with the assumption that efficient rejection of positive (more homogenous) distractors is an important determinant of performance in search among (face) distractors.
Image detection and compression for memory efficient system analysis
NASA Astrophysics Data System (ADS)
Bayraktar, Mustafa
2015-02-01
The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.
Anaerobic digestion of municipal solid waste: Technical developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.
1996-01-01
The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.
Chen, Yantian; Bloemen, Veerle; Impens, Saartje; Moesen, Maarten; Luyten, Frank P; Schrooten, Jan
2011-12-01
Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant.
Kinter, Elizabeth T; Prior, Thomas J; Carswell, Christopher I; Bridges, John F P
2012-01-01
While the application of conjoint analysis and discrete-choice experiments in health are now widely accepted, a healthy debate exists around competing approaches to experimental design. There remains, however, a paucity of experimental evidence comparing competing design approaches and their impact on the application of these methods in patient-centered outcomes research. Our objectives were to directly compare the choice-model parameters and predictions of an orthogonal and a D-efficient experimental design using a randomized trial (i.e., an experiment on experiments) within an application of conjoint analysis studying patient-centered outcomes among outpatients diagnosed with schizophrenia in Germany. Outpatients diagnosed with schizophrenia were surveyed and randomized to receive choice tasks developed using either an orthogonal or a D-efficient experimental design. The choice tasks elicited judgments from the respondents as to which of two patient profiles (varying across seven outcomes and process attributes) was preferable from their own perspective. The results from the two survey designs were analyzed using the multinomial logit model, and the resulting parameter estimates and their robust standard errors were compared across the two arms of the study (i.e., the orthogonal and D-efficient designs). The predictive performances of the two resulting models were also compared by computing their percentage of survey responses classified correctly, and the potential for variation in scale between the two designs of the experiments was tested statistically and explored graphically. The results of the two models were statistically identical. No difference was found using an overall chi-squared test of equality for the seven parameters (p = 0.69) or via uncorrected pairwise comparisons of the parameter estimates (p-values ranged from 0.30 to 0.98). The D-efficient design resulted in directionally smaller standard errors for six of the seven parameters, of which only two were statistically significant, and no differences were found in the observed D-efficiencies of their standard errors (p = 0.62). The D-efficient design resulted in poorer predictive performance, but this was not significant (p = 0.73); there was some evidence that the parameters of the D-efficient design were biased marginally towards the null. While no statistical difference in scale was detected between the two designs (p = 0.74), the D-efficient design had a higher relative scale (1.06). This could be observed when the parameters were explored graphically, as the D-efficient parameters were lower. Our results indicate that orthogonal and D-efficient experimental designs have produced results that are statistically equivalent. This said, we have identified several qualitative findings that speak to the potential differences in these results that may have been statistically identified in a larger sample. While more comparative studies focused on the statistical efficiency of competing design strategies are needed, a more pressing research problem is to document the impact the experimental design has on respondent efficiency.
SIMULATION RESULTS OF SINGLE REFRIGERANTS FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER
The paper reviews the refrigerant/freezer (RF) design and refrigerant selection process that is necessary to design an energy efficient RF that does not use fully halogenated chlorofluorocarbons (CFCs). EPA is interested in phasing out CFCs in RFs to minimize stratospheric ozone ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Zhang, Jianshun; Pelken, Michael
Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less
NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-07-01
The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.
NASA Astrophysics Data System (ADS)
Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda
2009-02-01
The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.
Power processing for electric propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Herron, B. G.; Gant, G. D.
1975-01-01
The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).
A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security
Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif
2008-01-01
This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding innetwork processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks. PMID:27873963
A Novel Re-keying Function Protocol (NRFP) For Wireless Sensor Network Security.
Abdullah, Maan Younis; Hua, Gui Wei; Alsharabi, Naif
2008-12-04
This paper describes a novel re-keying function protocol (NRFP) for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs), covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.
NASA Technical Reports Server (NTRS)
Hawke, Veronica; Gage, Peter; Manning, Ted
2007-01-01
ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.
High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration
NASA Technical Reports Server (NTRS)
Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.
2015-01-01
A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.
celerite: Scalable 1D Gaussian Processes in C++, Python, and Julia
NASA Astrophysics Data System (ADS)
Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth
2017-09-01
celerite provides fast and scalable Gaussian Process (GP) Regression in one dimension and is implemented in C++, Python, and Julia. The celerite API is designed to be familiar to users of george and, like george, celerite is designed to efficiently evaluate the marginalized likelihood of a dataset under a GP model. This is then be used alongside a non-linear optimization or posterior inference library for the best results.
A-D-A small molecules for solution-processed organic photovoltaic cells.
Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng
2015-03-25
A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.
Conservation of design knowledge. [of large complex spaceborne systems
NASA Technical Reports Server (NTRS)
Sivard, Cecilia; Zweben, Monte; Cannon, David; Lakin, Fred; Leifer, Larry
1989-01-01
This paper presents an approach for acquiring knowledge about a design during the design process. The objective is to increase the efficiency of the lifecycle management of a space-borne system by providing operational models of the system's structure and behavior, as well as the design rationale, to human and automated operators. A design knowledge acquisition system is under development that compares how two alternative design versions meet the system requirements as a means for automatically capturing rationale for design changes.
45 CFR 205.36 - State plan requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., of an automated statewide management information system designed effectively and efficiently, to assist management in the administration of an approved AFDC State plan. The submission process to amend... account for— (1) All the factors in the total eligibility determination process under the plan for aid...
Efficient Bayesian experimental design for contaminant source identification
NASA Astrophysics Data System (ADS)
Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng
2015-01-01
In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.
Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hest, Marinus F; Moore, David; Klein, Talysa
Standard layer-by-layer solution processing methods constrain lead-halide perovskite device architectures. The layer below the perovskite must be robust to the strong organic solvents used to form the perovskite while the layer above has a limited thermal budget and must be processed in nonpolar solvents to prevent perovskite degradation. To circumvent these limitations, we developed a procedure where two transparent conductive oxide/transport material/perovskite half stacks are independently fabricated and then laminated together at the perovskite/perovskite interface. Using ultraviolet-visible absorption spectroscopy, external quantum efficiency, X-ray diffraction, and time-resolved photoluminesence spectroscopy, we show that this procedure improves photovoltaic properties of the perovskite layer.more » Applying this procedure, semitransparent devices employing two high-temperature oxide transport layers were fabricated, which realized an average efficiency of 9.6% (maximum: 10.6%) despite series resistance limitations from the substrate design. Overall, the developed lamination procedure curtails processing constraints, enables new device designs, and affords new opportunities for optimization.« less
Medverd, Jonathan R; Cross, Nathan M; Font, Frank; Casertano, Andrew
2013-08-01
Radiologists routinely make decisions with only limited information when assigning protocol instructions for the performance of advanced medical imaging examinations. Opportunity exists to simultaneously improve the safety, quality and efficiency of this workflow through the application of an electronic solution leveraging health system resources to provide concise, tailored information and decision support in real-time. Such a system has been developed using an open source, open standards design for use within the Veterans Health Administration. The Radiology Protocol Tool Recorder (RAPTOR) project identified key process attributes as well as inherent weaknesses of paper processes and electronic emulators of paper processes to guide the development of its optimized electronic solution. The design provides a kernel that can be expanded to create an integrated radiology environment. RAPTOR has implications relevant to the greater health care community, and serves as a case model for modernization of legacy government health information systems.
Carnot cycle at finite power: attainability of maximal efficiency.
Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G
2013-08-02
We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.
Cost studies for commercial fuselage crown designs
NASA Technical Reports Server (NTRS)
Walker, T. H.; Smith, P. J.; Truslove, G.; Willden, K. S.; Metschan, S. L.; Pfahl, C. L.
1991-01-01
Studies were conducted to evaluate the cost and weight potential of advanced composite design concepts in the crown region of a commercial transport. Two designs from each of three design families were developed using an integrated design-build team. A range of design concepts and manufacturing processes were included to allow isolation and comparison of cost centers. Detailed manufacturing/assembly plans were developed as the basis for cost estimates. Each of the six designs was found to have advantages over the 1995 aluminum benchmark in cost and weight trade studies. Large quadrant panels and cobonded frames were found to save significant assembly labor costs. Comparisons of high- and intermediate-performance fiber systems were made for skin and stringer applications. Advanced tow placement was found to be an efficient process for skin lay up. Further analysis revealed attractive processes for stringers and frames. Optimized designs were informally developed for each design family, combining the most attractive concepts and processes within that family. A single optimized design was selected as the most promising, and the potential for further optimization was estimated. Technical issues and barriers were identified.
Planning for Materials Processing in Space
NASA Technical Reports Server (NTRS)
1977-01-01
A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.
Strategy Guideline. Compact Air Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, Arlan
2013-06-01
This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less
NASA Astrophysics Data System (ADS)
Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.
2014-03-01
We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.
Portalés, Cristina; Casas, Sergio; Gimeno, Jesús; Fernández, Marcos; Poza, Montse
2018-04-19
Energy-efficient Buildings (EeB) are demanded in today’s constructions, fulfilling the requirements for green cities. Pre-fab buildings, which are modularly fully-built in factories, are a good example of this. Although this kind of building is quite new, the in situ inspection is documented using traditional tools, mainly based on paper annotations. Thus, the inspection process is not taking advantage of new technologies. In this paper, we present the preliminary results of the SIRAE project that aims to provide an Augmented Reality (AR) tool that can seamlessly aid in the regular processes of pre-fab building inspections to detect and eliminate the possible existing quality and energy efficiency deviations. In this regards, we show a description of the current inspection process and how an interactive tool can be designed and adapted to it. Our first results show the design and implementation of our tool, which is highly interactive and involves AR visualizations and 3D data-gathering, allowing the inspectors to quickly manage it without altering the way the inspection process is done. First trials on a real environment show that the tool is promising for massive inspection processes.
Fernández, Marcos; Poza, Montse
2018-01-01
Energy-efficient Buildings (EeB) are demanded in today’s constructions, fulfilling the requirements for green cities. Pre-fab buildings, which are modularly fully-built in factories, are a good example of this. Although this kind of building is quite new, the in situ inspection is documented using traditional tools, mainly based on paper annotations. Thus, the inspection process is not taking advantage of new technologies. In this paper, we present the preliminary results of the SIRAE project that aims to provide an Augmented Reality (AR) tool that can seamlessly aid in the regular processes of pre-fab building inspections to detect and eliminate the possible existing quality and energy efficiency deviations. In this regards, we show a description of the current inspection process and how an interactive tool can be designed and adapted to it. Our first results show the design and implementation of our tool, which is highly interactive and involves AR visualizations and 3D data-gathering, allowing the inspectors to quickly manage it without altering the way the inspection process is done. First trials on a real environment show that the tool is promising for massive inspection processes. PMID:29671799
A multi-fidelity framework for physics based rotor blade simulation and optimization
NASA Astrophysics Data System (ADS)
Collins, Kyle Brian
New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. Rotor Designers in industry need methods that allow them to use the most accurate simulation tools available to search for these optimal designs. Computer based rotor analysis and optimization have been advanced by the development of industry standard codes known as "comprehensive" rotorcraft analysis tools. These tools typically use table look-up aerodynamics, simplified inflow models and perform aeroelastic analysis using Computational Structural Dynamics (CSD). Due to the simplified aerodynamics, most design studies are performed varying structural related design variables like sectional mass and stiffness. The optimization of shape related variables in forward flight using these tools is complicated and results are viewed with skepticism because rotor blade loads are not accurately predicted. The most accurate methods of rotor simulation utilize Computational Fluid Dynamics (CFD) but have historically been considered too computationally intensive to be used in computer based optimization, where numerous simulations are required. An approach is needed where high fidelity CFD rotor analysis can be utilized in a shape variable optimization problem with multiple objectives. Any approach should be capable of working in forward flight in addition to hover. An alternative is proposed and founded on the idea that efficient hybrid CFD methods of rotor analysis are ready to be used in preliminary design. In addition, the proposed approach recognizes the usefulness of lower fidelity physics based analysis and surrogate modeling. Together, they are used with high fidelity analysis in an intelligent process of surrogate model building of parameters in the high fidelity domain. Closing the loop between high and low fidelity analysis is a key aspect of the proposed approach. This is done by using information from higher fidelity analysis to improve predictions made with lower fidelity models. This thesis documents the development of automated low and high fidelity physics based rotor simulation frameworks. The low fidelity framework uses a comprehensive code with simplified aerodynamics. The high fidelity model uses a parallel processor capable CFD/CSD methodology. Both low and high fidelity frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both the low and high fidelity frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test the process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist distribution. Approximation models are built for metrics related to rotor efficiency and vibration using the results from 60+ high fidelity (CFD/CSD) experiments and 400+ low fidelity experiments. Optimization using the approximation models found the Pareto Frontier anchor points, or the design having maximum rotor efficiency and the design having minimum vibration. Various Pareto generation methods are used to find designs on the frontier between these two anchor designs. When tested in the high fidelity framework, the Pareto anchor designs are shown to be very good designs when compared with other designs from the high fidelity database. This provides evidence that the process proposed has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors. In conclusion, the methods developed and documented in this thesis have made several novel contributions. First, an automated high fidelity CFD based forward flight simulation framework has been built for use in preliminary design optimization. The framework was built around an integrated, parallel processor capable CFD/CSD/AA process. Second, a novel method of building approximate models of high fidelity parameters has been developed. The method uses a combination of low and high fidelity results and combines Design of Experiments, statistical effects analysis, and aspects of approximation model management. And third, the determination of rotor blade shape variables through optimization using CFD based analysis in forward flight has been performed. This was done using the high fidelity CFD/CSD/AA framework and method mentioned above. While the low and high fidelity predictions methods used in the work still have inaccuracies that can affect the absolute levels of the results, a framework has been successfully developed and demonstrated that allows for an efficient process to improve rotor blade designs in terms of a selected choice of objective function(s). Using engineering judgment, this methodology could be applied today to investigate opportunities to improve existing designs. With improvements in the low and high fidelity prediction components that will certainly occur, this framework could become a powerful tool for future rotorcraft design work. (Abstract shortened by UMI.)
A critical review on factors influencing fermentative hydrogen production.
Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V
2017-03-01
Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.
NASA Astrophysics Data System (ADS)
Yang, Hui; Deng, Yan
2017-12-01
All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.
A Process Management System for Networked Manufacturing
NASA Astrophysics Data System (ADS)
Liu, Tingting; Wang, Huifen; Liu, Linyan
With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowl...
A New Approach to Flood Protection Design and Riparian Management
Philip B. Williams; Mitchell L. Swanson
1989-01-01
Conventional engineering methods of flood control design focus narrowly on the efficient conveyance of water, with little regard for environmental resource planning and natural geomorphic processes. Consequently, flood control projects are often environmentally disastrous, expensive to maintain, and even inadequate to control floods. In addition, maintenance programs...
Instructional Design: Skills to Benefit the Library Profession
ERIC Educational Resources Information Center
Turner, Jennifer
2016-01-01
Librarians in many types of libraries frequently find themselves positioned as instructors in formal and informal educational settings. Librarians can help ensure that learner needs are better defined and addressed by gaining basic competency in instructional design (ID), an intentional process used to create effective, efficient educational and…
Liu, Fei; Zhang, Xi; Jia, Yan
2015-01-01
In this paper, we propose a computer information processing algorithm that can be used for biomedical image processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1,k2) outlier. It can be used to detect abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1,k2) outlier in uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods' high accuracy and high efficiency.
Upconversion fiber-optic confocal microscopy under near-infrared pumping.
Kim, Do-Hyun; Kang, Jin U; Ilev, Ilko K
2008-03-01
We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55 microm. The upconversion confocal design allows the use of conventional Si detectors and 1.55 microm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11 microm, respectively.
Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George
2003-01-01
Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.
Echtermeyer, Alexander; Amar, Yehia; Zakrzewski, Jacek; Lapkin, Alexei
2017-01-01
A recently described C(sp 3 )-H activation reaction to synthesise aziridines was used as a model reaction to demonstrate the methodology of developing a process model using model-based design of experiments (MBDoE) and self-optimisation approaches in flow. The two approaches are compared in terms of experimental efficiency. The self-optimisation approach required the least number of experiments to reach the specified objectives of cost and product yield, whereas the MBDoE approach enabled a rapid generation of a process model.
Redesigning a risk-management process for tracking injuries.
Wenzel, G R
1998-01-01
The changing responsibilities of registered nurses are challenging even the most dedicated professionals. To survive within her newly-defined roles, one nurse used a total quality improvement model to understand, analyze, and improve a medical center's system for tracking inpatient injuries. This process led to the drafting of an original software design that implemented a nursing informatics tracking system. It has resulted in significant savings of time and money and has far surpassed the accuracy, efficiency, and scope of the previous method. This article presents an overview of the design process.
ERIC Educational Resources Information Center
Bonometti, Patrizia
2012-01-01
Purpose: The aim of this contribution is to describe a new complexity-science-based approach for improving safety, quality and efficiency and the way it was implemented by TenarisDalmine. Design/methodology/approach: This methodology is called "a safety-building community". It consists of a safety-behaviour social self-construction…
NASA Astrophysics Data System (ADS)
Nomaguch, Yutaka; Fujita, Kikuo
This paper proposes a design support framework, named DRIFT (Design Rationale Integration Framework of Three layers), which dynamically captures and manages hypothesis and verification in the design process. A core of DRIFT is a three-layered design process model of action, model operation and argumentation. This model integrates various design support tools and captures design operations performed on them. Action level captures the sequence of design operations. Model operation level captures the transition of design states, which records a design snapshot over design tools. Argumentation level captures the process of setting problems and alternatives. The linkage of three levels enables to automatically and efficiently capture and manage iterative hypothesis and verification processes through design operations over design tools. In DRIFT, such a linkage is extracted through the templates of design operations, which are extracted from the patterns embeded in design tools such as Design-For-X (DFX) approaches, and design tools are integrated through ontology-based representation of design concepts. An argumentation model, gIBIS (graphical Issue-Based Information System), is used for representing dependencies among problems and alternatives. A mechanism of TMS (Truth Maintenance System) is used for managing multiple hypothetical design stages. This paper also demonstrates a prototype implementation of DRIFT and its application to a simple design problem. Further, it is concluded with discussion of some future issues.
Enhancing Lipoaspirate Efficiency by Altering Liposuction Cannula Design
Davis, Kathryn; Rohrich, Rod J.
2014-01-01
Background: Interplay between the components of a lipoplasty system (suction pump, suction tubing, collection canister, and cannula) determines liposuction efficiency. However, in clinical practice, none of the components are more important than the cannula. Cannula design including port design, port placement, and shaft characteristics is the single most influential contributor to flow resistance and dramatically effects speed of aspiration and final contour. Many variations on port design and placement are available, yet functional enhancements to the cannula shaft have largely been ignored. We have engineered a set of novel cannulas addressing vital elements of cannula design in the effort to enhance aspiration efficiency and efficacy. Methods: Two novel cannula designs (dual- and multiport, in-line configuration), created using a unique proprietary manufacturing process, were evaluated against a popular industry standard design (tri-port, Mercedes configuration) to assess aspiration efficiency. Cannulas with shaft diameters of 3, 4, and 5 mm were attached to a standardized lipoplasty system and evaluated in real time for their ability to aspirate a viscous applesauce medium over a 5-minute time course. For each cannula, we calculated (1) the cross-sectional area of the cannula shaft, (2) single and total port area, (3) port-to-shaft ratio, and (4) theoretical resistance. Results: The relationship between the cannula shaft and cannula port(s) directly influenced flow dynamics. Comparing medium uptake time, aspiration efficiency and the aspiration curves demonstrated a significant improvement of the 2 novel cannulas over the standard cannula in the 5- and 4-mm designations. In the 3-mm group, a difference in uptake time remained. However, a significant difference in aspiration efficiency was only seen between the dual-port novel cannula and tri-port Mercedes standard cannula. Further, differences in the aspiration curves between all 3-mm cannulas approached but did not reach significance. Conclusions: We have developed 2 novel cannulas that maximize port features and seek to minimize the internal shaft resistance. Both designs demonstrate enhanced aspiration and uptake compared with an industry standard design. PMID:25426339
Enhancing lipoaspirate efficiency by altering liposuction cannula design.
Beck, Daniel O; Davis, Kathryn; Rohrich, Rod J
2014-10-01
Interplay between the components of a lipoplasty system (suction pump, suction tubing, collection canister, and cannula) determines liposuction efficiency. However, in clinical practice, none of the components are more important than the cannula. Cannula design including port design, port placement, and shaft characteristics is the single most influential contributor to flow resistance and dramatically effects speed of aspiration and final contour. Many variations on port design and placement are available, yet functional enhancements to the cannula shaft have largely been ignored. We have engineered a set of novel cannulas addressing vital elements of cannula design in the effort to enhance aspiration efficiency and efficacy. Two novel cannula designs (dual- and multiport, in-line configuration), created using a unique proprietary manufacturing process, were evaluated against a popular industry standard design (tri-port, Mercedes configuration) to assess aspiration efficiency. Cannulas with shaft diameters of 3, 4, and 5 mm were attached to a standardized lipoplasty system and evaluated in real time for their ability to aspirate a viscous applesauce medium over a 5-minute time course. For each cannula, we calculated (1) the cross-sectional area of the cannula shaft, (2) single and total port area, (3) port-to-shaft ratio, and (4) theoretical resistance. The relationship between the cannula shaft and cannula port(s) directly influenced flow dynamics. Comparing medium uptake time, aspiration efficiency and the aspiration curves demonstrated a significant improvement of the 2 novel cannulas over the standard cannula in the 5- and 4-mm designations. In the 3-mm group, a difference in uptake time remained. However, a significant difference in aspiration efficiency was only seen between the dual-port novel cannula and tri-port Mercedes standard cannula. Further, differences in the aspiration curves between all 3-mm cannulas approached but did not reach significance. We have developed 2 novel cannulas that maximize port features and seek to minimize the internal shaft resistance. Both designs demonstrate enhanced aspiration and uptake compared with an industry standard design.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Ryan Wartman; David Tarnowski
2006-03-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less
Theoretical insights into multiscale electronic processes in organic photovoltaics
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.
Asadzadeh, Farrokh; Maleki-Kaklar, Mahdi; Soiltanalinejad, Nooshin; Shabani, Farzin
2018-02-08
Citric acid (CA) was evaluated in terms of its efficiency as a biodegradable chelating agent, in removing zinc (Zn) from heavily contaminated soil, using a soil washing process. To determine preliminary ranges of variables in the washing process, single factor experiments were carried out with different CA concentrations, pH levels and washing times. Optimization of batch washing conditions followed using a response surface methodology (RSM) based central composite design (CCD) approach. CCD predicted values and experimental results showed strong agreement, with an R 2 value of 0.966. Maximum removal of 92.8% occurred with a CA concentration of 167.6 mM, pH of 4.43, and washing time of 30 min as optimal variable values. A leaching column experiment followed, to examine the efficiency of the optimum conditions established by the CCD model. A comparison of two soil washing techniques indicated that the removal efficiency rate of the column experiment (85.8%) closely matching that of the batch experiment (92.8%). The methodology supporting the research experimentation for optimizing Zn removal may be useful in the design of protocols for practical engineering soil decontamination applications.
Advanced coal gasifier-fuel cell power plant systems design
NASA Technical Reports Server (NTRS)
Heller, M. E.
1983-01-01
Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.
NASA Astrophysics Data System (ADS)
Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro
2017-08-01
In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.
NASA Technical Reports Server (NTRS)
Byrd, Raymond J.
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.
Probabilistic cost-benefit analysis of disaster risk management in a development context.
Kull, Daniel; Mechler, Reinhard; Hochrainer-Stigler, Stefan
2013-07-01
Limited studies have shown that disaster risk management (DRM) can be cost-efficient in a development context. Cost-benefit analysis (CBA) is an evaluation tool to analyse economic efficiency. This research introduces quantitative, stochastic CBA frameworks and applies them in case studies of flood and drought risk reduction in India and Pakistan, while also incorporating projected climate change impacts. DRM interventions are shown to be economically efficient, with integrated approaches more cost-effective and robust than singular interventions. The paper highlights that CBA can be a useful tool if certain issues are considered properly, including: complexities in estimating risk; data dependency of results; negative effects of interventions; and distributional aspects. The design and process of CBA must take into account specific objectives, available information, resources, and the perceptions and needs of stakeholders as transparently as possible. Intervention design and uncertainties should be qualified through dialogue, indicating that process is as important as numerical results. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.
Design of an efficient music-speech discriminator.
Tardón, Lorenzo J; Sammartino, Simone; Barbancho, Isabel
2010-01-01
In this paper, the problem of the design of a simple and efficient music-speech discriminator for large audio data sets in which advanced music playing techniques are taught and voice and music are intrinsically interleaved is addressed. In the process, a number of features used in speech-music discrimination are defined and evaluated over the available data set. Specifically, the data set contains pieces of classical music played with different and unspecified instruments (or even lyrics) and the voice of a teacher (a top music performer) or even the overlapped voice of the translator and other persons. After an initial test of the performance of the features implemented, a selection process is started, which takes into account the type of classifier selected beforehand, to achieve good discrimination performance and computational efficiency, as shown in the experiments. The discrimination application has been defined and tested on a large data set supplied by Fundacion Albeniz, containing a large variety of classical music pieces played with different instrument, which include comments and speeches of famous performers.
Image Processing In Laser-Beam-Steering Subsystem
NASA Technical Reports Server (NTRS)
Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.
1996-01-01
Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.
NASA Astrophysics Data System (ADS)
Sanders, Gary A.
Effective and efficient risk management processes include the use of high fidelity modeling and simulation during the concept exploration phase as part of the technology and risk assessment activities, with testing and evaluation tasks occurring in later design development phases. However, some safety requirements and design architectures may be dominated by the low probability/high consequence "Black Swan" vulnerabilities that require very early testing to characterize and efficiently mitigate. Failure to address these unique risks has led to catastrophic systems failures including the space shuttle Challenger, Deepwater Horizon, Fukushima nuclear reactor, and Katrina dike failures. Discovering and addressing these risks later in the design and development process can be very costly or even lead to project cancellation. This paper examines the need for risk management process adoption of early hazard phenomenology testing to inform the technical risk assessment, requirements definition and conceptual design. A case study of the lightning design vulnerability of the insensitive high explosives being used in construction, mining, demolition, and defense industries will be presented to examine the impact of this vulnerability testing during the concept exploration phase of the design effort. While these insensitive high explosives are far less sensitive to accidental initiation by fire, impact, friction or even electrical stimuli, their full range of sensitivities have not been characterized and ensuring safe engineering design and operations during events such as lightning storms requires vulnerability testing during the risk assessment phase.
Process modelling of biomass conversion to biofuels with combined heat and power.
Sharma, Abhishek; Shinde, Yogesh; Pareek, Vishnu; Zhang, Dongke
2015-12-01
A process model has been developed to study the pyrolysis of biomass to produce biofuel with heat and power generation. The gaseous and solid products were used to generate heat and electrical power, whereas the bio-oil was stored and supplied for other applications. The overall efficiency of the base case model was estimated for conversion of biomass into useable forms of bio-energy. It was found that the proposed design is not only significantly efficient but also potentially suitable for distributed operation of pyrolysis plants having centralised post processing facilities for production of other biofuels and chemicals. It was further determined that the bio-oil quality improved using a multi-stage condensation system. However, the recycling of flue gases coming from combustor instead of non-condensable gases in the pyrolyzer led to increase in the overall efficiency of the process with degradation of bio-oil quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, S.; Fujita, M.; Terai, K.
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells
Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.
Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin
2015-09-18
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.
Model reduction in integrated controls-structures design
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.
1993-01-01
It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.
2018-02-01
Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.
NASA Technical Reports Server (NTRS)
Wolf, M.
1979-01-01
To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.
Yu, Xingyue; Cabooter, Deirdre; Dewil, Raf
2018-05-24
This study aims at investigating the efficiency and kinetics of 2,4-DCP degradation via advanced reduction processes (ARP). Using UV light as activation method, the highest degradation efficiency of 2,4-DCP was obtained when using sulphite as a reducing agent. The highest degradation efficiency was observed under alkaline conditions (pH = 10.0), for high sulphite dosage and UV intensity, and low 2,4-DCP concentration. For all process conditions, first-order reaction rate kinetics were applicable. A quadratic polynomial equation fitted by a Box-Behnken Design was used as a statistical model and proved to be precise and reliable in describing the significance of the different process variables. The analysis of variance demonstrated that the experimental results were in good agreement with the predicted model (R 2 = 0.9343), and solution pH, sulphite dose and UV intensity were found to be key process variables in the sulphite/UV ARP. Consequently, the present study provides a promising approach for the efficient degradation of 2,4-DCP with fast degradation kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.
2008-01-01
The technological inception and challenges, as well as current applications of the electron beam freeform fabrication (EBF3) process are outlined. The process was motivated by the need for a new metals technology that would be cost-effective, enable the production of new alloys and that would could be used for efficient, lightweight structures. EBF3 is a rapid metal fabrication, layer-additive process that uses no molds or tools and which yields properties equivalent to wrought. The benefits of EBF3 include it near-net shape which minimizes scrap and reduces part count; efficiency in design which allows for lighter weight and enhanced performance; and, its "green" manufacturing process which yields minimal waste products. EBF3 also has a high tensile strength, while a structural test comparison found that EBF3 panels performed 5% lower than machined panels. Technical challenges in the EBF3 process include a need for process control monitoring and an improvement in localized heat response. Currently, the EBF3 process can be used to add details onto forgings and to construct and form complex shapes. However, it has potential uses in a variety of industries including aerospace, automotive, sporting goods and medical implant devices. The novel structural design capabilities of EBF3 have the ability to yield curved stiffeners which may be optimized for performance, low weight, low noise and damage tolerance applications. EBF3 has also demonstrated its usefulness in 0-gravity environments for supportability in space applications.
Energy-efficient Public Procurement: Best Practice in Program Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Christopher; Weber, Andrew; Semple, Abby
2013-02-15
This document illustrates the key issues and considerations involved in implementing energy-efficient public procurement. Our primary sources of information have been our partners in the Super Efficient Equipment and Appliance Deployment (SEAD) Initiative Procurement Working Group. Where applicable, we have highlighted specific ways in which working group participants have successfully overcome barriers to delivering effective programs. The following key points emerge from this analysis of programs for energy-efficient public procurement. Lessons for both developed and developing programs are highlighted throughout the guide. 1. Policy: Policy provides the initiative to begin a transition from first cost to life-cycle cost based purchasingmore » methods and culture. Effective policy is well-communicated, establishes accountability from top to bottom of organizations and simplifies the processes necessary to comply. Flexibility and responsiveness are essential in policy development and implementation. Mandatory and voluntary policies may complement one another. 2. Procurement Criteria: Procurement staff must be confident that energy-efficient procurement criteria offer the best long-term value for their organization’s money and represent real environmental gains. Involving multiple stakeholders at the early stages of the criteria creation process can result in greater levels of cooperation from private industry. Criteria should make comparison of products easy for purchasers and require minimal additional calculations. Criteria will need to be regularly updated to reflect market developments. 3. Training: Resources for the creation of training programs are usually very limited, but well-targeted training is necessary in order for a program to be effective. Training must emphasize a process that is efficient for purchasers and simplifies compliance. Purchaser resources and policy must be well designed for training to be effective. Training program development is an excellent opportunity for collaboration amongst public authorities. 4. Procurement Processes: Many tools and guides intended to help buyers comply with energy-efficient procurement policy are designed without detailed knowledge of the procurement process. A deeper understanding of purchasing pathways allows resources to be better directed. Current research by national and international bodies aims to analyze purchasing pathways and can assist in developing future resources.« less
C-A1-03: Considerations in the Design and Use of an Oracle-based Virtual Data Warehouse
Bredfeldt, Christine; McFarland, Lela
2011-01-01
Background/Aims The amount of clinical data available for research is growing exponentially. As it grows, increasing the efficiency of both data storage and data access becomes critical. Relational database management systems (rDBMS) such as Oracle are ideal solutions for managing longitudinal clinical data because they support large-scale data storage and highly efficient data retrieval. In addition, they can greatly simplify the management of large data warehouses, including security management and regular data refreshes. However, the HMORN Virtual Data Warehouse (VDW) was originally designed based on SAS datasets, and this design choice has a number of implications for both the design and use of an Oracle-based VDW. From a design standpoint, VDW tables are designed as flat SAS datasets, which do not take full advantage of Oracle indexing capabilities. From a data retrieval standpoint, standard VDW SAS scripts do not take advantage of SAS pass-through SQL capabilities to enable Oracle to perform the processing required to narrow datasets to the population of interest. Methods Beginning in 2009, the research department at Kaiser Permanente in the Mid-Atlantic States (KPMA) has developed an Oracle-based VDW according to the HMORN v3 specifications. In order to take advantage of the strengths of relational databases, KPMA introduced an interface layer to the VDW data, using views to provide access to standardized VDW variables. In addition, KPMA has developed SAS programs that provide access to SQL pass-through processing for first-pass data extraction into SAS VDW datasets for processing by standard VDW scripts. Results We discuss both the design and performance considerations specific to the KPMA Oracle-based VDW. We benchmarked performance of the Oracle-based VDW using both standard VDW scripts and an initial pre-processing layer to evaluate speed and accuracy of data return. Conclusions Adapting the VDW for deployment in an Oracle environment required minor changes to the underlying structure of the data. Further modifications of the underlying data structure would lead to performance enhancements. Maximally efficient data access for standard VDW scripts requires an extra step that involves restricting the data to the population of interest at the data server level prior to standard processing.
NASA Technical Reports Server (NTRS)
Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.
2013-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.
Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf
2018-01-01
Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.
NASA Astrophysics Data System (ADS)
Zareei, Zahra; Navi, Keivan; Keshavarziyan, Peiman
2018-03-01
In this paper, three novel low-power and high-speed 1-bit inexact Full Adder cell designs are presented based on current mode logic in 32 nm carbon nanotube field effect transistor technology for the first time. The circuit-level figures of merits, i.e. power, delay and power-delay product as well as application-level metric such as error distance, are considered to assess the efficiency of the proposed cells over their counterparts. The effect of voltage scaling and temperature variation on the proposed cells is studied using HSPICE tool. Moreover, using MATLAB tool, the peak signal to noise ratio of the proposed cells is evaluated in an image-processing application referred to as motion detector. Simulation results confirm the efficiency of the proposed cells.
NASA Astrophysics Data System (ADS)
Ueno, Tetsuro; Hino, Hideitsu; Hashimoto, Ai; Takeichi, Yasuo; Sawada, Masahiro; Ono, Kanta
2018-01-01
Spectroscopy is a widely used experimental technique, and enhancing its efficiency can have a strong impact on materials research. We propose an adaptive design for spectroscopy experiments that uses a machine learning technique to improve efficiency. We examined X-ray magnetic circular dichroism (XMCD) spectroscopy for the applicability of a machine learning technique to spectroscopy. An XMCD spectrum was predicted by Gaussian process modelling with learning of an experimental spectrum using a limited number of observed data points. Adaptive sampling of data points with maximum variance of the predicted spectrum successfully reduced the total data points for the evaluation of magnetic moments while providing the required accuracy. The present method reduces the time and cost for XMCD spectroscopy and has potential applicability to various spectroscopies.
Base fluid in improving heat transfer for EV car battery
NASA Astrophysics Data System (ADS)
Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.
2015-05-01
This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.
Towards More Efficient, Greener Syntheses through Flow Chemistry.
Lummiss, Justin A M; Morse, Peter D; Beingessner, Rachel L; Jamison, Timothy F
2017-07-01
Technological advances have an important role in the design of greener synthetic processes. In this Personal Account, we describe a wide range of thermal, photochemical, catalytic, and biphasic chemical transformations examined by our group. Each of these demonstrate how the merits of a continuous flow synthesis platform can align with some of the goals put forth by the Twelve Principles of Green Chemistry. In particular, we illustrate the potential for improved reaction efficiency in terms of atom economy, product yield and reaction rates, the ability to design synthetic process with chemical and solvent waste reduction in mind as well as highlight the benefits of the real-time monitoring capabilities in flow for highly controlled synthetic output. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Rajemi, Mohamad Farizal
2016-08-01
Energy demand and consumption in buildings will rise rapidly in the near future because of several social economics factors and this situation occurs not only in developed countries but also in developing countries such as Malaysia. There is demand towards building with energy efficiency features at this time, however most of the current buildings types are still being constructed with conventional designs, thus contribute to inefficient of energy consumption during the operation stage of the building. This paper presents the concept and the application of Value Management (VM) approach and its potential to improve consideration of energy efficiency within pre-construction process. Based on the relevant literatures, VM has provides an efficient and effective delivery system to fulfill the objectives and client's requirements. Generally in this paper, VM is discussed and scrutinized with reference to previous studies to see how these concepts contribute to better optimize the energy consumption in a building by seeking the best value energy efficiency through the design and construction process. This paper will not draw any conclusion but rather a preliminary research to propose the most energy efficiency measures to reliably accomplish a function that will meet the client's needs, desires and expectations. For further research in future, simple quantitative industry survey and VM workshops will be conducted to validate and further improve the research.
Colombet, B; Woodman, M; Badier, J M; Bénar, C G
2015-03-15
The importance of digital signal processing in clinical neurophysiology is growing steadily, involving clinical researchers and methodologists. There is a need for crossing the gap between these communities by providing efficient delivery of newly designed algorithms to end users. We have developed such a tool which both visualizes and processes data and, additionally, acts as a software development platform. AnyWave was designed to run on all common operating systems. It provides access to a variety of data formats and it employs high fidelity visualization techniques. It also allows using external tools as plug-ins, which can be developed in languages including C++, MATLAB and Python. In the current version, plug-ins allow computation of connectivity graphs (non-linear correlation h2) and time-frequency representation (Morlet wavelets). The software is freely available under the LGPL3 license. AnyWave is designed as an open, highly extensible solution, with an architecture that permits rapid delivery of new techniques to end users. We have developed AnyWave software as an efficient neurophysiological data visualizer able to integrate state of the art techniques. AnyWave offers an interface well suited to the needs of clinical research and an architecture designed for integrating new tools. We expect this software to strengthen the collaboration between clinical neurophysiologists and researchers in biomedical engineering and signal processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach.
Yerlikaya, Firat; Ozgen, Aysegul; Vural, Imran; Guven, Olgun; Karaagaoglu, Ergun; Khan, Mansoor A; Capan, Yilmaz
2013-10-01
The aims of this study were to develop and characterize paclitaxel nanoparticles, to identify and control critical sources of variability in the process, and to understand the impact of formulation and process parameters on the critical quality attributes (CQAs) using a quality-by-design (QbD) approach. For this, a risk assessment study was performed with various formulation and process parameters to determine their impact on CQAs of nanoparticles, which were determined to be average particle size, zeta potential, and encapsulation efficiency. Potential risk factors were identified using an Ishikawa diagram and screened by Plackett-Burman design and finally nanoparticles were optimized using Box-Behnken design. The optimized formulation was further characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and gas chromatography. It was observed that paclitaxel transformed from crystalline state to amorphous state while totally encapsulating into the nanoparticles. The nanoparticles were spherical, smooth, and homogenous with no dichloromethane residue. In vitro cytotoxicity test showed that the developed nanoparticles are more efficient than free paclitaxel in terms of antitumor activity (more than 25%). In conclusion, this study demonstrated that understanding formulation and process parameters with the philosophy of QbD is useful for the optimization of complex drug delivery systems. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve
2001-01-01
The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.
NASA Astrophysics Data System (ADS)
Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng
2016-09-01
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
Enhancing the traditional hospital design process: a focus on patient safety.
Reiling, John G; Knutzen, Barbara L; Wallen, Thomas K; McCullough, Susan; Miller, Ric; Chernos, Sonja
2004-03-01
In 2002 St. Joseph's Community Hospital (West Bend, WI), a member of SynergyHealth, brought together leaders in health care and systems engineering to develop a set of safety-driven facility design principles that would guide the hospital design process. DESIGNING FOR SAFETY: Hospital leadership recognized that a cross-departmental team approach would be needed and formed the 11-member Facility Design Advisory Council, which, with departmental teams and the aid of architects, was responsible for overseeing the design process and for ensuring that the safety considerations were met. The design process was a team approach, with input from national experts, patients and families, hospital staff and physicians, architects, contractors, and the community. The new facility, designed using safety-driven design principles, reflects many innovative design elements, including truly standardized patient rooms, new technology to minimize falls, and patient care alcoves for every patient room. The new hospital has been designed with maximum adaptability and flexibility in mind, to accommodate changes and provide for future growth. The architects labeled the innovative design. The Synergy Model, to describe the process of shaping the entire building and its spaces to work efficiently as a whole for the care and safety of patients. Construction began on the new facility in August 2003 and is expected to be completed in 2005.
Defining process design space for monoclonal antibody cell culture.
Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A
2010-08-15
The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.
Contingency theoretic methodology for agent-based web-oriented manufacturing systems
NASA Astrophysics Data System (ADS)
Durrett, John R.; Burnell, Lisa J.; Priest, John W.
2000-12-01
The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.
NASA Astrophysics Data System (ADS)
Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat
2017-10-01
The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.
NASA Astrophysics Data System (ADS)
Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao
2018-02-01
An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.
Wilson, Mark; Smith, Nickolas C; Chattington, Mark; Ford, Mike; Marple-Horvat, Dilwyn E
2006-11-01
We tested some of the key predictions of processing efficiency theory using a simulated rally driving task. Two groups of participants were classified as either dispositionally high or low anxious based on trait anxiety scores and trained on a simulated driving task. Participants then raced individually on two similar courses under counterbalanced experimental conditions designed to manipulate the level of anxiety experienced. The effort exerted on the driving tasks was assessed though self-report (RSME), psychophysiological measures (pupil dilation) and visual gaze data. Efficiency was measured in terms of efficiency of visual processing (search rate) and driving control (variability of wheel and accelerator pedal) indices. Driving performance was measured as the time taken to complete the course. As predicted, increased anxiety had a negative effect on processing efficiency as indexed by the self-report, pupillary response and variability of gaze data. Predicted differences due to dispositional levels of anxiety were also found in the driving control and effort data. Although both groups of drivers performed worse under the threatening condition, the performance of the high trait anxious individuals was affected to a greater extent by the anxiety manipulation than the performance of the low trait anxious drivers. The findings suggest that processing efficiency theory holds promise as a theoretical framework for examining the relationship between anxiety and performance in sport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...
2017-07-18
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elia, Valerio; Gnoni, Maria Grazia, E-mail: mariagrazia.gnoni@unisalento.it; Tornese, Fabiana
Highlights: • Pay-As-You-Throw (PAYT) schemes are becoming widespread in several countries. • Economic, organizational and technological issues have to be integrated in an efficient PAYT model design. • Efficiency refers to a PAYT system which support high citizen participation rates as well as economic sustainability. • Different steps and constraints have to be evaluated from collection services to type technologies. • An holistic approach is discussed to support PAYT systems diffusion. - Abstract: Pay-As-You-Throw (PAYT) strategies are becoming widely applied in solid waste management systems; the main purpose is to support a more sustainable – from economic, environmental and socialmore » points of view – management of waste flows. Adopting PAYT charging models increases the complexity level of the waste management service as new organizational issues have to be evaluated compared to flat charging models. In addition, innovative technological solutions could also be adopted to increase the overall efficiency of the service. Unit pricing, user identification and waste measurement represent the three most important processes to be defined in a PAYT system. The paper proposes a holistic framework to support an effective design and management process. The framework defines most critical processes and effective organizational and technological solutions for supporting waste managers as well as researchers.« less
Heterogeneous delivering capability promotes traffic efficiency in complex networks
NASA Astrophysics Data System (ADS)
Zhu, Yan-Bo; Guan, Xiang-Min; Zhang, Xue-Jun
2015-12-01
Traffic is one of the most fundamental dynamical processes in networked systems. With the homogeneous delivery capability of nodes, the global dynamic routing strategy proposed by Ling et al. [Phys. Rev. E81, 016113 (2010)] adequately uses the dynamic information during the process and thus it can reach a quite high network capacity. In this paper, based on the global dynamic routing strategy, we proposed a heterogeneous delivery allocation strategy of nodes on scale-free networks with consideration of nodes degree. It is found that the network capacity as well as some other indexes reflecting transportation efficiency are further improved. Our work may be useful for the design of more efficient routing strategies in communication or transportation systems.
Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-04-01
Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
The New Southern FIA Data Compilation System
V. Clark Baldwin; Larry Royer
2001-01-01
In general, the major national Forest Inventory and Analysis annual inventory emphasis has been on data-base design and not on data processing and calculation of various new attributes. Two key programming techniques required for efficient data processing are indexing and modularization. The Southern Research Station Compilation System utilizes modular and indexing...
Innovation & Risk Management Result in Energy and Life-Cycle Savings.
ERIC Educational Resources Information Center
Anstrand, David E.; Singh, J. B.
1999-01-01
Examines a Pennsylvania school's successful planning, design, and bidding process for acquiring a geothermal heat pump (GHP)system whose subsequent efficiency became award-winning for environmental excellence. Charts and statistical tables describe the GHP's energy savings. Concluding comments review the lessons learned from the process. (GR)
Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider
NASA Astrophysics Data System (ADS)
Li, Lei; Lee, L. James; Castro, Jose M.; Yi, Allen Y.
2010-03-01
In this paper, a critical modification to a polymer based affordable split-and-recombination static micromixer is described. To evaluate the improvement, both the original and the modified design were carefully investigated using an experimental setup and numerical modeling approach. The structure of the micromixer was designed to take advantage of the process capabilities of both ultraprecision micromachining and microinjection molding process. Specifically, the original and the modified design were numerically simulated using commercial finite element method software ANSYS CFX to assist the re-designing of the micromixers. The simulation results have shown that both designs are capable of performing mixing while the modified design has a much improved performance. Mixing experiments with two different fluids were carried out using the original and the modified mixers again showed a significantly improved mixing uniformity by the latter. The measured mixing coefficient for the original design was 0.11, and for the improved design it was 0.065. The developed manufacturing process based on ultraprecision machining and microinjection molding processes for device fabrication has the advantage of high-dimensional precision, low cost and manufacturing flexibility.
Deckard, Gloria J; Borkowski, Nancy; Diaz, Deisell; Sanchez, Carlos; Boisette, Serge A
2010-01-01
Designated primary care clinics largely serve low-income and uninsured patients who present a disproportionate number of chronic illnesses and face great difficulty in obtaining the medical care they need, particularly the access to specialty physicians. With limited capacity for providing specialty care, these primary care clinics generally refer patients to safety net hospitals' specialty ambulatory care clinics. A large public safety net health system successfully improved the effectiveness and efficiency of the specialty clinic referral process through application of Lean Six Sigma, an advanced process-improvement methodology and set of tools driven by statistics and engineering concepts.
Combined process automation for large-scale EEG analysis.
Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E
2012-01-01
Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Effect of Multispectral Image Fusion Enhancement on Human Efficiency
2017-03-20
performance of the ideal observer is indicative of the relative amount of informa- tion across various experimental manipulations. In our experimental design ...registration and fusion processes, and contributed strongly to the statistical analyses. LMB contributed to the experimental design and writing structure. All... designed to be innovative, low-cost, and (relatively) easy-to-implement, and to provide support across the spectrum of possible users including
Power Electronics for a Miniaturized Arcjet
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.
1997-01-01
A 0.3 kW Power Processing Unit (PPU) was designed, tested on resistive loads, and then integrated with a miniaturized arcjet. The main goal of the design was to minimize size and mass while maintaining reasonable efficiency. In order to obtain the desired reductions in mass, simple topologies and control methods were considered. The PPU design incorporates a 50 kHz, current-mode-control, pulse-width-modulated (PWM), push-pull topology. An input voltage of 28 +/- 4V was chosen for compatibility with typical unregulated low voltage busses anticipated for smallsats. An efficiency of 0.90 under nominal operating conditions was obtained. The component mass of the PPU was 0.475 kg and could be improved by optimization of the output filter design. The estimated mass for a flight PPU based on this design is less than a kilogram.
Development of Energy-Saving Devices for a 20,000DWT River-Sea Bulk Carrier
NASA Astrophysics Data System (ADS)
Chen, Kunpeng; Gao, Yuling; Huang, Zhenping; Dong, Guoxiang
2018-05-01
A reduction of fuel consumption and an increase in efficiency are currently required for river-sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river-sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river-sea bulk carrier. We validated the role of Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river-sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.
Improved system integration for integrated gasification combined cycle (IGCC) systems.
Frey, H Christopher; Zhu, Yunhua
2006-03-01
Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.
How to design a horizontal patient-focused hospital.
Murphy, E C; Ruflin, P
1993-05-01
Work Imaging is an executive information system for analyzing the cost effectiveness and efficiency of work processes and structures in health care. Advanced Work Imaging relational database technology allows managers and employees to take a sample work activities profile organization-wide. This is married to financial and organizational data to produce images of work within and across all functions, departments, and levels. The images are benchmarked against best practice data to provide insight on the quality and cost efficiency of work practice patterns, from individual roles to departmental skill mix to organization-wide service processes.
EUV near normal incidence collector development at SAGEM
NASA Astrophysics Data System (ADS)
Mercier Ythier, R.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, Christophe; Ravet-Krill, Marie-Françoise; Delmotte, Franck; Sassolas, Benoît; Flaminio, Raffaele; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent; Roméo, Elodie
2008-03-01
Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources: Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon, Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical surface.
Non-hydroxyl radical mediated photochemical processes for dye degradation.
Liu, Xitong; Song, Xiaojie; Zhang, Shujuan; Wang, Mengshu; Pan, Bingcai
2014-04-28
Using solar energy for the decontamination of wastewater is a promising solution to the water-energy nexus. Current advanced oxidation processes have an unsatisfactory efficiency in the treatment of dye wastewater due to the non-selectivity of hydroxyl radicals. More efficient photochemical approaches for dye degradation are highly needed. Three diketones, biacetyl, acetylacetone, and acetonylacetone, were proven to be potent activators for the photodecoloration of azo, triarylmethane and anthraquinone dyes. The photodegradation kinetics of Acid Orange 7 in the UV/diketone processes was much faster than that in the UV/H2O2 system. Photo-induced energy and electron transfer were possible mechanisms for dye degradation in the diketone systems. Adducts of dye and acetylacetone were identified, indicating a unique dye degradation route through adduct formation and decomposition. Unlike acting only as the target substrate of ˙OH in advanced oxidation processes, the dyes played vital roles in the UV/diketone processes. The findings here provide new insights for designing more efficient technologies for environmental remediation, based on diketone photochemistry.
Neural Correlates of Intersensory Processing in Five-Month-Old Infants
Reynolds, Greg D.; Bahrick, Lorraine E.; Lickliter, Robert; Guy, Maggie W.
2014-01-01
Two experiments assessing event-related potentials in 5-month-old infants were conducted to examine neural correlates of attentional salience and efficiency of processing of a visual event (woman speaking) paired with redundant (synchronous) speech, nonredundant (asynchronous) speech, or no speech. In Experiment 1, the Nc component associated with attentional salience was greater in amplitude following synchronous audiovisual as compared with asynchronous audiovisual and unimodal visual presentations. A block design was utilized in Experiment 2 to examine efficiency of processing of a visual event. Only infants exposed to synchronous audiovisual speech demonstrated a significant reduction in amplitude of the late slow wave associated with successful stimulus processing and recognition memory from early to late blocks of trials. These findings indicate that events that provide intersensory redundancy are associated with enhanced neural responsiveness indicative of greater attentional salience and more efficient stimulus processing as compared with the same events when they provide no intersensory redundancy in 5-month-old infants. PMID:23423948
Wilson, Mark; Smith, Nickolas C; Holmes, Paul S
2007-08-01
The aim of this study was to test the conflicting predictions of processing efficiency theory (PET) and the conscious processing hypothesis (CPH) regarding effort's role in influencing the effects of anxiety on a golf putting task. Mid-handicap golfers made a series of putts to target holes under two counterbalanced conditions designed to manipulate the level of anxiety experienced. The effort exerted on each putting task was assessed though self-report, psychophysiological (heart rate variability) and behavioural (pre-putt time and glances at the target) measures. Performance was assessed by putting error. Results were generally more supportive of the predictions of PET rather than the CPH as performance was maintained for some performers despite increased state anxiety and a reduction in processing efficiency. The findings of this study support previous research suggesting that both theories offer useful theoretical frameworks for examining the relationship between anxiety and performance in sport.
Magnetic design for the PediaFlow ventricular assist device.
Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E
2008-02-01
This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Angus Morison; David Tarnowski
2005-09-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less
Library Automation and Facility Planning.
ERIC Educational Resources Information Center
Cohen, Aaron; Cohen, Elaine
This seminar and workbook are designed to aid librarians in planning and designing attractive and efficient libraries in light of the changing technologies of the 1980s. It is based on the premise that the electronic revolution of the 1980s will cause substantial changes in the work force, work processes, and the nature of physical layouts of…
Wilson, Edward C F; Mugford, Miranda; Barton, Garry; Shepstone, Lee
2016-04-01
In designing economic evaluations alongside clinical trials, analysts are frequently faced with alternative methods of collecting the same data, the extremes being top-down ("gross costing") and bottom-up ("micro-costing") approaches. A priori, bottom-up approaches may be considered superior to top-down approaches but are also more expensive to collect and analyze. In this article, we use value-of-information analysis to estimate the efficient mix of observations on each method in a proposed clinical trial. By assigning a prior bivariate distribution to the 2 data collection processes, the predicted posterior (i.e., preposterior) mean and variance of the superior process can be calculated from proposed samples using either process. This is then used to calculate the preposterior mean and variance of incremental net benefit and hence the expected net gain of sampling. We apply this method to a previously collected data set to estimate the value of conducting a further trial and identifying the optimal mix of observations on drug costs at 2 levels: by individual item (process A) and by drug class (process B). We find that substituting a number of observations on process A for process B leads to a modest £ 35,000 increase in expected net gain of sampling. Drivers of the results are the correlation between the 2 processes and their relative cost. This method has potential use following a pilot study to inform efficient data collection approaches for a subsequent full-scale trial. It provides a formal quantitative approach to inform trialists whether it is efficient to collect resource use data on all patients in a trial or on a subset of patients only or to collect limited data on most and detailed data on a subset. © The Author(s) 2016.
Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering
NASA Astrophysics Data System (ADS)
Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.
2017-12-01
We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.
Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system
NASA Astrophysics Data System (ADS)
Kampmann, R.; Sinzinger, S.
2014-12-01
In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.
Experimental investigations of aeration efficiency in high-head gated circular conduits.
Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet
2014-01-01
The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.
Model of Ni-63 battery with realistic PIN structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Charles E.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr
2015-09-14
GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-nmore » structure under scanning electron microscope illumination.« less
NASA Astrophysics Data System (ADS)
Mizutani, Akio; Eto, Yohei; Kikuta, Hisao
2017-12-01
A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.
Effect of azimuthal diversion rail on an ATON-type Hall thruster
NASA Astrophysics Data System (ADS)
Xu, Zhang; Liqiu, Wei; Liang, Han; Yongjie, Ding; Daren, Yu
2017-03-01
A newly designed azimuthal diversion rail (ADR) is studied and used to enhance the ionization process in an ATON-type Hall thruster. The diversion rail efficiently reduces the neutral flow axial velocity, and hence, increases the resistance time of atoms in the discharge channel of the Hall thruster. Thrust performances, in terms of thrust, anode efficiency and ion beam divergence, are found to be improved because of the application of the diversion rail, especially at low mass flow rate conditions. Experiment results reveal that the ADR increases the mass utilization under insufficient mass flow rate operating conditions. The design of the ADR broadens the efficient operating range of Hall thrusters and has significant contribution to multi-mode Hall thruster development.
Model of Ni-63 battery with realistic PIN structure
NASA Astrophysics Data System (ADS)
Munson, Charles E.; Arif, Muhammad; Streque, Jeremy; Belahsene, Sofiane; Martinez, Anthony; Ramdane, Abderrahim; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; Ougazzaden, Abdallah
2015-09-01
GaN, with its wide bandgap of 3.4 eV, has emerged as an efficient material for designing high-efficiency betavoltaic batteries. An important part of designing efficient betavoltaic batteries involves a good understanding of the full process, from the behavior of the nuclear material and the creation of electron-hole pairs all the way through the collection of photo-generated carriers. This paper presents a detailed model based on Monte Carlo and Silvaco for a GaN-based betavoltaic battery device, modeled after Ni-63 as an energy source. The accuracy of the model is verified by comparing it with experimental values obtained for a GaN-based p-i-n structure under scanning electron microscope illumination.
Experiences on developing digital down conversion algorithms using Xilinx system generator
NASA Astrophysics Data System (ADS)
Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi
2013-07-01
The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.
A Human Factors Framework for Payload Display Design
NASA Technical Reports Server (NTRS)
Dunn, Mariea C.; Hutchinson, Sonya L.
1998-01-01
During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.
Code of Federal Regulations, 2010 CFR
2010-04-01
... acceptable. Also, the standards are designed to improve overall State agency performance in the disability... efficient manner. We measure the performance of a State agency in two areas—processing time and quality of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... acceptable. Also, the standards are designed to improve overall State agency performance in the disability... efficient manner. We measure the performance of a State agency in two areas—processing time and quality of...
40 CFR 52.2299 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
.../hydrocarbons in Texas designated regions 7 and 10; regulation VII; and control strategy for nitrogen oxides in... printing; rotogravure printing; surface coating processes; transfer efficiency; and vapor balance system...
40 CFR 52.2299 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
.../hydrocarbons in Texas designated regions 7 and 10; regulation VII; and control strategy for nitrogen oxides in... printing; rotogravure printing; surface coating processes; transfer efficiency; and vapor balance system...
Computationally efficient algorithm for Gaussian Process regression in case of structured samples
NASA Astrophysics Data System (ADS)
Belyaev, M.; Burnaev, E.; Kapushev, Y.
2016-04-01
Surrogate modeling is widely used in many engineering problems. Data sets often have Cartesian product structure (for instance factorial design of experiments with missing points). In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation-Gaussian Process regression-can be hardly applied due to its computational complexity. In this paper a computationally efficient approach for constructing Gaussian Process regression in case of data sets with Cartesian product structure is presented. Efficiency is achieved by using a special structure of the data set and operations with tensors. Proposed algorithm has low computational as well as memory complexity compared to existing algorithms. In this work we also introduce a regularization procedure allowing to take into account anisotropy of the data set and avoid degeneracy of regression model.
Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone.
Shen, Y S; Ku, Y
2002-01-01
The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.
Organic and perovskite solar cells: Working principles, materials and interfaces.
Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis
2017-02-15
In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Congbiao; Zou, Jianhua; Liu, Yu; Song, Chen; He, Zhiwei; Zhong, Zhenji; Wang, Jian; Yip, Hin-Lap; Peng, Junbiao; Cao, Yong
2018-06-15
Solution-processed electroluminescent tandem white quantum-dot light-emitting diodes (TWQLEDs) have the advantages of being low-cost and high-efficiency and having a wide color gamut combined with color filters, making this a promising backlight technology for high-resolution displays. However, TWQLEDs are rarely reported due to the challenge of designing device structures and the deterioration of film morphology with component layers that can be deposited from solutions. Here, we report an interconnecting layer with the optical, electrical, and mechanical properties required for fully solution-processed TWQLED. The optimized TWQLEDs exhibit a state-of-the-art current efficiency as high as 60.4 cd/A and an extremely high external quantum efficiency of 27.3% at a luminance of 100 000 cd/m 2 . A high color gamut of 124% NTSC 1931 standard can be achieved when combined with commercial color filters. These results represent the highest performance for solution-processed WQLEDs, unlocking the great application potential of TWQLEDs as backlights for new-generation displays.
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
NASA Astrophysics Data System (ADS)
Tai, Wei; Abbasi, Mortez; Ricketts, David S.
2018-01-01
We present the analysis and design of high-power millimetre-wave power amplifier (PA) systems using zero-degree combiners (ZDCs). The methodology presented optimises the PA device sizing and the number of combined unit PAs based on device load pull simulations, driver power consumption analysis and loss analysis of the ZDC. Our analysis shows that an optimal number of N-way combined unit PAs leads to the highest power-added efficiency (PAE) for a given output power. To illustrate our design methodology, we designed a 1-W PA system at 45 GHz using a 45 nm silicon-on-insulator process and showed that an 8-way combined PA has the highest PAE that yields simulated output power of 30.6 dBm and 31% peak PAE.
Robust efficient video fingerprinting
NASA Astrophysics Data System (ADS)
Puri, Manika; Lubin, Jeffrey
2009-02-01
We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.
Raschitor, A; Llanos, J; Cañizares, P; Rodrigo, M A
2017-09-01
This work presents a novel approach of wastewater treatment technology that consists of a combined electrodialysis/electro-oxidation process, specially designed to allow increasing the efficiency in the oxidation of ionic organic pollutants contained in diluted waste. Respect to conventional electrolysis, the pollutant is simultaneously concentrated and oxidized, enhancing the performance of the cell due to the higher concentration achieved in the nearness of the anode. A proof of concept is tested with the ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) and results show that the efficiency of this new technology overcomes that electrolysis by more than double, regardless the supporting electrolyte used (either NaCl or Na 2 SO 4 ). Moreover, the removal rate of 2,4-D when using NaCl was found to be more efficient, due to the best performance of the electrode material selected (DSA ® ) towards the formation of oxidants in chloride supporting electrolyte. These results open the way for overcoming the efficiency limitations of electrochemical treatment processes for the treatment of solutions with low concentrated ionic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modal control theory and application to aircraft lateral handling qualities design
NASA Technical Reports Server (NTRS)
Srinathkumar, S.
1978-01-01
A multivariable synthesis procedure based on eigenvalue/eigenvector assignment is reviewed and is employed to develop a systematic design procedure to meet the lateral handling qualities design objectives of a fighter aircraft over a wide range of flight conditions. The closed loop modal characterization developed provides significant insight into the design process and plays a pivotal role in the synthesis of robust feedback systems. The simplicity of the synthesis algorithm yields an efficient computer aided interactive design tool for flight control system synthesis.
New, high-efficiency ion trap mobility detection system for narcotics and explosives
NASA Astrophysics Data System (ADS)
McGann, William J.; Bradley, V.; Borsody, A.; Lepine, S.
1994-10-01
A new patented Ion Trap Mobility Spectrometer (ITMS) design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC and LSD are reported.
New high-efficiency ion-trap mobility detection system for narcotics
NASA Astrophysics Data System (ADS)
McGann, William J.
1997-02-01
A new patented Ion Trap Mobility Spectrometer design is presented. Conventional IMS designs typically operate below 0.1 percent efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9 percent of the sample ions generated in the reaction region are lost int his discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an 'ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a 'field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. One application for this new detector is now being developed, a portable, hand-held system with switching capability for the detection of drugs and explosives. Preliminary ion spectra and sensitivity data are presented for cocaine and heroin using a hand sniffer configuration.
New high-efficiency ion trap mobility detection system for narcotics and explosives
NASA Astrophysics Data System (ADS)
McGann, William J.; Jenkins, Anthony; Ribiero, K.; Napoli, J.
1994-03-01
A new patented ion trap mobility spectrometer design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electrical-field-driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC, and LSD are reported.
Model-based design of experiments for cellular processes.
Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E
2013-01-01
Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.
Adapting Nielsen’s Design Heuristics to Dual Processing for Clinical Decision Support
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson’s standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access. PMID:28269915
Adapting Nielsen's Design Heuristics to Dual Processing for Clinical Decision Support.
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson's standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access.
Energy Pooling Upconversion in Free Space and Optical Cavities
NASA Astrophysics Data System (ADS)
LaCount, Michael D.
The ability to efficiently convert the wavelength of light has value in a wide range of disciplines that include the fields of photovoltaics, plant growth, optics and medicine. The processes by which such transformations are carried out are known as upconversions and downconversions. There are several ways to up/down convert light, each with its own attributes, issues, and competing mechanisms. Most are associated with one-body or two-body processes. Three-body dynamics are also possible though, going by the names of quantum cutting (downconversion) and energy pooling (upconversion). These use virtual excited electronic states to mediate conversions as has been experimentally realized using lanthanide ions embedded in wide bandgap materials. The use of lanthanides to convert light is not ideal due to their relative scarcity, toxicity, and the limited range of light frequencies that can be absorbed and emitted. Organic molecules, on the other hand, are typically non-toxic, are made up of abundant elements, and can be designed with tailored spectral properties. At issue is whether or not they can be used to carry out efficient energy pooling, the central question to be answered in this thesis. The research presented here draws on a perturbative quantum electrodynamics framework previously established for generic energy pooling. It was used to develop a computational methodology for determining the rate of energy pooling and its competing processes. This, in turn, draws on a combination of time-dependent density functional theory, quantum electrodynamics, and perturbation theory to generate the requisite material property data. This computational model was applied to two test systems consisting of stilbene-fluorescein and hexabenzocoronene-oligothiophene. The stilbene-fluorescein system was found to have a maximum energy pooling rate efficiency (as compared to competing processes) of 17% and the hexabenzocoronene-oligothiophene system was found to have a maximum energy pooling rate efficiency of 99%. This demonstrates that the energy pooling rate can be made faster than its competing processes. Based on the results of this study, a set of design rules was developed to optimize the rate efficiency of energy pooling. Prior to this research, no attempt had been made to determine if energy pooling could be made to out-pace competing processes--i.e. whether or not a molecular system could be designed to utilize energy pooling as an efficient means of upconversion. This initial investigation was part of a larger effort involving a team of researchers at the University of Colorado, Boulder and at the National Renewable Energy Laboratory. After establishing our computational proof-of-concept, we collectively used the new design rules to select an improved system for energy pooling. This consisted of rhodamine 6G and stilbene-420. These molecules were fabricated into a thin film, and the maximum internal quantum yield was measured to be 36% under sufficiently high intensity light. To further increase the efficiency of energy pooling, encapsulation within optical cavities was considered as a way of changing the rate of processes characterized by electric dipole-dipole coupling. This was carried out using a combination of classical electromagnetism, quantum electrodynamics, and perturbation theory. It was found that, in the near field, if the distance of the energy transfer is smaller than the distance from the energy transfer site and the cavity wall, then the electric dipole-dipole coupling tensor is not influenced by the cavity environment and the rates of energy transfer processes are the same as those in free space. Any increase in energy transfer efficiencies that are experimentally measured must therefore be caused by changing the rate of light absorption and emission. This is an important finding because earlier, less rigorous studies had concluded otherwise. It has been previously demonstrated that an optical cavity can be used to inhibit the spontaneous emission of atoms or molecules placed within it. This too was examined as a possible means of increasing energy pooling efficiency. Using first-principles methods, quantum electrodynamics, perturbation theory, and a kinetic model, the efficiency of energy pooling upconversion within a tuned rectangular cavity was found to be significantly larger than in free space. A model system with a free-space energy pooling upconversion efficiency of 23% was found to increase to 47% when placed in a tuned rectangular cavity.
NASA Astrophysics Data System (ADS)
Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie
The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.
NASA Astrophysics Data System (ADS)
Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.
2018-05-01
The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.
Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming
2010-07-01
Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.
An intelligent decomposition approach for efficient design of non-hierarchic systems
NASA Technical Reports Server (NTRS)
Bloebaum, Christina L.
1992-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex systems into subsystem modules which are coupled through transference of output data. The implementation of such a decomposition approach assumes the ability exists to determine what subsystems and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is quite often an extremely complex task which may be beyond human ability to efficiently achieve. Further, in optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the optimal solution. The ability to determine 'weak' versus 'strong' coupling strengths would aid the designer in deciding which couplings could be permanently removed from consideration or which could be temporarily suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a coupled system composed of analysis equations for verification purposes.
[A medical consumable material management information system].
Tang, Guoping; Hu, Liang
2014-05-01
Medical consumables material is essential supplies to carry out medical work, which has a wide range of varieties and a large amount of usage. How to manage it feasibly and efficiently that has been a topic of concern to everyone. This article discussed about how to design a medical consumable material management information system that has a set of standardized processes, bring together medical supplies administrator, suppliers and clinical departments. Advanced management mode, enterprise resource planning (ERP) applied to the whole system design process.
Nanosurveyor: a framework for real-time data processing
Daurer, Benedikt J.; Krishnan, Hari; Perciano, Talita; ...
2017-01-31
Background: The ever improving brightness of accelerator based sources is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality. Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis. Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the microscope operators.
Zhang, Yifan; Dai, Yifan; Tie, Guipeng; Hu, Hao
2016-10-10
As a kind of important nonlinear optical element, KDP crystal has great demand in the inertial confinement fusion system. Based on the dissolution mechanism of solid materials, the factors that affect the material removal rate of KDP crystal in magnetorheological (MR) water-dissolution polishing are investigated to improve the machining efficiency. It is found that the material removal rate is proportional to the product of the saturation concentration and diffusion coefficient, and the relationship between the removal efficiency and the temperature meets the unilateral Gaussian function. Polishing experiments are carried out on a magnetorheological finishing (MRF) machine with self-designed MRF fluid heating devices. The experimental results show that practical efficiency-temperature curve is consistent with the theoretical curve, and the maximum machining efficiency increases by about 50% with the rise of temperature from 294 to 302 K. Meanwhile, when the MR fluid temperature is lower than 308 K, the crystal surface quality and surface roughness in different processing temperatures have no remarkable difference with constant crystal temperature (294 K). This research indicates that it is feasible to drastically improve KDP crystal MRF efficiency by controlling the processing temperature.
Yin, Da; Feng, Jing; Ma, Rui; Liu, Yue-Feng; Zhang, Yong-Lai; Zhang, Xu-Lin; Bi, Yan-Gang; Chen, Qi-Dai; Sun, Hong-Bo
2016-01-01
Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency −70 cd A−1 under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices. PMID:27187936
Space Radiation Transport Methods Development
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.
2002-01-01
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.
NASA Astrophysics Data System (ADS)
Kim, Euiyoung; Cho, Maenghyo
2017-11-01
In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.
Lignocellulosic ethanol: Technology design and its impact on process efficiency.
Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel
2015-11-01
This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use of immobilized biocatalysts is considered. Copyright © 2014 Elsevier Inc. All rights reserved.
Eslami, Hadi; Ehrampoush, Mohammad Hassan; Esmaeili, Abbas; Ebrahimi, Ali Asghar; Salmani, Mohammad Hossein; Ghaneian, Mohammad Taghi; Falahzadeh, Hossein
2018-09-01
The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe 2 O 3 -Mn 2 O 3 nanocomposite under UV A radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe 2 O 3 and 29.36% of Mn 2 O 3 . Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L -1 , pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L -1 . By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe 2 O 3 -Mn 2 O 3 nanocomposite and total As concentration was decreased. Therefore, Fe 2 O 3 -Mn 2 O 3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UV A /Fe 2 O 3 -Mn 2 O 3 system for photocatalytic oxidation of 1 mg L -1 As(III) in the 1 L laboratory scale reactor was 0.0051 €. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pawelec, Andrzej; Dobrowolski, Andrzej
2017-01-01
In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NO x removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NO x removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.
Carbon Nanotube Integration with a CMOS Process
Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto
2010-01-01
This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330
Quantum design of photosynthesis for bio-inspired solar-energy conversion.
Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk
2017-03-15
Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.
The challenge of designing a database for auditing surgical in-patients.
Branday, J M; Crandon, I; Carpenter, R; Rhoden, A; Meeks-Aitken, N
1999-12-01
Surgical audit is imperative in modern practice, particularly in the developing world where resources are limited and efficient allocation important. The structure, process and outcome of surgical care can be determined for quality assurance or for research. Improved efficiency and reduction of morbidity and mortality are additional goals which may be accomplished. However, computerization, medical staff cooperation and the availability of dedicated staff are among the hurdles which may be encountered. We report the challenge of designing and establishing a database for auditing surgical inpatients in a developing country and the difficulties which were encountered.
Automated visual imaging interface for the plant floor
NASA Astrophysics Data System (ADS)
Wutke, John R.
1991-03-01
The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.
Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah
2015-02-01
Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Exploring business process modelling paradigms and design-time to run-time transitions
NASA Astrophysics Data System (ADS)
Caron, Filip; Vanthienen, Jan
2016-09-01
The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.
Hybrid bilayer plasmonic metasurface efficiently manipulates visible light.
Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei
2016-01-01
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.
Hybrid bilayer plasmonic metasurface efficiently manipulates visible light
Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei
2016-01-01
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195
Metasurface holograms reaching 80% efficiency.
Zheng, Guoxing; Mühlenbernd, Holger; Kenney, Mitchell; Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2015-04-01
Surfaces covered by ultrathin plasmonic structures--so-called metasurfaces--have recently been shown to be capable of completely controlling the phase of light, representing a new paradigm for the design of innovative optical elements such as ultrathin flat lenses, directional couplers for surface plasmon polaritons and wave plate vortex beam generation. Among the various types of metasurfaces, geometric metasurfaces, which consist of an array of plasmonic nanorods with spatially varying orientations, have shown superior phase control due to the geometric nature of their phase profile. Metasurfaces have recently been used to make computer-generated holograms, but the hologram efficiency remained too low at visible wavelengths for practical purposes. Here, we report the design and realization of a geometric metasurface hologram reaching diffraction efficiencies of 80% at 825 nm and a broad bandwidth between 630 nm and 1,050 nm. The 16-level-phase computer-generated hologram demonstrated here combines the advantages of a geometric metasurface for the superior control of the phase profile and of reflectarrays for achieving high polarization conversion efficiency. Specifically, the design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process. Because of these advantages, our strategy could be viable for various practical holographic applications.
NASA Astrophysics Data System (ADS)
Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.
2017-04-01
A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.
Pinhole induced efficiency variation in perovskite solar cells
NASA Astrophysics Data System (ADS)
Agarwal, Sumanshu; Nair, Pradeep R.
2017-10-01
Process induced efficiency variation is a major concern for all thin film solar cells, including the emerging perovskite based solar cells. In this article, we address the effect of pinholes or process induced surface coverage aspects on the efficiency of such solar cells through detailed numerical simulations. Interestingly, we find that the pinhole size distribution affects the short circuit current and open circuit voltage in contrasting manners. Specifically, while the JS C is heavily dependent on the pinhole size distribution, surprisingly, the VO C seems to be only nominally affected by it. Further, our simulations also indicate that, with appropriate interface engineering, it is indeed possible to design a nanostructured device with efficiencies comparable to those of ideal planar structures. Additionally, we propose a simple technique based on terminal I-V characteristics to estimate the surface coverage in perovskite solar cells.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.
1986-01-01
Achievement of higher efficiency cells by directing efforts toward identifying carrier loss mechanisms; design of cell structures; and development of processing techniques are described. Use of techniques such as deep-level transient spectroscopy (DLTS), laser-beam-induced current (LBIC), and transmission electron microscopy (TEM) indicated that dislocations in web material rather than twin planes were primarily responsible for limiting diffusion lengths in the web. Lifetimes and cell efficiencies can be improved from 19 to 120 microns, and 8 to 10.3% (no AR), respectively, by implanting hydrogen at 1500 eV and a beam current density of 2.0 mA/sq cm. Some of the processing improvements included use of a double-layer AR coating (ZnS and MgF2) and an addition of an aluminum back surface reflectors. Cells of more than 16% efficiency were achieved.
From the past to the future: Integrating work experience into the design process.
Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal
2017-01-01
Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.
Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Peters, David A.
1991-01-01
Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology
NASA Technical Reports Server (NTRS)
Hoy, Scott D.; Figueiredo, Marco A.
2006-01-01
Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:
Improvements in surface singularity analysis and design methods. [applicable to airfoils
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1979-01-01
The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.
Overall Traveling-Wave-Tube Efficiency Improved By Optimized Multistage Depressed Collector Design
NASA Technical Reports Server (NTRS)
Vaden, Karl R.
2002-01-01
Depressed Collector Design The microwave traveling wave tube (TWT) is used widely for space communications and high-power airborne transmitting sources. One of the most important features in designing a TWT is overall efficiency. Yet, overall TWT efficiency is strongly dependent on the efficiency of the electron beam collector, particularly for high values of collector efficiency. For these reasons, the NASA Glenn Research Center developed an optimization algorithm based on simulated annealing to quickly design highly efficient multistage depressed collectors (MDC's). Simulated annealing is a strategy for solving highly nonlinear combinatorial optimization problems. Its major advantage over other methods is its ability to avoid becoming trapped in local minima. Simulated annealing is based on an analogy to statistical thermodynamics, specifically the physical process of annealing: heating a material to a temperature that permits many atomic rearrangements and then cooling it carefully and slowly, until it freezes into a strong, minimum-energy crystalline structure. This minimum energy crystal corresponds to the optimal solution of a mathematical optimization problem. The TWT used as a baseline for optimization was the 32-GHz, 10-W, helical TWT developed for the Cassini mission to Saturn. The method of collector analysis and design used was a 2-1/2-dimensional computational procedure that employs two types of codes, a large signal analysis code and an electron trajectory code. The large signal analysis code produces the spatial, energetic, and temporal distributions of the spent beam entering the MDC. An electron trajectory code uses the resultant data to perform the actual collector analysis. The MDC was optimized for maximum MDC efficiency and minimum final kinetic energy of all collected electrons (to reduce heat transfer). The preceding figure shows the geometric and electrical configuration of an optimized collector with an efficiency of 93.8 percent. The results show the improvement in collector efficiency from 89.7 to 93.8 percent, resulting in an increase of three overall efficiency points. In addition, the time to design a highly efficient MDC was reduced from a month to a few days. All work was done in-house at Glenn for the High Rate Data Delivery Program. Future plans include optimizing the MDC and TWT interaction circuit in tandem to further improve overall TWT efficiency.
Compensatory Mitigation for Losses of Aquatic Resources; Final Rule
These regulations are designed to improve the effectiveness of compensatory mitigation to replace lost aquatic resource functions and area, and increase the efficiency and predictability of the mitigation project review process.
Integrated Optical Design Analysis (IODA): New Test Data and Modeling Features
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; Patrick, Brian
2003-01-01
A general overview of the capabilities of the IODA ("Integrated Optical Design Analysis") exchange of data and modeling results between thermal, structures, optical design, and testing engineering disciplines. This presentation focuses on new features added to the software that allow measured test data to be imported into the IODA environment for post processing or comparisons with pretest model predictions. software is presented. IODA promotes efficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Wei; Gowri, Krishnan; Lane, Michael D.
2009-09-28
This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.
User experience integrated life-style cloud-based medical application.
Serban, Alexandru; Lupşe, Oana Sorina; Stoicu-Tivadar, Lăcrămioara
2015-01-01
Having a modern application capable to automatically collect and process data from users, based on information and lifestyle answers is one of current challenges for researchers and medical science. The purpose of the current study is to integrate user experience design (UXD) in a cloud-based medical application to improve patient safety, quality of care and organizational efficiency. The process consists of collecting traditional and new data from patients and users using online questionnaires. A questionnaire dynamically asks questions about the user's current diet and lifestyle. After the user will introduce the data, the application will formulate a presumptive nutritional plan and will suggest different medical recommendations regarding a healthy lifestyle, and calculates a risk factor for diseases. This software application, by design and usability will be an efficient tool dedicated for fitness, nutrition and health professionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice
Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of themore » detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Keeling, Josh; Bruchs, Doug
Refrigerator recycling programs are designed to save energy by removing operable, albeit less efficient, refrigerators from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of less efficient refrigerators, these programs are designed to encourage consumers to: - Limit the use of secondary refrigerators -Relinquish refrigerators previously used as primary units when they are replaced (rather than keeping the existing refrigerator as a secondary unit) -Prevent the continued use of less efficient refrigerators in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).more » Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam, and enables recycling of the plastic, metal, and wiring components.« less
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
A Multidisciplinary Approach to Mixer-Ejector Analysis and Design
NASA Technical Reports Server (NTRS)
Hendricks, Eric, S.; Seidel, Jonathan, A.
2012-01-01
The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.
Layout design in order to improve efficiency in manufacturing
NASA Astrophysics Data System (ADS)
Siregar, I.; Tarigan, U.; Nasution, T. H.
2018-02-01
This research was conducted at the company that produces bobbins and ream type cigarette paper. Problems that found on the production process is the back and forth (back tracking) movement. Back and forth (back tracking) movement extending the total distance moved by the material and increase the total moment of transfer materials thus reducing the efficiency of the transfer of materials in the production process. The purpose of this study is to give design for the layout of production facilities in the company, so that the expected production produced by the company can reach the targets set by the management company. The method used in this research is the Graph-Based Construction and Travel Chart Method. The results of the analysis of the proposed layout with Graph-Based Construction was selected with a total value that is equal to the moment of transfer of 780 758 m / year. This result is better than the actual layout in the amount of 1,021,038.12 meters / year and the results of the method Travel Alternative Chart I of 826.236,60 meters/year, Alternative II of 1.004.433,56 meters / year, and Alternative III for 828,467.12 meters/year. The design layout of Graph-Based Construction material increases the transfer efficiency for 23.53%. With this layout proposal, expected production capacity will be increased along with the shortening of the distance of the displacement that must be passed by the material to be processed.
Advanced Research Deposition System (ARDS) for processing CdTe solar cells
NASA Astrophysics Data System (ADS)
Barricklow, Keegan Corey
CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation (PECSS), Electron Reflector (ER) using Cd1-xMgxTe (CMT) structure and alternative device structures. The ARDS has been instrumental in the collaborative research with many institutions.
NASA Astrophysics Data System (ADS)
Koziel, Slawomir; Bekasiewicz, Adrian
2018-02-01
In this article, a simple yet efficient and reliable technique for fully automated multi-objective design optimization of antenna structures using sequential domain patching (SDP) is discussed. The optimization procedure according to SDP is a two-step process: (i) obtaining the initial set of Pareto-optimal designs representing the best possible trade-offs between considered conflicting objectives, and (ii) Pareto set refinement for yielding the optimal designs at the high-fidelity electromagnetic (EM) simulation model level. For the sake of computational efficiency, the first step is realized at the level of a low-fidelity (coarse-discretization) EM model by sequential construction and relocation of small design space segments (patches) in order to create a path connecting the extreme Pareto front designs obtained beforehand. The second stage involves response correction techniques and local response surface approximation models constructed by reusing EM simulation data acquired in the first step. A major contribution of this work is an automated procedure for determining the patch dimensions. It allows for appropriate selection of the number of patches for each geometry variable so as to ensure reliability of the optimization process while maintaining its low cost. The importance of this procedure is demonstrated by comparing it with uniform patch dimensions.
ERIC Educational Resources Information Center
Elyria City Board of Education, OH.
Total Quality Management (TQM) is a process and strategy designed to improve an organization's effectiveness and efficiency. The Elyria Schools, named as Ohio's model urban school district in 1991, uses TQM to implement updated strategic goals through a process emphasizing teamwork, best knowledge, prevention, and commitment to continuous…
Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance
Grosges, Thomas; Barchiesi, Dominique; Kessentini, Sameh; Gréhan, Gérard; de la Chapelle, Marc Lamy
2011-01-01
The optimization of the coated metallic nanoparticles and nanoshells is a current challenge for biological applications, especially for cancer photothermal therapy, considering both the continuous improvement of their fabrication and the increasing requirement of efficiency. The efficiency of the coupling between illumination with such nanostructures for burning purposes depends unevenly on their geometrical parameters (radius, thickness of the shell) and material parameters (permittivities which depend on the illumination wavelength). Through a Monte-Carlo method, we propose a numerical study of such nanodevice, to evaluate tolerances (or uncertainty) on these parameters, given a threshold of efficiency, to facilitate the design of nanoparticles. The results could help to focus on the relevant parameters of the engineering process for which the absorbed energy is the most dependant. The Monte-Carlo method confirms that the best burning efficiency are obtained for hollow nanospheres and exhibit the sensitivity of the absorbed electromagnetic energy as a function of each parameter. The proposed method is general and could be applied in design and development of new embedded coated nanomaterials used in biomedicine applications. PMID:21698021
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAH, J; Shin, D; Manger, R
Purpose: To show how the Six Sigma DMAIC (Define-Measure-Analyze-Improve-Control) can be used for improving and optimizing the efficiency of patient-specific QA process by designing site-specific range tolerances. Methods: The Six Sigma tools (process flow diagram, cause and effect, capability analysis, Pareto chart, and control chart) were utilized to determine the steps that need focus for improving the patient-specific QA process. The patient-specific range QA plans were selected according to 7 treatment site groups, a total of 1437 cases. The process capability index, Cpm was used to guide the tolerance design of patient site-specific range. We also analyzed the financial impactmore » of this project. Results: Our results suggested that the patient range measurements were non-capable at the current tolerance level of ±1 mm in clinical proton plans. The optimized tolerances were calculated for treatment sites. Control charts for the patient QA time were constructed to compare QA time before and after the new tolerances were implemented. It is found that overall processing time was decreased by 24.3% after establishing new site-specific range tolerances. The QA failure for whole process in proton therapy would lead up to a 46% increase in total cost. This result can also predict how costs are affected by changes in adopting the tolerance design. Conclusion: We often believe that the quality and performance of proton therapy can easily be improved by merely tightening some or all of its tolerance requirements. This can become costly, however, and it is not necessarily a guarantee of better performance. The tolerance design is not a task to be undertaken without careful thought. The Six Sigma DMAIC can be used to improve the QA process by setting optimized tolerances. When tolerance design is optimized, the quality is reasonably balanced with time and cost demands.« less
Streamlining the Design-to-Build Transition with Build-Optimization Software Tools.
Oberortner, Ernst; Cheng, Jan-Fang; Hillson, Nathan J; Deutsch, Samuel
2017-03-17
Scaling-up capabilities for the design, build, and test of synthetic biology constructs holds great promise for the development of new applications in fuels, chemical production, or cellular-behavior engineering. Construct design is an essential component in this process; however, not every designed DNA sequence can be readily manufactured, even using state-of-the-art DNA synthesis methods. Current biological computer-aided design and manufacture tools (bioCAD/CAM) do not adequately consider the limitations of DNA synthesis technologies when generating their outputs. Designed sequences that violate DNA synthesis constraints may require substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in reducing DNA synthesis costs and timelines.
ERIC Educational Resources Information Center
Spais, George S.
2005-01-01
The major objective of this study is to identify a methodology that will help educators in marketing to efficiently manage the design, impact, and cost of case studies. It is my intention is to examine the impact of case study characteristics in relation to the degree of learner involvement in the learning process. The author proposes that…
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
The historical progression of efficiency improvements, cost reductions, and performance improvements in modules and photovoltaic systems are described. The potential for future improvements in photovoltaic device efficiencies and cost reductions continues as device concepts, designs, processes, and automated production capabilities mature. Additional step-function improvements can be made as today's simpler devices are replaced by more sophisticated devices.
Key issues in theoretical and functional pneumatic design
NASA Astrophysics Data System (ADS)
Xu, Z. G.; Yang, D. Y.; Liu, W. M.; Liu, T. T.
2017-10-01
This paper studies the energy release of the pneumatic engine in different thermodynamic processes, the isothermal process is the highest power output process, while adiabatic process is the lowest energy output process, and the energy release of the pneumatic engine is a multi-state thermodynamic process between them. Therefore heat exchanging should be increased between the pneumatic engine and the outer space, the gas expansion process in the cylinder should be as close as possible to the isothermal process. Heat exchange should be increased between the cylinder and the external spaces. Secondly, the fin structure is studied to increase the heat exchanging between the cylinder body and the outside space. The upper part has fin structures and the lower cylinder has no fin structure, this structure improved the working efficiency of pneumatic engine. Finally the cam and the hydraulic bottle of pneumatic engines are designed. Simulation and theoretical calculation are used to the analysis of the whole structure, which lay the foundation for the manufacturing and design of the pneumatic engines.
Development of Fully-Integrated Micromagnetic Actuator Technologies
2015-07-13
nonexistent because of certain design and fabrication challenges— primarily the inability to integrate high-performance, permanent - magnet ( magnetically ... efficiency necessary for certain applications. To enable the development of high-performance magnetic actuator technologies, the original research plan...developed permanent - magnet materials in more complex microfabrication process flows Objective 2: Design, model, and optimize a novel multi- magnet
Experiment design for pilot identification in compensatory tracking tasks
NASA Technical Reports Server (NTRS)
Wells, W. R.
1976-01-01
A design criterion for input functions in laboratory tracking tasks resulting in efficient parameter estimation is formulated. The criterion is that the statistical correlations between pairs of parameters be reduced in order to minimize the problem of nonuniqueness in the extraction process. The effectiveness of the method is demonstrated for a lower order dynamic system.
ERIC Educational Resources Information Center
Choi, Jung-Min
2010-01-01
The primary concern in current interaction design is focused on how to help users solve problems and achieve goals more easily and efficiently. While users' sufficient knowledge acquisition of operating a product or system is considered important, their acquisition of problem-solving knowledge in the task domain has largely been disregarded. As a…
ERIC Educational Resources Information Center
Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi
2012-01-01
In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…
Structural efficiency study of composite wing rib structures
NASA Technical Reports Server (NTRS)
Swanson, Gary D.; Gurdal, Zafer; Starnes, James H., Jr.
1988-01-01
A series of short stiffened panel designs which may be applied to a preliminary design assessment of an aircraft wing rib is presented. The computer program PASCO is used as the primary design and analysis tool to assess the structural efficiency and geometry of a tailored corrugated panel, a corrugated panel with a continuous laminate, a hat stiffened panel, a blade stiffened panel, and an unstiffened flat plate. To correct some of the shortcomings in the PASCO analysis when shear is present, a two step iterative process using the computer program VICON is used. The loadings considered include combinations of axial compression, shear, and lateral pressure. The loading ranges considered are broad enough such that the designs presented may be applied to other stiffened panel applications. An assessment is made of laminate variations, increased spacing, and nonoptimum geometric variations, including a beaded panel, on the design of the panels.
Research on design method of the full form ship with minimum thrust deduction factor
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Miao, Ai-qin; Zhang, Zhu-xin
2015-04-01
In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.
Ganni, Venkatarao
2008-08-12
A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.
Ganni, Venkatarao
2007-10-09
A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.
Assessing efficiency and effectiveness of Malaysian Islamic banks: A two stage DEA analysis
NASA Astrophysics Data System (ADS)
Kamarudin, Norbaizura; Ismail, Wan Rosmanira; Mohd, Muhammad Azri
2014-06-01
Islamic banks in Malaysia are indispensable players in the financial industry with the growing needs for syariah compliance system. In the banking industry, most recent studies concerned only on operational efficiency. However rarely on the operational effectiveness. Since the production process of banking industry can be described as a two-stage process, two-stage Data Envelopment Analysis (DEA) can be applied to measure the bank performance. This study was designed to measure the overall performance in terms of efficiency and effectiveness of Islamic banks in Malaysia using Two-Stage DEA approach. This paper presents analysis of a DEA model which split the efficiency and effectiveness in order to evaluate the performance of ten selected Islamic Banks in Malaysia for the financial year period ended 2011. The analysis shows average efficient score is more than average effectiveness score thus we can say that Malaysian Islamic banks were more efficient rather than effective. Furthermore, none of the bank exhibit best practice in both stages as we can say that a bank with better efficiency does not always mean having better effectiveness at the same time.
NASA Astrophysics Data System (ADS)
Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei
2017-07-01
This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.
Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition
NASA Astrophysics Data System (ADS)
Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.
2015-02-01
An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.
Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd
2017-04-01
Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/g cell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 g product /L, 86% yield (based on UDP), and a total turnover number of 103 g UDP-glc /g cell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Redesigning the continuous vacuum sealer packaging machine to improve the processing speed
NASA Astrophysics Data System (ADS)
Belo, J. B.; Widyanto, S. A.; Jamari, J.
2017-01-01
Vacuum sealer as a product packaging tool of food products to be able to vacuum air inside the plastic which is filled with food products and it causes the pressure lower. In this condition, the optimal heating temperature is reached in a shorter time, so that damage on plastic sealer of vacuumed food products could be prevented to be more effective and efficient. The purpose of this redesigning is to design a vacuum sealer packaging machine continuously through a conveyor mechanism on the packaging quality, time of processing speed of vacuuming food product in the plastic package. This designing process is conducted through several steps of designing and constructing tools until the products are ready to operate. Data analysis is done through quality test of vacuum and sealer to the plastic thickness of 75 µm, 80 µm, and 100 µm with temperature of 170°C, 180°C, 190°C and vacuum duration of 5 seconds, 8 seconds, and 60 seconds. Results of this designing process indicate that vacuum sealer works practically and more optimally with the time of vacuum processing speed of 0 to 1 minute/s; whereas, the pressure of vacuuming suction is until 1e-5 MPa. The results of tensile strength test are at a maximum of 32,796 (N/mm2) and a minimum of 20,155 (N/mm2) and the analysis of plastic composite with EDX. This result shows that the vacuum pressure and the quality of vacuum sealer are better and more efficient.
Laser Processed Heat Exchangers
NASA Technical Reports Server (NTRS)
Hansen, Scott
2017-01-01
The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.
A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate
NASA Astrophysics Data System (ADS)
El Dallal, Norhan; Visser, Florentine
2017-09-01
In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.
Singh, Ravendra; Ierapetritou, Marianthi; Ramachandran, Rohit
2013-11-01
The next generation of QbD based pharmaceutical products will be manufactured through continuous processing. This will allow the integration of online/inline monitoring tools, coupled with an efficient advanced model-based feedback control systems, to achieve precise control of process variables, so that the predefined product quality can be achieved consistently. The direct compaction process considered in this study is highly interactive and involves time delays for a number of process variables due to sensor placements, process equipment dimensions, and the flow characteristics of the solid material. A simple feedback regulatory control system (e.g., PI(D)) by itself may not be sufficient to achieve the tight process control that is mandated by regulatory authorities. The process presented herein comprises of coupled dynamics involving slow and fast responses, indicating the requirement of a hybrid control scheme such as a combined MPC-PID control scheme. In this manuscript, an efficient system-wide hybrid control strategy for an integrated continuous pharmaceutical tablet manufacturing process via direct compaction has been designed. The designed control system is a hybrid scheme of MPC-PID control. An effective controller parameter tuning strategy involving an ITAE method coupled with an optimization strategy has been used for tuning of both MPC and PID parameters. The designed hybrid control system has been implemented in a first-principles model-based flowsheet that was simulated in gPROMS (Process System Enterprise). Results demonstrate enhanced performance of critical quality attributes (CQAs) under the hybrid control scheme compared to only PID or MPC control schemes, illustrating the potential of a hybrid control scheme in improving pharmaceutical manufacturing operations. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dhooge, P. M.; Nimitz, J. S.
2001-01-01
Process analysis can identify opportunities for efficiency improvement including cost reduction, increased safety, improved quality, and decreased environmental impact. A thorough, systematic approach to materials and process selection is valuable in any analysis. New operations and facilities design offer the best opportunities for proactive cost reduction and environmental improvement, but existing operations and facilities can also benefit greatly. Materials and processes that have been used for many years may be sources of excessive resource use, waste generation, pollution, and cost burden that should be replaced. Operational and purchasing personnel may not recognize some materials and processes as problems. Reasons for materials or process replacement may include quality and efficiency improvements, excessive resource use and waste generation, materials and operational costs, safety (flammability or toxicity), pollution prevention, compatibility with new processes or materials, and new or anticipated regulations.
Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis
NASA Astrophysics Data System (ADS)
Ahmad, Nadiah
One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.
NASA Technical Reports Server (NTRS)
Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.
2008-01-01
To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.
Image-Processing Software For A Hypercube Computer
NASA Technical Reports Server (NTRS)
Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.
1992-01-01
Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.
ORNL engineering design and construction reengineering report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeese, L.E.
1998-01-01
A team composed of individuals representing research and development (R and D) divisions, infrastructure support organizations, and Department of Energy (DOE)-Oak Ridge Operations was chartered to reengineer the engineering, design, and construction (ED and C) process at Oak Ridge National Laboratory (ORNL). The team recognized that ED and C needs of both R and D customers and the ORNL infrastructure program have to be met to maintain a viable and competitive national laboratory. Their goal was to identify and recommend implementable best-in-class ED and C processes that will efficiently and cost-effectively support the ORNL R and D staff by beingmore » responsive to their programmatic and infrastructure needs. The team conducted process mapping of current and potential ED and C approaches, developed idealized versions of ED and C processes, and identified potential barriers to an efficient ED and C process. Eight subteams were assigned to gather information and to evaluate the significance of potential barriers through benchmarking, surveys, interviews, and reviews of key topical areas in order to determine whether the perceived barriers were real and important and whether they resulted from laws or regulations over which ORNL has no control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Joshua M.
Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address thismore » problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates/decomposition. In the process, criteria guide function allocation of components/operators and help ensure compatibility and feasibility. Through multiple function assignment options and varied function structures, multiple design concepts are created. All of the generated designs are then evaluated based on a number of relevant evaluation criteria: cost, dose, ergonomics, hazards, efficiency, etc. These criteria are computed using physical properties/parameters of each system based on the qualities an engineer would use to make evaluations. Nuclear processes such as oxide conversion and electrorefining are utilized to aid algorithm development and provide test cases for the completed program. Through our approach, we capture design knowledge related to manufacturing and other operations in hazardous environments to enable a computational program to automatically generate and evaluate system design concepts.« less
Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.
Espinoza-Quiñones, Fernando R; Fornari, Marilda M T; Módenes, Aparecido N; Palácio, Soraya M; Trigueros, Daniela E G; Borba, Fernando H; Kroumov, Alexander D
2009-01-01
An electro-coagulation laboratory scale system using aluminium plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from leather finishing industrial process. A fractional factorial 2(3) experimental design was applied in order to obtain optimal values of the system state variables. The electro-coagulation (EC) process efficiency was based on the chemical oxygen demand (COD), turbidity, total suspended solid, total fixed solid, total volatile solid, and chemical element concentration values. Analysis of variance (ANOVA) for final pH, total fixed solid (TFS), turbidity and Ca concentration have confirmed the predicted models by the experimental design within a 95% confidence level. The reactor working conditions close to real effluent pH (7.6) and electrolysis time in the range 30-45 min were enough to achieve the cost effective reduction factors of organic and inorganic pollutants' concentrations. An appreciable improvement in COD removal efficiency was obtained for electro-coagulation treatment. Finally, the technical-economical analysis results have clearly shown that the electro-coagulation method is very promising for industrial application.
De, Sudipta; Dutta, Saikat; Saha, Basudeb
2016-01-01
Catalysis in the heterogeneous phase plays a crucial role in the valorization of biorenewable substrates with controlled reactivity, efficient mechanical process separation, greater recyclability and minimization of environmental effects.