V-Assembly Dual-Head Efficient Resonator (VADER) for Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Stysley, Paul R.; Clark, Greg; Poulios, Demetrios; Frederickson, Robert; Blalock, Gordon; Arnold, Ed; Cory, Ken
2011-01-01
The V-Assembly Dual-head Efficient Resonator (VADER) is a diode pumped, Nd:YAG, Q-switched, positive branch unstable resonator that employs a split laser gain module designed for optimal efficiency and thermal lensing compensation.
Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios
2007-01-01
A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.
Enhanced performance of crumb rubber filtration for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2009-03-01
Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.
Stroup-Benham, C A; Treviño, F M; Treviño, D B
1990-01-01
Data from the southwestern United States sample of the Hispanic Health and Nutrition Examination Survey were employed to compare the patterns of alcohol use among Mexican American mothers and children in female-headed households with use patterns among mothers and children in couple-headed households. Single female heads of household drank more alcoholic beverages on more days than females from dual-headed households. As a whole, the children of single heads of household still living at home did not demonstrate significantly different drinking patterns from their dual-headed household counterparts. While male children of single-headed households drank more days and total drinks than their dual-headed household counterparts, female children of dual-headed households drank more days and total drinks than female children from single-headed households. PMID:9187580
System, Apparatus and Method Employing a Dual Head Laser
NASA Technical Reports Server (NTRS)
Coyle, Donald B. (Inventor); Stysley, Paul R. (Inventor); Poulios, Demetrios (Inventor)
2015-01-01
A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.
Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.
Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu
2012-01-01
Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.
Spiotta, Alejandro M; Miranpuri, Amrendra S; Vargas, Jan; Magarick, Jordan; Turner, Raymond D; Turk, Aquilla S; Chaudry, M Imran
2014-09-01
Endovascular embolization for tumors and vascular malformations has emerged as an important preoperative adjunct prior to resection. We describe the advantages of utilizing a recently released dual lumen balloon catheter for ethylene vinyl alcohol copolymer, also known as Onyx (ev3, Irvine, California, USA), embolization for a variety of head and neck pathologies. A retrospective review of all cases utilizing the Scepter C balloon catheter (MicroVention Inc, Tustin, California, USA) for use in balloon augmented embolization was performed over a 4 month period from October 2012 to February 2013 at the Medical University of South Carolina, Charleston, South Carolina, USA. Charts and angiographic images were reviewed. Representative cases involving diverse pathologies are summarized and illustrate the observed advantages of balloon augmented Onyx embolization with a dual lumen balloon catheter. Balloon augmented Onyx embolization utilizing a novel dual lumen balloon catheter was employed to treat both ruptured and unruptured arteriovenous malformations, intracranial dural arteriovenous fistulae, intracranial neoplasms, carotid body tumors, a thyroid mass, and an extracranial arteriovenous fistula. The dual lumen balloon catheter has several advantages for use with Onyx embolization over older devices, including more efficient proximal plug formation and enhanced navigability for placement deep within the pedicles. The balloon augmented Onyx embolization technique represents a valuable tool to add to the armamentarium of the neurointerventionalist to address a variety of head and neck lesions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Enhancing Image Findability through a Dual-Perspective Navigation Framework
ERIC Educational Resources Information Center
Lin, Yi-Ling
2013-01-01
This dissertation focuses on investigating whether users will locate desired images more efficiently and effectively when they are provided with information descriptors from both experts and the general public. This study develops a way to support image finding through a human-computer interface by providing subject headings and social tags about…
Design and Operation of a 4kW Linear Motor Driven Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Zia, J. H.
2004-06-01
A 4 kW electrical input Linear Motor driven pulse tube cryocooler has successfully been designed, built and tested. The optimum operation frequency is 60 Hz with a design refrigeration of >200 W at 80 K. The design exercise involved modeling and optimization in DeltaE software. Load matching between the cold head and linear motor was achieved by careful sizing of the transfer tube. The cryocooler makes use of a dual orifice inertance network and a single compliance tank for phase optimization and streaming suppression in the pulse tube. The in-line cold head design is modular in structure for convenient change-out and re-assembly of various components. The Regenerator consists of layers of two different grades of wire-mesh. The Linear motor is a clearance seal, dual opposed piston design from CFIC Inc. Initial results have demonstrated the refrigeration target of 200 W by liquefying Nitrogen from an ambient temperature and pressure. Overall Carnot efficiencies of 13% have been achieved and efforts to further improve efficiencies are underway. Linear motor efficiencies up to 84% have been observed. Experimental results have shown satisfactory compliance with model predictions, although the effects of streaming were not part of the model. Refrigeration loss due to streaming was minimal at the design operating conditions of 80 K.
Branchburg Solar Farm and Carport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, John
2013-10-23
To meet the goal of becoming a model of green, clean, and efficient consumer of energy, the Township of Branchburg will install of a 250kw solar farm to provide energy for the Township of Branchburg Municipal Building, a 50kw Solar carport to provide power to the Municipal Annex, purchase 3 plug in hybrid-electric vehicles, and install 3 dual-head charging stations.
Berge, Jerica M; Hoppmann, Caroline; Hanson, Carrie; Neumark-Sztainer, Dianne
2013-12-01
Cross-sectional and longitudinal research has shown that family meals are protective for adolescent healthful eating behaviors. However, little is known about what parents think of these findings and whether parents from single- vs dual-headed households have differing perspectives about the findings. In addition, parents' perspectives regarding barriers to applying the findings on family meals in their own homes and suggestions for more widespread adoption of the findings are unknown. The current study aimed to identify single- and dual-headed household parents' perspectives regarding the research findings on family meals, barriers to applying the findings in their own homes, and suggestions for helping families have more family meals. The current qualitative study included 59 parents who participated in substudy of two linked multilevel studies-EAT 2010 (Eating and Activity in Teens) and Families and Eating and Activity in Teens (F-EAT). Parents (91.5% female) were racially/ethnically and socioeconomically diverse. Data were analyzed using a grounded theory approach. Results from the current study suggest that parents from both single- and dual-headed households have similar perspectives regarding why family meals are protective for healthful eating habits for adolescents (eg, provides structure/routine, opportunities for communication, connection), but provide similar and different reasons for barriers to family meals (eg, single-headed=cost vs dual-headed=lack of creativity) and ideas and suggestions for how to increase the frequency of family meals (eg, single-headed=give fewer options vs dual-headed=include children in the meal preparation). Findings can help inform public health intervention researchers and providers who work with adolescents and their families to understand how to approach discussions regarding reasons for having family meals, barriers to carrying out family meals, and ways to increase family meals depending on family structure. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Berge, Jerica M.; Hoppmann, Caroline; Hanson, Carrie; Neumark-Sztainer, Dianne
2013-01-01
Cross-sectional and longitudinal research has shown that family meals are protective for adolescent healthful eating behaviors. However, little is known about what parents think of these findings and whether parents from single- versus dual-headed households have differing perspectives about the findings. Additionally, parents’ perspectives regarding barriers to applying the findings on family meals in their own homes and suggestions for more wide-spread adoption of the findings are unknown. The current study aimed to identify single- and dual-headed household parents’ perspectives regarding the research findings on family meals, barriers to applying the findings in their own homes and suggestions for helping families have more family meals. The current qualitative study included 59 parents who participated in sub-study of two linked multi-level studies—EAT 2010 (Eating and Activity in Teens) and Families and Eating and Activity in Teens (F-EAT). Parents (91.5% female) were racially/ethnically and socio-economically diverse. Data were analyzed using a grounded theory approach. Results from the current study suggest that parents from both single- and dual-headed households have similar perspectives regarding why family meals are protective for healthful eating habits for adolescents (e.g., provides structure/routine, opportunities for communication, connection), but provide similar and different reasons for barriers to family meals (e.g., single-headed=cost vs. dual-headed=lack of creativity) and ideas and suggestions for how to increase the frequency of family meals (e.g., single-headed=give fewer options vs. dual-headed=include children in the meal preparation). Findings may help inform public health intervention researchers and providers who work with adolescents and their families to understand how to approach discussions regarding reasons for having family meals, barriers to carrying out family meals and ways to increase family meals depending on family structure. PMID:24238144
Research on the magnetorheological finishing (MRF) technology with dual polishing heads
NASA Astrophysics Data System (ADS)
Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang
2014-08-01
Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.
Spanish Instruction in Head Start and Dual Language Learners' Achievement
ERIC Educational Resources Information Center
Miler, Elizabeth B.
2016-01-01
Prior research suggests that Spanish-speaking Dual Language Learners (DLLs)--young children who must master two languages simultaneously, their home language and English (Espinosa, 2013)--differentially benefit from quality Early Childhood Education (ECE), and in particular from Head Start, compared with children of other subgroups and…
Sedighi, Alireza; Ulman, Sophia M.
2018-01-01
The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614
[Intra-prosthetic dislocation of the Bousquet dual mobility socket].
Lecuire, F; Benareau, I; Rubini, J; Basso, M
2004-05-01
The Bousquet system is a dual mobility head-polyethylene polyethylene-metal cup socket. The polyethylene insert retaining the femoral head moves in the noncemented metal cup, increasing both mobility and stability. Between 1989 and 1997, seven cases of intra-prosthetic dislocation (six patients) were observed. The femoral head escaped from the polyethylene insert due to wear. On the average, this complication occurred ten Years after implantation. Risk of dislocation was high in six of the seven hips. All patients had a large sized stem screwed into the femoral neck. There was a characteristic radiological aspect with loss of the concentric head metal cup configuration. The head was applied against the upper wall of the metal cup. Surgical replacement was undertaken early in six patients by simply changing the insert without modifying the other stable components. Outcome remained good at three to eight Years. One patient underwent late surgery. The insert and the cup were replaced with a classical implant. Functional outcome was good but recurrent dislocation occurred. At mid-term, intra-prosthetic dislocation of dual mobility sockets appears to be exceptional. Dislocation results from polyethylene wear leading to failure of the insert to retain the prosthetic head. Wear is favored by direct phenomena (direct contact between neck and insert which can occur early if there is a small difference in the head and neck diameters) or indirect phenomena (factors limiting polyethylene metal-cup mobility). Surgical treatment is necessary. If undertaken early, replacement with a modular head and insert can be sufficient if the prosthesis has not loosened but the metal cup may have to be replaced in the event of metal-metal contact between the head and the cup. Prosthesis loosening, wear of the metal cup, or an identified cause of dislocation imply replacing the failing implants. Implantation of the dual mobility system is particularly interesting for patients with a high risk of dislocation or a chronically unstable hip prosthesis. Careful technique is required to reduce or retard the risk of intra-prosthetic dislocation. Intra-prosthetic dislocation of a dual mobility socket is an exceptional complication at mid-term. Surgical treatment is required but may be limited to simple insert replacement. Systematic use of this type of implant in young subjects must be carefully examined, but for us, the risk of dislocation does not outweigh the advantages of this original concept of dual mobility. This type of socket remains an useful preventive technique for high-risk hips or for curative treatment of recurrent dislocation.
2010-11-30
approved climate zones) ► Dual flush toilets ► 1.5 GPM flow shower heads ► 0.5 GPM flow faucets ► Rainwater harvesting ► Permeable asphalt, permeable...for system with indirect evaporative pre-cooling Sustainability Measures ► Dual flush toilets ► 1.5 GPM flow shower heads, 0.5 GPM flow faucets...daylighting controls with 500 lux setpoint ► Dual flush toilets ►Waterless urinals ► 0.5 GPM flow faucets ► Rainwater harvesting ► Enhanced Commissioning
2014-01-01
Data from the Head Start Impact Study (N = 4,442) were used to test for differences between Spanish-speaking Dual Language Learners (DLLs) and monolingual English-speaking children in: (1) Head Start attendance rates when randomly assigned admission; and (2) quality ratings of other early childhood education (ECE) programs attended when not randomly assigned admission to Head Start. Logistic regressions showed that Spanish-speaking DLL children randomly assigned a spot in Head Start were more likely than monolingual-English learners to attend. Further, Spanish-speaking DLLs not randomly assigned a spot in Head Start were more likely to attend higher-quality ECE centers than non-DLL children. Policy implications are discussed, suggesting that, if given access, Spanish-speaking DLL families will take advantage of quality ECE programs. PMID:25018585
Dkk1 and noggin cooperate in mammalian head induction
del Barco Barrantes, Ivan; Davidson, Gary; Gröne, Hermann-Josef; Westphal, Heiner; Niehrs, Christof
2003-01-01
Growth factor antagonists play important roles in mediating the inductive effects of the Spemann organizer in amphibian embryos and its equivalents in other vertebrates. Dual inhibition of Wnt and BMP signals has been proposed to confer head organizer activity. We tested the requirement of this coinhibition in Xenopus and mice. In Xenopus, simultaneous reduction of the BMP antagonists chordin and noggin, and the Wnt antagonist dickkopf1 (dkk1) leads to anterior truncations. In mice, compound mutants for dkk1 and noggin display severe head defects, with deletion of all head structures anterior to the mid-hindbrain boundary. These defects arise as a result of a failure in anterior specification at the gastrula stage. The results provide genetic evidence for the dual inhibition model and indicate that dkk1 and noggin functionally cooperate in the head organizer. PMID:12952897
Closed head injury and perceptual processing in dual-task situations.
Hein, G; Schubert, T; von Cramon, D Y
2005-01-01
Using a classical psychological refractory period (PRP) paradigm we investigated whether increased interference between dual-task input processes is one possible source of dual-task deficits in patients with closed-head injury (CHI). Patients and age-matched controls were asked to give speeded motor reactions to an auditory and a visual stimulus. The perceptual difficulty of the visual stimulus was manipulated by varying its intensity. The results of Experiment 1 showed that CHI patients suffer from increased interference between dual-task input processes, which is related to the salience of the visual stimulus. A second experiment indicated that this input interference may be specific to brain damage following CHI. It is not evident in other groups of neurological patients like Parkinson's disease patients. We conclude that the non-interfering processing of input stages in dual-tasks requires cognitive control. A decline in the control of input processes should be considered as one source of dual-task deficits in CHI patients.
Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system
NASA Astrophysics Data System (ADS)
Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik
2017-12-01
A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.
Seo, Kyung-Won; Nahm, Kyung-Yen; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald
2013-07-01
This article reports the dual function of a double-Y miniplate with a detachable C-tube head (C-chin plate; Jin Biomed Co., Bucheon, Korea) used to fixate an anterior segmental osteotomy and provide skeletal anchorage during orthodontic tooth movement. Cases were selected for this study from patients who underwent anterior segmental osteotomy under local anesthesia. A detachable C-tube head portion was combined with a double-Y chin plate. The double-Y chin plates were fixated between the osteotomy segments and the mandibular base with screws in a conventional way. The C-tube head portion exited the tissue near the mucogingival junction. Biocreative Chin Plates were placed on the anterior segmental osteotomy sites. The device allowed 3 points of fixation: 1, minor postosteotomy vertical adjustment of the segment during healing; 2, minor shift of the midline during healing; and 3, to serve as temporary skeletal anchorage device during the post-anterior segmental osteotomy orthodontic treatment. When tooth movement goals are accomplished, the C-tube head of the chin plate can be easily detached from the fixation miniplate by twisting the head using a Weingart plier under local anesthesia. This dual-purpose device spares the patient from the need for 2 separate installations for stabilization of osteotomy segments. The dual-purpose double-Y miniplate combined with a C-tube head (Biocreative Chin Plate) provided versatile application of 3 points of post-osteotomy fixation and of temporary skeletal anchorage for orthodontic tooth movement.
Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation
Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang
2014-01-01
This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911
NASA Astrophysics Data System (ADS)
Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro
2016-03-01
The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.
Simultaneous display of two large proteins on the head and tail of bacteriophage lambda.
Pavoni, Emiliano; Vaccaro, Paola; D'Alessio, Valeria; De Santis, Rita; Minenkova, Olga
2013-09-30
Consistent progress in the development of bacteriophage lambda display platform as an alternative to filamentous phage display system was achieved in the recent years. The lambda phage has been engineered to display efficiently multiple copies of peptides or even large protein domains providing a powerful tool for screening libraries of peptides, proteins and cDNA. In the present work we describe an original method for dual display of large proteins on the surface of lambda particles. An anti-CEA single-chain antibody fragment and green fluorescent protein or alkaline phosphatase were simultaneously displayed by engineering both gpD and gpV lambda proteins. Here we show that such modified phage particles can be used for the detection of target molecules in vitro and in vivo. Dual expression of functional moieties on the surface of the lambda phage might open the way to generation of a new class of diagnostic and therapeutic targeted nanoparticles.
NASA Astrophysics Data System (ADS)
Alshipli, Marwan; Kabir, Norlaili A.
2017-05-01
Computed tomography (CT) employs X-ray radiation to create cross-sectional images. Dual-energy CT acquisition includes the images acquired from an alternating voltage of X-ray tube: a low- and a high-peak kilovoltage. The main objective of this study is to determine the best slice thickness that reduces image noise with adequate diagnostic information using dual energy CT head protocol. The study used the ImageJ software and statistical analyses to aid the medical image analysis of dual-energy CT. In this study, ImageJ software and F-test were utilised as the combination methods to analyse DICOM CT images. They were used to investigate the effect of slice thickness on noise and visibility in dual-energy CT head protocol images. Catphan-600 phantom was scanned at different slice thickness values;.6, 1, 2, 3, 4, 5 and 6 mm, then quantitative analyses were carried out. The DECT operated in helical mode with another fixed scan parameter values. Based on F-test statistical analyses, image noise at 0.6, 1, and 2 mm were significantly different compared to the other images acquired at slice thickness of 3, 4, 5, and 6 mm. However, no significant differences of image noise were observed at 3, 4, 5, and 6 mm. As a result, better diagnostic image value, image visibility, and lower image noise in dual-energy CT head protocol was observed at a slice thickness of 3 mm.
Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.
van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M
2018-05-10
Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
King, N S
1997-01-01
This case study describes post-traumatic stress disorder (PTSD) and head injury after a road traffic accident involving a pedestrian. Previous studies have proposed two mechanisms by which this dual diagnosis may occur: (1) when post-traumatic amnesia and retrograde amnesia are small or non-existent and (2) when non-declarative memory systems for the traumatic event are in operation. This case study demonstrates a third mechanism--"islands" of memory within post-traumatic amnesia. PMID:9010405
King, N S
1997-01-01
This case study describes post-traumatic stress disorder (PTSD) and head injury after a road traffic accident involving a pedestrian. Previous studies have proposed two mechanisms by which this dual diagnosis may occur: (1) when post-traumatic amnesia and retrograde amnesia are small or non-existent and (2) when non-declarative memory systems for the traumatic event are in operation. This case study demonstrates a third mechanism--"islands" of memory within post-traumatic amnesia.
2006-10-01
patients with breast cancer underwent scanning with a hybrid camera which combined a dual-head SPECT camera and a low-dose, single slice CT scanner , (GE...investigated a novel approach which combines the output of a dual-head SPECT camera and a low-dose, single slice CT scanner , (GE Hawkeye®). This... scanner , (Hawkeye®, GE Medical system) is attempted in this study. This device is widely available in cardiology community and has the potential to
NASA Astrophysics Data System (ADS)
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-08-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.
Dual instrument for in vivo and ex vivo OCT imaging in an ENT department
Cernat, Ramona; Tatla, Taran S.; Pang, Jingyin; Tadrous, Paul J.; Bradu, Adrian; Dobre, George; Gelikonov, Grigory; Gelikonov, Valentin; Podoleanu, Adrian Gh.
2012-01-01
A dual instrument is assembled to investigate the usefulness of optical coherence tomography (OCT) imaging in an ear, nose and throat (ENT) department. Instrument 1 is dedicated to in vivo laryngeal investigation, based on an endoscope probe head assembled by compounding a miniature transversal flying spot scanning probe with a commercial fiber bundle endoscope. This dual probe head is used to implement a dual channel nasolaryngeal endoscopy-OCT system. The two probe heads are used to provide simultaneously OCT cross section images and en face fiber bundle endoscopic images. Instrument 2 is dedicated to either in vivo imaging of accessible surface skin and mucosal lesions of the scalp, face, neck and oral cavity or ex vivo imaging of the same excised tissues, based on a single OCT channel. This uses a better interface optics in a hand held probe. The two instruments share sequentially, the swept source at 1300 nm, the photo-detector unit and the imaging PC. An aiming red laser is permanently connected to the two instruments. This projects visible light collinearly with the 1300 nm beam and allows pixel correspondence between the en face endoscopy image and the cross section OCT image in Instrument 1, as well as surface guidance in Instrument 2 for the operator. The dual channel instrument was initially tested on phantom models and then on patients with suspect laryngeal lesions in a busy ENT practice. This feasibility study demonstrates the OCT potential of the dual imaging instrument as a useful tool in the testing and translation of OCT technology from the lab to the clinic. Instrument 1 is under investigation as a possible endoscopic screening tool for early laryngeal cancer. Larger size and better quality cross-section OCT images produced by Instrument 2 provide a reference base for comparison and continuing research on imaging freshly excised tissue, as well as in vivo interrogation of more superficial skin and mucosal lesions in the head and neck patient. PMID:23243583
All-in-one theranostic nanoagent for head and neck cancer treatment
NASA Astrophysics Data System (ADS)
Dreifuss, Tamar; Davidi, Erez Shmuel; Motiei, Menachem; Barnoy, Eran; Bragilovski, Dimitri; Lubimov, Leon; Kindler, Marc Jose Jonathan; Popovtzer, Aron; Popovtzer, Rachela
2018-02-01
Despite the significant improvement in the treatment paradigm of head and neck cancer, owing to advanced radiation techniques in combination with chemotherapy, resistance of tumors remains a critical problem, leading to poor outcomes and negative prognosis. In addition, chemotherapeutic agents result in severe systemic toxicity due to nonselective damaging of normal cells. Recently, nanoparticle-based approaches have gained broad attention for improving both radiation therapy and chemotherapy. In this study, we present a dual effect nanoplatform, consists of gold nanoparticles coated with glucose and cisplatin (CG-GNPs), which simultaneously acts as a radiosensitizer and as a carrier which specifically deliver cisplatin to head and neck tumor. Our CG-GNPs showed significant penetration into tumor cells and similar cellular toxicity as cisplatin alone. Moreover, in combination with radiation treatment, CG-GNPs led to greater tumor reduction than that of free cisplatin with radiation. Furthermore, our CG-GNPs also demonstrated highly efficient imaging capabilities, as they act as ideal tumor-targeted CT contrast agent. Therefore, this single nano-formulation is a promising theranostic agent that has the potential to increase the antitumor effect and allow imaging guided therapy.
A Spotlight on Dual Language Learners in Head Start: FACES 2014. Research Brief. OPRE Report 2017-99
ERIC Educational Resources Information Center
Aikens, Nikki; Knas, Emily; Malone, Lizabeth; Tarullo, Louisa; Harding, Jessica F.
2017-01-01
This research brief draws upon data from the Head Start Family and Child Experiences Survey (FACES) 2014. FACES provides information at the national level about Head Start programs, centers, and classrooms, and about the children and families that Head Start serves. This brief is part of a series of reporting products describing data from the…
Imaging system for cardiac planar imaging using a dedicated dual-head gamma camera
Majewski, Stanislaw [Morgantown, VA; Umeno, Marc M [Woodinville, WA
2011-09-13
A cardiac imaging system employing dual gamma imaging heads co-registered with one another to provide two dynamic simultaneous views of the heart sector of a patient torso. A first gamma imaging head is positioned in a first orientation with respect to the heart sector and a second gamma imaging head is positioned in a second orientation with respect to the heart sector. An adjustment arrangement is capable of adjusting the distance between the separate imaging heads and the angle between the heads. With the angle between the imaging heads set to 180 degrees and operating in a range of 140-159 keV and at a rate of up to 500kHz, the imaging heads are co-registered to produce simultaneous dynamic recording of two stereotactic views of the heart. The use of co-registered imaging heads maximizes the uniformity of detection sensitivity of blood flow in and around the heart over the whole heart volume and minimizes radiation absorption effects. A normalization/image fusion technique is implemented pixel-by-corresponding pixel to increase signal for any cardiac region viewed in two images obtained from the two opposed detector heads for the same time bin. The imaging system is capable of producing enhanced first pass studies, bloodpool studies including planar, gated and non-gated EKG studies, planar EKG perfusion studies, and planar hot spot imaging.
Miller, Elizabeth B.
2016-01-01
Data from the Head Start Impact Study (N = 1,141) and the Head Start Family and Child Experiences Survey, 2009 Cohort (N = 825) were used to describe child care enrollment decisions among Spanish-speaking Dual Language Learner (DLL) families. In particular, logistic regression models tested which child, family, and institutional characteristics predicted enrollment in early care and education (ECE) settings that used Spanish for instruction versus enrollment in settings that did not use Spanish. Results showed that whether the child’s first language was exclusively Spanish and whether other DLL families previously attended the ECE arrangement strongly predicted whether that child enrolled. Policy implications for Head Start-eligible Spanish-speaking DLLs are discussed. PMID:26900255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Vikas Kumar; Gara, Rishi Kumar; Bhatt, M.L.B.
Research highlights: {yields} Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. {yields} CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. {yields} CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head andmore » neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.« less
Experimental studies on twin PTCs driven by dual piston head linear compressor
NASA Astrophysics Data System (ADS)
Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.
2017-02-01
An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.
Naruto, Norihito; Tannai, Hidenori; Nishikawa, Kazuma; Yamagishi, Kentaro; Hashimoto, Masahiko; Kawabe, Hideto; Kamisaki, Yuichi; Sumiya, Hisashi; Kuroda, Satoshi; Noguchi, Kyo
2018-02-01
One of the major applications of dual-energy computed tomography (DECT) is automated bone removal (BR). We hypothesized that the visualization of acute intracranial hemorrhage could be improved on BRCT by removing bone as it has the highest density tissue in the head. This preliminary study evaluated the efficacy of a DE BR algorithm for the head CT of trauma patients. Sixteen patients with acute intracranial hemorrhage within 1 day after head trauma were enrolled in this study. All CT examinations were performed on a dual-source dual-energy CT scanner. BRCT images were generated using the Bone Removal Application. Simulated standard CT and BRCT images were visually reviewed in terms of detectability (presence or absence) of acute hemorrhagic lesions. DECT depicted 28 epidural/subdural hemorrhages, 17 contusional hemorrhages, and 7 subarachnoid hemorrhages. In detecting epidural/subdural hemorrhage, BRCT [28/28 (100%)] was significantly superior to simulated standard CT [17/28 (61%)] (p = .001). In detecting contusional hemorrhage, BRCT [17/17 (100%)] was also significantly superior to simulated standard CT [11/17 (65%)] (p = .0092). BRCT was superior to simulated standard CT in detecting acute intracranial hemorrhage. BRCT could improve the detection of small intracranial hemorrhages, particularly those adjacent to bone, by removing bone that can interfere with the visualization of small acute hemorrhage. In an emergency such as head trauma, BRCT can be used as support imaging in combination with simulated standard CT and bone scale CT, although BRCT cannot replace a simulated standard CT.
Papadopoulos, Dimitrios K.; Reséndez-Pérez, Diana; Cárdenas-Chávez, Diana L.; Villanueva-Segura, Karina; Canales-del-Castillo, Ricardo; Felix, Daniel A.; Fünfschilling, Raphael; Gehring, Walter J.
2011-01-01
Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary—whereas the entire N terminus of the protein is dispensable—for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors. PMID:21712439
Allicat magnetoresistive head design and performance
NASA Astrophysics Data System (ADS)
Hannon, David; Krounbi, Mohamed; Christner, Jodie
1994-03-01
The general design features of the magnetoresistive (MR) merged head are described and compared to the earlier MR piggy-back head called Corsair. Examples of static, magnetic, and error rate testing are given. Dual track profiles show the read-narrow feature of the MR head. Stability of the signal with write disturbance shows the effectiveness of the hard-bias longitudinal biasing. Error rate versus off-track position indicates the robustness of the file design.
Simultaneous display of two large proteins on the head and tail of bacteriophage lambda
2013-01-01
Background Consistent progress in the development of bacteriophage lambda display platform as an alternative to filamentous phage display system was achieved in the recent years. The lambda phage has been engineered to display efficiently multiple copies of peptides or even large protein domains providing a powerful tool for screening libraries of peptides, proteins and cDNA. Results In the present work we describe an original method for dual display of large proteins on the surface of lambda particles. An anti-CEA single-chain antibody fragment and green fluorescent protein or alkaline phosphatase were simultaneously displayed by engineering both gpD and gpV lambda proteins. Conclusions Here we show that such modified phage particles can be used for the detection of target molecules in vitro and in vivo. Dual expression of functional moieties on the surface of the lambda phage might open the way to generation of a new class of diagnostic and therapeutic targeted nanoparticles. PMID:24073829
SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.
Liu, T; Ding, A; Xu, X
2012-06-01
To develop a Graphics Processing Unit (GPU) based Monte Carlo (MC) code that accelerates dose calculations on a dual-GPU system. We simulated a clinical case of prostate cancer treatment. A voxelized abdomen phantom derived from 120 CT slices was used containing 218×126×60 voxels, and a GE LightSpeed 16-MDCT scanner was modeled. A CPU version of the MC code was first developed in C++ and tested on Intel Xeon X5660 2.8GHz CPU, then it was translated into GPU version using CUDA C 4.1 and run on a dual Tesla m 2 090 GPU system. The code was featured with automatic assignment of simulation task to multiple GPUs, as well as accurate calculation of energy- and material- dependent cross-sections. Double-precision floating point format was used for accuracy. Doses to the rectum, prostate, bladder and femoral heads were calculated. When running on a single GPU, the MC GPU code was found to be ×19 times faster than the CPU code and ×42 times faster than MCNPX. These speedup factors were doubled on the dual-GPU system. The dose Result was benchmarked against MCNPX and a maximum difference of 1% was observed when the relative error is kept below 0.1%. A GPU-based MC code was developed for dose calculations using detailed patient and CT scanner models. Efficiency and accuracy were both guaranteed in this code. Scalability of the code was confirmed on the dual-GPU system. © 2012 American Association of Physicists in Medicine.
Energy Efficient Operation of Ammonia Refrigeration Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc
Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less
SAR reduction using a single SRR superstrate for a dual-band antenna.
Rosaline, Imaculate; Singaravelu, Raghavan
2017-01-01
A dual-band microstrip antenna operating at GSM 900 and GSM 1800 MHz is designed initially. Then a single split ring resonator (SRR) structure is used as a superstrate for this dual-band antenna. A circular current is induced in the SRR due to the perpendicular plane wave excitation, which in turn leads to an electric excitation coupled to the magnetic resonance. It also exhibits higher order excitations at 0.9 and 1.8 GHz which ultimately resulted in specific absorption rate (SAR) reduction of human head at both the designed frequencies of the antenna. The antenna and the SRR superstrate are printed on a 1.6 mm thick FR-4 substrate of dimension 59.6 × 49.6 mm 2 . Analysis of the SRR using the classic waveguide theory approach is discussed. Radiation pattern of the antenna in the presence of SRR superstrate and human head is also discussed. Prototype of the antenna along with the SRR superstrate is fabricated and measured for return loss and radiation pattern. Measurement results fairly agree with the simulated results. A human head phantom is utilized in the calculation of SAR.
NASA Astrophysics Data System (ADS)
Medina, H.; Romano, N.; Chirico, G. B.
2012-12-01
We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.
Large Metal Heads and Vitamin E Polyethylene Increase Frictional Torque in Total Hip Arthroplasty.
Meneghini, R Michael; Lovro, Luke R; Wallace, Joseph M; Ziemba-Davis, Mary
2016-03-01
Trunnionosis has reemerged in modern total hip arthroplasty for reasons that remain unclear. Bearing frictional torque transmits forces to the modular head-neck interface, which may contribute to taper corrosion. The purpose of this study is to compare frictional torque of modern bearing couples in total hip arthroplasty. Mechanical testing based on in vivo loading conditions was used to measure frictional torque. All bearing couples were lubricated and tested at 1 Hz for more than 2000 cycles. The bearing couples tested included conventional, highly crosslinked (XLPE) and vitamin E polyethylene, CoCr, and ceramic femoral heads and dual-mobility bearings. Statistical analysis was performed using Student t test for single-variable and analysis of variance for multivariant analysis. P ≤ .05 was considered statistically significant. Large CoCr metal heads (≥36 mm) substantially increased frictional torque against XLPE liners (P = .01), a finding not observed in ceramic heads. Vitamin E polyethylene substantially increased frictional torque compared with XLPE in CoCr and ceramic heads (P = .001), whereas a difference between conventional and XLPE was not observed (P = .69) with the numbers available. Dual-mobility bearing with ceramic inner head demonstrated the lowest mean frictional torque of all bearing couples. In this simulated in vivo model, large-diameter CoCr femoral heads and vitamin E polyethylene liners are associated with increased frictional torque compared with smaller metal heads and XLPE, respectively. The increased frictional torque of vitamin E polyethylene and larger-diameter femoral heads should be considered and further studied, along with reported benefits of these modern bearing couples. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Role of the Department Chairperson. The Best of ERIC on Educational Management, Number 92.
ERIC Educational Resources Information Center
ERIC Clearinghouse on Educational Management, Eugene, OR.
All the 11 publications in this annotated bibiliography explore the department head's dual role as teacher and instructional leader. Three articles characterize principals' role as managerial and recommend that primary instructional and curriculur responsibilities be delegated to department heads with clearly designated positions in the school's…
A Real-Time Optical 3D Tracker for Head-Mounted Display Systems
1990-03-01
paper. OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each position sen- sor has a dedicated processor board to...enhance the use- [Nor88] Northern Digital. Trade literature on Optotrak fulness of head-mounted display systems. - Northern Digital’s Three Dimensional
Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cameras
1990-04-01
poor resolution and a very limited working volume [Wan90]. 4 OPTOTRAK [Nor88] uses one camera with two dual-axis CCD infrared position sensors. Each...Nor88] Northern Digital. Trade literature on Optotrak - Northern Digital’s Three Dimensional Optical Motion Tracking and Analysis System. Northern Digital
Taking Impressions of Hidden Cavity Walls
NASA Technical Reports Server (NTRS)
Burley, D.; Mayer, W.
1987-01-01
Lightweight, portable internal-molding device makes it possible to measure radii of, or examine contours of, passageways in hidden or complicated cavities. With device, measurements made in field, without returning assemblies to shop or laboratory for inspection. Molding head expands when compressed air applied. Inflatable tubes around head perform dual sealing and aligning function.
Advancing the dual reciprocating drill design for efficient planetary subsurface exploration
NASA Astrophysics Data System (ADS)
Pitcher, Craig
Accessing the subsurface of planetary bodies with drilling systems is vital for furthering our understanding of the solar system and in the search for life and volatiles. The extremely stringent mass and sizing mission constraints have led to the examination of novel low-mass drilling techniques. One such system is the Dual-Reciprocating Drill (DRD), inspired by the ovipositor of the sirex noctilio, which uses the reciprocation of two halves lined with backwards-facing teeth to engage with and grip the surrounding substrate. For the DRD to become a viable alternative technique, further work is required to expand its testing, improve its efficiency and evolve it from the current proof-of-concept to a system prototype. To do this, three areas of research were identified. This involved examining how the drill head design affects the drilling depth, exploring the effects of ice content in regolith on its properties and drilling performance, and determining the benefits of additional controlled lateral motions in an integrated actuation mechanism. The tests performed in this research revealed that the cross-sectional area of the drill head was by far the most significant geometrical parameter with regards to drilling performance, while the teeth shape had a negligible effect. An ice content of 5 +/- 1% in the regolith corresponded to an increase in drilling time and a clear change in the regolith's physical properties. Finally, it was demonstrated that the addition of lateral motions allowed the drill to achieve greater depths. This work has advanced both the understanding and design of the DRD considerably. It has continued the exploration of the geometrical and substrate parameters that affect drilling performance and provided the first characterisation of the properties of an icy lunar polar simulant. The construction and testing of the complex motion internal actuation mechanism has both evolved the DRD design and opened a new avenue through which the system can be further optimised.
ERIC Educational Resources Information Center
Spies, Tracy Griffin; Lyons, Catherine; Huerta, Margarita; Garza, Tiberio; Reding, Cristina
2017-01-01
The National Association for the Education of Young Children and Head Start have clearly articulated their position on the provision of high-quality instruction for the 4 million dual language learners (DLLs) enrolled in early childhood (EC) programs nationwide. Professional development (PD) provides a way for educators to increase their knowledge…
Vaezghasemi, Masoud; Öhman, Ann; Eriksson, Malin; Hakimi, Mohammad; Weinehall, Lars; Kusnanto, Hari; Ng, Nawi
2014-01-01
Introduction The paradoxical phenomenon of the coexistence of overweight and underweight individuals in the same household, referred to as the “dual burden of malnutrition”, is a growing nutrition dilemma in low- and middle-income countries (LMICs). Aims The objectives of this study were (i) to examine the extent of the dual burden of malnutrition across different provinces in Indonesia and (ii) to determine how gender, community social capital, place of residency and other socio-economic factors affect the prevalence of the dual burden of malnutrition. Methods The current study utilized data from the fourth wave of the Indonesian Family Life Survey (IFLS) conducted between November 2007 and April 2008. The dataset contains information from 12,048 households and 45,306 individuals of all ages. This study focused on households with individuals over two years old. To account for the multilevel nature of the data, a multilevel multiple logistic regression was conducted. Results Approximately one-fifth of all households in Indonesia exhibited the dual burden of malnutrition, which was more prevalent among male-headed households, households with a high Socio-economic status (SES), and households in urban areas. Minimal variation in the dual burden of malnutrition was explained by the community level differences (<4%). Living in households with a higher SES resulted in higher odds of the dual burden of malnutrition but not among female-headed households and communities with the highest social capital. Conclusion To improve household health and reduce the inequality across different SES groups, this study emphasizes the inclusion of women's empowerment and community social capital into intervention programs addressing the dual burden of malnutrition. PMID:25153321
Job Satisfaction of NAIA Head Coaches at Small Faith-Based Colleges: The Teacher-Coach Model
ERIC Educational Resources Information Center
Stiemsma, Craig L.
2010-01-01
The head coaches at smaller colleges usually have other job responsibilities that include teaching, along with the responsibilities of coaching, recruiting, scheduling, and other coaching-related jobs. There is often a dual role involved for these coaches who try to juggle two different jobs that sometimes require different skill sets and involve…
Applying PCI in Combination Swivel Head Wrench
NASA Astrophysics Data System (ADS)
Chen, Tsang-Chiang; Yang, Chun-Ming; Hsu, Chang-Hsien; Hung, Hsiang-Wen
2017-09-01
Taiwan’s traditional industries are subject to competition in the era of globalization and environmental change, the industry is facing economic pressure and shock, and now sustainable business can only continue to improve production efficiency and quality of technology, in order to stabilize the market, to obtain high occupancy. The use of process capability indices to monitor the quality of the ratchet wrench to find the key function of the dual-use ratchet wrench, the actual measurement data, The use of process capability Cpk index analysis, and draw Process Capability Analysis Chart model. Finally, this study explores the current situation of this case and proposes a lack of improvement and improvement methods to improve the overall quality and thereby enhance the overall industry.
ERIC Educational Resources Information Center
Garrity, Sarah; Guerra, Alison Wishard
2015-01-01
The school-readiness gap for Latino dual language learners in the United States has been well documented, despite a strong research base highlighting effective strategies and practices for supporting their academic success. However, current educational practices reflect the hegemonic discourse that, because the United States is an English-speaking…
Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming
2012-08-21
The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.
Cheng, Tao; Xia, Rong-Gang; Dong, Shi-Kui; Yan, Xiao-Yu; Luo, Cong-Feng
2017-12-18
Intramedullary nailing (IMN) is a popular method in the management of femoral shaft fractures (FSFs). However, whether the association of IMN with pulmonary fat emboli can compromise the pulmonary and nervous systems is debatable. The purpose of this study is to compare IMN with the locked dual plating (LDP) method by assessing the clinical outcomes of FSF patients with head or chest injury. A total of 126 FSF patients were included in this study between January 2010 and July 2016 and divided into LDP and IMN groups. Patient demographic characteristics, operative time, blood loss, Harris Hip Score, Lysholm Knee Score, radiological outcomes, and systemic complications were collected and compared between the two treatment groups. Patients were followed up for at least 12 months. The LDP group performed better than IMN in terms of operative time, estimated blood loss amount, and malunion rate. Differences in function scores, fracture union rate, overall pulmonary complication rate, and in-hospital mortality between the two groups were not significant. Average radiographic union time was significantly longer in the LDP group (36.3 weeks) than in the IMN group (32.5 weeks). One case of fixation failure occurred postoperatively in the LDP group, whereas one case of fracture nonunion took place in the IMN group. Our findings suggest that dual-plating fixation is a promising method for FSFs with multiple injuries. However, the retrospective nature of this study necessitates high-quality trials to be performed to assess the clinical efficiency of dual plating.
A novel optical rotary encoder with eccentricity self-detection ability.
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
A novel optical rotary encoder with eccentricity self-detection ability
NASA Astrophysics Data System (ADS)
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
"¿Tu te Acuerdas de Ganchulinas?": Longitudinal Research with Young Emergent Bilinguals
ERIC Educational Resources Information Center
Axelrod, Ysaaca
2014-01-01
Drawing on the work of Celia Genishi, this article discusses data from an ethnographic case study of young Latina/o children, starting in their four-year-olds classroom in a Head Start Program through their first grade year in a dual-language program in a public school. The children attended a bilingual Head Start program that followed a…
Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui
2015-08-01
The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.
ERIC Educational Resources Information Center
Han, Myae; Vukelich, Carol; Buell, Martha; Meacham, Sohyun
2014-01-01
Research Findings: The current study reports on the results of a longitudinal investigation of the language and early literacy development of a sample of dual-language learners (DLLs) and monolingual English speakers from low-income families who received an Early Reading First intervention during their Head Start preschool year. A total of 62…
Segment scheduling method for reducing 360° video streaming latency
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan
2017-09-01
360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.
Kaemmerer, Nadine; Brand, Michael; Hammon, Matthias; May, Matthias; Wuest, Wolfgang; Krauss, Bernhard; Uder, Michael; Lell, Michael M
2016-10-01
Dual-energy computed tomographic angiography (DE-CTA) has been demonstrated to improve the visualization of the head and neck vessels. The aim of this study was to test the potential of split-filter single-source dual-energy CT to automatically remove bone from the final CTA data set. Dual-energy CTA was performed in 50 consecutive patients to evaluate the supra-aortic arteries, either to grade carotid artery stenosis or to rule out traumatic dissections. Dual-energy CTA was performed on a 128-slice single-source CT system equipped with a special filter array to separate the 120-kV spectrum into a high- and a low-energy spectrum for DE-based automated bone removal. Image quality of fully automated bone suppression and subsequent manual optimization was evaluated by 2 radiologists on maximum intensity projections using a 4-grade scoring system. The effect of image reconstruction with an iterative metal artifact reduction algorithm on DE postprocessing was tested using a 3-grade scoring system, and the time demand for each postprocessing step was measured. Two patients were excluded due to insufficient arterial contrast enhancement; in the remaining 48 patients, automated bone removal could be performed successfully. The addition of iterative metal artifact reduction algorithm improved image quality in 58.3% of the cases. After manual optimization, DE-CTA image quality was rated excellent in 7, good in 29, and moderate in 10 patients. Interobserver agreement was high (κ = 0.85). Stenosis grading was not influenced using DE-CTA with bone removal as compared with the original CTA. The time demand for DE image reconstruction was significantly higher than for single-energy reconstruction (42.1 vs 20.9 seconds). Our results suggest that bone removal in DE-CTA of the head and neck vessels with a single-source CT is feasible and can be performed within acceptable time and moderate user interaction.
Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander
NASA Astrophysics Data System (ADS)
Demuth, O. J.
1984-06-01
The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.
An open library of CT patient projection data
NASA Astrophysics Data System (ADS)
Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Holmes, David; Fletcher, Joel; McCollough, Cynthia
2016-03-01
Lack of access to projection data from patient CT scans is a major limitation for development and validation of new reconstruction algorithms. To meet this critical need, we are building a library of CT patient projection data in an open and vendor-neutral format, DICOM-CT-PD, which is an extended DICOM format that contains sinogram data, acquisition geometry, patient information, and pathology identification. The library consists of scans of various types, including head scans, chest scans, abdomen scans, electrocardiogram (ECG)-gated scans, and dual-energy scans. For each scan, three types of data are provided, including DICOM-CT-PD projection data at various dose levels, reconstructed CT images, and a free-form text file. Several instructional documents are provided to help the users extract information from DICOM-CT-PD files, including a dictionary file for the DICOM-CT-PD format, a DICOM-CT-PD reader, and a user manual. Radiologist detection performance based on the reconstructed CT images is also provided. So far 328 head cases, 228 chest cases, and 228 abdomen cases have been collected for potential inclusion. The final library will include a selection of 50 head, chest, and abdomen scans each from at least two different manufacturers, and a few ECG-gated scans and dual-source, dual-energy scans. It will be freely available to academic researchers, and is expected to greatly facilitate the development and validation of CT reconstruction algorithms.
T1 weighted fat/water separated PROPELLER acquired with dual bandwidths.
Rydén, Henric; Berglund, Johan; Norbeck, Ola; Avventi, Enrico; Skare, Stefan
2018-04-24
To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement. © 2018 International Society for Magnetic Resonance in Medicine.
A data acquisition system for coincidence imaging using a conventional dual head gamma camera
NASA Astrophysics Data System (ADS)
Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.
1997-06-01
A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.
An NLRA Transducer for Dual Use Bone Conduction Audio and Haptic Communication. Summary Report
2016-12-30
VIBRANT COMPOSITES INC. 1 A16-019 Phase 1 Summary Report Vibrant Composites Inc. December 30, 2016 I. ABSTRACT A combined transducer capable of bone ...transducer core capable of both precise haptic communication and high fidelity bone conduction audio. The transducer design leverages Micro-Multilayer...head-mounted system. In this Phase I SBIR, Vibrant Composites has delivered functional dual-mode bone conduction and vibrotactile transducer prototypes
NASA Astrophysics Data System (ADS)
Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker
2015-02-01
A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.
Espinosa, Ana; Di Corato, Riccardo; Kolosnjaj-Tabi, Jelena; Flaud, Patrice; Pellegrino, Teresa; Wilhelm, Claire
2016-02-23
The pursuit of innovative, multifunctional, more efficient, and safer treatments is a major challenge in preclinical nanoparticle-mediated thermotherapeutic research. Here, we report that iron oxide nanoparticles have the dual capacity to act as both magnetic and photothermal agents. We further explore every key aspect of this magnetophotothermal approach, choosing iron oxide nanocubes for their high efficiency for the magnetic hyperthermia modality itself. In aqueous suspension, the nanocubes' exposure to both: an alternating magnetic field and near-infrared laser irradiation (808 nm), defined as the DUAL-mode, amplifies the heating effect 2- to 5-fold by comparison with magnetic stimulation alone, yielding unprecedented heating powers (specific loss powers) up to 5000 W/g. In cancer cells, the laser excitation restores the optimal efficiency of magnetic hyperthermia, otherwise inhibited by intracellular confinement, resulting in a remarkable heating efficiency in the DUAL-mode (up to 15-fold amplification), with respect to the magnetophotothermal mode. As a consequence, the dual action yielded complete apoptosis-mediated cell death. In solid tumors in vivo, single-mode treatments (magnetic or laser hyperthermia) reduced tumor growth, while DUAL-mode treatment resulted in complete tumor regression, mediated by heat-induced tumoral cell apoptosis and massive denaturation of the collagen fibers, and a long-lasting thermal efficiency over repeated treatments.
NASA Technical Reports Server (NTRS)
Ramins, P.; Fox, T. A.
1980-01-01
An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.
Malatray, Matthieu; Roux, Jean-Paul; Gunst, Stanislas; Pibarot, Vincent; Wegrzyn, Julien
2017-03-01
Dual mobility cup (DMC) consists of a cobalt-chromium (CoCr) alloy cup articulated with a polyethylene (PE) mobile component capturing the femoral head in force using a snap-fit technique. This biomechanical study was the first to evaluate and compare the generation of cracks in the retentive area of DMC mobile components made of highly crosslinked PE (XLPE) or conventional ultra-high molecular weight PE (UHMWPE). Eighty mobile components designed for a 52-mm diameter Symbol® DMC (Dedienne Santé, Mauguio, France) and a 28-mm diameter femoral head were analyzed. Four groups of 20 mobile components were constituted according to the PE material: raw UHMWPE, sterilized UHMWPE, annealed XLPE and remelted XLPE. Ten mobile components in each group were impacted with a 28-mm diameter CoCr femoral head using a snap-fit technique. The occurrence, location and area of the cracks in the retentive area were investigated using micro-CT (Skyscan 1176®, Bruker, Aarsellar, Belgium) with a 35 μm nominal isotropic voxel size by two observers blinded to the PE material and impaction or not of the mobile components. Compared to conventional UHMWPE, the femoral head snap-fit did not generate more or wider cracks in the retentive area of annealed or remelted XLPE mobile components. This biomechanical study suggests that XLPE in DMC could be a safe alternative to conventional UHMWPE regarding the generation of cracks in the retentive area related to the femoral head snap-fit.
Hybrid vehicle system studies and optimized hydrogen engine design
NASA Astrophysics Data System (ADS)
Smith, J. R.; Aceves, S.
1995-04-01
We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.
Comments on the Diffusive Behavior of Two Upwind Schemes
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-09-25
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks
Gui, Jinsong; Zhou, Kai; Xiong, Naixue
2016-01-01
Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731
Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan
2009-02-01
Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.
Dual-band quantum well infrared photodetector with metallic structure
NASA Astrophysics Data System (ADS)
Wu, Yang; Liu, Hongmei; Li, Pingzhou
2018-02-01
The quantum efficiency of the dual bands quantum well infrared photodetectors(QWIP) has been widely concerned in recent years. A novel structure for the dual-band quantum well infrared detectors which is based on GaAs/AlGaAs designed in this paper is aimed to improve the absorption efficiency. The structure replaces the conventional grating with a metallic grating based on surface plasmon polaritons(SPPS), and we further insert a metal structure in the periodic quantum well layer. The simulation result shows that the use of the different shapes of the metal holes can remarkably improve the optical coupling efficiency due to the surface plasmon effect. By optimizing parameters of the structure, it can work in the dual infrared bands of 3-5um and 8-12um. Moreover, the absorption rate increased by 20% compared with traditional structure of Dual-band QWIP.
Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Andres, Kristin N; Powell, David K; Zhong, Xiaodong; Fornwalt, Brandon K
2017-03-01
To determine the optimal respiratory navigator gating configuration for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. Two-dimensional spiral cine DENSE was performed on a 3 Tesla MRI using two single-navigator configurations (retrospective, prospective) and a combined "dual-navigator" configuration in 10 healthy adults and 20 healthy children. The adults also underwent breathhold DENSE as a reference standard for comparisons. Peak left ventricular strains, signal-to-noise ratio (SNR), and navigator efficiency were compared. Subjects also underwent dual-navigator gating with and without visual feedback to determine the effect on navigator efficiency. There were no differences in circumferential, radial, and longitudinal strains between navigator-gated and breathhold DENSE (P = 0.09-0.95) (as confidence intervals, retrospective: [-1.0%-1.1%], [-7.4%-2.0%], [-1.0%-1.2%]; prospective: [-0.6%-2.7%], [-2.8%-8.3%], [-0.3%-2.9%]; dual: [-1.6%-0.5%], [-8.3%-3.2%], [-0.8%-1.9%], respectively). The dual configuration maintained SNR compared with breathhold acquisitions (16 versus 18, P = 0.06). SNR for the prospective configuration was lower than for the dual navigator in adults (P = 0.004) and children (P < 0.001). Navigator efficiency was higher (P < 0.001) for both retrospective (54%) and prospective (56%) configurations compared with the dual configuration (35%). Visual feedback improved the dual configuration navigator efficiency to 55% (P < 0.001). When quantifying left ventricular strains using spiral cine DENSE MRI, a dual navigator configuration results in the highest SNR in adults and children. In adults, a retrospective configuration has good navigator efficiency without a substantial drop in SNR. Prospective gating should be avoided because it has the lowest SNR. Visual feedback represents an effective option to maintain navigator efficiency while using a dual navigator configuration. 2 J. Magn. Reson. Imaging 2017;45:786-794. © 2016 International Society for Magnetic Resonance in Medicine.
Hamlet, Sean M.; Haggerty, Christopher M.; Suever, Jonathan D.; Wehner, Gregory J.; Andres, Kristin N.; Powell, David K.; Fornwalt, Brandon K.
2016-01-01
Purpose To determine the optimal respiratory navigator gating configuration for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. Materials and Methods 2D spiral cine DENSE was performed on a 3T MRI using two single-navigator configurations (retrospective, prospective), and a combined “dual-navigator” configuration in 10 healthy adults and 20 healthy children. The adults also underwent breath-hold DENSE as a reference standard for comparisons. Peak left ventricular strains, signal-to-noise ratio (SNR) and navigator efficiency were compared. Subjects also underwent dual-navigator gating with and without visual feedback to determine the effect on navigator efficiency. Results There were no differences in circumferential, radial and longitudinal strains between navigator-gated and breath-hold DENSE (p=0.09–0.95) (as confidence intervals, retrospective: [−1.0%,1.1%],[−7.4%,2.0%],[−1.0%,1.2%]; prospective: [−0.6%,2.7%],[−2.8%,8.3%],[−0.3%,2.9%]; dual: [−1.6%,0.5%],[−8.3%,3.2%],[−0.8%,1.9%], respectively). The dual configuration maintained SNR compared to breath-hold acquisitions (16 vs. 18, p=0.06). SNR for the prospective configuration was lower than for the dual navigator in adults (p=0.004) and children (p<0.001). Navigator efficiency was higher (p<0.001) for both retrospective (54%) and prospective (56%) configurations compared to the dual configuration (35%). Visual feedback improved the dual configuration navigator efficiency to 55% (p<0.001). Conclusion When quantifying left ventricular strains using spiral cine DENSE MRI, a dual navigator configuration results in the highest SNR in adults and children. In adults, a retrospective configuration has good navigator efficiency without a substantial drop in SNR. Prospective gating should be avoided since it has the lowest SNR. Visual feedback represents an effective option to maintain navigator efficiency while using a dual navigator configuration. PMID:27458823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L
Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.
A simulation study of a dual-plate in-room PET system for dose verification in carbon ion therapy
NASA Astrophysics Data System (ADS)
Chen, Ze; Hu, Zheng-Guo; Chen, Jin-Da; Zhang, Xiu-Ling; Guo, Zhong-Yan; Xiao, Guo-Qing; Sun, Zhi-Yu; Huang, Wen-Xue; Wang, Jian-Song
2014-08-01
During carbon ion therapy, lots of positron emitters such as 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions, and can be used to track the carbon beam in the tissue by a positron emission tomography (PET) scanner. In this study, an dual-plate in-room PET scanner has been designed and evaluated based on the GATE simulation platform to monitor patient dose in carbon ion therapy. The dual-plate PET is designed to avoid interference with the carbon beamline and with patient positioning. Its performance was compared with that of four-head and full-ring PET scanners. The dual-plate, four-head and full-ring PET scanners consisted of 30, 60, 60 detector modules, respectively, with a 36 cm distance between directly opposite detector modules for dose deposition measurements. Each detector module consisted of a 24×24 array of 2 mm×2 mm×18 mm LYSO pixels coupled to a Hamamatsu H8500 PMT. To estimate the production yield of positron emitters, a 10 cm×15 cm×15 cm cuboid PMMA phantom was irradiated with 172, 200, 250 MeV/u 12C beams. 3D images of the activity distribution measured by the three types of scanner are produced by an iterative reconstruction algorithm. By comparing the longitudinal profile of positron emitters along the carbon beam path, it is indicated that use of the dual-plate PET scanner is feasible for monitoring the dose distribution in carbon ion therapy.
ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.
Augmented reality for the surgeon: Systematic review.
Yoon, Jang W; Chen, Robert E; Kim, Esther J; Akinduro, Oluwaseun O; Kerezoudis, Panagiotis; Han, Phillip K; Si, Phong; Freeman, William D; Diaz, Roberto J; Komotar, Ricardo J; Pirris, Stephen M; Brown, Benjamin L; Bydon, Mohamad; Wang, Michael Y; Wharen, Robert E; Quinones-Hinojosa, Alfredo
2018-04-30
Since the introduction of wearable head-up displays, there has been much interest in the surgical community adapting this technology into routine surgical practice. We used the keywords augmented reality OR wearable device OR head-up display AND surgery using PubMed, EBSCO, IEEE and SCOPUS databases. After exclusions, 74 published articles that evaluated the utility of wearable head-up displays in surgical settings were included in our review. Across all studies, the most common use of head-up displays was in cases of live streaming from surgical microscopes, navigation, monitoring of vital signs, and display of preoperative images. The most commonly used head-up display was Google Glass. Head-up displays enhanced surgeons' operating experience; common disadvantages include limited battery life, display size and discomfort. Due to ergonomic issues with dual-screen devices, augmented reality devices with the capacity to overlay images onto the surgical field will be key features of next-generation surgical head-up displays. Copyright © 2018 John Wiley & Sons, Ltd.
Dual-probe near-field fiber head with gap servo control for data storage applications.
Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D
2007-10-29
We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.
Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D
2012-01-01
Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084
Tabacu, Stefan
2015-01-01
In this paper, a methodology for the development and validation of a numerical model of the human head using generic procedures is presented. All steps required, starting with the model generation, model validation and applications will be discussed. The proposed model may be considered as a dual one due to its capabilities to switch from deformable to a rigid body according to the application's requirements. The first step is to generate the numerical model of the human head using geometry files or medical images. The required stiffness and damping for the elastic connection used for the rigid body model are identified by performing a natural frequency analysis. The presented applications for model validation are related to impact analysis. The first case is related to Nahum's (Nahum and Smith 1970) experiments pressure data being evaluated and a pressure map generated using the results from discrete elements. For the second case, the relative displacement between the brain and the skull is evaluated according to Hardy's (Hardy WH, Foster CD, Mason, MJ, Yang KH, King A, Tashman S. 2001.Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J. 45:337-368, SAE Paper 2001-22-0016) experiments. The main objective is to validate the rigid model as a quick and versatile tool for acquiring the input data for specific brain analyses.
May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang
2017-09-01
The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P < 0.05). Comparable objective results were found in 60-keV VMI, WAI, and the 70-kV SE examinations. Overall subjective image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.
NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar
converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The 29.8 percent one-sun efficiency," which details the steps taken to break the previous record. His
Buss, Aaron T; Wifall, Tim; Hazeltine, Eliot; Spencer, John P
2014-02-01
People are typically slower when executing two tasks than when only performing a single task. These dual-task costs are initially robust but are reduced with practice. Dux et al. (2009) explored the neural basis of dual-task costs and learning using fMRI. Inferior frontal junction (IFJ) showed a larger hemodynamic response on dual-task trials compared with single-task trial early in learning. As dual-task costs were eliminated, dual-task hemodynamics in IFJ reduced to single-task levels. Dux and colleagues concluded that the reduction of dual-task costs is accomplished through increased efficiency of information processing in IFJ. We present a dynamic field theory of response selection that addresses two questions regarding these results. First, what mechanism leads to the reduction of dual-task costs and associated changes in hemodynamics? We show that a simple Hebbian learning mechanism is able to capture the quantitative details of learning at both the behavioral and neural levels. Second, is efficiency isolated to cognitive control areas such as IFJ, or is it also evident in sensory motor areas? To investigate this, we restrict Hebbian learning to different parts of the neural model. None of the restricted learning models showed the same reductions in dual-task costs as the unrestricted learning model, suggesting that efficiency is distributed across cognitive control and sensory motor processing systems.
Dual-shank attachment design for omega seals
Sattinger, Stanley S.
1978-01-01
An improved apparatus and process for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface.
A dual-stage sodium thermal electrochemical converter (Na-TEC)
NASA Astrophysics Data System (ADS)
Limia, Alexander; Ha, Jong Min; Kottke, Peter; Gunawan, Andrey; Fedorov, Andrei G.; Lee, Seung Woo; Yee, Shannon K.
2017-12-01
The sodium thermal electrochemical converter (Na-TEC) is a heat engine that generates electricity through the isothermal expansion of sodium ions. The Na-TEC is a closed system that can theoretically achieve conversion efficiencies above 45% when operating between thermal reservoirs at 1150 K and 550 K. However, thermal designs have confined previous single-stage devices to thermal efficiencies below 20%. To mitigate some of these limitations, we consider dividing the isothermal expansion into two stages; one at the evaporator temperature (1150 K) and another at an intermediate temperature (650 K-1050 K). This dual-stage Na-TEC takes advantage of regeneration and reheating, and could be amenable to better thermal management. Herein, we demonstrate how the dual-stage device can improve the efficiency by up to 8% points over the best performing single-stage device. We also establish an application regime map for the single- and dual-stage Na-TEC in terms of the power density and the total thermal parasitic loss. Generally, a single-stage Na-TEC should be used for applications requiring high power densities, whereas a dual-stage Na-TEC should be used for applications requiring high efficiency.
Sohrabi, Mehdi; Parsi, Masoumeh; Sina, Sedigheh
2018-05-17
A diagnostic reference level is an advisory dose level set by a regulatory authority in a country as an efficient criterion for protection of patients from unwanted medical exposure. In computed tomography, the direct dose measurement and data collection methods are commonly applied for determination of diagnostic reference levels. Recently, a new quality-control-based dose survey method was proposed by the authors to simplify the diagnostic reference-level determination using a retrospective quality control database usually available at a regulatory authority in a country. In line with such a development, a prospective dual-purpose quality control dosimetry protocol is proposed for determination of diagnostic reference levels in a country, which can be simply applied by quality control service providers. This new proposed method was applied to five computed tomography scanners in Shiraz, Iran, and diagnostic reference levels for head, abdomen/pelvis, sinus, chest, and lumbar spine examinations were determined. The results were compared to those obtained by the data collection and quality-control-based dose survey methods, carried out in parallel in this study, and were found to agree well within approximately 6%. This is highly acceptable for quality-control-based methods according to International Atomic Energy Agency tolerance levels (±20%).
Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting
Kim, Jin Hyun; Jang, Ji-Wook; Jo, Yim Hyun; Abdi, Fatwa F.; Lee, Young Hye; van de Krol, Roel; Lee, Jae Sung
2016-01-01
Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of different bandgaps are connected in parallel for extended light harvesting. Thus, a photoelectrochemical device made of modified BiVO4 and α-Fe2O3 as dual photoanodes utilizes visible light up to 610 nm for water splitting, and shows stable photocurrents of 7.0±0.2 mA cm−2 at 1.23 VRHE under 1 sun irradiation. A tandem cell composed with the dual photoanodes–silicon solar cell demonstrates unbiased water splitting efficiency of 7.7%. These results and concept represent a significant step forward en route to the goal of >10% efficiency required for practical solar hydrogen production. PMID:27966548
Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting.
Kim, Jin Hyun; Jang, Ji-Wook; Jo, Yim Hyun; Abdi, Fatwa F; Lee, Young Hye; van de Krol, Roel; Lee, Jae Sung
2016-12-14
Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of different bandgaps are connected in parallel for extended light harvesting. Thus, a photoelectrochemical device made of modified BiVO 4 and α-Fe 2 O 3 as dual photoanodes utilizes visible light up to 610 nm for water splitting, and shows stable photocurrents of 7.0±0.2 mA cm -2 at 1.23 V RHE under 1 sun irradiation. A tandem cell composed with the dual photoanodes-silicon solar cell demonstrates unbiased water splitting efficiency of 7.7%. These results and concept represent a significant step forward en route to the goal of >10% efficiency required for practical solar hydrogen production.
Cai, M; Vahala, K
2000-02-15
We report that greater than 99.8% optical power transfer to whispering-gallery modes was achieved in fused-silica microspheres by use of a dual-tapered-fiber coupling method. The intrinsic cavity loss and the taper-to-sphere coupling coefficient are inferred from the experimental data. It is shown that the low intrinsic cavity loss and the symmetrical dual-coupling structure are crucial for obtaining the high coupling efficiency.
DSN 100-meter X and S band microwave antenna design and performance
NASA Technical Reports Server (NTRS)
Williams, W. F.
1978-01-01
The RF performance is studied for large reflector antenna systems (100 meters) when using the high efficiency dual shaped reflector approach. An altered phase was considered so that the scattered field from a shaped surface could be used in the JPL efficiency program. A new dual band (X-S) microwave feed horn was used in the shaping calculations. A great many shaping calculations were made for various horn sizes and locations and final RF efficiencies are reported. A conclusion is reached that when using the new dual band horn, shaping should probably be performed using the pattern of the lower frequency
Dual redundant arm system operational quality measures and their applications - Dynamic measures
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Kim, Sungbok
1990-01-01
Dual-arm dynamic operation quality measures are presented which quantify the efficiency and capability of generating Cartesian accelerations by two cooperative arms based on the analysis of dual-arm dynamic interactions. Dual-arm dynamic manipulability is defined as the efficiency of generating Cartesian accelerations under the dynamic and kinematic interactions between individual arms and an object under manipulation. The analysis of dual-arm dynamic interactions is based on the so-called Cartesian space agent model of an arm, which represents an individual arm as a force source acting upon a point mass with the effective Cartesian space arm dynamics and an environment or an object under manipulation. The Cartesian space agent model of an arm makes it possible to derive the dynamic and kinematic constraints involved in the transport, assembly and grasping modes of dual-arm cooperation. A task-oriented operational quality measure, (TOQd) is defined by evaluating dual-arm dynamic manipulability in terms of given task requirements. TOQd is used in dual-arm joint configuration optimization. Simulation results are shown. A complete set of forward dynamic equations for a dual-arm system is derived, and dual-arm dynamic operational quality measures for various modes of dual-arm cooperation allowing sliding contacts are established.
NASA Astrophysics Data System (ADS)
Vishnoi, Gargi; Hielscher, Andreas H.; Ramanujam, Nirmala; Chance, Britton
2000-04-01
In this work experimental tissue phantoms and numerical models were developed to estimate photon migration through the fetal head in utero. The tissue phantoms incorporate a fetal head within an amniotic fluid sac surrounded by a maternal tissue layer. A continuous wave, dual-wavelength ((lambda) equals 760 and 850 nm) spectrometer was employed to make near-infrared measurements on the tissue phantoms for various source-detector separations, fetal-head positions, and fetal-head optical properties. In addition, numerical simulations of photon propagation were performed with finite-difference algorithms that provide solutions to the equation of radiative transfer as well as the diffusion equation. The simulations were compared with measurements on tissue phantoms to determine the best numerical model to describe photon migration through the fetal head in utero. Evaluation of the results indicates that tissue phantoms in which the contact between fetal head and uterine wall is uniform best simulates the fetal head in utero for near-term pregnancies. Furthermore, we found that maximum sensitivity to the head can be achieved if the source of the probe is positioned directly above the fetal head. By optimizing the source-detector separation, this signal originating from photons that have traveled through the fetal head can drastically be increased.
Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
Qu, Ronghai; Lipo, Thomas A.
2005-08-02
The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.
Liposomes assembled from a dual drug-tailed phospholipid for cancer therapy.
Fang, Shuo; Niu, Yuge; Zhu, Wenjun; Zhang, Yemin; Yu, Liangli; Li, Xinsong
2015-05-01
We report a novel dual drug-tailed phospholipid which can form liposomes as a combination of prodrug and drug carrier. An amphiphilic dual chlorambucil-tailed phospholipid (DCTP) was synthesized by a straightforward esterification. With two chlorambucil molecules as hydrophobic tails and one glycerophosphatidylcholine molecule as a hydrophilic head, the DCTP, a phospholipid prodrug, undergoes assembly to form a liposome without any additives by the thin lipid film technique. The DCTP liposomes, as an effective carrier of chlorambucil, exhibited a very high loading capacity and excellent stability. The liposomes had higher cytotoxic effects to cancer cell lines than free DCTP and chlorambucil. The in vivo antitumor activity assessment indicated that the DCTP liposomes could inhibit the tumor growth effectively. This novel strategy of dual drug-tailed phospholipid liposomes may be also applicable to other hydrophobic anticancer drugs which have great potential in cancer therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Nute, Jessica L; Jacobsen, Megan C; Stefan, Wolfgang; Wei, Wei; Cody, Dianna D
2018-04-01
A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.
Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles
Woodhead, Jeffrey L.; Hall, Carol K.
2011-01-01
We use discontinuous molecular dynamics (DMD) computer simulation to investigate the encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles as a function of packing fraction, polymer volume fraction, solute mole fraction, and the interaction parameters between the hydrophobic head blocks and between the head and the solute. The encapsulation efficiency increases with increasing polymer volume fraction and packing fraction but decreases with increasing head-head interaction strength. The latter is due to an increased tendency for the solute to remain on the micelle surface. We compared two different nanoparticle assembly methods, one in which the solute and copolymer co-associate and the other in which the copolymer micelle is formed before the introduction of solute. The assembly method does not affect the encapsulation efficiency but does affect the solute uptake kinetics. Both head-solute interaction strength and head-head interaction strength affect the density profile of the micelles; increases in the former cause the solute to distribute more evenly throughout the micelle, while increases in the latter cause the solute to concentrate further from the center of the micelle. We explain our results in the context of a model of drug insertion into micelles formulated by Kumar and Prud’homme; as conditions become more conducive to micelle formation, a stronger energy barrier to solute insertion forms which in turn decreases the encapsulation efficiency of the system. PMID:21918582
Santoni, Brandon G; Nayak, Aniruddh N; Cooper, Seth A; Smithson, Ian R; Cox, Jacob L; Marberry, Scott T; Sanders, Roy W
2016-04-01
This study compared the stabilizing effect of 2 intertrochanteric (IT) fracture fixation devices in a cadaveric hemi-pelvis biomechanical model. Eleven pairs of cadaveric osteopenic female hemi-pelves with intact hip joint and capsular ligaments were used. An unstable IT fracture (OTA 31-A2) was created in each specimen and stabilized with a single lag screw device (Gamma 3) or an integrated dual screw (IDS) device (InterTAN). The hemi-pelves were inverted, coupled to a biaxial apparatus and subjected to 13.5 k cycles of loading (3 months) using controlled, oscillating pelvic rotation (0-90 degrees) plus cyclic axial femoral loading at a 2:1 body weight (BW) ratio. Femoral head rotation and varus collapse were monitored optoelectonically. For specimens surviving 3 months of loading, additional loading was performed in 0.25 × BW/250 cycle increments to a maximum of 4 × BW or failure. Femoral head rotation with IDS fixation was significantly less than the single lag screw construct after 3 months of simulated loading (P = 0.016). Maximum femoral head rotation at the end of 4 × BW loading was 7× less for the IDS construct (P = 0.006). Varus collapse was significantly less with the IDS construct over the entire loading cycle (P = 0.021). In this worst-case model of an osteopenic, unstable, IT fracture, the IDS construct, likely owing to its larger surface area, noncylindrical profile, and fracture compression, provided significantly greater stability and resistance to femoral head rotation and varus collapse.
Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector
NASA Astrophysics Data System (ADS)
Ullah, Fahim; Min, Kang
2018-01-01
A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.
Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Kato, Katsuhiko; Hatazawa, Jun
2013-03-01
A silicon photomultiplier (Si-PM) is a promising photodetector for high resolution PET systems due to its small channel size and high gain. Using Si-PMs, it will be possible to develop a high resolution imaging systems. For this purpose, we developed a small field-of-view (FOV) ultrahigh-resolution Si-PM-based dual-head coincidence imaging system for small animals and plant research. A new scintillator, Ce doped Gd3Al12Ga3O12 (GAGG), was selected because of its high light output and its emission wavelength matched with the Si-PM arrays and contained no radioactivity. Each coincidence imaging block detector consists of 0.5×0.5×5 mm3 GAGG pixels combined with a 0.1-mm thick reflector to form a 20×17 matrix that was optically coupled to a Si-PM array (Hamamatsu MPPC S11064-050P) with a 1.5-mm thick light guide. The GAGG block size was 12.0×10.2 mm2. Two GAGG block detectors were positioned face to face and set on a flexible arm based detector stand. All 0.5 mm GAGG pixels in the block detectors were clearly resolved in the 2-dimensional position histogram. The energy resolution was 14.4% FWHM for the Cs-137 gamma ray. The spatial resolution was 0.7 mm FWHM measured using a 0.25 mm diameter Na-22 point source. Small animal and plant images were successfully obtained. We conclude that our developed ultrahigh-resolution Si-PM-based dual-head coincidence imaging system is promising for small animal and plant imaging research.
Bouchet, R; Mercier, N; Saragaglia, D
2011-02-01
Dislocation is a frequent complication of total hip arthroplasties (THA) especially in older patients, especially when using a posterior approach. In these cases, dual mobility (DM) cups developed by Gilles Bousquet in 1975 can be indicated to reduce this complication risk. Dual mobility cups reduce the rate of dislocation in primary total hip arthroplasty using posterior approach in a single-surgeon series. Test this hypothesis in a controlled study to compare the rate of dislocation in primary total hip arthroplasties done in patients over 50 years old either with a dual mobility cup or a conventional metal-on-polyethylene 28-mm diameter head. Two consecutive series of primary total hip replacements were performed by a single surgeon using a posterolateral approach. The piriformis tendon was left intact. The DM series included 105 patients who underwent arthroplasty between January 2005 and June 2007 with a dual mobility cup (60 women and 45 men, mean age 76.6±5.65 years old [53-93]). The control series (S series) included 108 patients who underwent arthroplasty (56 women and 52 men, mean age 74.2±5.9 years old [53-87]) with a conventional 28-mm polyethylene cup between January 2003 and June 2005. All hip replacements included a 28-mm metal-polyethylene cup and a 12-14-mm Morse taper. Both groups were comparable for gender, diagnosis, body mass index, type of anesthesia and ASA score distribution. All patients included in this series had a minimum follow-up of 1 year. There were no dislocations in the DM series and five early dislocations (before the third month) in the S series for a rate of 4.63%. Although the rate of dislocation was higher in the S series (4.63% vs 0%), the difference was barely significant (P=0.0597). This study comparing the incidence of dislocations after THA with conventional or dual mobility cups, shows that even using a posterior approach and in older patients, dual mobility cups increase stability with no postoperative dislocations. Although results are barely significant, a larger series should confirm the benefit of this implant. In this series, morbidity was not increased with dual mobility cups. Level III: retrospective case-control study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Study on cold head structure of a 300 Hz thermoacoustically driven pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.
2012-04-01
High reliability, compact size and potentially high thermal efficiency make the high frequency thermoacoustically-driven pulse tube cryocooler quite promising for space use. With continuous efforts, the lowest temperature and the thermal efficiency of the coupled system have been greatly improved. So far, a cold head temperature below 60 K has been achieved on such kind of cryocooler with the operation frequency of around 300 Hz. To further improve the thermal efficiency and expedite its practical application, this work focuses on studying the influence of cold head structure on the system performance. Substantial numerical simulations were firstly carried out, which revealed that the cold head structure would greatly influence the cooling power and the thermal efficiency. To validate the predictions, a lot of experiments have been done. The experiments and calculations are in reasonable agreement. With 500 W heating power input into the engine, a no-load temperature of 63 K and a cooling power of 1.16 W at 80 K have been obtained with parallel-plate cold head, indicating encouraging improvement of the thermal efficiency.
A high efficiency dual-junction solar cell implemented as a nanowire array.
Yu, Shuqing; Witzigmann, Bernd
2013-01-14
In this work, we present an innovative design of a dual-junction nanowire array solar cell. Using a dual-diameter nanowire structure, the solar spectrum is separated and absorbed in the core wire and the shell wire with respect to the wavelength. This solar cell provides high optical absorptivity over the entire spectrum due to an electromagnetic concentration effect. Microscopic simulations were performed in a three-dimensional setup, and the optical properties of the structure were evaluated by solving Maxwell's equations. The Shockley-Queisser method was employed to calculate the current-voltage relationship of the dual-junction structure. Proper design of the geometrical and material parameters leads to an efficiency of 39.1%.
Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors
2009-09-01
TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4 3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7 4 . RESULTS
Lewis, Kandia; Sandilos, Lia E; Hammer, Carol Scheffner; Sawyer, Brook E; Méndez, Lucía I
This study explored the relations between Spanish-English dual language learner (DLL) children's home language and literacy experiences and their expressive vocabulary and oral comprehension abilities in Spanish and in English. Data from Spanish-English mothers of 93 preschool-age Head Start children who resided in central Pennsylvania were analyzed. Children completed the Picture Vocabulary and Oral Comprehension subtests of the Batería III Woodcock-Muñoz and the Woodcock-Johnson III Tests of Achievement. Results revealed that the language spoken by mothers and children and the frequency of mother-child reading at home influenced children's Spanish language abilities. In addition, the frequency with which children told a story was positively related to children's performance on English oral language measures. The findings suggest that language and literacy experiences at home have a differential impact on DLLs' language abilities in their 2 languages. Specific components of the home environment that benefit and support DLL children's language abilities are discussed.
Kieper, Douglas Arthur [Seattle, WA; Majewski, Stanislaw [Morgantown, WV; Welch, Benjamin L [Hampton, VA
2012-07-03
An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.
Kieper, Douglas Arthur [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; Welch, Benjamin L [Hampton, VA
2008-10-28
An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi
2006-03-01
We demonstrated a debris-free, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO II) nano-particles. By using a low SnO II concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium
NASA Astrophysics Data System (ADS)
Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun
2016-05-01
Efficient dual-wavelength continuous-wave (CW) and passively Q-switched laser operation of Nd:(Gd0.3Y0.7)2SiO5 crystal were investigated for the first time to our knowledge. Maximum CW output power of 2.3 W was obtained under the absorbed pump power of 4.6 W, corresponding to the slope efficiency of 55%. Dual-wavelength CW laser with respective wavelengths around 1074 nm and 1078 nm were achieved. With Cr4+:YAG as the saturable absorber, passive Q-switched performance was obtained. The slope efficiency of passively Q-switched operation was 45%. The shortest pulse width, the corresponding pulse energy and peak power were calculated to be 13.1 ns, 50.2 μJ and 3.8 kW, respectively.
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Pollock, Craig J.
2015-01-01
The most common instrument for low energy plasmas consists of a top-hat electrostatic analyzer geometry coupled with a microchannel-plate (MCP)-based detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Furthermore, due to finite resources, for large sensor suites such as the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission, calibration data are increasingly sparse. Measurements must be interpolated and extrapolated to understand instrument behavior for untestable operating modes and yet sensor inter-calibration is critical to mission success. To characterize instruments from a minimal set of parameters we have developed the first comprehensive mathematical description of both sensor electrostatic optics and particle detection systems. We include effects of MCP efficiency, gain, scattering, capacitive crosstalk, and charge cloud spreading at the detector output. Our parameterization enables the interpolation and extrapolation of instrument response to all relevant particle energies, detector high voltage settings, and polar angles from a small set of calibration data. We apply this model to the 32 sensor heads in the Dual Electron Sensor (DES) and 32 sensor heads in the Dual Ion Sensor (DIS) instruments on the 4 MMS observatories and use least squares fitting of calibration data to extract all key instrument parameters. Parameters that will evolve in flight, namely MCP gain, will be determined daily through application of this model to specifically tailored in-flight calibration activities, providing a robust characterization of sensor suite performance throughout mission lifetime. Beyond FPI, our model provides a valuable framework for the simulation and evaluation of future detection system designs and can be used to maximize instrument understanding with minimal calibration resources.
Using the Dual-Target Cost to Explore the Nature of Search Target Representations
ERIC Educational Resources Information Center
Stroud, Michael J.; Menneer, Tamaryn; Cave, Kyle R.; Donnelly, Nick
2012-01-01
Eye movements were monitored to examine search efficiency and infer how color is mentally represented to guide search for multiple targets. Observers located a single color target very efficiently by fixating colors similar to the target. However, simultaneous search for 2 colors produced a dual-target cost. In addition, as the similarity between…
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.
2017-01-01
This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.
NASA Astrophysics Data System (ADS)
Sabol, John M.; Avinash, Gopal B.; Nicolas, Francois; Claus, Bernhard E. H.; Zhao, Jianguo; Dobbins, James T., III
2001-06-01
Dual-energy subtraction imaging increases the sensitivity and specificity of pulmonary nodule detection in chest radiography by reducing the contrast of overlying bone structures. Recent development of a fast, high-efficiency detector enables dual-energy imaging to be integrated into the traditional workflow. We have modified a GE RevolutionTM XQ/i chest imaging system to construct a dual-energy imaging prototype system. Here we describe the operating characteristics of this prototype and evaluate image quality. Empirical results show that the dual-energy CNR is maximized if the dose is approximately equal for both high and low energy exposures. Given the high detector DQE, and allocation of dose between the two views, we can acquire dual-energy PA and conventional lateral images with total dose equivalent to a conventional two-view film chest exam. Calculations have shown that the dual-exposure technique has superior CNR and tissue cancellation than single-exposure CR systems. Clinical images obtained on a prototype dual-energy imaging system show excellent tissue contrast cancellation, low noise, and modest motion artefacts. In summary, a prototype dual-energy system has been constructed which enables rapid, dual-exposure imaging of the chest using a commercially available high-efficiency, flat-panel x-ray detector. The quality of the clinical images generated with this prototype exceeds that of CR techniques and demonstrates the potential for improved detection and characterization of lung disease through dual-energy imaging.
Terrier, Alexandre; Latypova, Adeliya; Guillemin, Maika; Parvex, Valérie; Guyen, Olivier
2017-03-01
Constrained devices, standard implants with large heads, and dual mobility systems have become popular options to manage instability after total hip arthroplasty (THA). Clinical results with these options have shown variable success rates and significant higher rates of aseptic loosening and mechanical failures with constrained implants. Literature suggests potential advantages of dual mobility, however little is known about its biomechanics. We present a comparative biomechanical study of a standard implant, a constrained implant, and a dual mobility system. A finite element analysis was developed to assess and compare these acetabular options with regard to the range of motion (ROM) to impingement, the angle of dislocation, the resistive torque, the volume of polyethylene (PE) with a stress above 80% of the elastic limit, and the interfacial cup/bone stress. Dual mobility implants provided the greatest ROM to impingement and allowed delaying subluxation and dislocation when compared to standard and constrained implants. Dual mobility also demonstrated the lowest resistive torque at subluxation while the constrained implant provided the greatest one. The lowest critical PE volume was observed with the dual mobility implant, and the highest stress at the interfaces was observed with the constrained implant. This study highlights the biomechanical advantages of dual mobility systems over constrained and standard implants, and is supported by the clinical results reported. Therefore, the use of dual mobility systems in situations at risk for instability should be advocated and constrained implants should be restricted to salvage situations.
Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies
NASA Astrophysics Data System (ADS)
Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo
2016-06-01
We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.
NASA Astrophysics Data System (ADS)
Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi
2014-11-01
The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose volume histogram (DVH) analyses revealed much smoother DVH curves for the dual resolution sandwich phantom when compared to the SR phantom. In conclusion, MBMC simulations using a dual resolution sandwich phantom improved simulation spatial resolution for skull base IMRS therapy. More detailed dose analyses for small critical structures can be made available to help in clinical judgment.
Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A
2016-07-01
Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.
Executive Functioning in Spanish- and English-Speaking Head Start Preschoolers
ERIC Educational Resources Information Center
White, Lisa J.; Greenfield, Daryl B.
2017-01-01
A growing percentage of low-income children in the United States come from Spanish-speaking homes and are dual language learners (DLLs). Recent research shows that bilingual children, compared to monolinguals, have enhanced executive functioning (EF), a set of foundational cognitive skills that predict higher social-emotional competence and…
The Feminization of Poverty among Hispanic Households.
ERIC Educational Resources Information Center
Trevino, Fernando M.; And Others
This study examines characteristics of Hispanic females in single- and dual-headed households in an effort to understand the impact of the feminization of poverty on Hispanic Americans of Mexican, Cuban, and Puerto Rican origin. The following aspects of these women are examined: (1) sociodemographic characteristics; (2) language of interview; (3)…
NREL's III-V Team Demonstrates Record Efficiency Dual-Junction Solar Cell |
-junction solar cell, surpassing the previous mark by a full percentage. Under one sun of illumination, the . Department of Energy's National Renewable Energy Laboratory (NREL) have set a record efficiency for a dual lattice-mismatched, 1.1-eV GaInAs bottom cell, grown monolithically by atmospheric pressure metal-organic
Bodanapally, U K; Dreizin, D; Issa, G; Archer-Arroyo, K L; Sudini, K; Fleiter, T R
2017-10-01
Extravasation of iodinated contrast into subdural space following contrast-enhanced radiographic studies results in hyperdense subdural effusions, which can be mistaken as acute subdural hematomas on follow-up noncontrast head CTs. Our aim was to identify the factors associated with contrast-enhancing subdural effusion, characterize diffusion and washout kinetics of iodine in enhancing subdural effusion, and assess the utility of dual-energy CT in differentiating enhancing subdural effusion from subdural hematoma. We retrospectively analyzed follow-up head dual-energy CT studies in 423 patients with polytrauma who had undergone contrast-enhanced whole-body CT. Twenty-four patients with enhancing subdural effusion composed the study group, and 24 randomly selected patients with subdural hematoma were enrolled in the comparison group. Postprocessing with syngo.via was performed to determine the diffusion and washout kinetics of iodine. The sensitivity and specificity of dual-energy CT for the diagnosis of enhancing subdural effusion were determined with 120-kV, virtual monochromatic energy (190-keV) and virtual noncontrast images. Patients with enhancing subdural effusion were significantly older (mean, 69 years; 95% CI, 60-78 years; P < .001) and had a higher incidence of intracranial hemorrhage ( P = .001). Peak iodine concentration in enhancing subdural effusions was reached within the first 8 hours of contrast administration with a mean of 0.98 mg/mL (95% CI, 0.81-1.13 mg/mL), and complete washout was achieved at 38 hours. For the presence of a hyperdense subdural collection on 120-kV images with a loss of hyperattenuation on 190-keV and virtual noncontrast images, when considered as a true-positive for enhancing subdural effusion, the sensitivity was 100% (95% CI, 85.75%-100%) and the specificity was 91.67% (95% CI, 73%-99%). Dual-energy CT has a high sensitivity and specificity in differentiating enhancing subdural effusion from subdural hematoma. Hence, dual-energy CT has a potential to obviate follow-up studies. © 2017 by American Journal of Neuroradiology.
Design and numeric evaluation of a novel axial-flow left ventricular assist device.
Toptop, Koral; Kadipasaoglu, Kamuran A
2013-01-01
Virtual design characteristics and performance of the first Turkish axial-flow left ventricular assist device (LVAD) are presented, with emphasis on rotor geometry. The patented rotor design includes a central flow channel carved inside the main block, which carries permanent magnets. A concentric rotor-stator gap minimizes the distance between respective magnets, improving electromagnetic efficiency and creating a second blood pathway. Dual sets of three helical blades, placed on the shaft and external surface of the rotor block, ensure unidirectionality. Hemodynamic performance was tested with computational fluid dynamics (CFD); and rotor-blade geometry was optimized, to maximize overall efficiency d and minimize backflow and wall shear stresses. For a shaft radius of 4.5 mm, rotor blade height of 2.5 mm, and blade inlet and exit metal angles of 67° and 32°, pump operation at the nominal head-flow combination (5 L/min and 100.4 mm Hg) was achieved at a rotor speed of 10,313 rpm. At the nominal point, backflow as percent of total flow was 7.29 and 29.87% at rotor inlet and exit, respectively; overall hydraulic efficiency reached 21.59%; and maximum area-averaged shroud shear was 520 Pa. Overall efficiency peaked at 24.07% for a pump flow of 6.90 L/min, and averaged at 22.57% within the flow range of 4-8 L/min. We concluded that the design satisfies initial rotor design criteria, and that continued studies with diffuser optimization and transient flow analysis are warranted.
Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains
Cronin, Thomas C; DiNitto, Jonathan P; Czech, Michael P; Lambright, David G
2004-01-01
The pleckstrin homology (PH) domains of the homologous proteins Grp1 (general receptor for phosphoinositides), ARNO (Arf nucleotide binding site opener), and Cytohesin-1 bind phosphatidylinositol (PtdIns) 3,4,5-trisphosphate with unusually high selectivity. Remarkably, splice variants that differ only by the insertion of a single glycine residue in the β1/β2 loop exhibit dual specificity for PtdIns(3,4,5)P3 and PtdIns(4,5)P2. The structural basis for this dramatic specificity switch is not apparent from the known modes of phosphoinositide recognition. Here, we report crystal structures for dual specificity variants of the Grp1 and ARNO PH domains in either the unliganded form or in complex with the head groups of PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Loss of contacts with the β1/β2 loop with no significant change in head group orientation accounts for the significant decrease in PtdIns(3,4,5)P3 affinity observed for the dual specificity variants. Conversely, a small increase rather than decrease in affinity for PtdIns(4,5)P2 is explained by a novel binding mode, in which the glycine insertion alleviates unfavorable interactions with the β1/β2 loop. These observations are supported by a systematic mutational analysis of the determinants of phosphoinositide recognition. PMID:15359279
[Activities of Psychology Dept., California Univ.
NASA Technical Reports Server (NTRS)
Bridgeman, Bruce
1998-01-01
We have completed two studies during the grant period, with manuscripts published or ready for submission for publication: (1) Dual adaptation and adaptive generalization in the human vestibuloocular reflex and (2) Frequency vs. acceleration specificity in human VOR adaptation. In the 1st study two studies examined the possibility that rotational VOR plasticity is subject to dual adaptation and adaptive generalization. Subjects in the experimental condition were exposed to an altered visual-vestibular environment for about four minutes every day for five consecutive days. The working hours between these testing sessions constituted re-exposure to the normal visual environment. Thus, subjects were repeatedly adapting and re-adapting to both environments which is a condition designed to produce dual adaptation. In each training session a measure of baseline VOR gain was obtained (in the dark). A small laser spot (the only visual stimulus) was systematically moved in the same direction as the subject's head, but by half the angle of rotation (target/head gain = 0.5). This resulted in adaptation values relativized to the non-adapted gain of each subject. These values were then analyzed using an analysis of variance with day and session (within a day) as factors. In the 2nd study human VOR adaption has been assumed to be frequency specific, despite the fact that the semicircular canals are simulated by rotational acceleration and not frequency per se.
Dual-function beam splitter of a subwavelength fused-silica grating.
Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng
2009-05-10
We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.
NASA Astrophysics Data System (ADS)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy; Geisz, John F.; Steiner, Myles A.; Horowitz, Kelsey; Barraud, Loris; Ward, J. Scott; Schnabel, Manuel; Descoeudres, Antoine; Young, David L.; Woodhouse, Michael; Despeisse, Matthieu; Ballif, Christophe; Tamboli, Adele
2017-09-01
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the record III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Allebé, Christophe; Remo, Timothy
Today's dominant photovoltaic technologies rely on single-junction devices, which are approaching their practical efficiency limit of 25-27%. Therefore, researchers are increasingly turning to multi-junction devices, which consist of two or more stacked subcells, each absorbing a different part of the solar spectrum. Here, we show that dual-junction III-V//Sidevices with mechanically stacked, independently operated III-V and Si cells reach cumulative one-sun efficiencies up to 32.8%. Efficiencies up to 35.9% were achieved when combining a GaInP/GaAs dual-junction cell with a Si single-junction cell. These efficiencies exceed both the theoretical 29.4% efficiency limit of conventional Si technology and the efficiency of the recordmore » III-V dual-junction device (32.6%), highlighting the potential of Si-based multi-junction solar cells. However, techno-economic analysis reveals an order-of-magnitude disparity between the costs for III-V//Si tandem cells and conventional Si solar cells, which can be reduced if research advances in low-cost III-V growth techniques and new substrate materials are successful.« less
Wu, Zhongwei; Xu, Yin
2018-04-20
The hybrid plasmonic effect with lower loss and comparable light confinement than surface plasmon polariton opens new avenues for strengthening light-matter interactions with low loss. Here, we propose and numerically analyze a graphene-based electro-absorption modulator (EAM) with high-modulation efficiency and broad optical bandwidth using a dual-slot hybrid plasmonic waveguide (HPW), which consists of a central dual-slot HPW connected with two taper transitions and two additional dual-slot HPWs for coupling it with the input and output silicon nanowires, where graphene layers are located at the bottom and top side of the whole dual-slot HPW region. By combining the huge light enhancement effect of the dual-slot HPW and graphene's tunable conductivity, we obtain a high-modulation efficiency (ME) of 1.76 dB/μm for the graphene-based dual-slot HPW (higher ME of 2.19 dB/μm can also be obtained). Based upon this promising result, we further design a graphene-based hybrid plasmonic EAM, achieving a modulation depth (MD) of 15.95 dB and insertion loss of 1.89 dB @1.55 μm, respectively, in a total length of only 10 μm, where its bandwidth can reach over 500 nm for keeping MD>15 dB; MD can also be improved by slightly increasing the device length or shrinking the waveguide thickness, showing strong advantages for applying it into on-chip high-performance silicon modulators.
ERIC Educational Resources Information Center
Harris, Belinda
2008-01-01
Schools in the UK and beyond continue to experience the damaging effects of "top down," "one size fits all" "outcome-based" educational reforms. Educators struggle to meet the dual demands of a punishing performativity- and accountability-driven regime alongside the personal, social, emotional and learning needs of…
Santiago, Jonas F.; Jana, Suman; Gilbert, Holly M.; Salem, Shahenda; Bellman, Paul Curtis; Hsu, Ricky K.S.; Naddaf, Sleiman; Abdel-Dayem, Hussein M.
1999-11-01
OBJECTIVE AND METHODS: This study was undertaken to find the role of fluorine-18-fluorodeoxyglucose (F18-FDG) in the diagnostic work-up of febrile Acquired Immune Deficiency Syndrome (AIDS) patients. Forty-seven (42 male and 5 female; mean age = 40.3 years) febrile patients with AIDS underwent imaging with F18-FDG by Dual Head Coincidence Imaging (DHCI). Findings were correlated with other imaging modalities.RESULTS: Our data show good sensitivity for scanning with F18-FDG by DHCI in determining the extent of Castleman's disease, lymphoma, Kaposi's sarcoma (KS), adenocarcinoma, and germ cell carcinoma. Various opportunistic infections also manifest with increased F18-FDG uptake.CONCLUSION: Total-body imaging can be done with F18-FDG with better resolution and a shorter procedure time compared to imaging with Gallium-67 (Ga-67). Furthermore, F18-FDG is more sensitive than Ga-67 for evaluating extent of involvement in various pathologies affecting AIDS patients. The new technology of DHCI is a good alternative for hospitals with no dedicated positron emission tomography (PET) scanner.
Lewis, Kandia; Sandilos, Lia E.; Hammer, Carol Scheffner; Sawyer, Brook E.; Méndez, Lucía I.
2015-01-01
Research Findings This study explored the relations between Spanish–English dual language learner (DLL) children's home language and literacy experiences and their expressive vocabulary and oral comprehension abilities in Spanish and in English. Data from Spanish–English mothers of 93 preschool-age Head Start children who resided in central Pennsylvania were analyzed. Children completed the Picture Vocabulary and Oral Comprehension subtests of the Batería III Woodcock–Muñoz and the Woodcock–Johnson III Tests of Achievement. Results revealed that the language spoken by mothers and children and the frequency of mother–child reading at home influenced children's Spanish language abilities. In addition, the frequency with which children told a story was positively related to children's performance on English oral language measures. Practice or Policy The findings suggest that language and literacy experiences at home have a differential impact on DLLs' language abilities in their 2 languages. Specific components of the home environment that benefit and support DLL children's language abilities are discussed. PMID:27429533
Dual computer monitors to increase efficiency of conducting systematic reviews.
Wang, Zhen; Asi, Noor; Elraiyah, Tarig A; Abu Dabrh, Abd Moain; Undavalli, Chaitanya; Glasziou, Paul; Montori, Victor; Murad, Mohammad Hassan
2014-12-01
Systematic reviews (SRs) are the cornerstone of evidence-based medicine. In this study, we evaluated the effectiveness of using two computer screens on the efficiency of conducting SRs. A cohort of reviewers before and after using dual monitors were compared with a control group that did not use dual monitors. The outcomes were time spent for abstract screening, full-text screening and data extraction, and inter-rater agreement. We adopted multivariate difference-in-differences linear regression models. A total of 60 SRs conducted by 54 reviewers were included in this analysis. We found a significant reduction of 23.81 minutes per article in data extraction in the intervention group relative to the control group (95% confidence interval: -46.03, -1.58, P = 0.04), which was a 36.85% reduction in time. There was no significant difference in time spent on abstract screening, full-text screening, or inter-rater agreement between the two groups. Using dual monitors when conducting SRs is associated with significant reduction of time spent on data extraction. No significant difference was observed on time spent on abstract screening or full-text screening. Using dual monitors is one strategy that may improve the efficiency of conducting SRs. Copyright © 2014 Elsevier Inc. All rights reserved.
Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta
2002-12-06
Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudobivnik, Nace; Dedes, George; Parodi, Katia
2016-01-15
Purpose: Dual energy CT (DECT) has recently been proposed as an improvement over single energy CT (SECT) for stopping power ratio (SPR) estimation for proton therapy treatment planning (TP), thereby potentially reducing range uncertainties. Published literature investigated phantoms. This study aims at performing proton therapy TP on SECT and DECT head images of the same patients and at evaluating whether the reported improved DECT SPR accuracy translates into clinically relevant range shifts in clinical head treatment scenarios. Methods: Two phantoms were scanned at a last generation dual source DECT scanner at 90 and 150 kVp with Sn filtration. The firstmore » phantom (Gammex phantom) was used to calibrate the scanner in terms of SPR while the second served as evaluation (CIRS phantom). DECT images of five head trauma patients were used as surrogate cancer patient images for TP of proton therapy. Pencil beam algorithm based TP was performed on SECT and DECT images and the dose distributions corresponding to the optimized proton plans were calculated using a Monte Carlo (MC) simulation platform using the same patient geometry for both plans obtained from conversion of the 150 kVp images. Range shifts between the MC dose distributions from SECT and DECT plans were assessed using 2D range maps. Results: SPR root mean square errors (RMSEs) for the inserts of the Gammex phantom were 1.9%, 1.8%, and 1.2% for SECT phantom calibration (SECT{sub phantom}), SECT stoichiometric calibration (SECT{sub stoichiometric}), and DECT calibration, respectively. For the CIRS phantom, these were 3.6%, 1.6%, and 1.0%. When investigating patient anatomy, group median range differences of up to −1.4% were observed for head cases when comparing SECT{sub stoichiometric} with DECT. For this calibration the 25th and 75th percentiles varied from −2% to 0% across the five patients. The group median was found to be limited to 0.5% when using SECT{sub phantom} and the 25th and 75th percentiles varied from −1% to 2%. Conclusions: Proton therapy TP using a pencil beam algorithm and DECT images was performed for the first time. Given that the DECT accuracy as evaluated by two phantoms was 1.2% and 1.0% RMSE, it is questionable whether the range differences reported here are significant.« less
NASA Technical Reports Server (NTRS)
Ramins, P.; Fox, T. A.
1979-01-01
An axisymmetric, multistage depressed collector of fixed geometric design was evaluated in conjunction with an octave-bandwidth, dual-mode TWT. The TWT was operated over a wide range of conditions to simulate different applications. The collector was operated in three-, four-, and five-stage configurations, and its performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the dual-mode TWT at and near saturation, the collectors increased the TWT overall efficiency by a factor of 2 1/2 to 3 1/2. Collector performance was relatively constant for both the high and low TWT modes and for operation of the TWT across an octave bandwidth. For operation of the TWT in the linear, low-distortion range, collector efficiencies of 90 percent and greater were obtained, leading to a five- to twelvefold increase in the TWT overall efficiency for the range of operating conditions covered and reasonably high (greater than 25 percent) overall efficiencies well below saturation.
Unipolar Barrier Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)
2017-01-01
Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Anderson, Rachelle P.; Voziyanova, Eugenia; Voziyanov, Yuri
2012-01-01
Recombinase-mediated cassette exchange (RMCE) is a powerful tool for unidirectional integration of DNA fragments of interest into a pre-determined genome locale. In this report, we examined how the efficiency of dual RMCE catalyzed by Flp and Cre depends on the nature of transcription units that express the recombinases. The following recombinase transcription units were analyzed: (i) Flp and Cre genes expressed as individual transcription units located on different vectors, (ii) Flp and Cre genes expressed as individual transcription units located on the same vector, (iii) Flp and Cre genes expressed from a single promoter and separated by internal ribosome entry sequence and (iv) Flp and Cre coding sequences separated by the 2A peptide and expressed as a single gene. We found that the highest level of dual RMCE (35–45% of the transfected cells) can be achieved when Flp and Cre recombinases are expressed as Flp–2A–Cre and Flp–IRES–Cre transcription units. In contrast, the lowest level of dual RMCE (∼1% of the transfected cells) is achieved when Flp and Cre are expressed as individual transcription units. The analysis shows that it is the relative Flp–to–Cre ratio that critically affects the efficiency of dual RMCE. Our results will be helpful for maximizing the efficiency of dual RMCE aimed to engineer and re-engineer genomes. PMID:22270085
Mechanical properties of resin cements with different activation modes.
Braga, R R; Cesar, P F; Gonzaga, C C
2002-03-01
Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.
Multispectral image-fused head-tracked vision system (HTVS) for driving applications
NASA Astrophysics Data System (ADS)
Reese, Colin E.; Bender, Edward J.
2001-08-01
Current military thermal driver vision systems consist of a single Long Wave Infrared (LWIR) sensor mounted on a manually operated gimbal, which is normally locked forward during driving. The sensor video imagery is presented on a large area flat panel display for direct view. The Night Vision and Electronics Sensors Directorate and Kaiser Electronics are cooperatively working to develop a driver's Head Tracked Vision System (HTVS) which directs dual waveband sensors in a more natural head-slewed imaging mode. The HTVS consists of LWIR and image intensified sensors, a high-speed gimbal, a head mounted display, and a head tracker. The first prototype systems have been delivered and have undergone preliminary field trials to characterize the operational benefits of a head tracked sensor system for tactical military ground applications. This investigation will address the advantages of head tracked vs. fixed sensor systems regarding peripheral sightings of threats, road hazards, and nearby vehicles. An additional thrust will investigate the degree to which additive (A+B) fusion of LWIR and image intensified sensors enhances overall driving performance. Typically, LWIR sensors are better for detecting threats, while image intensified sensors provide more natural scene cues, such as shadows and texture. This investigation will examine the degree to which the fusion of these two sensors enhances the driver's overall situational awareness.
High efficiency pump for space helium transfer
NASA Technical Reports Server (NTRS)
Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert
1991-01-01
A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivula, Lauri
Purpose: Magnetic resonance imaging (MRI) is increasingly used for radiotherapy target delineation, image guidance, and treatment response monitoring. Recent studies have shown that an entire external x-ray radiotherapy treatment planning (RTP) workflow for brain tumor or prostate cancer patients based only on MRI reference images is feasible. This study aims to show that a MRI-only based RTP workflow is also feasible for proton beam therapy plans generated in MRI-based substitute computed tomography (sCT) images of the head and the pelvis. Methods: The sCTs were constructed for ten prostate cancer and ten brain tumor patients primarily by transforming the intensity valuesmore » of in-phase MR images to Hounsfield units (HUs) with a dual model HU conversion technique to enable heterogeneous tissue representation. HU conversion models for the pelvis were adopted from previous studies, further extended in this study also for head MRI by generating anatomical site-specific conversion models (a new training data set of ten other brain patients). This study also evaluated two other types of simplified sCT: dual bulk density (for bone and water) and homogeneous (water only). For every clinical case, intensity modulated proton therapy (IMPT) plans robustly optimized in standard planning CTs were calculated in sCT for evaluation, and vice versa. Overall dose agreement was evaluated using dose–volume histogram parameters and 3D gamma criteria. Results: In heterogeneous sCTs, the mean absolute errors in HUs were 34 (soft tissues: 13, bones: 92) and 42 (soft tissues: 9, bones: 97) in the head and in the pelvis, respectively. The maximum absolute dose differences relative to CT in the brain tumor clinical target volume (CTV) were 1.4% for heterogeneous sCT, 1.8% for dual bulk sCT, and 8.9% for homogenous sCT. The corresponding maximum differences in the prostate CTV were 0.6%, 1.2%, and 3.6%, respectively. The percentages of dose points in the head and pelvis passing 1% and 1 mm gamma index criteria were over 91%, 85%, and 38% with heterogeneous, dual bulk, and homogeneous sCTs, respectively. There were no significant changes to gamma index pass rates for IMPT plans first optimized in CT and then calculated in heterogeneous sCT versus IMPT plans first optimized in heterogeneous sCT and then calculated on standard CT. Conclusions: This study demonstrates that proton therapy dose calculations on heterogeneous sCTs are in good agreement with plans generated with standard planning CT. An MRI-only based RTP workflow is feasible in IMPT for brain tumors and prostate cancers.« less
Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study
NASA Astrophysics Data System (ADS)
Suo, Dingjie; Guo, Sijia; Lin, Weili; Jiang, Xiaoning; Jing, Yun
2015-09-01
High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2-4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency.
Factors associated with age at slaughter and carcass weight, price, and value of dairy cull cows.
Bazzoli, I; De Marchi, M; Cecchinato, A; Berry, D P; Bittante, G
2014-02-01
The sale of cull cows contributes to the overall profit of dairy herds. The objective of this study was to quantify the factors associated with slaughter age (mo), cow carcass weight (kg), price (€/kg of carcass weight), and value (€/head) of dairy cull cows. Data included 20,995 slaughter records in the period from 2003 to 2011 of 5 different breeds: 2 dairy [Holstein Friesian (HF) and Brown Swiss (BS)] and 3 dual-purpose [Simmental (Si), Alpine Grey (AG), and Rendena (Re)]. Associations of breed, age of cow (except when the dependent variable was slaughter age), and year and month of slaughter with slaughter age, carcass weight, price, and value were quantified using a mixed linear model; herd was included as a random effect. The seasonal trends in cow price and value traits were inversely related to the number of cows slaughtered, whereas annual variation in external factors affected market conditions. Relative to BS cows, HF cows were younger at slaughter (73.1 vs. 80.7 mo), yielded slightly lighter carcasses (242 vs. 246 kg), and received a slightly lower price (1.69 vs. 1.73 €/kg) and total value (394 vs. 417 €/head). Dual-purpose breeds were older and heavier and received a much greater price and total value at slaughter (521, 516, and 549 €/head, respectively for Si, Re, and AG) than either dairy breed. Of the dual-purpose cows, Si carcasses were heavier (271 kg), whereas the carcasses of local breeds received a higher price (2.05 and 2.18 €/kg for Re and AG, respectively) and Alpine Grey cows were the oldest at slaughter (93.3 mo). The price per kilogram of cull cow carcasses was greatest for very young cows (i.e., <3 yr of age) and the differential in price and value between younger and older cows was greater in dual-purpose than in dairy breeds. Large differences in cull cow whole carcass value (carcass weight × unit price) among dairy breeds suggest that such a trait could be considered in the breeding objectives of the breeds. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Aksoy, Gokhan; Cotert, H Serdar; Korkut, Levent
2005-05-01
A dowel-and-core restoration may fail due to failure at either the dowel-tooth or dowel head-core material interface. Long-term clinical success of a dowel-and-core restoration depends on retention of both the dowel to the tooth and the dowel head to the core material. Thus, strengthening of the dowel head-core interface is important. This study evaluated the retention between a prefabricated dowel and 3 different core materials with or without a dual-polymerized adhesive resin luting agent. Sixty prefabricated dowels (Gold Plated Anchorage Post) were divided into 3 groups (n=20) consisting of 1 of 3 core materials, amalgam (Standalloy F), light-polymerized resin composite (Clearfil Ray), or glass ionomer (Chelon-Silver). Each core group was divided into 2 subgroups (n=10), and a dual-polymerized adhesive resin luting agent (Panavia F) was applied to the dowel heads of 1 of these subgroups before application of the core material. The manufacturing procedure was standardized by using a plastic index (4.5-mm internal diameter and 5-mm height) and a custom-made dowel holder, which held the dowel head. Prepared specimens were stored in water at room temperature for 3 months and then loaded to fracture in a universal testing machine with a crosshead speed of 0.05 mm/min until failure. Bond strengths were recorded (MPa). Data were analyzed with 2-way analysis of variance (ANOVA) in a 2 x 3 factorial randomized design (alpha=.05). Afterward, core material differences were computed with 1-way ANOVA for both of the bonded and nonbonded groups. Post hoc multiple comparisons were made with the Dunnett C multiple range test. Dowel-head retention values (MPa) of the tested core materials (mean +/- SD) from the highest to the lowest were as follows: bonded amalgam core, 296.1 +/- 108; bonded composite core, 284.3 +/- 38.3; nonbonded composite core, 177.0 +/- 53.7; nonbonded amalgam core, 128.5 +/- 35.0; bonded glass-ionomer core (GIC), 128.0 +/- 24.5; nonbonded GIC, 61.8 +/- 13.3. Two-way ANOVA revealed significant differences between the core material groups and between the bonded and nonbonded groups (P <.001). The interaction between the core material and bond variables was also significant (P =.018). One-way ANOVA revealed statistically significant differences between the bonded (P <.001) and also between the nonbonded core material groups (P <.001). Post hoc multiple comparisons showed that the dowel-head retention of the GIC was significantly weaker than the post-head retention for amalgam and resin composite, whether bonded or not. Within the limitations of this study, the adhesive resin luting agent tested appeared to have a significant strengthening effect on the dowel-head retention of the core materials.
Dual redundant arm system operational quality measures and their applications - Static measures
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Kim, Sungbok
1990-01-01
The authors present dual-arm system static operational quality measures which quantify the efficiency and capability of a dual-arm system in generating Cartesian velocities and static forces. First, they define and analyze the kinematic interactions between the two arms incurred by the various modes of dual-arm cooperation, such as transport, assembly, and grasping modes of cooperation, and specify the kinematic constraints imposed on individual arms in Cartesian space due to the kinematic interactions. Dual-arm static manipulability is presented. Finally, dual-arm operational quality is scaled by a task-oriented operational quality measure (TOQs) obtained by the comparison between the desired and actual static manipulabilities. TOQs is used in the optimization of dual-arm joint configurations. Simulation results are shown.
Costs and energy efficiency of a dual-mode system
NASA Technical Reports Server (NTRS)
Heft, R. C.
1977-01-01
The life cycle costs of a dual mode system for both public and semiprivate ownership are examined, and the costs in terms of levelized required revenue per passenger mile are presented. The energy use of the dual mode vehicle is analyzed by means of a detailed vehicle simulation program for the control policy and guideway system. Several different propulsion systems are considered.
Progress toward the development of dual junction GaAs/Ge solar cells
NASA Technical Reports Server (NTRS)
Lillington, D. R.; Krut, D. D.; Cavicchi, B. T.; Ralph, E.; Chung, M.
1991-01-01
Large area GaAs/Ge cells offer substantial promise for increasing the power output from existing silicon solar array designs and for providing an enabled technology for missions hitherto impossible using silicon. Single junction GaAs/Ge cells offer substantial advantages in both size, weight, and cost compared to GaAs cells but the efficiency is limited to approximately 19.2 to 20 percent AMO. The thermal absorptance of GaAs/Ge cells is also worse than GaAs/GaAs cells (0.88 vs 0.81 typ.) due to the absorption in the Ge substrate. On the other hand dual junction GaAs/Ge cells offer efficiencies up to ultimately 24 percent AMO in sizes up to 8 x 8 cm but there are still technological issues remaining to achieve current matching in the GaAs and Ge cells. This can be achieved through tuned antireflection (AR) coatings, improved quality of the GaAs growth, improved quality Ge wafers and the use of a Back Surface Field (BSF)/Back Surface Reflector (BSR) in the Ge cell. Although the temperature coefficients of efficiency and voltage are higher for dual junction GaAs/Ge cells, it has been shown elsewhere that for typical 28 C cell efficiencies of 22 percent (dual junction) vs 18.5 percent (single junction) there is a positive power tradeoff up to temperatures as high as 120 C. Due to the potential ease of fabrication of GaAs/Ge dual junction cells there is likely to be only a small cost differential compared to single junction cells.
The source of dual-task limitations: Serial or parallel processing of multiple response selections?
Marois, René
2014-01-01
Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266
TU-E-BRB-08: Dual Gated Volumetric Modulated Arc Therapy.
Wu, J; Fahimian, B; Wu, H; Xing, L
2012-06-01
Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging treatment modality for Stereotactic Body Radiotherapy (SBRT). However, gating significantly prolongs treatment time. In order to enhance treatment efficiency, a novel dual gated VMAT, in which dynamic arc deliveries are executed sequentially in alternating exhale and inhale phases, is proposed and evaluated experimentally. The essence of dual gated VMAT is to take advantage of the natural pauses that occur at inspiration and exhalation by alternatively delivering the dose at the two phases, instead of the exhale window only. The arc deliveries at the two phases are realized by rotating gantry forward at the exhale window and backward at the inhale in an alternative fashion. Custom XML scripts were developed in Varian's TrueBeam STx Developer Mode to enable dual gated VMAT delivery. RapidArc plans for a lung case were generated for both inhale and exhale phases. The two plans were then combined into a dual gated arc by interleaving the arc treatment nodes of the two RapidArc plans. The dual gated plan was delivered in the development mode of TrueBeam LINAC onto a motion phantom and the delivery was measured by using pinpoint chamber/film/diode array (delta 4). The measured dose distribution was compared with that computed using Eclipse AAA algorithm. The treatment delivery time was recorded and compared with the corresponding single gated plans. Relative to the corresponding single gated delivery, it was found that treatment time efficiency was improved by 95.5% for the case studied here. Pinpoint chamber absolute dose measurement agreed the calculation to within 0.7%. Diode chamber array measurements revealed that 97.5% of measurement points of dual gated RapidArc delivery passed the 3% and 3mm gamma-test criterion. A dual gated VMAT treatment has been developed and implemented successfully with nearly doubled treatment delivery efficiency. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiawei; Huang, Wenhua; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024
2015-03-16
A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.
NASA Astrophysics Data System (ADS)
Abeywickrama, Sandu; Furdek, Marija; Monti, Paolo; Wosinska, Lena; Wong, Elaine
2016-12-01
Core network survivability affects the reliability performance of telecommunication networks and remains one of the most important network design considerations. This paper critically examines the benefits arising from utilizing dual-homing in the optical access networks to provide resource-efficient protection against link and node failures in the optical core segment. Four novel, heuristic-based RWA algorithms that provide dedicated path protection in networks with dual-homing are proposed and studied. These algorithms protect against different failure scenarios (i.e. single link or node failures) and are implemented with different optimization objectives (i.e., minimization of wavelength usage and path length). Results obtained through simulations and comparison with baseline architectures indicate that exploiting dual-homed architecture in the access segment can bring significant improvements in terms of core network resource usage, connection availability, and power consumption.
Efficient 10 kW diode-pumped Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto
2003-03-01
As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.
Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.
Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark
2018-05-29
CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li
2018-05-14
Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-08-11
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905
Dual side control for inductive power transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less
Dual Spark Plugs For Stratified-Charge Rotary Engine
NASA Technical Reports Server (NTRS)
Abraham, John; Bracco, Frediano V.
1996-01-01
Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.
Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)
NASA Astrophysics Data System (ADS)
Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.
2010-04-01
This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.
NASA Technical Reports Server (NTRS)
Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.
1990-01-01
A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.
Perl, Emmett E.; Simon, John; Friedman, Daniel J.; ...
2018-01-12
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Friedman, Daniel J.
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
Analysis of single band and dual band graphene based patch antenna for terahertz region
NASA Astrophysics Data System (ADS)
George, Jemima Nissiyah; Madhan, M. Ganesh
2017-10-01
A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Widodo, T. I.; Nasution, D. M.
2017-01-01
In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.
Pineau, V; Lebel, B; Gouzy, S; Dutheil, J-J; Vielpeau, C
2010-10-01
The use of dual mobility cups is an effective method to prevent dislocations. However, the specific design of these implants can raise the suspicion of increased wear and subsequent periprosthetic osteolysis. Using radiostereometric analysis (RSA), migration of the femoral head inside the cup of a dual mobility implant can be defined to apprehend polyethylene wear rate. The study aimed to establish the precision of RSA measurement of femoral head migration in the cup of a dual mobility implant, and its intra- and interobserver variability. A total hip prosthesis phantom was implanted and placed under weight loading conditions in a simulator. Model-based RSA measurement of implant penetration involved specially machined polyethylene liners with increasing concentric wear (no wear, then 0.25, 0.5 and 0.75mm). Three examiners, blinded to the level of wear, analyzed (10 times) the radiostereometric films of the four liners. There was one experienced, one trained, and one inexperienced examiner. Statistical analysis measured the accuracy, precision, and intra- and interobserver variability by calculating Root Mean Square Error (RMSE), Concordance Correlation Coefficient (CCC), Intra Class correlation Coefficient (ICC), and Bland-Altman plots. Our protocol, that used a simple geometric model rather than the manufacturer's CAD files, showed precision of 0.072mm and accuracy of 0.034mm, comparable with machining tolerances with low variability. Correlation between wear measurement and true value was excellent with a CCC of 0.9772. Intraobserver reproducibility was very good with an ICC of 0.9856, 0.9883 and 0.9842, respectively for examiners 1, 2 and 3. Interobserver reproducibility was excellent with a CCC of 0.9818 between examiners 2 and 1, and 0.9713 between examiners 3 and 1. Quantification of wear is indispensable for the surveillance of dual mobility implants. This in vitro study validates our measurement method. Our results, and comparison with other studies using different measurement technologies (RSA, standard radiographs, Martell method) make model-based RSA the reference method for measuring the wear of total hip prostheses in vivo. Level 3. Prospective diagnostic study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Dove prism based rotating dual beam bidirectional Doppler OCT
Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S. G.; Bonesi, Marco; Werkmeister, René M.; Schmetterer, Leopold; Leitgeb, Rainer A.
2013-01-01
Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series. PMID:23847742
Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.
Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G
2017-02-01
A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance evaluation of a dual-flow recharge filter for improving groundwater quality.
Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C
2014-07-01
A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.
Experimental investigations of aeration efficiency in high-head gated circular conduits.
Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet
2014-01-01
The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.
Three-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter.
Arfi, Anis Ben; Elsayed, Fahmi; Aflaki, Pouya M; Morris, Brad; Ghannouchi, Fadhel M
2018-02-20
In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode back-to-back power amplifiers working at peak power. A signal processing technique known as quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR). After amplification, the two branches are combined using a non-isolated combiner, preserving the efficiency of the transmitter. A comprehensive study on the operation of this topology and signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was established. Moreover, this work proposes a highly efficient design of the amplification block based on a back-to-back power topology performing a dynamic load modulation exploiting the non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation, the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™ platform followed by the back-to-back Class-E switch-mode power amplification block. The full transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.
Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Liu, Sheng
2016-06-01
Tracking the position of pedestrian is urgently demanded when the most commonly used GPS (Global Position System) is unavailable. Benefited from the small size, low-power consumption, and relatively high reliability, micro-electro-mechanical system sensors are well suited for GPS-denied indoor pedestrian heading estimation. In this paper, a real-time miniature orientation determination system (MODS) was developed for indoor heading and trajectory tracking based on a novel dual-linear Kalman filter. The proposed filter precludes the impact of geomagnetic distortions on pitch and roll that the heading is subjected to. A robust calibration approach was designed to improve the accuracy of sensors measurements based on a unified sensor model. Online tests were performed on the MODS with an improved turntable. The results demonstrate that the average RMSE (root-mean-square error) of heading estimation is less than 1°. Indoor heading experiments were carried out with the MODS mounted on the shoe of pedestrian. Besides, we integrated the existing MODS into an indoor pedestrian dead reckoning application as an example of its utility in realistic actions. A human attitude-based walking model was developed to calculate the walking distance. Test results indicate that mean percentage error of indoor trajectory tracking achieves 2% of the total walking distance. This paper provides a feasible alternative for accurate indoor heading and trajectory tracking.
Picometer-resolution dual-comb spectroscopy with a free-running fiber laser.
Zhao, Xin; Hu, Guoqing; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng
2016-09-19
Dual-comb spectroscopy holds the promise as real-time, high-resolution spectroscopy tools. However, in its conventional schemes, the stringent requirement on the coherence between two lasers requires sophisticated control systems. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using one dual-wavelength, passively mode-locked fiber laser. Pulses with a intracavity-dispersion-determined repetition-frequency difference are shown to have good mutual coherence and stability. Capability to resolve the comb teeth and a picometer-wide optical spectral resolution are demonstrated using a simple data acquisition system. Energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable low-cost dual-comb systems.
Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser
NASA Astrophysics Data System (ADS)
Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai
2016-10-01
Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.
NASA Technical Reports Server (NTRS)
Selberg, B. P.; Cronin, D. L.
1985-01-01
An analytical aerodynamic-structural airplane configuration study was conducted to assess performance gains achievable through advanced design concepts. The mission specification was for 350 mph, range of 1500 st. mi., at altitudes between 30,000 and 40,000 ft. Two payload classes were studied - 1200 lb (6 passengers) and 2400 lb (12 passengers). The configurations analyzed included canard wings, closely coupled dual wings, swept forward - swept rearward wings, joined wings, and conventional wing tail arrangements. The results illustrate substantial performance gains possible with the dual wing configuration. These gains result from weight savings due to predicted structural efficiencies. The need for further studies of structural efficiencies for the various advanced configurations was highlighted.
Thermodynamic Study of Multi Pressure HRSG in Gas/Steam Combined Cycle Power Plant
NASA Astrophysics Data System (ADS)
Sharma, Meeta; Singh, Onkar
2018-01-01
Combined cycle power plants have a combination of gas based topping cycle and steam based bottoming cycle through the use of Heat Recovery Steam Generator (HRSG). These HRSG may be either of single pressure (SP) or dual pressure (DP) or multiple pressure type. Here in this study thermodynamic analysis is carried out for optimal performance of HRSG using different types of HRSG layout for combined cycle efficiency improvement. Performance of single pressure HRSG and dual pressure HRSG, utilized in gas/steam combined cycle is analyzed and presented here. In comparison to single pressure, dual pressure HRSG offers 10 to 15% higher reduction in stack temperature due to greater heat recovery and thus improved plant efficiency.
Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes
NASA Astrophysics Data System (ADS)
Teng, Yan; Sun, Jun; Chen, Changhua; Shao, Hao
2013-07-01
This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO) by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC) simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.
Blending High School and College Can Sharpen the Focus of Each
ERIC Educational Resources Information Center
Vargas, Joel; Hooker, Sarah; Gerwin, Carol
2017-01-01
With a postsecondary credential essential to finding a good job but the cost of college beyond the means of many families, a growing number of high schools are offering their students a powerful head start on higher education. About 1.3 million U.S. teens participate in dual enrollment, up from 680,000 when the century began. Critics worry that…
A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.
Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor
2016-01-01
To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.
Organic photosensitizers with a heteroleptic dual donor for dye-sensitized solar cells.
Kim, Joo Young; Kim, Young Sik
2012-04-01
Using DFT and TDDFT calculations, we investigated the substitution effect in the electronic and optical properties of dye sensitizers with a dual donor composed of triphenylamine and/or indoline moieties. Due to replacement with the dual donor moieties, the HOMO levels were split into HOMO and HOMO - 1 levels, and the bandgaps between the HOMO and LUMO levels decreased, leading to the creation of bathochromically extended absorption spectra. Nearly degenerated splitting of the HOMO levels resulted from the similarity of the electronic structure between the HOMO and the HOMO - 1 levels, delocalized over both dual-donor moieties, when replacing the dual donors. It was shown that the additional electron-donating group creates an additional absorption band and causes a cascading two-electron process aiding the charge separation process. Owing to a more panchromatic attribute, easier energy transfer and feasible retardation of the recombination between the injected electrons and the electrolyte, it is expected that dyeTI will show better performance than the other dyes (dyeT dyeTT and dyeIT) as denoted here in terms of the conversion efficiency of dye-sensitized solar cells (DSSCs). This work presents the probable benefits of dye sensitizers with dual-donor moieties and provides insight into the development of more efficient dye sensitizers for DSSCs through modification of the Frontier molecular orbitals.
Psychological heterogeneity in AD/HD--a dual pathway model of behaviour and cognition.
Sonuga-Barke, Edmund J S
2002-03-10
Psychological accounts have characterised attention-deficit/hyperactivity disorder (AD/HD) as either a neuro-cognitive disorder of regulation or a motivational style. Poor inhibitory control is thought to underpin AD/HD children's dysregulation while delay aversion is a dominant characteristic of their motivational style. A recent 'head to head' study of these two accounts suggest that delay aversion and poor inhibitory control are independent co-existing characteristics of AD/HD (combined type). In the present paper we build on these findings to propose a dual pathway model of AD/HD that recognises two quite distinct sub-types of the disorder. In one AD/HD is the result of the dysregulation of action and thought resulting from poor inhibitory control associated with the meso-cortical branch of the dopamine system projecting in the cortical control centres (e.g. pre-frontal cortex). In the other AD/HD is a motivational style characterised by an altered delay of reward gradient linked to the meso-limbic dopamine branch associated with the reward circuits (e.g. nucleus accumbens). The two pathways are further distinguished at the levels of symptoms, cognitive and motivation profiles and genetic and non-genetic origins.
Narusaka, Mari; Toyoda, Kazuhiro; Shiraishi, Tomonori; Iuchi, Satoshi; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro
2016-01-01
Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR that contains a leucine zipper (LZ) motif and a C-terminal WRKY domain. RPS4 and RRS1 are localised near each other in a head-to-head orientation. In this study, direct mutagenesis of the C-terminal LZ motif in RRS1 caused an autoimmune response and stunting in the mutant. Co-immunoprecipitation analysis indicated that full-length RPS4 and RRS1 are physically associated with one another. Furthermore, virus-induced gene silencing experiments showed that hypersensitive-like cell death triggered by RPS4/LZ motif-mutated RRS1 depends on EDS1. In conclusion, we suggest that the RRS1-LZ motif is crucial for the regulation of the RPS4/RRS1 complex. PMID:26750751
Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media
NASA Astrophysics Data System (ADS)
Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.
1985-04-01
The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.
Efficient two-stage dual-beam noncollinear optical parametric amplifier
NASA Astrophysics Data System (ADS)
Cheng, Yu-Hsiang; Gao, Frank Y.; Poulin, Peter R.; Nelson, Keith A.
2018-06-01
We have constructed a noncollinear optical parametric amplifier with two signal beams amplified in the same nonlinear crystal. This dual-beam design is more energy-efficient than operating two amplifiers in parallel. The cross-talk between two beams has been characterized and discussed. We have also added a second amplification stage to enhance the output of one of the arms, which is then frequency-doubled for ultraviolet generation. This single device provides two tunable sources for ultrafast spectroscopy in the ultraviolet and visible region.
Dual function conducting polymer diodes
Heeger, Alan J.; Yu, Gang
1996-01-01
Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.
The moderating effect of leadership on the relationship between personality and performance.
Yeh, Shu-Chuan Jennifer; Yuan, Kuo-Shu; Chen, Shih-Hua Sarah; Lo, Ying-Ying; Chou, Hsueh-Chih; Huang, Shan; Chiu, Herng-Chia; Wan, Thomas T H
2016-10-01
To examine how personality and leadership influence efficiency in the nursing service environment. Leadership and personality contribute to the success and failure of a unit. However, how they interact to influence performance is still understudied. We used matched pairs sample design to survey 135 head nurses and 1353 registered nurses on validated instruments of demographic characteristics, leadership styles and personality during June and July of 2014. Efficiency was calculated using Data Envelopment Analysis. Tobit regression was used for analysis. High conscientiousness and low neuroticism were significantly associated with higher efficiency. Particularly, under the initiating structure leadership style, high conscientiousness, high extraversion, high agreeableness, high openness and low neuroticism were related to higher efficiency. Openness would improve efficiency under a low consideration leadership style. Most personality traits were related to higher efficiency under the initiating leadership style. Only openness would improve leaders' efficiency under a high initiating structure and a low consideration leadership style. Considering personality as one factor of selecting head nurses, selecting the right person can improve the fit between individuals and organisations, which in turn, improves job performance. Training head nurses to develop better leadership styles in nurses is another way to enhance efficiency. © 2016 John Wiley & Sons Ltd.
Klages, A; Hurschler, C; Wülker, N; Windhagen, H
2001-09-01
Modern shoulder prostheses permit an anatomic reconstruction of the joint, although the biomechanical advantages are not proven. The goal of this study was to investigate the relationship between position of the humeral head and function of the shoulder prosthesis (muscle efficiency). Shoulder elevation-motion and rotator cuff defects were simulated in vitro in a robot-assisted shoulder simulator. The EPOCA Custom Offset shoulder prosthesis (Argomedical AG, Cham, CH) was implanted in seven normal shoulders (77 +/- 20 kg, 55 +/- 14 years). Active elevation was simulated by hydraulic cylinders, and scapulothoratic motion by a specially programmed industrial robot. Muscle efficiency (elevation-angle/muscle-force of the deltoid muscle) was measured in anatomic (ANA), medialised (MED) and lateralised (LAT) positions of the humeral head, with or without rotator cuff muscle deficiency. Medialisation increased efficiency by 0.03 +/- 0.04 deg/N (p = 0.022), lateralisation decreased it by 0.04 +/- 0.06 deg/N (p = 0.009). Supraspinatus muscle deficiency increased the deltoid force required to elevate the arm, and thus decreased efficiency (ANA p = 0.091, MED p = 0.018, LAT p = 0.028). The data confirm that the position of the humeral head affects the mechanics of total shoulder arthroplasty. Medialisation increases efficiency of the deltoid muscle and may prove useful in compensating isolated supraspinatus muscle deficiency. Lateralisation, in contrast, leads to an unfavorable situation.
2014-01-01
Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405
[The voice of the singer in the phonetogram].
Klingholz, F
1989-01-01
Phonetograms were subdivided into areas approximating voice registers. By means of an analytical description of the areas, parameters could be established for a differentiation of voice categories and efficiency. The evaluation of 21 untrained and 34 trained voices showed a significant difference between the two groups. Male singers demonstrated more efficiency in the head and chest registers than male non-singers; female singers showed a stronger efficiency only in the head voice in comparison with their non-singer counterparts. Proceeding from voice sound alone, voices are often misclassified regarding the voice categories, and voice problems arise. Moreover, enhanced training of only chest or head voice function results in functional disorders in the singing voice. Such cases can be demonstrated by means of phonetograms.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Zhou, Zijian; Wang, Zhiyong; Xue, Yunxin; Zeng, Yun; Gao, Jinhao; Zhu, Lei; Zhang, Xianzhong; Liu, Gang; Chen, Xiaoyuan
2013-08-01
This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02797j
Tang, Shiwei; Cai, Tong; Wang, Guang-Ming; Liang, Jian-Gang; Li, Xike; Yu, Jiancheng
2018-04-23
Vortex beam is believed to be an effective way to extend communication capacity, but available efforts suffer from the issues of complex configurations, fixed operation mode as well as low efficiency. Here, we propose a general strategy to design dual-modes vortex beam generator by using metasurfaces with polarization-dependent transmission and reflection properties. Combining the focusing and vortex functionalities, we design/fabricate a type of compact dual-modes vortex beam generator operating at both reflection/transmission sides of the system. Experimental results demonstrate that the designed metadevice can switch freely and independently between the reflective vortex with topological charge m 1 = 2 and transmissive vortex with m 2 = 1. Moreover, the metadevice exhibits very high efficiencies of 91% and 85% for the reflective and transmissive case respectively. Our findings open a door for multifunctional metadevices with high performances, which indicate wide applications in modern integration-optics and wireless communication systems.
Dual-fuel, dual-mode rocket engine
NASA Technical Reports Server (NTRS)
Martin, James A. (Inventor)
1989-01-01
The invention relates to a dual fuel, dual mode rocket engine designed to improve the performance of earth-to-orbit vehicles. For any vehicle that operates from the earth's surface to earth orbit, it is advantageous to use two different fuels during its ascent. A high density impulse fuel, such as kerosene, is most efficient during the first half of the trajectory. A high specific impulse fuel, such as hydrogen, is most efficient during the second half of the trajectory. The invention allows both fuels to be used with a single rocket engine. It does so by adding a minimum number of state-of-the-art components to baseline single made rocket engines, and is therefore relatively easy to develop for near term applications. The novelty of this invention resides in the mixing of fuels before exhaust nozzle cooling. This allows all of the engine fuel to cool the exhaust nozzle, and allows the ratio of fuels used throughout the flight depend solely on performance requirements, not cooling requirements.
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Design of the dual-buoy wave energy converter based on actual wave data of East Sea
NASA Astrophysics Data System (ADS)
Kim, Jeongrok; Kweon, Hyuck-Min; Jeong, Weon-Mu; Cho, Il-Hyoung; Cho, Hong-Yeon
2015-07-01
A new conceptual dual-buoy Wave Energy Converter (WEC) for the enhancement of energy extraction efficiency is suggested. Based on actual wave data, the design process for the suggested WEC is conducted in such a way as to ensure that it is suitable in real sea. Actual wave data measured in Korea's East Sea (position: 36.404 N° and 129.274 E°) from May 1, 2002 to March 29, 2005 were used as the input wave spectrum for the performance estimation of the dual-buoy WEC. The suggested WEC, a point absorber type, consists of two concentric floating circular cylinders (an inner and a hollow outer buoy). Multiple resonant frequencies in proposed WEC affect the Power Ttake-off (PTO) performance of the WEC. Based on the numerical results, several design strategies are proposed to further enhance the extraction efficiency, including intentional mismatching among the heave natural frequencies of dual buoys, the natural frequency of the internal fluid, and the peak frequency of the input wave spectrum.
Measures of Time-Sharing Skill and Gender as Predictors of Flight Simulator Performance.
1979-01-01
well as overall e- quations including gender as a variable. Besides gender in the overall equations, measures of time-sharing skill were the best ...study indicated the best predictors of dual or whole-task performance were other dual-tasks. Furthermore, the particular components involved in a dual...switching between tasks, or the use of efficient response strategies " (Damos and Wickens, 1977, p.2). Attentional flexibility. According to Keele
A MAG for the Twenty First Century: Lethal, Lighter, Energy Efficient, and Cheaper
2010-04-14
well as an advanced trainer. 40 25. Zero altitude-zero airspeed ejection seats . 26. Common multi-function display (MFD) cockpit configuration for...front cockpit, with seat belts/shoulder harnesses fastened. b. Aft cockpit capable of being reconfigured for flight control including conducting...Capability to carry two wounded Marines via internal litters. 24. Dual seat with dual controls to facilitate dual use as light attack/armed reconnaissance as
NASA Astrophysics Data System (ADS)
KO, Pohan; MATSUMOTO, Kiyoshi; OHTAKE, Norio; DING, Hua
2016-11-01
As for turbomachine off-design performance improvement is challenging but critical for maximising the performing area. In this paper, a curved draft tube for a medium head Kaplan type hydro turbine is introduced and discussed for its significant effect on expanding operating head range. Without adding any extra structure and working fluid for swirl destruction and damping, a carefully designed outline shape of draft tube with the selected placement of center-piers successfully supresses the growth of turbulence eddy and the transport of the swirl to the outlet. Also, more kinetic energy is recovered and the head lost is improved. Finally, the model test results are also presented. The obvious performance improvement was found in the lower net head area, where the maximum efficiency improvement was measured up to 20% without compromising the best efficiency point. Additionally, this design results in a new draft tube more compact in size and so leads to better construction and manufacturing cost performance for prototype. The draft tube geometry parameter designing process was concerning the best efficiency point together with the off-design points covering various water net heads and discharges. The hydraulic performance and flow behavior was numerically previewed and visualized by solving Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport turbulence model. The simulation was under the assumption of steady-state incompressible turbulence flow inside the flow passage, and the inlet boundary condition was the carefully simulated flow pattern from the runner outlet. For confirmation, the corresponding turbine efficiency performance of the entire operating area was verified by model test.
Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization
NASA Astrophysics Data System (ADS)
Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng
2018-01-01
As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.
Dual-fuel natural gas/diesel engines: Technology, performance, and emissions
NASA Astrophysics Data System (ADS)
Turner, S. H.; Weaver, C. S.
1994-11-01
An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.
Head fat is a novel method of measuring metabolic disorder in Chinese obese patients
2014-01-01
Background Body adiposity, especially ectopic fat accumulation, has a range of metabolic and cardiovascular effects. The aim of this study was to investigate the association between head fat and metabolic values in Chinese obese patients. Methods Data of this cross-sectional study from 66 obese patients were collected. Fat distribution was measured by dual-energy X-ray absorptiometry, and data of body weight, body mass index (BMI), neck circumference (NC), waist circumference (WC), hip circumference (HC), visceral index, basal metabolism (BM), glucose metabolism, lipid levels, uric acid (UA) had been collected. Results 1) Head fat was significantly associated with BMI, WC, HC, visceral index, BM, total fat and total fat excluding head fat in both males and females (p < 0.05). Head fat was positively correlated with upper limb fat, trunk fat, weight, fasting plasma C peptide, fasting plasma insulin and UA in women(p < 0.05), and the association was not statistically significant in male (p > 0.05). Head fat was positively corrected with NC in males (p < 0.05) but not females (p > 0.05). There was no significant correlation between head fat and fasting plasma glucose, total choleslerolemia, triglyceridemia, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and free fat acid in either gender (p > 0.05). 2) Receiver operating characteristic analysis showed that a head fat of 1925.6 g and a head fat of 1567.85 g were the best cut-off values to determine subjects with low high-density lipoprotein cholesterol and hyperuricemia respectively. Conclusions Head fat accumulation was closely associated with increased body fat, hyperinsulinemia, hyperuricemia, and impared lipid profile, suggesting it might be used as an indicator for dyslipidemia and hyperuricemia. PMID:25015267
Oxygen/Alcohol Dual Thrust RCS Engines
NASA Technical Reports Server (NTRS)
Angstadt, Tara; Hurlbert, Eric
1999-01-01
A non-toxic dual thrust RCS engine offers significant operational, safety, and performance advantages to the space shuttle and the next generation RLVs. In this concept, a single engine produces two thrust levels of 25 and 870 lbf. The low thrust level is provided by the spark torch igniter, which, with the addition of 2 extra valves, can also be made to function as a vernier. A dual thrust RCS engine allows 38 verniers to be packaged more efficiently on a vehicle. These 38 vemiers improve translation and reduce cross coupling, thereby providing more pure roll, pitch, and yaw maneuvers of the vehicle. Compared to the 6 vemiers currently on the shuttle, the 38 dual thrust engines would be 25 to 40% more efficient for the same maneuvers and attitude control. The vernier thrust level also reduces plume impingement and contamination concerns. Redundancy is also improved, thereby improving mission success reliability. Oxygen and ethanol are benign propellants which do not create explosive reaction products or contamination, as compared to hypergolic propellants. These characteristics make dual-thrust engines simpler to implement on a non-toxic reaction control system. Tests at WSTF in August 1999 demonstrated a dual-thrust concept that is successful with oxygen and ethanol. Over a variety of inlet pressures and mixture ratios at 22:1 area ratio, the engine produced between 230 and 297 sec Isp, and thrust levels from 8 lbf. to 50 lbf. This paper describes the benefits of dual-thrust engines and the recent results from tests at WSTF.
NASA Astrophysics Data System (ADS)
Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank
2018-06-01
Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in ‑1.2 ± 1.2 mm (‑0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.
Dual AAV Vectors for Stargardt Disease.
Trapani, Ivana
2018-01-01
Stargardt disease (STGD1), due to mutations in the large ABCA4 gene, is the most common inherited macular degeneration in humans. Attempts at developing gene therapy approaches for treatment of STGD1 are currently ongoing. Among all the vectors available for gene therapy of inherited retinal diseases, those based on adeno-associated viruses (AAV) are the most promising given the efficacy shown in various animal models and their excellent safety profile in humans, as confirmed in many ongoing clinical trials. However, one of the main obstacles for the use of AAV is their limited effective packaging capacity of about 5 kb. Taking advantage of the AAV genome's ability to concatemerize , others and we have recently developed dual AAV vectors to overcome this limit. We tested dual AAV vectors for ABCA4 delivery, and found that they transduce efficiently both mouse and pig photoreceptors , and rescue the Abca4-/- mouse retinal phenotype, indicating their potential for gene therapy of STGD1. This chapter details how we designed dual AAV vectors for the delivery of the ABCA4 gene and describes the techniques that can be explored to evaluate dual AAV transduction efficiency in vitro and in the retina, and their efficacy in the mouse model of STGD1.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.
2014-01-01
Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620
A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.
Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F
2004-01-30
A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.
Neuhaus, Victor; Große Hokamp, Nils; Abdullayev, Nuran; Maus, Volker; Kabbasch, Christoph; Mpotsaris, Anastasios; Maintz, David; Borggrefe, Jan
2018-03-01
To compare the image quality of virtual monoenergetic images and polyenergetic images reconstructed from dual-layer detector CT angiography (DLCTA). Thirty patients who underwent DLCTA of the head and neck were retrospectively identified and polyenergetic as well as virtual monoenergetic images (40 to 120 keV) were reconstructed. Signals (± SD) of the cervical and cerebral vessels as well as lateral pterygoid muscle and the air surrounding the head were measured to calculate the CNR and SNR. In addition, subjective image quality was assessed using a 5-point Likert scale. Student's t-test and Wilcoxon test were used to determine statistical significance. Compared to polyenergetic images, although noise increased with lower keV, CNR (p < 0.02) and SNR (p > 0.05) of the cervical, petrous and intracranial vessels were improved in virtual monoenergetic images at 40 keV and virtual monoenergetic images at 45 keV were also rated superior regarding vascular contrast, assessment of arteries close to the skull base and small arterial branches (p < 0.0001 each). Compared to polyenergetic images, virtual monoenergetic images reconstructed from DLCTA at low keV ranging from 40 to 45 keV improve the objective and subjective image quality of extra- and intracranial vessels and facilitate assessment of vessels close to the skull base and of small arterial branches. • Virtual monoenergetic images greatly improve attenuation, while noise only slightly increases. • Virtual monoenergetic images show superior contrast-to-noise ratios compared to polyenergetic images. • Virtual monoenergetic images significantly improve image quality at low keV.
A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation
NASA Astrophysics Data System (ADS)
Li, Junpu; Chen, Wen; Fu, Zhuojia
2018-01-01
A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.
Chou, Po-Chien; Lin, Yu-Cheng; Cheng, Stone
2011-01-01
Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF) disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs) is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA) unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system. PMID:22163877
ERIC Educational Resources Information Center
Khattak, Usman Ghani; Iqba, Javed
2015-01-01
Terrorism has adversely affected the educational environment in Khyber Pakhtoon Khwa Province. This study was conducted to know the impact of Terrorism on managerial efficiency of heads of secondary schools in Khyber Pakhtoon Khwa that included Malakand, Mangawara, Dir, Hangu , Bannu and D I Khan which are the highly affected areas of terrorism.…
Dual energy computed tomography for the head.
Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo
2018-02-01
Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.
Contact rate modulates foraging efficiency in leaf cutting ants.
Bouchebti, S; Ferrere, S; Vittori, K; Latil, G; Dussutour, A; Fourcassié, V
2015-12-21
Lane segregation is rarely observed in animals that move in bidirectional flows. Consequently, these animals generally experience a high rate of head-on collisions during their journeys. Although these collisions have a cost (each collision induces a delay resulting in a decrease of individual speed), they could also have a benefit by promoting information transfer between individuals. Here we explore the impact of head-on collisions in leaf-cutting ants moving on foraging trails by artificially decreasing the rate of head-on collisions between individuals. We show that head-on collisions do not influence the rate of recruitment in these ants but do influence foraging efficiency, i.e. the proportion of ants returning to the nest with a leaf fragment. Surprisingly, both unladen and laden ants returning to the nest participate in the modulation of foraging efficiency: foraging efficiency decreases when the rate of contacts with both nestbound laden or unladen ants decreases. These results suggest that outgoing ants are able to collect information from inbound ants even when these latter do not carry any leaf fragment and that this information can influence their foraging decisions when reaching the end of the trail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.
2002-03-07
This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (
Binocular Multispectral Adaptive Imaging System (BMAIS)
2010-07-26
system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet
Development of a PET/Cerenkov-light hybrid imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko
2014-09-15
Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less
Lohöfer, Fabian K; Kaissis, Georgios A; Köster, Frances L; Ziegelmayer, Sebastian; Einspieler, Ingo; Gerngross, Carlos; Rasper, Michael; Noel, Peter B; Koerdt, Steffen; Fichter, Andreas; Rummeny, Ernst J; Braren, Rickmer F
2018-05-28
The aim of this study was to evaluate the advantages of dual-layer spectral CT (DLSCT) in detection and staging of head and neck cancer (HNC) as well as the imaging of tumour margins and infiltration depth compared to conventional contrast enhanced CT (CECT). Thirty-nine patients with a proven diagnosis of HNC were examined with a DLSCT scanner and retrospectively analysed. An age-matched healthy control group of the same size was used. Images were acquired in the venous phase. Virtual monoenergetic 40keV-equivalent (MonoE40) images were compared to CECT-images. Diagnostic confidence for tumour identification and margin detection was rated independently by four experienced observers. The steepness of the Hounsfield unit (HU)-increase at the tumour margin was analysed. External carotid artery branch image reconstructions were performed and their contrast compared to conventional arterial phase imaging. Means were compared using a Student's t-test. ANOVA was used for multiple comparisons. MonoE40 images were superior to CECT-images in tumour detection and margin delineation. MonoE40 showed significantly higher attenuation differences between tumour and healthy tissue compared to CECT-images (p < 0.001). The HU-increase at the boundary of the tumour was significantly steeper in MonoE40 images compared to CECT-images (p < 0.001). Iodine uptake in the tumour was significantly higher compared to healthy tissue (p < 0.001). MonoE40 compared to conventional images allowed visualisation of external carotid artery branches from the venous phase in a higher number of cases (87% vs. 67%). DLSCT enables improved detection of primary and recurrent head and neck cancer and quantification of tumour iodine uptake. Improved contrast of MonoE40 compared to conventional reconstructions enables higher diagnostic confidence concerning tumour margin detection and vessel identification. • Sensitivity concerning tumour detection are higher using dual-layer spectral-CT than conventional CT. • Lesion to background contrast in DLSCT is significantly higher than in CECT. • DLSCT provides sufficient contrast for evaluation of external carotid artery branches.
ERIC Educational Resources Information Center
Gall, Mary Sheila
This report provides results of a review of the methodology used by the Office of Human Development Services (HDS) to measure Head Start performance and to control high risk Head Start agencies. The review was performed at HDS headquarters and regional locations nationwide. The review was based on a sample of 200 Head Start agencies and focused on…
NASA Astrophysics Data System (ADS)
Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei
2018-03-01
In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.
Xu, Shengwei; Zhang, Yu; Zhang, Song; Xiao, Guihua; Wang, Mixia; Song, Yilin; Gao, Fei; Li, Ziyue; Zhuang, Ping; Chan, Piu; Tao, Guoxian; Yue, Feng; Cai, Xinxia
2018-07-01
Synchronous detecting neuron spikes and dopamine (DA) activities in the non-human primate brain play an important role in understanding of Parkinson's disease (PD). At present, most experiments are carried out by combing of electrodes and commercial instruments, which are inconvenient, time-consuming and inefficient. Herein, this study describes a novel integrated system for monitoring neuron spikes and DA activities in non-human primate brain synchronously. This system integrates an implantable sensor, a dual-function head-stage and a low noise detection instrument. The system was developed efficiently by using the key technologies of noise reduction, interference protection and differential amplification. To demonstrate the utility of this system, synchronous recordings of electrophysiological signals and DA were in vivo performed in a monkey before and after treated as a Parkinson model monkey. The system typically exhibited input-referred noise levels of only ∼ 3 μV RMS , input impedance levels of up to 5.1 GΩ, and a sensitivity of 14.075 pA/μM for DA and could detect electrophysiological signals and DA without mutual interference. In monkey experiments, lower DA concentrations in the striatum and more intensive spikes of the Parkinson model monkey than the normal one were synchronously recorded efficiently. This integrated system will not only significantly simplify the experimental operation and improve the experimental efficiency, but also improve the signal quality and synchronization performance. This integrated system, which is practical, efficient and convenient, can be widely used for the study of PD and other neurological disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Efthimiou, N.; Papadimitroulas, P.; Kostou, T.; Loudos, G.
2015-09-01
Commercial clinical and preclinical PET scanners rely on the full cylindrical geometry for whole body scans as well as for dedicated organs. In this study we propose the construction of a low cost dual-head C-shaped PET system dedicated for small animal brain imaging. Monte Carlo simulation studies were performed using GATE toolkit to evaluate the optimum design in terms of sensitivity, distortions in the FOV and spatial resolution. The PET model is based on SiPMs and BGO pixelated arrays. Four different configurations with C- angle 0°, 15°, 30° and 45° within the modules, were considered. Geometrical phantoms were used for the evaluation process. STIR software, extended by an efficient multi-threaded ray tracing technique, was used for the image reconstruction. The algorithm automatically adjusts the size of the FOV according to the shape of the detector's geometry. The results showed improvement in sensitivity of ∼15% in case of 45° C-angle compared to the 0° case. The spatial resolution was found 2 mm for 45° C-angle.
Ricor's Nanostar water vapor compact cryopump: applications and model overview
NASA Astrophysics Data System (ADS)
Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan
2017-05-01
Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.
Progress towards a 30% efficient GaInP/Si tandem solar cells
Essig, Stephanie; Ward, Scott; Steiner, Myles A.; ...
2015-08-28
The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-05-04
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.
Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.
Wen, Fung Jacky; Chung, Po Sheun
2011-07-01
In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.
Conflict Monitoring in Dual Process Theories of Thinking
ERIC Educational Resources Information Center
De Neys, Wim; Glumicic, Tamara
2008-01-01
Popular dual process theories have characterized human thinking as an interplay between an intuitive-heuristic and demanding-analytic reasoning process. Although monitoring the output of the two systems for conflict is crucial to avoid decision making errors there are some widely different views on the efficiency of the process. Kahneman…
EPA'S RESEARCH PROJECTS RELATING TO THE DUAL-CIRCUIT AND LORENZ REFRIGERATOR/FREEZERS
The paper discusses EPA research projects relating to the dual-circuit and Lorenz refrigerator/freezers (RFs). EPA is interested in not only phasing out chlorofluorocarbons (CFCs) in RFs, but doing so in a way that will maximize energy efficiency and minimize subsequent impacts o...
Raytheon dual-use long life cryocooler
NASA Astrophysics Data System (ADS)
Kirkconnell, Carl S.; Ross, Bradley A.
2005-05-01
Raytheon has manufactured closed-cycle cryocoolers for both tactical military and space applications for over thirty years. Tactical and space cryocooler technologies have historically been treated as distinct both at Raytheon and throughout the industry. Differing technical requirements, operating lifetimes, and order quantities have driven these types of coolers to dramatically different design approaches and cost levels. For example, a typical space cryocooler system today costs approximately 2M as compared to roughly 10,000 for a tactical cryocooler. However, stimuli from both the tactical and space cooler user communities are driving the markets together. Tactical cryocooler requirements are starting to push towards operating lifetime requirements more characteristic of the space coolers (e.g., 20,000+ hours). Space cryocooler users, in particular Missile Defense Agency, are pushing for substantial cost reduction. In response, Raytheon is developing a low cost space cryocooler with an intended dual-use capability to also serve the tactical marketplace. This cooler leverages proven flexure-suspension technology to achieve long life, and a low cost concentric pulse tube cold head design has been developed that can be packaged into the existing Standard Advanced Dewar Assembly, Type One (SADA-I). The cooler meets or exceeds the SADA-I operational requirements (capacity, efficiency, etc.) as well. For the space-version of the cooler, the electronics cost has been reduced by an estimated 80% versus current designs, largely by approaching the vibration cancellation requirement from a dramatically different perspective. Fabrication of the brassboard expander is nearly complete, and the prototype design is well underway. The design approach, development progress, and proposed applications are presented.
Huang, Wei; Eshleman, Susan H.; Toma, Jonathan; Fransen, Signe; Stawiski, Eric; Paxinos, Ellen E.; Whitcomb, Jeannette M.; Young, Alicia M.; Donnell, Deborah; Mmiro, Francis; Musoke, Philippa; Guay, Laura A.; Jackson, J. Brooks; Parkin, Neil T.; Petropoulos, Christos J.
2007-01-01
In human immunodeficiency virus type 1 (HIV-1) subtype B, CXCR4 coreceptor use ranges from ∼20% in early infection to ∼50% in advanced disease. Coreceptor use by non-subtype B HIV is less well characterized. We studied coreceptor tropism of subtype A and D HIV-1 collected from 68 pregnant, antiretroviral drug-naive Ugandan women (HIVNET 012 trial). None of 33 subtype A or 10 A/D-recombinant viruses used the CXCR4 coreceptor. In contrast, nine (36%) of 25 subtype D viruses used both CXCR4 and CCR5 coreceptors. Clonal analyses of the nine subtype D samples with dual or mixed tropism revealed heterogeneous viral populations comprised of X4-, R5-, and dual-tropic HIV-1 variants. In five of the six samples with dual-tropic strains, V3 loop sequences of dual-tropic clones were identical to those of cocirculating R5-tropic clones, indicating the presence of CXCR4 tropism determinants outside of the V3 loop. These dual-tropic variants with R5-tropic-like V3 loops, which we designated “dual-R,” use CCR5 much more efficiently than CXCR4, in contrast to dual-tropic clones with X4-tropic-like V3 loops (“dual-X”). These observations have implications for pathogenesis and treatment of subtype D-infected individuals, for the association between V3 sequence and coreceptor tropism phenotype, and for understanding potential mechanisms of evolution from exclusive CCR5 use to efficient CXCR4 use by subtype D HIV-1. PMID:17507467
Limited Angle Dual Modality Breast Imaging
NASA Astrophysics Data System (ADS)
More, Mitali J.; Li, Heng; Goodale, Patricia J.; Zheng, Yibin; Majewski, Stan; Popov, Vladimir; Welch, Benjamin; Williams, Mark B.
2007-06-01
We are developing a dual modality breast scanner that can obtain x-ray transmission and gamma ray emission images in succession at multiple viewing angles with the breast held under mild compression. These views are reconstructed and fused to obtain three-dimensional images that combine structural and functional information. Here, we describe the dual modality system and present results of phantom experiments designed to test the system's ability to obtain fused volumetric dual modality data sets from a limited number of projections, acquired over a limited (less than 180 degrees) angular range. We also present initial results from phantom experiments conducted to optimize the acquisition geometry for gamma imaging. The optimization parameters include the total number of views and the angular range over which these views should be spread, while keeping the total number of detected counts fixed. We have found that in general, for a fixed number of views centered around the direction perpendicular to the direction of compression, in-plane contrast and SNR are improved as the angular range of the views is decreased. The improvement in contrast and SNR with decreasing angular range is much greater for deeper lesions and for a smaller number of views. However, the z-resolution of the lesion is significantly reduced with decreasing angular range. Finally, we present results from limited angle tomography scans using a system with dual, opposing heads.
Dual Mobility Cemented Cups Have Low Dislocation Rates in THA Revisions
Langlais, Frantz L.; Gaucher, François; Musset, Thierry; Chaix, Olivier
2008-01-01
THA revisions using standard cups are at risk of dislocation (5.1% to 14.4% incidence), especially in patients over 70 years of age. Constrained tripolar cups have reduced this risk (6% incidence) but are associated with substantial loosening rates (9%). The nonconstrained dual mobility cup was designed to improve prosthetic stability (polyethylene head ≥ 40 mm diameter) without increasing loosening rates by reducing wear and limiting impingement (rotation range of 108°). We implanted 88 cemented dual mobility cups for THA revisions in 82 patients at high risk of dislocation. Average patient age was 72 years (range, 65–86 years). Eighty-five of the 88 hips were reviewed at 2 to 5 years followup. One patient (1.1%) had a traumatic dislocation at 2 years postoperatively. Two patients (2.3%) had asymptomatic early loosening and three patients (3.5%) had localized radiographic lucencies. These results confirm those with press-fit dual mobility cups suggesting a low dislocation rate at 5 years and a cup survival of 94.6%. At middle term followup, cemented dual mobility cup achieved better results than constrained cups in cases at risk of dislocation and recurrent loosening. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196422
Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems
NASA Astrophysics Data System (ADS)
Chan, Kwong Wah; Liao, Wei-Hsin
2006-03-01
Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.
Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio
2016-01-01
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687
Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio
2016-07-07
We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.
Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch
2015-05-01
Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p < 0.05, FWE-corrected). Using the identical standard acquisition parameters, the 32ch head coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.
Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles
NASA Astrophysics Data System (ADS)
Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.
2018-03-01
A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.
Five to thirteen year results of a cemented dual mobility socket to treat recurrent dislocation.
Hamadouche, Moussa; Ropars, Mickael; Rodaix, Camille; Musset, Thierry; Gaucher, François; Biau, David; Courpied, Jean Pierre; Huten, Denis
2017-03-01
Dual mobility (DM) socket has been associated with a low rate of dislocation following both primary and revision total hip arthroplasty (THA). However, little is known about the long-term efficiency of DM in the treatment of THA instability. The purpose of this retrospective study was to evaluate the outcome of a cemented DM socket to treat recurrent dislocation after a minimum of five year follow-up. The series included 51 patients with a mean age of 71.3 ± 11.5 (range, 41-98) years presenting with recurrent dislocation (mean 3.3). A single DM socket design was used consisting of a stainless steel outer shell with grooves with a highly polished inner surface articulating with a mobile polyethylene component. The femoral head was captured in the polyethylene component using a snap-fit type mechanism, the latter acting as a large unconstrained head inside the metal cup. At the minimum five year follow-up evaluation, 18 of the 51 patients deceased at a mean of 4.8 ± 2.3 years, three were lost to follow-up at a mean of 1.4 years, seven had been revised at a mean of 4.7 ± 3.1 years (range, 1.5-9.1), and the remaining 23 were still alive and did not have revision at a mean of 8.2 ± 2.4 years (range, 5-13 years). Of the seven revision, three were performed for further episodes of dislocation (at the large bearing for one patient and intra-prosthetic for two patients) after a mean 5.9 ± 2.9 years (range, 2.7-9.1), whereas two were performed for late sepsis and two for aseptic loosening of the acetabular component. Radiographic analysis did not reveal any further loosening on the acetabular side. The survival rate of the cup at ten years, using re-dislocation as the end-point, was 86.1 ± 8.4% (95% confidence interval, 69.7-100%). The survival rate of the cup at ten years, using revision for any reason as the end-point, was 75.2 ± 9.3% (95% confidence interval, 56.9-93.5%). A cemented dual mobility cup was able to restore hip stability in 94% of patients presenting with recurrent dislocating hips up to 13-year follow-up with none of the complications associated with constrained devices, as mechanical failure occurred in only 3.9% of the patients of this series. The overall reduced survival using revision for any reason as the end-point at ten years was related to this specific patients population that had various co-morbidities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei
2014-06-15
A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density atmore » 170–206 Hz.« less
Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo
2017-07-28
In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.
92 GHz dual-polarized integrated horn antennas
NASA Technical Reports Server (NTRS)
Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.
1991-01-01
A dual-polarized two-dimensional imaging array was designed for millimeter-wave applications. The dual-polarized design consists of two dipoles perpendicular to each other and suspended on the same membrane inside a pyramidal cavity etched in silicon. The dual-polarized antenna is fully monolithic with room available for processing electronics. The IF or video signals are taken out through a novel bias and feeding structure. The measured polarization isolation is better than 20 dB at 92 GHz, and the orthogonal channels show identical far-field patterns. The antenna is well suited for millimeter-wave polarimetric synthetic-aperture radars (SARs) and high-efficiency balanced-mixer receivers.
Measurement of flow inside a vacuum cleaner head
NASA Astrophysics Data System (ADS)
Iguchi, Ryotaro; Ban, Hisataka; Sakakibara, Jun
2017-11-01
Vacuum cleaner head with rotating brushes is widely used as a home appliance. Although it efficiently collects dusts from the floor, flow field of the air and motion of the dust inside the head have not been fully investigated. In this study, we performed 3D-PIV (particle tracking velocimetry) measurement of velocity field inside the head. Water was used as working fluid, which allows a use of fluorescent particle to reduce unwanted reflection from the brushes and inner surface of the head. Mean velocity field and turbulence statistics in the head with and without the brush will be presented.
Display technology - Human factors concepts
NASA Astrophysics Data System (ADS)
Stokes, Alan; Wickens, Christopher; Kite, Kirsten
1990-03-01
Recent advances in the design of aircraft cockpit displays are reviewed, with an emphasis on their applicability to automobiles. The fundamental principles of display technology are introduced, and individual chapters are devoted to selective visual attention, command and status displays, foveal and peripheral displays, navigational displays, auditory displays, color and pictorial displays, head-up displays, automated systems, and dual-task performance and pilot workload. Diagrams, drawings, and photographs of typical displays are provided.
Use of a Dual Mobility Socket to Manage Total Hip Arthroplasty Instability
Pibarot, Vincent; Vaz, Gualter; Chevillotte, Christophe; Béjui-Hugues, Jacques
2008-01-01
Unconstrained tripolar hip implants provide an additional bearing using a mobile polyethylene component between the prosthetic head and the outer metal shell. Such a design increases the effective head diameter and therefore is an attractive option in challenging situations of unstable total hip arthroplasties. We report our experience with 54 patients treated using this dual mobility implant in such situations. We ascertained its ability to restore and maintain stability, and examined component loosening and component failure. At a minimum followup of 2.2 years (mean, 4 years; range, 2.2–6.8 years), one hip had redislocated 2 months postoperatively and was managed successfully without reoperation by closed reduction with no additional dislocation. Two patients required revision of the implant because of dislocation at the inner bearing. Technical errors were responsible for these failures. Three patients had reoperations for deep infections. The postoperative radiographs at latest followup showed very satisfactory osseointegration of the acetabular component because no radiolucent line or osteolysis was reported. Use of this unconstrained tripolar design was successful in restoring and maintaining hip stability. We observed encouraging results at short-term followup regarding potential for loosening or mechanical failures. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18780135
Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio
2015-01-01
The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.
Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W
2015-01-01
Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.
The utility of dual-energy CT for metal artifact reduction from intracranial clipping and coiling.
Mera Fernández, D; Santos Armentia, E; Bustos Fiore, A; Villanueva Campos, A M; Utrera Pérez, E; Souto Bayarri, M
2018-04-23
To assess the ability of dual-energy CT (DECT) to reduce metal-related artifacts in patients with clips and coils in head CT angiography, and to analyze the differences in this reduction between both type of devices. Thirteen patients (6 clips, 7 coils) were selected and retrospectively analized. Virtual monoenergetic images (MEI) with photon energies from 40 to 150 keV were obtained. Noise was measured at the area of maximum artifact. Subjective evaluation of streak artifact was performed by two radiologists independently. Differences between noise values in all groups were tested by using the ANOVA test. Mann-Whitney U test was used to compare the differences between clips and coils. Coheńs κ statistic was used to determine interobserver agreement. The lowest noise value was observed at high energy levels (p<0,05). Noise was higher in the coil group than in the clip group (p<0.001). Interobserver agreement was good (κ=0.72). TCED with MEI helps to minimize the artifact from clips ands coils in patients who undergo head CT angiography. The reduction of the artifact is greater in patients with surgical clipping than in patients with endovascular coiling. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Ketelsen, D; Werner, M K; Thomas, C; Tsiflikas, I; Koitschev, A; Reimann, A; Claussen, C D; Heuschmid, M
2009-01-01
Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 +/- 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 +/- 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential.
Demonstration of variable speed permanent magnet generator at small, low-head hydro site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown Kinloch, David
Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less
Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio
2002-10-03
Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text
Conducting a Statewide Dual-Purpose Program for Pesticide Applicators and County Extension Agents
ERIC Educational Resources Information Center
Fishel, Fred; Liu, Guodong David
2014-01-01
The University of Florida Cooperative Extension conducted a statewide program with a dual role during 2013 and 2014 to enhance efficiency. The program provided in-service training to county Extension agents and provided continuing education to meet requirements needed by licensed pesticide applicators. Using Polycom distance technology, the event…
Efficient material decomposition method for dual-energy X-ray cargo inspection system
NASA Astrophysics Data System (ADS)
Lee, Donghyeon; Lee, Jiseoc; Min, Jonghwan; Lee, Byungcheol; Lee, Byeongno; Oh, Kyungmin; Kim, Jaehyun; Cho, Seungryong
2018-03-01
Dual-energy X-ray inspection systems are widely used today for it provides X-ray attenuation contrast of the imaged object and also its material information. Material decomposition capability allows a higher detection sensitivity of potential targets including purposely loaded impurities in agricultural product inspections and threats in security scans for example. Dual-energy X-ray transmission data can be transformed into two basis material thickness data, and its transformation accuracy heavily relies on a calibration of material decomposition process. The calibration process in general can be laborious and time consuming. Moreover, a conventional calibration method is often challenged by the nonuniform spectral characteristics of the X-ray beam in the entire field-of-view (FOV). In this work, we developed an efficient material decomposition calibration process for a linear accelerator (LINAC) based high-energy X-ray cargo inspection system. We also proposed a multi-spot calibration method to improve the decomposition performance throughout the entire FOV. Experimental validation of the proposed method has been demonstrated by use of a cargo inspection system that supports 6 MV and 9 MV dual-energy imaging.
Dong, Jianwu; Chen, Feng; Zhou, Dong; Liu, Tian; Yu, Zhaofei; Wang, Yi
2017-03-01
Existence of low SNR regions and rapid-phase variations pose challenges to spatial phase unwrapping algorithms. Global optimization-based phase unwrapping methods are widely used, but are significantly slower than greedy methods. In this paper, dual decomposition acceleration is introduced to speed up a three-dimensional graph cut-based phase unwrapping algorithm. The phase unwrapping problem is formulated as a global discrete energy minimization problem, whereas the technique of dual decomposition is used to increase the computational efficiency by splitting the full problem into overlapping subproblems and enforcing the congruence of overlapping variables. Using three dimensional (3D) multiecho gradient echo images from an agarose phantom and five brain hemorrhage patients, we compared this proposed method with an unaccelerated graph cut-based method. Experimental results show up to 18-fold acceleration in computation time. Dual decomposition significantly improves the computational efficiency of 3D graph cut-based phase unwrapping algorithms. Magn Reson Med 77:1353-1358, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Atoche, Alejandro Castillo; Castillo, Javier Vázquez
2012-01-01
A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lin, E-mail: lcheng@seu.edu.cn; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189; Wang, Jun
2015-01-15
Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized bymore » using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.« less
NASA Astrophysics Data System (ADS)
Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.
2017-03-01
In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.
Zhuang, Weihua; Xu, Yangyang; Li, Gaocan; Hu, Jun; Ma, Boxuan; Yu, Tao; Su, Xin; Wang, Yunbing
2018-05-21
Intelligent polymeric micelles for antitumor drug delivery and tumor bioimaging have drawn a broad attention because of their reduced systemic toxicity, enhanced efficacy of drugs, and potential application of tumor diagnosis. Herein, we developed a multifunctional polymeric micelle system based on a pH and redox dual-responsive mPEG-P(TPE- co-AEMA) copolymer for stimuli-triggered drug release and aggregation-induced emission (AIE) active imaging. These mPEG-P(TPE- co-AEMA)-based micelles showed excellent biocompatibility and emission property, exhibiting great potential application for cellular imaging. Furthermore, the antitumor drug doxorubicin (DOX) could be encapsulated during self-assembly process with high loading efficiency, and a DOX-loaded micelle system with a size of 68.2 nm and narrow size distribution could be obtained. DOX-loaded micelles demonstrated great tumor suppression ability in vitro, and the dual-responsive triggered intracellular drug release could be further traced. Moreover, DOX-loaded micelles could efficiently accumulate at the tumor site because of enhanced permeability and retention effect and long circulation of micelles. Compared with free DOX, DOX-loaded micelles exhibited better antitumor effect and significantly reduced adverse effects. Given the efficient accumulation targeting to tumor tissue, dual-responsive drug release, and excellent AIE property, this polymeric micelle would be a potential candidate for cancer therapy and diagnosis.
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang
2012-11-01
Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.
Lévesque, M F; Nakasato, N; Vinters, H V; Babb, T L
1991-09-01
The authors present their review of 178 patients who underwent en bloc temporal lobectomies as surgical treatment for intractable epilepsy. Hippocampal cell density was quantitatively analyzed and the histology of the anterior temporal lobe was reviewed. Fifty-four patients (30.3%) had evidence of extrahippocampal lesions in addition to neuronal cell loss within the hippocampus (the dual pathology group). The pattern of cell loss was analyzed in the remaining 124 cases (69.7%) with no extrahippocampal pathology, and compared with that of the dual pathology group and a control group of four nonepileptic patients. Hippocampal cell loss was found in almost all epileptic patients compared to the control group. Severe cell loss greater than 30% of control values was found in 88.7% of patients without extrahippocampal lesions, but in only 51.8% of patients with dual pathology. The difference between these two groups was statistically significant (p less than 0.001). In the dual pathology group, lesions of different pathology had a significant relationship with the degree of hippocampal cell loss: all 12 patients with glioma had mild cell loss, whereas all 13 patients with heterotopia were associated with severe cell loss. Severity of hippocampal cell loss was also analyzed in relation to seizure history: a prior severe head injury was associated with severe cell loss. Other factors such as seizure duration, secondary generalization, or family history of seizures were not associated with hippocampal damage. Dual pathology may produce a combination of neocortical and temporolimbic epilepsies that warrants a precise definition of the true epileptogenic area prior to surgical treatment.
Temporal lobe epilepsy: analysis of patients with dual pathology.
Salanova, V; Markand, O; Worth, R
2004-02-01
To determine the frequency and types of dual pathology in patients with temporal lobe epilepsy (TLE) and to analyze the clinical manifestations and surgical outcome. A total of 240 patients with TLE underwent temporal resections following a comprehensive pre-surgical evaluation. Thirty-seven (15.4%) of these had hippocampal sclerosis (HS) or temporal lobe gliosis in association with another lesion (dual pathology). Eighteen of 37 patients with dual pathology had heterotopia of the temporal lobe, nine had cortical dysplasia, four had cavernous angiomas or arteriovenous malformations, one had a dysembryoplastic neuroepithelial tumor, one had a contusion and four patients had cerebral infarctions in childhood. 68.5% had abnormal head magnetic resonance imagings, 91.3% had abnormal positron emission tomography scans, and 96% had abnormal ictal SPECT. The intracarotid amobarbital procedure (IAP) showed impaired memory of the epileptogenic side in 72% of the patients. Twenty patients had left and 17 had right-sided en bloc temporal resections, including the lesion and mesial temporal structures. Twenty-six (70.2%) became seizure-free, eight (21.6%) had rare seizures, two (5.4%) had worthwhile seizure reduction and one (2.7%) had no improvement (range of follow-up 1-16 years, mean = 7.4 years). 15.4% had dual pathology. The dual pathology was almost exclusively seen in patients whose lesions were congenital, or occurred early in life, suggesting that the hippocampus is more vulnerable and more readily develops HS in early childhood. Resections, including the lateral and mesial temporal structures led to a favorable outcome with no mortality and little morbidity.
Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin
2013-12-01
Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.
Farias Zuniga, Amanda M; Côté, Julie N
2017-06-01
The effects of performing a 90-minute computer task with a laptop versus a dual monitor desktop workstation were investigated in healthy young male and female adults. Work-related musculoskeletal disorders are common among computer (especially female) users. Laptops have surpassed desktop computer sales, and working with multiple monitors has also become popular. However, few studies have provided objective evidence on how they affect the musculoskeletal system in both genders. Twenty-seven healthy participants (mean age = 24.6 years; 13 males) completed a 90-minute computer task while using a laptop or dual monitor (DualMon) desktop. Electromyography (EMG) from eight upper body muscles and visual strain were measured throughout the task. Neck proprioception was tested before and after the computer task using a head-repositioning test. EMG amplitude (root mean square [RMS]), variability (coefficients of variation [CV]), and normalized mutual information (NMI) were computed. Visual strain ( p < .01) and right upper trapezius RMS ( p = .03) increased significantly over time regardless of workstation. Right cervical erector spinae RMS and cervical NMI were smaller, while degrees of overshoot (mean = 4.15°) and end position error (mean = 1.26°) were larger in DualMon regardless of time. Effects on muscle activity were more pronounced in males, whereas effects on proprioception were more pronounced in females. Results suggest that compared to laptop, DualMon work is effective in reducing cervical muscle activity, dissociating cervical connectivity, and maintaining more typical neck repositioning patterns, suggesting some health-protective effects. This evidence could be considered when deciding on computer workstation designs.
Economic Efficiency and Investment Timing for Dual Water Systems
NASA Astrophysics Data System (ADS)
Leconte, Robert; Hughes, Trevor C.; Narayanan, Rangesan
1987-10-01
A general methodology to evaluate the economic feasibility of dual water systems is presented. In a first step, a static analysis (evaluation at a single point in time) is developed. The analysis requires the evaluation of consumers' and producer's surpluses from water use and the capital cost of the dual (outdoor) system. The analysis is then extended to a dynamic approach where the water demand increases with time (as a result of a population increase) and where the dual system is allowed to expand. The model determines whether construction of a dual system represents a net benefit, and if so, what is the best time to initiate the system (corresponding to maximization of social welfare). Conditions under which an analytic solution is possible are discussed and results of an application are summarized (including sensitivity to different parameters). The analysis allows identification of key parameters influencing attractiveness of dual water systems.
A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T
Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G.; Poser, Benedikt A.; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor
2016-01-01
Purpose To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. Methods A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using B1+ mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. Results The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. Conclusion The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T. PMID:27911950
Improved Efficiency Type II Second Harmonic Generation
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J., Jr.
2009-01-01
Second harmonic efficiency is limited by lateral and temporal separation of the ordinary and extraordinary components of the fundamental. A mode locked dual beam laser demonstrated these effects and a novel method to minimize them.
Cerebellum and Integration of Neural Networks in Dual-Task Processing
Wu, Tao; Liu, Jun; Hallett, Mark; Zheng, Zheng; Chan, Piu
2014-01-01
Performing two tasks simultaneously (dual-task) is common in human daily life. The neural correlates of dual-task processing remain unclear. In the current study, we used a dual motor and counting task with functional MRI (fMRI) to determine whether there are any areas additionally activated for dual-task performance. Moreover, we investigated the functional connectivity of these added activated areas, as well as the training effect on brain activity and connectivity. We found that the right cerebellar vermis, left lobule V of the cerebellar anterior lobe and precuneus are additionally activated for this type of dual-tasking. These cerebellar regions had functional connectivity with extensive motor- and cognitive-related regions. Dual-task training induced less activation in several areas, but increased the functional connectivity between these cerebellar regions and numbers of motor- and cognitive-related areas. Our findings demonstrate that some regions within the cerebellum can be additionally activated with dual-task performance. Their role in dual motor and cognitive task processes is likely to integrate motor and cognitive networks, and may be involved in adjusting these networks to be more efficient in order to perform dual-tasking properly. The connectivity of the precuneus differs from the cerebellar regions. A possible role of the precuneus in dual-task may be monitoring the operation of active brain networks. PMID:23063842
Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents.
Courant, Thomas; Roullin, Valérie Gaëlle; Cadiou, Cyril; Callewaert, Maïté; Andry, Marie Christine; Portefaix, Christophe; Hoeffel, Christine; de Goltstein, Marie Christine; Port, Marc; Laurent, Sophie; Elst, Luce Vander; Muller, Robert; Molinari, Michaël; Chuburu, Françoise
2012-09-03
Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA NPs) exhibited high relaxivity (r(1) =101.7 s(-1) mM(-1) per Gd(3+) ion at 37 °C and 20 MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1)/T(2) dual-mode contrast agent was studied in C6 cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Transient peripartum osteoporosis of the femoral head in first and third pregnancy.
Truszczyńska, Aleksandra; Walczak, Piotr; Rapała, Kazimierz
2012-01-01
The aim of this article was to present transient peripartum femoral head osteoporosis. This very rare condition occurred twice in our patient-a woman in her 30s. The cases described in the literature were mostly unilateral, with bilateral hip involvement noted much less frequently. In our patient, transient osteoporosis occurred in the third trimester of her first pregnancy in the right hip, her second pregnancy was uncomplicated, and in the third trimester of the patient's third pregnancy, osteoporotic changes were noted in the left hip joint. The patient breastfed her first and third babies only 3 wk each. She breastfed her second baby for 4 mo. The diagnostic workup was based on the clinical examination and radiographic/magnetic resonance imaging, which revealed bone marrow edema, and the dual-energy X-ray absorptiometry scans. The treatment consisted in core decompression of the femoral head (foragé), unloading of the hip using crutches as well as administration of calcitonin and calcium supplements. Complete recovery of the femoral heads was achieved. The follow-up time was 7 yr. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nam, Jae Hyun; Kim, So-Yeon; Seong, Hasoo
2018-04-01
Synergistic effects of multiple drugs with different modes of action are utilized for combinatorial chemotherapy of intractable cancers. Translation of in vitro synergistic effects into the clinic can be realized using an efficient delivery system of the drugs. Despite a few studies on nano-sized liposomes containing erlotinib (ERL) and doxorubicin (DOX) in a single liposome vesicle, reliable and reproducible preparation methods as well as physicochemical characteristics of a non-PEGylated nanoliposome co-encapsulated with ERL and DOX have not been yet elucidated. In this study, ERL-encapsulated nanoliposomes were prepared using the lipid film-hydration method. By ultrasonication using a probe sonicator, the liposome diameter was reduced to less than 200 nm. DOX was loaded into the ERL-encapsulated nanoliposomes using ammonium sulfate (AS)-gradient or pH-gradient method. Effects of DOX-loading conditions on encapsulation efficiency (EE) of the DOX were investigated to determine an efficient drug-loading method. In the EE of DOX, AS-gradient method was more effective than pH gradient. The dual drug-encapsulated nanoliposomes had more than 90% EE of DOX and 30% EE of ERL, respectively. Transmission electron microscopy and selected area electron diffraction analyses of the dual drug-encapsulated nanoliposomes verified the highly oriented DOX-sulfate crystals inside the liposome as well as the less oriented small crystals of ERL in the outermost region of the nanoliposome. The nanoliposomes were stable at different temperatures without an increase of the nanoliposome diameter. The dual drug-encapsulated nanoliposomes showed a time-differential release of ERL and DOX, implying proper sequential releases for their synergism. The preparation methods and the physicochemical characteristics of the dual drug delivery system contribute to the development of the optimal process and more advanced systems for translational researches.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam
2017-01-01
A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.
On the Pressure Response in the Brain due to Short Duration Blunt Impacts
Pearce, Christopher W.; Young, Philippe G.
2014-01-01
When the head is subject to non-penetrating (blunt) impact, contusion-type injuries are commonly identified beneath the impact site (the coup) and, in some instances, at the opposite pole (the contre-coup). This pattern of injury has long eluded satisfactory explanation and blunt head injury mechanisms in general remain poorly understood. There are only a small number of studies in the open literature investigating the head's response to short duration impacts, which can occur in collisions with light projectiles. As such, the head impact literature to date has focussed almost exclusively on impact scenarios which lead to a quasi-static pressure response in the brain. In order to investigate the response of the head to a wide range of impact durations, parametric numerical studies were performed on a highly bio-fidelic finite element model of the human head created from in vivo magnetic resonance imaging (MRI) scan data with non-linear tissue material properties. We demonstrate that short duration head impacts can lead to potentially deleterious transients of positive and negative intra-cranial pressure over an order of magnitude larger than those observed in the quasi-static regime despite reduced impact force and energy. The onset of this phenomenon is shown to be effectively predicted by the ratio of impact duration to the period of oscillation of the first ovalling mode of the system. These findings point to dramatically different pressure distributions in the brain and hence different patterns of injury depending on projectile mass, and provide a potential explanation for dual coup/contre-coup injuries observed clinically. PMID:25478695
On the pressure response in the brain due to short duration blunt impacts.
Pearce, Christopher W; Young, Philippe G
2014-01-01
When the head is subject to non-penetrating (blunt) impact, contusion-type injuries are commonly identified beneath the impact site (the coup) and, in some instances, at the opposite pole (the contre-coup). This pattern of injury has long eluded satisfactory explanation and blunt head injury mechanisms in general remain poorly understood. There are only a small number of studies in the open literature investigating the head's response to short duration impacts, which can occur in collisions with light projectiles. As such, the head impact literature to date has focussed almost exclusively on impact scenarios which lead to a quasi-static pressure response in the brain. In order to investigate the response of the head to a wide range of impact durations, parametric numerical studies were performed on a highly bio-fidelic finite element model of the human head created from in vivo magnetic resonance imaging (MRI) scan data with non-linear tissue material properties. We demonstrate that short duration head impacts can lead to potentially deleterious transients of positive and negative intra-cranial pressure over an order of magnitude larger than those observed in the quasi-static regime despite reduced impact force and energy. The onset of this phenomenon is shown to be effectively predicted by the ratio of impact duration to the period of oscillation of the first ovalling mode of the system. These findings point to dramatically different pressure distributions in the brain and hence different patterns of injury depending on projectile mass, and provide a potential explanation for dual coup/contre-coup injuries observed clinically.
Dual leadership in a hospital practice.
Thude, Bettina Ravnborg; Thomsen, Svend Erik; Stenager, Egon; Hollnagel, Erik
2017-02-06
Purpose Despite the practice of dual leadership in many organizations, there is relatively little research on the topic. Dual leadership means two leaders share the leadership task and are held jointly accountable for the results of the unit. To better understand how dual leadership works, this study aims to analyse three different dual leadership pairs at a Danish hospital. Furthermore, this study develops a tool to characterize dual leadership teams from each other. Design/methodology/approach This is a qualitative study using semi-structured interviews. Six leaders were interviewed to clarify how dual leadership works in a hospital context. All interviews were transcribed and coded. During coding, focus was on the nine principles found in the literature and another principle was found by looking at the themes that were generic for all six interviews. Findings Results indicate that power balance, personal relations and decision processes are important factors for creating efficient dual leaderships. The study develops a categorizing tool to use for further research or for organizations, to describe and analyse dual leaderships. Originality/value The study describes dual leadership in the hospital context and develops a categorizing tool for being able to distinguish dual leadership teams from each other. It is important to reveal if there are any indicators that can be used for optimising dual leadership teams in the health-care sector and in other organisations.
A Dual-Stage Two-Phase Model of Selective Attention
ERIC Educational Resources Information Center
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
Ghosh, Monisankar; Saha, Suchandrima; Dutta, Samir Kumar
2016-02-07
Herein, we synthesize and elucidate the potential of a novel 'dual hit' molecule, LDCA, to constitutively block lactate dehydrogenase isoform-A (LDH-A) to selectively subvert apoptosis and rigorously attenuate breast tumor progression in a mouse model, comprehensively delineating the therapeutic prospectus of LDCA in the field of cancer metabolics.
Dual-mode ultraflow access networks: a hybrid solution for the access bottleneck
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.; Shen, Thomas Shunrong; Dhaini, Ahmad R.; Yin, Shuang; De Leenheer, Marc; Detwiler, Benjamin A.
2013-12-01
Optical Flow Switching (OFS) is a promising solution for large Internet data transfers. In this paper, we introduce UltraFlow Access, a novel optical access network architecture that offers dual-mode service to its end-users: IP and OFS. With UltraFlow Access, we design and implement a new dual-mode control plane and a new dual-mode network stack to ensure efficient connection setup and reliable and optimal data transmission. We study the impact of the UltraFlow system's design on the network throughput. Our experimental results show that with an optimized system design, near optimal (around 10 Gb/s) OFS data throughput can be attained when the line rate is 10Gb/s.
Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can
2016-01-01
Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885
Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.
Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying
2015-07-01
Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.
Development of a Framework for Multimodal Research: Creation of a Bibliographic Database
2007-03-01
Modal Information Processing for Visual Workload Relief. Ergonomics 1980 , 23 (10), 961-975. Burnett, G. E.; Summerskill, S. J.; Porter, J. M. On...Wickens, C. D. The Identification and Transfer of Timesharing Skills. Acta Psychologica 1980 , 46 (1), 15-39. Damos, D. L.; Wickens, C. D. Dual...Arencibia, A. J.; Hislop , G. M. Development and Flight-Test of a Commercial Head-Up Display. Symposium Proceedings - Society of Experimental Test Pilots
Children of Military Families: A Part and Yet Apart
1978-01-01
numbers of single-parent families headed by men as well as women, dual-career families, pregnant service personnel and "dependent" husbands. Whereas the...military community are of paramount im- portance (Pedersen and Sullivan, 1964). As long as the family is able to provide a supporting emotional framework...sion may occur. In general, it is the social stresses inherent in military life which disrupt the continuity and emotional stability of the family
Dual-action gas thrust bearing for improving load capacity
NASA Technical Reports Server (NTRS)
Etsion, I.
1976-01-01
The principle of utilizing hydrodynamic effects in diverging films to improve the load carrying capacity in gas thrust bearings is discussed. A new concept of a dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and can improve their efficiency.
Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.
Lang, Stacey
2012-01-01
The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.
The dual action gas thrust bearing - A new high load bearing concept
NASA Technical Reports Server (NTRS)
Etsion, I.
1976-01-01
The principle of utilizing hydrodynamic effects in diverging films for improving load capacity in gas thrust bearings is discussed. A new concept of dual action bearing based on that principle is described and analyzed. The potential of the new bearing is demonstrated both analytically for an infinitely long slider and by numerical solution for a flat sector shaped thrust bearing. It is shown that the dual action bearing can extend substantially the range of load carrying capacity in gas lubricated thrust bearings and improve their efficiency.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
Murtaza, Ghulam; Mehmood, Shahid; Rasul, Shahid; Murtaza, Imran; Khan, Ehsan Ullah
2018-01-01
The aim of study was to evaluate the dosimetric effect of collimator-rotation on VMAT plan quality, when using limited aperture multileaf collimator of Elekta Beam Modulator™ providing a maximum aperture of 21 cm × 16 cm. The increased use of VMAT technique to deliver IMRT from conventional to very specialized treatments present a challenge in plan optimization. In this study VMAT plans were optimized for prostate and head and neck cancers using Elekta Beam-Modulator TM , whereas previous studies were reported for conventional Linac aperture. VMAT plans for nine of each prostate and head-and-neck cancer patients were produced using the 6 MV photon beam for Elekta-SynergyS ® Linac using Pinnacle 3 treatment planning system. Single arc, dual arc and two combined independent-single arcs were optimized for collimator angles (C) 0°, 90° and 0°-90° (0°-90°; i.e. the first-arc was assigned C0° and second-arc was assigned C90°). A treatment plan comparison was performed among C0°, C90° and C(0°-90°) for single-arc dual-arc and two independent-single-arcs VMAT techniques to evaluate the influence of extreme collimator rotations (C0° and 90°) on VMAT plan quality. Plan evaluation criteria included the target coverage, conformity index, homogeneity index and doses to organs at risk. A 'two-sided student t -test' ( p ≤ 0.05) was used to determine if there was a significant difference in dose volume indices of plans. For both prostate and head-and-neck, plan quality at collimator angles C0° and C(0°-90°) was clinically acceptable for all VMAT-techniques, except SA for head-and-neck. Poorer target coverage, higher normal tissue doses and significant p -values were observed for collimator angle 90° when compared with C0° and C(0°-90°). A collimator rotation of 0° provided significantly better target coverage and sparing of organs-at-risk than a collimator rotation of 90° for all VMAT techniques.
Michiels, Steven; Poels, Kenneth; Crijns, Wouter; Delombaerde, Laurence; De Roover, Robin; Vanstraelen, Bianca; Haustermans, Karin; Nuyts, Sandra; Depuydt, Tom
2018-05-05
Linac improvements in gantry speed, leaf speed and dose rate may increase the time-efficiency of volumetric modulated arc therapy (VMAT) delivery. The plan quality achievable with faster VMAT however remains to be investigated. In this study, a fast-rotating O-ring linac with fast-moving leaves is compared with a C-arm linac in terms of plan quality and delivery time for VMAT of head-and-neck cancer (HNC). For 30 patients with HNC, treatment planning was performed using dual-arc (HA2) and triple-arc (HA3) VMAT on a Halcyon fast-rotating O-ring linac and using dual-arc VMAT on a TrueBeam C-arm linac (TB2). Target coverage metrics and complication probabilities were compared. Plan delivery was verified using 3%/3 mm gamma-index analysis of helical diode array measurements. Volumetric image acquisition and plan delivery times were compared. All studied VMAT-techniques fulfilled the target coverage objectives. D 2% to the boost volume was higher for HA2 (median 103.7%, 1st-3rd quartile [103.5%;104.0%]) and HA3 (103.2% [103.0%;103.7%)] than for TB2 (102.6% [102.3%;103.0%)], resulting in an increased boost target dose heterogeneity for HA2 and HA3. Complication probabilities were comparable between HA2 and TB2, while HA3 showed a xerostomia probability reduction (0.8% [0.2%;1.8%]) and dysphagia probability reduction (1.0% [0.2%;1.8%]) compared with TB2. Gamma-index agreement scores were never below 93.0% for HA2, HA3 and TB2. Volumetric imaging and plan delivery time was shorter for HA2 (1 m 24 s ± 1 s) and HA3 (1 m 54 s ± 1 s) than for TB2 (2 m 47 s ± 1 s). For VMAT of HNC, the fast-rotating O-ring linac at least maintains the plan quality of two arcs on a C-arm linac while reducing the image acquisition and plan delivery time. Copyright © 2018 Elsevier B.V. All rights reserved.
A Simple and Efficient Device for Demonstrating Cross-Sectional Anatomy of the Head
ERIC Educational Resources Information Center
Zamarioli, Ariane; Demaman, Aline Santos; Bim, Waldeci Roberto; Homem, Jefferson Mallman; Thomazini, Jose Antonio
2010-01-01
Described in this article is a novel device that facilitates study of the cross-sectional anatomy of the human head. In designing our device, we aimed to protect sections of the head from the destructive action of handling during anatomy laboratory while also ensuring excellent visualization of the anatomic structures. We used an electric saw to…
Kehls, N E; Herrmann, K; Berking, S
1999-01-01
The polyps of Cassiopea andromeda produce spindle shaped, freely swimming buds which do not develop a head (a mouth opening surrounded by tentacles) and a foot (a sticky plate at the opposite end) until settlement to a suited substrate. The buds, therewith, look very similar to the planula larvae produced in sexual reproduction. With respect to both, buds and planulae, several peptides and the phorbolester TPA have been found to induce the transformation into a polyp. Here it is shown that cantharidin, a serine/threonine protein phosphatase inhibitor, induces head and foot formation in buds very efficiently in a 30 min treatment, the shortest yet known efficient treatment. Some resultant polyps show malformations which indicate that a bud is ordinary polyp tissue in which preparatory steps of head and foot formation mutually block each other from proceeding. Various compounds related to the transfer of methyl groups have been shown to affect head and foot formation in larvae of the hydrozoon Hydractinia echinata. These compounds including methionine, homocysteine, trigonelline, nicotinic acid and cycloleucine are shown to also interfere with the initiation of the processes which finally lead to head and foot formation in buds of Cassiopea andromeda.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nevskaya, G.F.; Abramova, G.M.; Volkova, M.A.
1982-01-12
The clinical picture of radiation sickness of 139 radiological patients exposed to local irradition of the head, chest, and stomach with efficient doses of 210 rad was examined. It was found that at fractionated local irraditions the clinical symptom-complex of radiation sickness was identifical to that seen as a result of total-body irradiation. During head irradiation the major symptom was headache and during stomach irradiation nausea. The severity level of radiation damage measured with respect to the clinical symptom-complex as a whole with the aid of the bioinformation model was similar during irradiations of the head and stomach, much highermore » during irradiation of the chest. During head and stomach irradiations the severity level of radiation damage was proportional to the efficient dose. During chest irradiation there was no correlation between the severity level and the exposure to doses of 210 rad.« less
Radar cross calibration investigation TAMU radar polarimeter calibration measurements
NASA Technical Reports Server (NTRS)
Blanchard, A. J.; Newton, R. W.; Bong, S.; Kronke, C.; Warren, G. L.; Carey, D.
1982-01-01
A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described.
Zreik, Riyam; Soyalp, Krystal; Ruiz, Steve; Ward, Russell; Dobin, Sheila; Chen, Xiangbai; Liu, Lina; Rao, Arundhati
2015-04-01
Head and neck liposarcomas, while rare, tend to be subcutaneous and well-differentiated. Dedifferentiated liposarcomas of the head and neck are exceedingly rare in the literature. We present a case of a dedifferentiated liposarcoma arising in the soft tissue of the posterior neck of an 86-year-old man and diagnosed by fine-needle aspiration. Aspirate smears showed a dual population of atypical lipomatous and spindled cells. MDM2 (murine double minute 2) amplification was demonstrated on a Pap-stained smear using fluorescence in situ hybridization (FISH). To the best of our knowledge, this is the first report of MDM2 FISH amplification in a liposarcoma performed on an aspirate smear. © 2014 Wiley Periodicals, Inc.
Wang, Tianqi; Yu, Xiaoyue; Han, Leiqiang; Liu, Tingxian; Liu, Yongjun; Zhang, Na
2017-01-01
As the tumor microenvironment (TME) develops, it is critical to take the alterations of pH value, reduction and various enzymes of the TME into consideration when constructing the desirable co-delivery systems. Herein, TME pH and enzyme dual-responsive core-shell nanoparticles were prepared for the efficient co-delivery of chemotherapy drug and plasmid DNA (pDNA). A novel pH-responsive, positively charged drug loading material, doxorubicin (DOX)-4-hydrazinobenzoic acid (HBA)-polyethyleneimine (PEI) conjugate (DOX-HBA-PEI, DHP), was synthesized to fabricate positively charged polyion complex inner core DHP/DNA nanoparticles (DDN). Hyaluronic acid (HA) was an enzyme-responsive shell which could protect the core and enhance the co-delivery efficiency through CD44-mediated endocytosis. The HA-shielded pH and enzyme dual-responsive nanoparticles (HDDN) were spherical with narrow distribution. The particle size of HDDN was 148.3±3.88 nm and the zeta potential was changed to negative (-18.1±2.03 mV), which led to decreased cytotoxicity. The cumulative release of DOX from DHP at pH 5.0 (66.4%) was higher than that at pH 7.4 (30.1%), which indicated the pH sensitivity of DHP. The transfection efficiency of HDDN in 10% serum was equal to that in the absence of serum, while the transfection of DDN was significantly decreased in the presence of 10% serum. Furthermore, cellular uptake studies and co-localization assay showed that HDDN were internalized effectively through CD44-mediated endocytosis in the tumor cells. The efficient co-delivery of DOX and pEGFP was confirmed by fluorescent image taken by laser confocal microscope. It can be concluded that TME dual-responsive HA-shielded core-shell nanoparticles could be considered as a promising platform for the co-delivery of chemotherapy drug and pDNA.
Cutting Head for Ultrasonic Lithotripsy
NASA Technical Reports Server (NTRS)
Angulo, E. D.; Goodfriend, R.
1987-01-01
Kidney stones lodged in urinary tract disintegrated with increased safety and efficiency by cutting head attached to end of vibrated wire probe. Aligns probe with stone and enables probe to vibrate long enough to disintegrate stone. Design of cutting head reduces risk of metal-fatigue-induced breakage of probe tip leaving metal fragments in urinary tract. Teeth of cutting head both seat and fragment kidney stone, while extension of collar into catheter lessens mechanical strain in probe wire, increasing probe life and lessening danger of in situ probe breakage.
New Processes for Freeze-Drying in Dual-Chamber Systems.
Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M
2016-01-01
Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.
Roth, Justin C.; Ismail, Mourad; Reese, Jane S.; Lingas, Karen T.; Ferrari, Giuliana; Gerson, Stanton L.
2012-01-01
The P140K point mutant of MGMT allows robust hematopoietic stem cell (HSC) enrichment in vivo. Thus, dual-gene vectors that couple MGMT and therapeutic gene expression have allowed enrichment of gene-corrected HSCs in animal models. However, expression levels from dual-gene vectors are often reduced for one or both genes. Further, it may be desirable to express selection and therapeutic genes at distinct stages of cell differentiation. In this regard, we evaluated whether hematopoietic cells could be efficiently cotransduced using low MOIs of two separate single-gene lentiviruses, including MGMT for dual-positive cell enrichment. Cotransduction efficiencies were evaluated using a range of MGMT : GFP virus ratios, MOIs, and selection stringencies in vitro. Cotransduction was optimal when equal proportions of each virus were used, but low MGMT : GFP virus ratios resulted in the highest proportion of dual-positive cells after selection. This strategy was then evaluated in murine models for in vivo selection of HSCs cotransduced with a ubiquitous MGMT expression vector and an erythroid-specific GFP vector. Although the MGMT and GFP expression percentages were variable among engrafted recipients, drug selection enriched MGMT-positive leukocyte and GFP-positive erythroid cell populations. These data demonstrate cotransduction as a mean to rapidly enrich and evaluate therapeutic lentivectors in vivo. PMID:22888445
Power-efficient dual-rate optical transceiver.
Zuo, Yongrong; Kiamiley, Fouad E; Wang, Xiaoqing; Gui, Ping; Ekman, Jeremy; Wang, Xingle; McFadden, Michael J; Haney, Michael W
2005-11-20
A dual-rate (2 Gbit/s and 100 Mbit/s) optical transceiver designed for power-efficient connections within and between modern high-speed digital systems is described. The transceiver can dynamically adjust its data rate according to performance requirements, allowing for power-on-demand operation. Dynamic power management permits energy saving and lowers device operating temperatures, improving the reliability and lifetime of optoelectronic-devices such as vertical-cavity surface-emitting lasers (VCSELs). To implement dual-rate functionality, we include in the transmitter and receiver circuits separate high-speed and low-power data path modules. The high-speed module is designed for gigabit operation to achieve high bandwidth. A simpler low-power module is designed for megabit data transmission with low power consumption. The transceiver is fabricated in a 0.5 microm silicon-on-sapphire complementary metal-oxide semiconductor. The VCSEL and photodetector devices are attached to the transceiver's integrated circuit by flip-chip bonding. A free-space optical link system is constructed to demonstrate correct dual-rate functionality. Experimental results show reliable link operation at 2 Gbit/s and 100 Mbit/s data transfer rates with approximately 104 and approximately 9 mW power consumption, respectively. The transceiver's switching time between these two data rates is demonstrated as 10 micros, which is limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by use of dedicated input-output pads for dual-rate control signals.
High Intensity Focused Ultrasound (HIFU) Based Thrombolysis Using Multiple Frequency Excitations
NASA Astrophysics Data System (ADS)
Suo, Dingjie
High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free approach for ischemic stroke treatment. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation because of the potential thermal damages. In this dissertation, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were first introduced as HIFU excitations to reduce the required treatment power as well as the treatment time. It was found that dual-frequency thrombolysis efficiency was statistically better than that of single-frequency, under the same acoustic power and excitation condition. Microbubbles (MBs) combined with dual-frequency focused ultrasound (DFFU) for thrombolysis in vitro was then proposed to further reduce the power required. MBs are widely used in therapeutic ultrasound thrombolysis due to the nonlinear characteristics of their harmonic responses, coalescence and cavitation effects, which could further enhance efficiency. It was shown in this study that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). MBs mediated DFFU thrombolysis were then studied with a flow system that mimicked the blood flow in the artery of the brain. It was found that the cavitation threshold of a DFFU excitation yielded a lower level than that of a SFFU excitation. All the experimental results indicated that multi-frequency ultrasound could improve the thrombolysis efficiency. However, this was not well established numerically. Hence, a numerical investigation on the inertial cavitation threshold of MBs under multifrequency ultrasound irradiation was then investigated to confirm the benefit of using multi-frequency ultrasound for various applications. The main contribution and findings of this dissertation are as follows: 1) For the HIFU along study, when varying the acoustic power while fixing the duty cycle at 5%, it was found that almost 30% of the power can be saved by dual frequency ultrasound to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of singlefrequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2-4 as demonstrated in this study. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level, both significantly higher than that of single-frequency. 2) For the MBs mediated thrombolysis study, SFFU needed about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency was also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation may contribute to the improved thrombolysis under DFFU and MBs. By adding the flow system, the inertial cavitation was higher than the static model. One reason could be the dissolution of MBs into the flow that lowered the concentration of MBs by a significant amount. In both cases, the inertial cavitation thresh holds of DFFU were lower than SFFU. 3) For the numerical study, we investigated the inertial cavitation threshold of MBs under multi-frequency ultrasound irradiation. The relationships between the cavitation threshold and MB size at various frequencies and in different media were investigated. The results for single, dual and triple frequency sonication showed that inertial cavitation thresholds can be reduced by introducing additional frequencies, which was consistent with previous experimental work. In addition, no significant difference was observed between dual frequency sonication with various frequency differences. This study also provided a possible route for optimizing ultrasound excitations for initiating inertial cavitation.
NASA Astrophysics Data System (ADS)
McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.
2015-01-01
When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion galaxy or a companion galaxy hosting a second AGN, in order to understand the role molecular gas plays in feeding this unusual population of ultra-hard X-ray AGNs and to understand ultra-hard X-rays as a dual AGN selection method.
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-07
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
NASA Astrophysics Data System (ADS)
Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi
2014-02-01
Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.
NASA Astrophysics Data System (ADS)
Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo
2016-12-01
The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chung, Chiao-Chen; Chiang, Ming-Shan; Shih, Ching-Tien
2010-01-01
This study evaluated whether two persons with developmental disabilities would be able to improve their pointing performance through a Dual Cursor Automatic Pointing Assistive Program (DCAPAP) with a newly developed mouse driver (i.e., a new mouse driver replaces standard mouse driver, and is able to intercept/detect mouse movement action). First,…
Cui, Guokai; Wang, Congmin; Zheng, Junjie; Guo, Yan; Luo, Xiaoyan; Li, Haoran
2012-03-07
Two kinds of dual functionalized ionic liquids with ether-functionalized cations and tetrazolate anions were designed, prepared, and used for SO(2) capture, which exhibit an extremely high SO(2) capacity and excellent reversibility through a combination of chemical and physical absorption. This journal is © The Royal Society of Chemistry 2012
Liu, Mingkai; Meng, Qinghua; Yang, Zhiyuan; Zhao, Xinsheng; Liu, Tianxi
2018-05-15
An integrated carbon-sulfur (CSG/PC) membrane with dual shuttle-inhibiting layers was prepared by inserting graphene "nets" and a porous carbon (PC) skin, and the membrane achieved an extraordinary cycling stability up to 1000 cycles with an average Coulombic efficiency of ∼100%.
Xie, Jingjing; Zhao, Rongli; Gu, Songen; Dong, Haiyan; Wang, Jichuang; Lu, Yusheng; Sinko, Patrick J; Yu, Ting; Xie, Fangwei; Wang, Lie; Shao, Jingwei; Jia, Lee
2014-01-01
Dissemination of circulating tumor cells (CTCs) in blood and their hetero-adhesion to vascular endothelial bed of distant metastatic secondary organs are the critical steps to initiate cancer metastasis. The rarity of CTCs made their in vivo capture technically challenging. Current techniques by virtue of nanostructured scaffolds monovalently conjugated with a single antibody and/or drug seem less efficient and specific in capturing CTCs. Here, we report a novel platform developed to re-engineer nanoscale dendrimers for capturing CTCs in blood and interfering their adhesion to vascular endothelial bed to form micrometastatic foci. The nanoscale dendrimers were spatiotemporally accommodated with dual antibodies to target two surface biomarkers of colorectal CTCs. Physiochemical characterization, including spectra, fluorescence, electron microscope, dynamic light scattering, electrophoresis, and chromatography analyses, was conducted to demonstrate the successful conjugation of dual antibodies to dendrimer surface. The dual antibody conjugates were able to specifically recognize and bind CTCs, moderately down-regulate the activity of the captured CTCs by arresting them in S phase. The related adhesion assay displayed that the dual antibody conjugates interfered the hetero-adhesion of CTCs to fibronectin (Fn)-coated substrates and human umbilical vein endothelial cells (HUVECs). The dual antibody conjugates also showed the enhanced specificity and efficiency in vitro and in vivo in restraining CTCs in comparison with their single antibody counterparts. The present study showed a novel means to effectively prevent cancer metastatic initiation by binding, restraining CTCs and inhibiting their hetero-adhesion to blood vessels, not by traditional cytotoxic-killing of cancer cells.
Kholmovski, Eugene G; Parker, Dennis L
2005-07-01
There is a considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual echo fast spin-echo (FSE) sequences. The similarity manifests itself not only in image space as correspondence between intensities of PDw and T2w images, but also in phase space as consistency between phases of PDw and T2w images. Methods for improving the imaging efficiency and image quality of dual echo FSE sequences based on this feature have been developed. The total scan time of dual echo FSE acquisition may be reduced by as much as 25% by incorporating an estimate of the image phase from a fully sampled PDw image when reconstructing partially sampled T2w images. The quality of T2w images acquired using phased array coils may be significantly improved by using the developed noise reduction reconstruction scheme, which is based on the correspondence between the PDw and T2w image intensities and the consistency between the PDw and T2w image phases. Studies of phantom and human subject MRI data were performed to evaluate the effectiveness of the techniques.
Huang, Jin; Ying, Le; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Xie, Nuli; Ou, Min; Zhou, Qifeng; Wang, Kemin
2015-09-01
We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au-S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The in vitro and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection.
Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco
2018-03-12
There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.
A method of transmissibility design for dual-chamber pneumatic vibration isolator
NASA Astrophysics Data System (ADS)
Lee, Jeung-Hoon; Kim, Kwang-Joon
2009-06-01
Dual-chamber pneumatic vibration isolators have a wide range of applications for vibration isolation of vibration-sensitive equipment. Recent advances in precision machine tools and instruments such as medical devices and those related to nano-technology require better isolation performance, which can be efficiently achieved by precise modeling- and design- of the isolation system. This paper discusses an efficient transmissibility design method of a pneumatic vibration isolator wherein a complex stiffness model of a dual-chamber pneumatic spring developed in our previous study is employed. Three design parameters, the volume ratio between the two pneumatic chambers, the geometry of the capillary tube connecting the two pneumatic chambers, and, finally, the stiffness of the diaphragm employed for prevention of air leakage, were found to be important factors in transmissibility design. Based on a design technique that maximizes damping of the dual-chamber pneumatic spring, trade-offs among the resonance frequency of transmissibility, peak transmissibility, and transmissibility in high frequency range were found, which were not ever stated in previous researches. Furthermore, this paper discusses the negative role of the diaphragm in transmissibility design. The design method proposed in this paper is illustrated through experimental measurements.
Gu, Rui; Xu, Jinglei
2014-01-01
The dual throat nozzle (DTN) technique is capable to achieve higher thrust-vectoring efficiencies than other fluidic techniques, without compromising thrust efficiency significantly during vectoring operation. The excellent performance of the DTN is mainly due to the concaved cavity. In this paper, two DTNs of different scales have been investigated by unsteady numerical simulations to compare the parameter variations and study the effects of cavity during the vector starting process. The results remind us that during the vector starting process, dynamic loads may be generated, which is a potentially challenging problem for the aircraft trim and control.
Ma, Dejun; Zhang, Jie; Zhang, Changyu; Men, Yuwen; Sun, Hongyan; Li, Lu-Yuan; Yi, Long; Xi, Zhen
2018-05-09
A new bench-stable reagent with double diazonium sites was designed and synthesized for protein crosslinking. Based on the highly efficient diazonium-Tyr coupling reaction, a direct mixture of the reagent and tobacco mosaic virus led to the formation of a new hydrogel, which could be degraded by chemicals and could be used to encapsulate small molecules for sustained release. Because plant viruses exhibit many chemical characteristics like protein labelling and nucleic acid packaging, the virus-based hydrogel will have large chemical space for further functionalization. Besides, this dual-diazonium reagent should be a generally useful crosslinker for chemical biology and biomaterials.
Dual-stroke heat pump field performance
NASA Astrophysics Data System (ADS)
Veyo, S. E.
1984-11-01
Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.
Efficiency and robustness of different bus network designs
NASA Astrophysics Data System (ADS)
Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher
2015-07-01
We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.
Pope, Charlene A.; Davis, Boyd H.; Wine, Leticia; Nemeth, Lynne S.; Axon, Robert N.
2018-01-01
Among Veterans, heart failure (HF) contributes to frequent emergency department visits and hospitalization. Dual health care system use (dual use) occurs when Veterans Health Administration (VA) enrollees also receive care from non-VA sources. Mounting evidence suggests that dual use decreases efficiency and patient safety. This qualitative study used constructivist grounded theory and content analysis to examine decision making among 25 Veterans with HF, for similarities and differences between all-VA users and dual users. In general, all-VA users praised specific VA providers, called services helpful, and expressed positive capacity for managing HF. In addition, several Veterans who described inadvertent one-time non-VA health care utilization in emergent situations more closely mirrored all-VA users. By contrast, committed dual users more often reported unmet needs, nonresponse to VA requests, and faster services in non-VA facilities. However, a primary trigger for dual use was VA telephone referral for escalating symptoms, instead of care coordination or primary/specialty care problem-solving. PMID:29482411
Wall, Stephen P; Mayorga, Oliver; Banfield, Christine E; Wall, Mark E; Aisic, Ilan; Auerbach, Carl; Gennis, Paul
2006-11-01
To develop software that categorizes electronic head computed tomography (CT) reports into groups useful for clinical decision rule research. Data were obtained from the Second National Emergency X-Radiography Utilization Study, a cohort of head injury patients having received head CT. CT reports were reviewed manually for presence or absence of clinically important subdural or epidural hematoma, defined as greater than 1.0 cm in width or causing mass effect. Manual categorization was done by 2 independent researchers blinded to each other's results. A third researcher adjudicated discrepancies. A random sample of 300 reports with radiologic abnormalities was selected for software development. After excluding reports categorized manually or by software as indeterminate (neither positive nor negative), we calculated sensitivity and specificity by using manual categorization as the standard. System efficiency was defined as the percentage of reports categorized as positive or negative, regardless of accuracy. Software was refined until analysis of the training data yielded sensitivity and specificity approximating 95% and efficiency exceeding 75%. To test the system, we calculated sensitivity, specificity, and efficiency, using the remaining 1,911 reports. Of the 1,911 reports, 160 had clinically important subdural or epidural hematoma. The software exhibited good agreement with manual categorization of all reports, including indeterminate ones (weighted kappa 0.62; 95% confidence interval [CI] 0.58 to 0.65). Sensitivity, specificity, and efficiency of the computerized system for identifying manual positives and negatives were 96% (95% CI 91% to 98%), 98% (95% CI 98% to 99%), and 79% (95% CI 77% to 80%), respectively. Categorizing head CT reports by computer for clinical decision rule research is feasible.
NASA Astrophysics Data System (ADS)
Cuthbert, M. O.; Acworth, I. R.; Halloran, L. J. S.; Rau, G. C.; Bernadi, T. L.
2017-12-01
It has long been recognised that hydraulic properties can be derived from the response of piezometric heads to tidal loadings. However, there is a degree of subjectivity in existing graphical approaches most commonly used to calculate barometric efficiency leading to uncertainties in derived values of compressible storage. Here we demonstrate a novel approach to remove these uncertainties by objectively deriving the barometric efficiency from groundwater hydraulic head responses using a frequency domain method. We take advantage of the presence of worldwide and ubiquitous atmospheric tide fluctuations which occur at 2 cycles per day (cpd). First we use a Fourier transform to calculate the amplitudes of the 2 cpd signals from co-located atmospheric pressure and hydraulic head time series measurements. Next we show how the Earth tide response at the same frequency can be quantified and removed so that this effect does not interfere with the calculation of the barometric efficiency. Finally, the ratio of the amplitude of the response at 2 cpd of hydraulic head to atmospheric pressure is used to quantify the barometric efficiency. This new method allows an objective quantification using `passive' in situ monitoring rather than resorting to aquifer pumping or laboratory tests. The minimum data requirements are 15 days duration of 6-hourly hydraulic head and atmospheric pressure measurements, and modelled Earth tide records which are readily conducted using freely available software. The new approach allows for a rapid and cost-effective alternative to traditional methods of estimating aquifer compressible storage properties without the subjectivity of existing approaches, and will be of importance to improving the spatial coverage of subsurface characterisation for groundwater resource evaluation and land subsidence assessment.
Dual Solutions for Nonlinear Flow Using Lie Group Analysis
Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman
2015-01-01
`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996
Nedergaard, Anders; Dalgas, Ulrik; Primdahl, Hanne; Johansen, Jørgen; Overgaard, Jens; Overgaard, Kristian; Henriksen, Kim; Karsdal, Morten Asser; Lønbro, Simon
2015-01-01
Background Loss of muscle mass and function is an important complication to ageing and a range of pathologies, including, but not restricted to, cancer, organ failures, and sepsis. A number of interventions have been proposed ranging from exercise to anabolic pharmacological therapy, with varying success. Easily applicable serological biomarkers of lean and/or muscle mass and change therein would benefit monitoring of muscle mass during muscle atrophy as well as during recovery. We set out to validate if novel peptide biomarkers derived from Collagen III and VI were markers of lean body mass (LBM) or change therein in head and neck cancer patients in the Danish Head and Neck Cancer Group(DAHANCA) 25B cohort subjected to resistance training as well as in an age-matched and gender-matched control group. Methods Blood samples and dual X-ray absorptiometry data were measured at baseline, after 12 and 24 weeks in 41 HNSCC subjects of the DAHANCA 25B cohort of subjects recovering from neck and head cancer (stages provided in Table 1), and at baseline only in 21 healthy age-matched and gender-matched controls. Serum from blood was analyzed for the ProC3, IC6, and C6M peptide biomarkers and LBM were derived from the dual X-ray absorptiometry scans. Results We were not able to show any correlation between biomarkers and LBM or C6M and anabolic response to exercise in recovering head and neck cancer patients. However, we did find that the biomarkers IC6, IC6/C6M, and ProC3 are biomarkers of LBM in the control group subjects (R2/P of 0.249/0.035, 0.416/0.007 and 0.178 and P = 0.057, respectively), Conclusion In conclusion, the IC6, ProC3, and IC6/C6M biomarkers are indeed biomarkers of LBM in healthy individuals of both genders, but not in HNSCC patients. PMID:26673155
Scaduto, David A; Tousignant, Olivier; Zhao, Wei
2017-08-01
Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly affect reconstructed images due to the algorithms and filters employed. Degradation to projection domain spatial resolution is thus outweighed by the improvement in detective quantum efficiency for high-energy x-rays. © 2017 American Association of Physicists in Medicine.
Poder, Thomas G; Godbout, Sylvie T; Bellemare, Christian
This paper describes a comparative study of clinical coding by Archivists (also known as Clinical Coders in some other countries) using single and dual computer monitors. In the present context, processing a record corresponds to checking the available information; searching for the missing physician information; and finally, performing clinical coding. We collected data for each Archivist during her use of the single monitor for 40 hours and during her use of the dual monitor for 20 hours. During the experimental periods, Archivists did not perform other related duties, so we were able to measure the real-time processing of records. To control for the type of records and their impact on the process time required, we categorised the cases as major or minor, based on whether acute care or day surgery was involved. Overall results show that 1,234 records were processed using a single monitor and 647 records using a dual monitor. The time required to process a record was significantly higher (p= .071) with a single monitor compared to a dual monitor (19.83 vs.18.73 minutes). However, the percentage of major cases was significantly higher (p= .000) in the single monitor group compared to the dual monitor group (78% vs. 69%). As a consequence, we adjusted our results, which reduced the difference in time required to process a record between the two systems from 1.1 to 0.61 minutes. Thus, the net real-time difference was only 37 seconds in favour of the dual monitor system. Extrapolated over a 5-year period, this would represent a time savings of 3.1% and generate a net cost savings of $7,729 CAD (Canadian dollars) for each workstation that devoted 35 hours per week to the processing of records. Finally, satisfaction questionnaire responses indicated a high level of satisfaction and support for the dual-monitor system. The implementation of a dual-monitor system in a hospital archiving department is an efficient option in the context of scarce human resources and has the strong support of Archivists.
Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation
Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.
2008-01-01
Most published solutions for aquifer responses to ocean tides focus on the one-sided attenuation of the signal as it propagates inland. However, island aquifers experience periodic forcing from the entire coast, which can lead to integrated effects of different tidal signals, especially on narrow high-permeability islands. In general, studies disregard a potential time lag as the tidal wave sweeps around the island. We present a one-dimensional analytical solution to the ground water flow equation subject to asynchronous and asymmetric oscillating head conditions on opposite boundaries and test it on data from an unconfined volcanic aquifer in Maui. The solution considers sediment-damping effects at the coastline. The response of Maui Aquifers indicate that water table elevations near the center of the aquifer are influenced by a combination of tides from opposite coasts. A better match between the observed ground water head and the theoretical response can be obtained with the proposed dual-tide solution than with single-sided solutions. Hydraulic diffusivity was estimated to be 2.3 ?? 107 m 2/d. This translates into a hydraulic conductivity of 500 m/d, assuming a specific yield of 0.04 and an aquifer thickness of 1.8 km. A numerical experiment confirmed the hydraulic diffusivity value and showed that the y-intercepts of the modal attenuation and phase differences estimated by regression can approximate damping factors caused by low-permeability units at the boundary.
Sharif, Mienah Z; Alcalá, Héctor E; Albert, Stephanie L; Fischer, Heidi
2017-07-01
We assessed the odds of having a family dinner by parental gender, family structure and parental employment. This study used data from the American Time Use Survey (ATUS) (2006-2008). Multivariate analyses assessed the odds of two outcomes among parents: 1) eating at all with children and 2) having a family dinner. Single men had lower odds of eating at all with children and eating a family dinner in comparison to partnered/married males. Partnered/married women had increased odds of eating at all with children and eating a family dinner compared to their partnered/married male counterparts. While single women had increased odds of eating at all with children compared to partnered/married males, no difference was detected in the odds of having a family dinner. Among dual-headed households, women had lower odds of eating a family dinner when both parents were employed compared a dual-headed household with employed male/non-employed female. There were no differences among men regardless of their employment status or that of their partner/spouse. Family structure, parental gender and employment status all influence the odds of having a family dinner. Future research on family meals should consider all of these factors to better understand trends and disparities across household compositions. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jošt, D.; Škerlavaj, A.; Morgut, M.; Mežnar, P.; Nobile, E.
2015-01-01
The paper presents numerical simulations of flow in a model of a high head Francis turbine and comparison of results to the measurements. Numerical simulations were done by two CFD (Computational Fluid Dynamics) codes, Ansys CFX and OpenFOAM. Steady-state simulations were performed by k-epsilon and SST model, while for transient simulations the SAS SST ZLES model was used. With proper grid refinement in distributor and runner and with taking into account losses in labyrinth seals very accurate prediction of torque on the shaft, head and efficiency was obtained. Calculated axial and circumferential velocity components on two planes in the draft tube matched well with experimental results.
Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser
NASA Astrophysics Data System (ADS)
Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.
2016-04-01
To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.
Traction Drives for Zero Stick-Slip Robots, and Reaction Free, Momentum Balanced Systems
NASA Technical Reports Server (NTRS)
Anderson, William J.; Shipitalo, William; Newman, Wyatt
1995-01-01
Two differential (dual input, single output) drives (a roller-gear and a pure roller), and a momentum balanced (single input, dual output) drive (pure roller ) were designed, fabricated, and tested. The differential drives are each rated at 295 rad/sec (2800 rpm) input speed, 450 N-m (4,000 in-lbf) output torque. The momentum balanced drive is rated at 302 rad/sec (2880 rpm) input speed, and dual output torques of 434N-m (3840 in-lbf). The Dual Input Differential Roller-Gear Drive (DC-700) has a planetary roller-gear system with a reduction ratio (one input driving the output with the second input fixed) of 29.23: 1. The Dual Input Differential Roller Drive (DC-500) has a planetary roller system with a reduction ratio of approximately 24:1. Each of the differential drives features dual roller-gear or roller arrangements consisting of a sun, four first row planets, four second row planets, and a ring. The Momentum Balanced (Grounded Ring) Drive (DC-400) has a planetary roller system with a reduction ratio of 24:1 with both outputs counterrotating at equal speed. Its single roller cluster consists of a sun, five first and five second row planets, a roller cage or spider and a ring. Outputs are taken from both the roller cage and the ring which counterrotate. Test results reported for all three drives include angular and torque ripple (linearity and cogging), viscous and Coulomb friction, and forward and reverse power efficiency. Of the two differential drives, the Differential Roller Drive had better linearity and less cogging than did the Differential Roller-Gear Drive, but it had higher friction and lower efficiency (particularly at low power throughput levels). Use of full preloading rather than a variable preload system in the Differential Roller Drive assessed a heavy penalty in part load efficiency. Maximum measured efficiency (ratio of power out to power in) was 95% for the Differential Roller-Gear Drive and 86% for the Differential Roller Drive. The Momentum Balanced (Grounded Ring) Drive performed as expected kinematically. Reduction r-atios to the two counterrotating outputs (design nominal=24:1) were measured to be 23.98:1 and 24.12:1 at zero load.. At 25ONm (2200 in-lbf) output torque the ratio changed 2% due to roller creep. This drive was the smoothest of all three as determined from linearity and cogging tests, and maximum measured efficiency (ratio of power out to power in) was 95%. The disadvantages of full preloading as comvared to variable preload were apparent in this drive as in the Differential Roller Drive. Efficiencies at part load were low, but improved dramatically with increases in torque. These were consistent with friction measurements which indicated losses primarily from Coulomb friction. The initial preload level setting was low so roller slip was encountered at higher torques during testing.
Study of removal of ammonia from urine vapor by dual catalyst
NASA Technical Reports Server (NTRS)
Budininkas, P.
1976-01-01
The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.
Sharma, Varsha; Anandhakumar, Sundaramurthy; Sasidharan, Manickam
2015-11-01
In this study, we have examined the encapsulation and release of hydrophilic and hydrophobic drugs in self-degrading niosomes as a unique method for anticancer therapy. Niosomes were prepared by amphiphilic self-assembly of Tween 80 and cholesterol through film hydration method. Encapsulation studies with two active molecules curcumin and doxorubicin hydrochloride (Dox) showed that curcumin is supposed to accumulate in the shell whereas Dox accumulates in the inner aqueous core of the niosome. Confocal studies indicated that nile red adsorbs preferentially to the head group of the Tween 80 and forms two separate layers in the shell. It was also seen that the niosomes undergo self-degradation in PBS through a sequential process, forming interconnected pores followed by complete collapse after 1week. The release profile shows two phases: i) initial Dox release in the first two days, followed by ii) curcumin release over 7days. Enhanced (synergistic) cytotoxicity was observed for dual-drug loaded niosomes against HeLa cell lines. Thus these niosomes are shown to offer a promising delivery system for hydrophobic and hydrophilic drugs collectively. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, C. Y.; Chang, C. C.; Chen, Y. F.
2013-04-01
We originally employ a compact combination of a Nd:YAG crystal and a Nd:YVO4 crystal to develop an efficient dual-wavelength laser operating at 946 and 1064 nm. We exploit a short Nd:YAG crystal to generate 946 nm laser by reducing the reabsorption loss and a follow-up Nd:YVO4 crystal to generate a 1064 nm laser by absorbing the residual pump light. The output power ratio between the 946 and 1064 nm emissions can be flexibly adjusted from 0.3 to 0.9 by varying the separation between the two output couplers. At an incident pump power of 17 W, the total output power is generally higher than 5.2 W, with an overall optical-to-optical efficiency greater than 30%.
Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.
2014-01-01
Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358
Design of a large dual polarized Ku band reflectarray for space borne radar altimeter
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Zawadzki, Mark
2004-01-01
We describe the design of a large dual-beam, dual polarized reflectarray designed for a space-based radar altimeter. This application requires a 2.16 X 0.35 m aperture that can be folded for launch stowage. Low mass and >50% efficiency are also required. A reflectarray antenna offers the best approach but also presents unique technical challenges since a reflectarry has never been used in a space based radar application. In what follows, we describe the design, analysis and measurements of a breadboard test array built to demonstrate the reflectarray concept.
Vercruysse, Sébastien; Cornelissen, Loïc; Nahra, Fady; Collard, Laurent; Riant, Olivier
2014-02-10
This paper describes a tunable and stereoselective dual catalytic system that uses copper and palladium reagents. This cooperative silylcupration and palladium-catalyzed allylation readily affords trisubstituted alkenylsilanes. Fine-tuning the reaction conditions allows selective access to one stereoisomer over the other. This new methodology tolerates different substituents on both coupling partners with high levels of stereoselectivity. The one-pot reaction involving a Cu(I)/Pd(0) cooperative dual catalyst directly addresses the need to develop more time-efficient and less-wasteful synthetic pathways. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.
2010-02-02
X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axialmore » distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.« less
Lee, JongHyup; Pak, Dohyun
2016-01-01
For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743
NASA Astrophysics Data System (ADS)
Huang, Hailong; Xia, Hui; Xie, Wenke; Guo, Zhibo; Li, Hongjian
2018-06-01
A size-efficient tunable metamaterial absorber (MA) composed of metallic leaf-shaped cell, graphene layer, silicon substrate, and bottom metal film is investigated theoretically and numerically at near-infrared (NIR) regions. Simulation results reveal that the single-band high absorption of 91.9% is obtained at 1268.7 nm. Further results show that the single-band can be simply changed into dual-band high absorption by varying the geometric parameters of top metallic layer at same wavelength regions, yielding two high absorption coefficients of 96.6% and 95.3% at the wavelengths of 1158.7 nm and 1323.6 nm, respectively. And the effect of related geometric parameter on dual-band absorption intensities is also investigated to obtain the optimized one. The peak wavelength can be tuned via modifying the Fermi energy of the graphene layer through controlling the external gate voltage. The work shows that the proposed strategy can be applied to other design of the dual-band structure at infrared regions.
McDonald, Michael B; Hammond, Paula T
2018-05-09
In this work, an all-functional polymer material composed of the electrically conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10 -4 S cm -1 ) and, counterintuitively, electronic conductivity (∼45 S cm -1 ) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS-PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.
Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band.
Iluz, Zeev; Boag, Amir
2011-08-01
A dual-Vivaldi nanoantenna is proposed to demonstrate the possibility of wideband operation at IR frequencies. The antenna geometry design is guided by the material properties of metals at IR frequencies. According to our numerical results, this nanoantenna has both high radiation efficiency and good impedance-matching properties over a wide frequency band (more than 122%) in the IR frequency band. The design is based on the well-known Vivaldi antenna placed on quartz substrate but operating as a pair instead of a single element. Such a pair of Vivaldi antennas oriented in opposite directions produces the main lobe in the broadside direction (normal to the axes of the antennas) rather than the usual peak gain along the axis (end fire) of a single Vivaldi antenna. The dual-Vivaldi nanoantenna is easy to fabricate in a conventional electron-beam lithography process, and it provides a large number of degrees of freedom, facilitating design for ultra-wideband operation. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Li, Zhao; Yang, Wang; Xu, Xiuwen; Tang, Yushu; Zeng, Ziwei; Yang, Fan; Zhang, Liqiang; Ning, Guoqing; Xu, Chunming; Li, Yongfeng
2016-09-01
Exploiting cost-effective and efficient counter electrodes (CEs) for the reduction of triiodide (I3-) has been a persistent objective for the development of dye-sensitized solar cells (DSSCs). Here, we propose a strategy for the synthesis of nitrogen and sulfur dual-doped porous carbon (N/S-PC) via a thermal annealing approach by using melamine as N source, and basic magnesium sulfate (BMS) whiskers as S source and templates. Benefiting from the high surface area, unique interconnected structural feature and synergistic effects of N/S dual-doping, the N/S-PC shows excellent electrocatalytic activity toward I3- reduction, which has simultaneously been confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The DSSC devices with N/S-PC CEs exhibit a PCE up to 7.41%, which is higher than that of DSSC devices with single heteroatom (N or S) doped CEs and even Pt CEs (7.14%).
Mobile phone types and SAR characteristics of the human brain.
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-07
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Mobile phone types and SAR characteristics of the human brain
NASA Astrophysics Data System (ADS)
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-01
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Markov Chain Model-Based Optimal Cluster Heads Selection for Wireless Sensor Networks
Ahmed, Gulnaz; Zou, Jianhua; Zhao, Xi; Sadiq Fareed, Mian Muhammad
2017-01-01
The longer network lifetime of Wireless Sensor Networks (WSNs) is a goal which is directly related to energy consumption. This energy consumption issue becomes more challenging when the energy load is not properly distributed in the sensing area. The hierarchal clustering architecture is the best choice for these kind of issues. In this paper, we introduce a novel clustering protocol called Markov chain model-based optimal cluster heads (MOCHs) selection for WSNs. In our proposed model, we introduce a simple strategy for the optimal number of cluster heads selection to overcome the problem of uneven energy distribution in the network. The attractiveness of our model is that the BS controls the number of cluster heads while the cluster heads control the cluster members in each cluster in such a restricted manner that a uniform and even load is ensured in each cluster. We perform an extensive range of simulation using five quality measures, namely: the lifetime of the network, stable and unstable region in the lifetime of the network, throughput of the network, the number of cluster heads in the network, and the transmission time of the network to analyze the proposed model. We compare MOCHs against Sleep-awake Energy Efficient Distributed (SEED) clustering, Artificial Bee Colony (ABC), Zone Based Routing (ZBR), and Centralized Energy Efficient Clustering (CEEC) using the above-discussed quality metrics and found that the lifetime of the proposed model is almost 1095, 2630, 3599, and 2045 rounds (time steps) greater than SEED, ABC, ZBR, and CEEC, respectively. The obtained results demonstrate that the MOCHs is better than SEED, ABC, ZBR, and CEEC in terms of energy efficiency and the network throughput. PMID:28241492
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-03-03
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, after laser-flash photolysis of caged calcium. Immediately before laser-flash activation, almost all of the myosin heads in the fiber are in the state M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force, and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemomechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-01-01
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, following laser flash photolysis of caged calcium. Immediately before laser flash activation, almost all of the myosin heads in the fiber are in the state, M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition, and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemo-mechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Ku-band high efficiency GaAs MMIC power amplifiers
NASA Technical Reports Server (NTRS)
Tserng, H. Q.; Witkowski, L. C.; Wurtele, M.; Saunier, Paul
1988-01-01
The development of Ku-band high efficiency GaAs MMIC power amplifiers is examined. Three amplifier modules operating over the 13 to 15 GHz frequency range are to be developed. The first MMIC is a 1 W variable power amplifier (VPA) with 35 percent efficiency. On-chip digital gain control is to be provided. The second MMIC is a medium power amplifier (MPA) with an output power goal of 1 W and 40 percent power-added efficiency. The third MMIC is a high power amplifier (HPA) with 4 W output power goal and 40 percent power-added efficiency. An output power of 0.36 W/mm with 49 percent efficiency was obtained on an ion implanted single gate MESFET at 15 GHz. On a dual gate MESFET, an output power of 0.42 W/mm with 27 percent efficiency was obtained. A mask set was designed that includes single stage, two stage, and three stage single gate amplifiers. A single stage 600 micron amplifier produced 0.4 W/mm output power with 40 percent efficiency at 14 GHz. A four stage dual gate amplifier generated 500 mW of output power with 20 dB gain at 17 GHz. A four-bit digital-to-analog converter was designed and fabricated which has an output swing of -3 V to +/- 1 V.
Advances in a high efficiency commercial pulse tube cooler
NASA Astrophysics Data System (ADS)
Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang
2017-12-01
The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.
Sex differences in navigation strategy and efficiency.
Boone, Alexander P; Gong, Xinyi; Hegarty, Mary
2018-05-22
Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.
NASA Astrophysics Data System (ADS)
Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.
2016-12-01
The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.
Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency
Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe; ...
2016-04-27
Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less
Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essig, Stephanie; Steiner, Myles A.; Allebe, Christophe
Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells.more » Furthermore, the effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.« less
Preliminary experimental investigation of a complex dual-band high power microwave source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Li, Yangmei; Li, Zhiqiang
2015-10-15
In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by themore » dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.« less
Preliminary experimental investigation of a complex dual-band high power microwave source.
Zhang, Xiaoping; Li, Yangmei; Li, Zhiqiang; Zhong, Huihuang; Qian, Baoliang
2015-10-01
In order to promote the power conversion efficiency of a magnetically insulated transmission line oscillator (MILO) and obtain microwaves in dual bands, an axially extracted C-band virtual cathode oscillator (VCO) with multiple resonant cavities is introduced to partially utilize the load current of an S-band MILO. The formed novel dual-band high power microwave source called MILO and VCO is investigated with simulation and experimentally. A dual-band radiation antenna is designed to effectively radiate microwaves generated by the MILO and the VCO, respectively, while avoiding them being influenced by the microwave reflection and diffraction. The preliminary experimental results measured by the dual-band diagnostic system show that both the MILO and the VCO operate normally under repeated shots. A microwave of 2.1 GHz, 1.70 GW is generated from the MILO and a 0.37 GW microwave at frequencies of 4.1 GHz and 3.8 GHz is generated from the VCO under the condition of about 440 kV and 35 kA. Compared with a single MILO (10.6%), a MILO and VCO achieves higher total power and efficiency (13.4%) in both S and C bands, indicating that the load current of the MILO partially couples into the beam-wave interaction in the VCO and then contributes to the output microwaves. However, more works are needed regarding the spectrum purification of the VCO and promotion of the output power of both the MILO and the VCO.
Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua
2016-02-01
Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsushita, Daisuke; Okuma, Kusuo; Watanabe, Satoshi; Furukawa, Akinori
A ducted Darrieus-type hydro turbine has been proposed for extra-low head hydropower utilization of total head less than 2m, where development is almost not done in the commercial base. Though the efficiency of Darrieus-type turbine, which is cross flow type, is not so high as conventional type, the Darrieus-type has a cost-advantage due to the simple structure. By installing a narrow intake at upstream of the runner, the efficiency becomes higher than normal intake that a width of which is the same as one of runner section. In the case of normal intake, the casing clearance between the runner pitch circle and the side-wall at the runner section becomes the influential factor which deteriorates the efficiency. On the other hand, in the case of narrow intake, it is possible to keep efficiency high, based on the fact that the distorting flow to the clearance is prevented. In the present paper, the effects of narrow intake and draft tube on turbine performance are experimentally examined and the design guideline of simplified structure for ducted Darrieus-type turbine with narrow intake is proposed.
A 5.2/5.8 GHz Dual Band On-Off Keying Transmitter Design for Bio-Signal Transmission
NASA Astrophysics Data System (ADS)
Wu, Chang-Hsi; You, Hong-Cheng; Huang, Shun-Zhao
2018-02-01
An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of -9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.
Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study
Orlova, Anna; Shirmanova, Marina; Postnikova, Anna; Turchin, Ilya
2015-01-01
We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (−6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor. PMID:25780752
Novel liposomal combination treatments using dual genes knockdown in oral cancer treatment
NASA Astrophysics Data System (ADS)
Wu, Jyun-Sian; Yeh, Chia-Hsien; Huang, Leaf; Hsu, Yih-Chih
2018-02-01
Small interfering RNA (siRNA) can be used to treat tumor because it can effectively knockdown target oncoprotein expression and it leads to cancer cell death and apoptosis. Hypoxia-inducible factors-1 (HIF-1) is a transcription factor gene. Its high expression of tumor hypoxia cells, activation of transcription factor HIF-1α and angiogenesis found in most cancerous tissues. HIF-1α protein in cancer cells are critical to cell survival, tumor growth and proliferation. Epidermal growth factor receptor (EGFR) gene is another common head and neck oncogene. The dual self-designed siRNA sequences were encapsulated in the lipid-calcium-phosphate (LCP) and targeted to sigma receptors on the surface of cancer cells via binding to amino ethyl anisamide (AEAA). We used human oral cancer cells to establish the xenograft animal model to study the combination therapy for therapeutic results.
Efficient Ways to Learn Weather Radar Polarimetry
ERIC Educational Resources Information Center
Cao, Qing; Yeary, M. B.; Zhang, Guifu
2012-01-01
The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…
Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.
Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min
2013-07-01
Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dual embryonic origin of the hyobranchial apparatus in the Mexican axolotl (Ambystoma mexicanum).
Davidian, Asya; Malashichev, Yegor
2013-01-01
Traditionally, the cartilaginous viscerocranium of vertebrates is considered as neural crest (NC)-derived. Morphological work carried out on amphibian embryos in the first half of the XX century suggested potentially mesodermal origin for some hyobranchial elements. Since then, the embryonic sources of the hyobranchial apparatus in amphibians has not been investigated due to lack of an appropriate long-term labelling system. We performed homotopic transplantations of neural folds along with the majority of cells of the presumptive NC, and/or fragments of the head lateral plate mesoderm (LPM) from transgenic GFP+ into white embryos. In these experiments, the NC-derived GFP+ cells contributed to all hyobranchial elements, except for basibranchial 2, whereas the grafting of GFP+ head mesoderm led to a reverse labelling result. The grafting of only the most ventral part of the head LPM resulted in marking of the basibranchial 2 and the heart myocardium, implying their origin from a common mesodermal region. This is the first evidence of contribution of LPM of the head to cranial elements in any vertebrate. If compared to fish, birds, and mammals, in which all branchial skeletal elements are NC-derived, the axolotl (probably this is true for all amphibians) demonstrates an evolutionary deviation, in which the head LPM replaces NC cells in a hyobranchial element. This implies that cells of different embryonic origin may have the same developmental program, leading to the formation of identical (homologous) elements of the skeleton.
Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks
Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.
2010-01-01
Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less
Dual-Lumen Chest Port Infection Rates in Patients with Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bos, Aaron, E-mail: abos1210@gmail.com; Ahmed, Osman; Jilani, Danial
PurposeThe aim of this study was to investigate dual-lumen chest port infection rates in patients with head and neck cancer (HNC) compared to those with other malignancies (non-HNC).Materials and MethodsAn IRB-approved retrospective study was performed on 1,094 consecutive chest ports placed over a 2-year period. Patients with poor follow-up (n = 53), no oncologic history (n = 13), or single-lumen ports (n = 183) were excluded yielding a study population of 845 patients. The electronic medical records were queried for demographic information, data regarding ports and infections, and imaging review.ResultsHNC patients experienced more infections (42 vs. 30), an increased infection rate per 1,000 catheter days (0.68more » vs. 0.21), and more early infections within 30 days compared to non-HNC patients (10 vs. 6) (p < 0.001, p < 0.001, p = 0.02, respectively). An existing tracheostomy at the time of port placement was associated with infection in the HNC group (p = 0.02) but was not an independent risk factor for infection in the study population overall (p = 0.06). There was a significant difference in age, male gender, and right-sided ports between the HNC and non-HNC groups (p < 0.01, p < 0.001, and p = 0.01), although these were not found to be independent risk factors for infection (p = 0.32, p = 0.76, p = 0.16).ConclusionHNC patients are at increased risk for infection of dual-lumen chest ports placed via a jugular approach compared to patients with other malignancies. Tracheostomy is associated with infection in HNC patients but is not an independent risk factor for infection in the oncologic population as a whole.« less
Single photon emission tomography in neurological studies: Instrumentation and clinical applications
NASA Astrophysics Data System (ADS)
Nikkinen, Paivi Helena
One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional acquisition and uniform Chang attenuation correction gave 40% lower values. The effect of dual window scatter correction was also measured. In conventional reconstruction dual window scatter correction increased the uptake ratios when using a single head camera, but when using the triple head camera this correction did not have a significant effect on the ratios. Semiquantitative values for striatal 123I-labelled β-carbomethoxy-3β- (4-iodophenyl)tropane (123I-βCIT) dopamine transporter uptake in 20 adults (mean age 52 +/- 15 years) are presented. The mean basal ganglia to cerebellum ratio was 6.5 +/- 0.9 and the mean caudatus to putamen ratio was 1.2. The registration of brain SPET and magnetic resonance (MR) studies provides the necessary anatomical information for determination of the ROIs. A procedure for registration and simultaneous display of brain SPET and MR images based on six external skin markers is presented. The usefulness of this method was demonstrated in selected patients. The registration accuracy was determined for single and triple head gamma camera systems using brain phantom and simulation studies. The registration residual for three internal test markers was calculated using 4 to 13 external markers in the registration. For 6 external markers, as used in the registration in the patient studies, the mean RMS residuals of the test markers for the single head camera and the triple head camera were 3.5 mm and 3.2 mm, respectively. According to the simulation studies the largest inaccuracy is due mainly to the spatial resolution of SPET. The use of six markers, as in the patient studies, is adequate for accurate registration.
Kwon, Young-Min
2016-07-01
Although dual taper modular-neck total hip arthroplasty (THA) design with additional neck-stem modularity has the potential to optimize hip biomechanical parameters by facilitating adjustments of leg length, femoral neck version and offset, there is increasing concern regarding this stem design as a result of the growing numbers of adverse local tissue reactions due to fretting and corrosion at the neck-stem taper junction. Implant factors such as taper cone angle, taper surface roughness, taper contact area, modular neck taper metallurgy, and femoral head size play important roles in influencing extent of taper corrosion. There should be a low threshold to conduct a systematic clinical evaluation of patients with dual-taper modular-neck stem THA using systematic risk stratification algorithms as early recognition and diagnosis will ensure prompt and appropriate treatment. Although specialized tests such as metal ion analysis and cross-sectional imaging modalities such as metal artifact reduction sequence magnetic resonance imaging (MARS MRI) are useful in optimizing clinical decision-making, overreliance on any single investigative tool in the clinical decision-making process for revision surgery should be avoided. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1978-01-01
Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.
NASA Astrophysics Data System (ADS)
Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua
2018-04-01
Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.
Comparing capacity coefficient and dual task assessment of visual multitasking workload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie M.
Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental toolsmore » for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.« less
Yang, Zhong-Rui; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo
2017-02-07
Here, we report that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F - ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu 3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu 3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu 3+ ions, so dual emission from both 5-bop and Eu 3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F - ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F - ions is easily achieved with high selectivity and a low detection limit (2 μM). For the first time, we reveal that rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivity toward targets.
Design improvement of permanent magnet flux switching motor with dual rotor structure
NASA Astrophysics Data System (ADS)
Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.
2017-08-01
This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.
NASA Astrophysics Data System (ADS)
Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan
2013-12-01
Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+, Yb3+, Er3+ tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860-895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical.
Zhang, Jun; Dolg, Michael
2013-07-09
An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.
Lau, Sin Tung; Pichora-Fuller, M Kathleen; Li, Karen Z H; Singh, Gurjit; Campos, Jennifer L
2016-07-01
Most activities of daily living require the dynamic integration of sights, sounds, and movements as people navigate complex environments. Nevertheless, little is known about the effects of hearing loss (HL) or hearing aid (HA) use on listening during multitasking challenges. The objective of the current study was to investigate the effect of age-related hearing loss (ARHL) on word recognition accuracy in a dual-task experiment. Virtual reality (VR) technologies in a specialized laboratory (Challenging Environment Assessment Laboratory) were used to produce a controlled and safe simulated environment for listening while walking. In a simulation of a downtown street intersection, participants completed two single-task conditions, listening-only (standing stationary) and walking-only (walking on a treadmill to cross the simulated intersection with no speech presented), and a dual-task condition (listening while walking). For the listening task, they were required to recognize words spoken by a target talker when there was a competing talker. For some blocks of trials, the target talker was always located at 0° azimuth (100% probability condition); for other blocks, the target talker was more likely (60% of trials) to be located at the center (0° azimuth) and less likely (40% of trials) to be located at the left (270° azimuth). The participants were eight older adults with bilateral HL (mean age = 73.3 yr, standard deviation [SD] = 8.4; three males) who wore their own HAs during testing and eight controls with normal hearing (NH) thresholds (mean age = 69.9 yr, SD = 5.4; two males). No participant had clinically significant visual, cognitive, or mobility impairments. Word recognition accuracy and kinematic parameters (head and trunk angles, step width and length, stride time, cadence) were analyzed using mixed factorial analysis of variances with group as a between-subjects factor. Task condition (single versus dual) and probability (100% versus 60%) were within-subject factors. In analyses of the 60% listening condition, spatial expectation (likely versus unlikely) was a within-subject factor. Differences between groups in age and baseline measures of hearing, mobility, and cognition were tested using t tests. The NH group had significantly better word recognition accuracy than the HL group. Both groups performed better when the probability was higher and the target location more likely. For word recognition, dual-task costs for the HL group did not depend on condition, whereas the NH group demonstrated a surprising dual-task benefit in conditions with lower probability or spatial expectation. For the kinematic parameters, both groups demonstrated a more upright and less variable head position and more variable trunk position during dual-task conditions compared to the walking-only condition, suggesting that safe walking was prioritized. The HL group demonstrated more overall stride time variability than the NH group. This study provides new knowledge about the effects of ARHL, HA use, and aging on word recognition when individuals also perform a mobility-related task that is typically experienced in everyday life. This research may help inform the development of more effective function-based approaches to assessment and intervention for people who are hard-of-hearing. American Academy of Audiology.
Feedback Regulation and Its Efficiency in Biochemical Networks
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuya J.; Yokota, Ryo; Aihara, Kazuyuki
2016-03-01
Intracellular biochemical networks fluctuate dynamically due to various internal and external sources of fluctuation. Dissecting the fluctuation into biologically relevant components is important for understanding how a cell controls and harnesses noise and how information is transferred over apparently noisy intracellular networks. While substantial theoretical and experimental advancement on the decomposition of fluctuation was achieved for feedforward networks without any loop, we still lack a theoretical basis that can consistently extend such advancement to feedback networks. The main obstacle that hampers is the circulative propagation of fluctuation by feedback loops. In order to define the relevant quantity for the impact of feedback loops for fluctuation, disentanglement of the causally interlocked influences between the components is required. In addition, we also lack an approach that enables us to infer non-perturbatively the influence of the feedback to fluctuation in the same way as the dual reporter system does in the feedforward networks. In this work, we address these problems by extending the work on the fluctuation decomposition and the dual reporter system. For a single-loop feedback network with two components, we define feedback loop gain as the feedback efficiency that is consistent with the fluctuation decomposition for feedforward networks. Then, we clarify the relation of the feedback efficiency with the fluctuation propagation in an open-looped FF network. Finally, by extending the dual reporter system, we propose a conjugate feedback and feedforward system for estimating the feedback efficiency non-perturbatively only from the statistics of the system.
Tanabe, Koji; Nishikawa, Keiichi; Sano, Tsukasa; Sakai, Osamu; Jara, Hernán
2010-05-01
To test a newly developed fat suppression magnetic resonance imaging (MRI) prepulse that synergistically uses the principles of fat suppression via inversion recovery (STIR) and spectral fat saturation (CHESS), relative to pure CHESS and STIR. This new technique is termed dual fat suppression (Dual-FS). To determine if Dual-FS could be chemically specific for fat, the phantom consisted of the fat-mimicking NiCl(2) aqueous solution, porcine fat, porcine muscle, and water was imaged with the three fat-suppression techniques. For Dual-FS and STIR, several inversion times were used. Signal intensities of each image obtained with each technique were compared. To determine if Dual-FS could be robust to magnetic field inhomogeneities, the phantom consisting of different NiCl(2) aqueous solutions, porcine fat, porcine muscle, and water was imaged with Dual-FS and CHESS at the several off-resonance frequencies. To compare fat suppression efficiency in vivo, 10 volunteer subjects were also imaged with the three fat-suppression techniques. Dual-FS could suppress fat sufficiently within the inversion time of 110-140 msec, thus enabling differentiation between fat and fat-mimicking aqueous structures. Dual-FS was as robust to magnetic field inhomogeneities as STIR and less vulnerable than CHESS. The same results for fat suppression were obtained in volunteers. The Dual-FS-STIR-CHESS is an alternative and promising fat suppression technique for turbo spin echo MRI. Copyright 2010 Wiley-Liss, Inc.
Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0
NASA Astrophysics Data System (ADS)
Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.
2015-11-01
The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.
NASA Astrophysics Data System (ADS)
Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.
2011-09-01
The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.
Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers
NASA Astrophysics Data System (ADS)
Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.
2016-03-01
We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.
Li, Ke; Liu, Hao; Gao, Wei; Chen, Mu; Zeng, Yun; Liu, Jiajun; Xu, Liang; Wu, Daocheng
2015-01-01
A comprehensive strategy for the preparation of mulberry-like dual-drug complicated nanocarriers (MLDC NCs) with high drug loading and adjustable dual-drug ratio was developed. First, apogossypolone (ApoG2) amphiphilic starch micelles (AASt MCs) were prepared by self-assembly process, and doxorubicin (DOX) hyaluronic acid nanoparticles (DHA NPs) were prepared by DOX absorption with excess HA by electrostatic absorption. MLDC NCs were obtained by adsorption of 8-9 DHA NPs around one AASt MC via electrostatic interaction. UV-visible and fluorescence spectrophotometers were used to measure the entrapment efficiency and loading efficiency of the two drugs. Transmission electron microscope and dynamic light scattering method were used to observe the size distribution and morphology of the particles. The tumor-targeting feature caused by HA-receptor mediation was confirmed by in vitro cell uptake and in vivo near-infrared fluorescence imaging. MLDC NCs were found to possess a mulberry-like shape with a dynamic size of 83.1 ± 6.6 nm. The final encapsulation efficiencies of ApoG2 and DOX in MLDC NCs were 94 ± 1.7% and 87 ± 5.8% with respect to drug-loading capacities of 13.3 ± 1.2% and 13.1 ± 3.7%, respectively. Almost no ApoG2 release was found within 80 h and less than 30% of DOX was released into the outer phase even after 72 h. In vivo fluorescence imaging revealed that MLDC NCs had highly efficient targeting and accumulation at the tumor in vivo and was maintained for 96 h after being injected intravenously in mice. Low LD50 for the two drugs in MLDC NCs was found after acute toxicity test. One-fifth normal dosage of the two drugs in MLDC NCs exhibited significantly higher anti-tumor efficiency in reducing tumor size compared with free drugs combination or single drug-loaded nanoparticles individually, indicating that the mulberry-like dual-drug nanoplatform has a great potential in tumor therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
The influenza virus neuraminidase protein transmembrane and head domains have coevolved.
da Silva, Diogo V; Nordholm, Johan; Dou, Dan; Wang, Hao; Rossman, Jeremy S; Daniels, Robert
2015-01-15
Transmembrane domains (TMDs) from single-spanning membrane proteins are commonly viewed as membrane anchors for functional domains. Influenza virus neuraminidase (NA) exemplifies this concept, as it retains enzymatic function upon proteolytic release from the membrane. However, the subtype 1 NA TMDs have become increasingly more polar in human strains since 1918, which suggests that selection pressure exists on this domain. Here, we investigated the N1 TMD-head domain relationship by exchanging a prototypical "old" TMD (1933) with a "recent" (2009), more polar TMD and an engineered hydrophobic TMD. Each exchange altered the TMD association, decreased the NA folding efficiency, and significantly reduced viral budding and replication at 37°C compared to at 33°C, at which NA folds more efficiently. Passaging the chimera viruses at 37°C restored the NA folding efficiency, viral budding, and infectivity by selecting for NA TMD mutations that correspond with their polar or hydrophobic assembly properties. These results demonstrate that single-spanning membrane protein TMDs can influence distal domain folding, as well as membrane-related processes, and suggest the NA TMD in H1N1 viruses has become more polar to maintain compatibility with the evolving enzymatic head domain. The neuraminidase (NA) protein from influenza A viruses (IAVs) functions to promote viral release and is one of the major surface antigens. The receptor-destroying activity in NA resides in the distal head domain that is linked to the viral membrane by an N-terminal hydrophobic transmembrane domain (TMD). Over the last century, the subtype 1 NA TMDs (N1) in human H1N1 viruses have become increasingly more polar, and the head domains have changed to alter their antigenicity. Here, we provide the first evidence that an "old" N1 head domain from 1933 is incompatible with a "recent" (2009), more polar N1 TMD sequence and that, during viral replication, the head domain drives the selection of TMD mutations. These mutations modify the intrinsic TMD assembly to restore the head domain folding compatibility and the resultant budding deficiency. This likely explains why the N1 TMDs have become more polar and suggests the N1 TMD and head domain have coevolved. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Energy Efficient Supercomputing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anypas, Katie
2014-10-17
Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.
Energy Efficient Supercomputing
Anypas, Katie
2018-05-07
Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
Us in a Bus: A Transportation Manual for Head Start Programs.
ERIC Educational Resources Information Center
Education Development Center, Inc., Newton, MA.
The purpose of this manual is to provide Head Start directors, transportation supervisors, and trainers with information and activities that will help develop, enhance, and maintain a safe and efficient transportation system for their programs. Contents are organized into three categories: safety procedures, planning a transportation system, and…
Low head oxygenator performance characterization for marine recirculating aquaculture systems
USDA-ARS?s Scientific Manuscript database
This study evaluated the effect of temperature (20 and 25 ºC), salinity (10, 15, and 20 ppt), and dissolved oxygen levels within low head oxygenator (LHO) outlet water on oxygen transfer efficiency (OTE) of LHOs for a planned marine recirculating aquaculture system (RAS). Test results indicated tha...
Preliminary Ecological Risk Assessment for Nitrogen at Pearl Harbor Naval Shipboard
2001-12-01
Under authority of J. G. Grovhoug, Head R. H. Moore, Head Marine Environmental Quality Branch Environmental Science Division P I I I I I I I I PS I i... Environmental Science estuaries nitrogen Dissolved Concentration Potential eutrophication Particle Retention Efficiency Ecological Risk Assessment 16
NASA Astrophysics Data System (ADS)
Indahlastari, Aprinda; Chauhan, Munish; Schwartz, Benjamin; Sadleir, Rosalind J.
2016-12-01
Objective. In this study, we determined efficient head model sizes relative to predicted current densities in transcranial direct current stimulation (tDCS). Approach. Efficiency measures were defined based on a finite element (FE) simulations performed using nine human head models derived from a single MRI data set, having extents varying from 60%-100% of the original axial range. Eleven tissue types, including anisotropic white matter, and three electrode montages (T7-T8, F3-right supraorbital, Cz-Oz) were used in the models. Main results. Reducing head volume extent from 100% to 60%, that is, varying the model’s axial range from between the apex and C3 vertebra to one encompassing only apex to the superior cerebellum, was found to decrease the total modeling time by up to half. Differences between current density predictions in each model were quantified by using a relative difference measure (RDM). Our simulation results showed that {RDM} was the least affected (a maximum of 10% error) for head volumes modeled from the apex to the base of the skull (60%-75% volume). Significance. This finding suggested that the bone could act as a bioelectricity boundary and thus performing FE simulations of tDCS on the human head with models extending beyond the inferior skull may not be necessary in most cases to obtain reasonable precision in current density results.
O'Connor, Michael K; Morrow, Melissa M; Tran, Thuy; Hruska, Carrie B; Conners, Amy L; Hunt, Katie N
2017-02-01
The purpose of this study was to perform a pilot evaluation of an integrated molecular breast imaging/ultrasound (MBI/US) system designed to enable, in real-time, the registration of US to MBI and diagnostic evaluation of breast lesions detected on MBI. The MBI/US system was constructed by modifying an existing dual-head cadmium zinc telluride (CZT)-based MBI gamma camera. The upper MBI detector head was replaced with a mesh panel, which allowed an ultrasound probe to access the breast. An optical tracking system was used to monitor the location of the ultrasound transducer, referenced to the MBI detector. The lesion depth at which ultrasound was targeted was estimated from analysis of previously acquired dual-head MBI datasets. A software tool was developed to project the US field of view onto the current MBI image. Correlation of lesion location between both modalities with real-time MBI/US scanning was confirmed in a breast phantom model and assessed in 12 patients with a breast lesion detected on MBI. Combined MBI/US scanning allowed for registration of lesions detected on US and MBI as validated in phantom experiments. In patient studies, successful registration was achieved in 8 of 12 (67%) patients, with complete registration achieved in seven and partial registration achieved in one patient. In 4 of 12 (37%) patients, lesion registration was not achieved, partially attributed to uncertainty in lesion depth estimates from MBI. The MBI/US system enabled successful registration of US to MBI in over half of patients studied in this pilot evaluation. Future studies are needed to determine if real-time, registered US imaging of MBI-detected lesions may obviate the need to proceed to more expensive procedures such as contrast-enhanced breast MRI for diagnostic workup or biopsy of MBI findings. © 2016 American Association of Physicists in Medicine.
Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.
1999-01-01
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797
Moradzadeh, Linda; Blumenthal, Galit; Wiseheart, Melody
2015-07-01
This study investigated whether musical training and bilingualism are associated with enhancements in specific components of executive function, namely, task switching and dual-task performance. Participants (n = 153) belonging to one of four groups (monolingual musician, bilingual musician, bilingual non-musician, or monolingual non-musician) were matched on age and socioeconomic status and administered task switching and dual-task paradigms. Results demonstrated reduced global and local switch costs in musicians compared with non-musicians, suggesting that musical training can contribute to increased efficiency in the ability to shift flexibly between mental sets. On dual-task performance, musicians also outperformed non-musicians. There was neither a cognitive advantage for bilinguals relative to monolinguals, nor an interaction between music and language to suggest additive effects of both types of experience. These findings demonstrate that long-term musical training is associated with improvements in task switching and dual-task performance. Copyright © 2014 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
NASA Astrophysics Data System (ADS)
Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei
2016-09-01
In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.
NASA Astrophysics Data System (ADS)
Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi
2018-01-01
We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.
NASA Astrophysics Data System (ADS)
Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long
2016-07-01
Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.
NASA Astrophysics Data System (ADS)
Budiman, M. A.; Zamzami, E. M.; Rachmawati, D.
2017-03-01
Dual-pivot quicksort, which was proposed by Yaroslavsky, has been experimentally proven to be more efficient than the classical single-pivot quicksort under the Java Virtual Machine [6]. Moreover, Kushagara, López-Ortiz, and Munro [4] has shown that triple-pivot quicksort runs 7-8% faster than dual-pivot quicksort in C, mutatis mutandis. In this research, we implement and experiment with single, dual, triple, quad, and penta-pivot quicksort algorithms in Python. Our experimental results are as follows. Firstly, the quicksort with single pivot is the slowest among the five variants. Secondly, at least until five (penta) pivots are being used, it is proven that the more pivots are used in a quicksort algorithm, the faster its performance becomes. Thirdly, the increase of speed resulted by adding more pivots tends to decrease gradually.
Procedures for Behavioral Experiments in Head-Fixed Mice
Guo, Zengcai V.; Hires, S. Andrew; Li, Nuo; O'Connor, Daniel H.; Komiyama, Takaki; Ophir, Eran; Huber, Daniel; Bonardi, Claudia; Morandell, Karin; Gutnisky, Diego; Peron, Simon; Xu, Ning-long; Cox, James; Svoboda, Karel
2014-01-01
The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings. PMID:24520413
Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M.; Lin, Win-Li; Chang, Hsu; Shung, K. Kirk
2013-01-01
A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing. PMID:22293745
Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.
Roh, Jong-Lyel; Jang, Hyejin; Kim, Eun Hye; Shin, Daiha
2017-07-10
The glutathione (GSH), thioredoxin (Trx), and Nrf2 systems represent a major defense against reactive oxygen species (ROS), the cellular imbalance of which in cancer promotes growth and therapeutic resistance. This study investigated whether targeting the GSH, Trx, and Nrf2 antioxidant systems effectively eliminated head and neck cancer (HNC). At high concentrations, auranofin, but not buthionine sulfoximine (BSO) alone, decreased the viability of HNC, whereas even at low concentrations, auranofin plus BSO synergized to kill HNC cells. Dual silencing of the genes for GCLM and TrxR1 induced GSH depletion, Trx activity inhibition, and ROS accumulation, synergistically killing HNC cells. Inhibition of the GSH and Trx systems resulted in activation of the Nrf2-antioxidant response element (ARE) pathway, which may result in suboptimal GSH and Trx inhibition where HNC is resistant. Genetic inhibition of Nrf2 and/or HO-1 or trigonelline enhanced growth suppression, ROS accumulation, and cell death from GSH and Trx inhibition. The in vivo effects of GSH, Trx, and Nrf2 system inhibition were confirmed in a mouse HNC xenograft model by achieving growth inhibition >60% compared with those of control. Innovations: This study is the first to show that triple inhibition of GSH, Trx, and Nrf2 pathways could be an effective method to overcome the resistance of HNC. Inhibition of the Nrf2-ARE pathway in addition to dual inhibition of the GSH and Trx antioxidant systems can effectively eliminate resistant HNC. Antioxid. Redox Signal. 27, 106-114.
Total and regional body volumes derived from dual-energy X-ray absorptiometry output.
Wilson, Joseph P; Fan, Bo; Shepherd, John A
2013-01-01
Total body volume is an important health metric used to measure body density, shape, and multicompartmental body composition but is currently only available through underwater weighing or air displacement plethysmography (ADP). The objective of this investigation was to derive an accurate body volume from dual-energy X-ray absorptiometry (DXA)-reported measures for advanced body composition models. Volunteers received a whole body DXA scan and an ADP measure at baseline (N = 25) and 6 mo (N = 22). Baseline measures were used to calibrate body volume from the reported DXA masses of fat, lean, and bone mineral content. A second population (N = 385) from the National Health and Nutrition Examination Survey was used to estimate the test-retest precision of regional (arms, legs, head, and trunk) and total body volumes. Overall, we found that DXA-volume was highly correlated to ADP-volume (R² = 0.99). The 6-mo change in total DXA-volume was highly correlated to change in ADP-volume (R² = 0.98). The root mean square percent coefficient of variation precision of DXA-volume measures ranged from 1.1% (total) to 3.2% (head). We conclude that the DXA-volume method can measure body volume accurately and precisely, can be used in body composition models, could be an independent health indicator, and is useful as a prospective or retrospective biomarker of body composition. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
D'Amato, V; Rosa, R; D'Amato, C; Formisano, L; Marciano, R; Nappi, L; Raimondo, L; Di Mauro, C; Servetto, A; Fusciello, C; Veneziani, B M; De Placido, S; Bianco, R
2014-01-01
Background: Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance. Methods: Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both in vitro and in vivo. Results: Treatment with PKI-587 enhances sensitivity to cetuximab in vitro, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival. Conclusions: Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness. PMID:24823695
D'Amato, V; Rosa, R; D'Amato, C; Formisano, L; Marciano, R; Nappi, L; Raimondo, L; Di Mauro, C; Servetto, A; Fusciello, C; Veneziani, B M; De Placido, S; Bianco, R
2014-06-10
Cetuximab is the only targeted agent approved for the treatment of head and neck squamous cell carcinomas (HNSCC), but low response rates and disease progression are frequently reported. As the phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) pathways have an important role in the pathogenesis of HNSCC, we investigated their involvement in cetuximab resistance. Different human squamous cancer cell lines sensitive or resistant to cetuximab were tested for the dual PI3K/mTOR inhibitor PF-05212384 (PKI-587), alone and in combination, both in vitro and in vivo. Treatment with PKI-587 enhances sensitivity to cetuximab in vitro, even in the condition of epidermal growth factor receptor (EGFR) resistance. The combination of the two drugs inhibits cells survival, impairs the activation of signalling pathways and induces apoptosis. Interestingly, although significant inhibition of proliferation is observed in all cell lines treated with PKI-587 in combination with cetuximab, activation of apoptosis is evident in sensitive but not in resistant cell lines, in which autophagy is pre-eminent. In nude mice xenografted with resistant Kyse30 cells, the combined treatment significantly reduces tumour growth and prolongs mice survival. Phosphoinositide 3-kinase/mammalian target of rapamycin inhibition has an important role in the rescue of cetuximab resistance. Different mechanisms of cell death are induced by combined treatment depending on basal anti-EGFR responsiveness.
Vannini, Federica; MacKessack-Leitch, Andrew C; Eschbach, Erin K; Chattopadhyay, Mitali; Kodela, Ravinder; Kashfi, Khosrow
2015-10-15
We recently reported the synthesis of NOSH-aspirin, a novel hybrid compound capable of releasing both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e., ortho-NOSH-aspirin. Here we report on the synthesis of meta- and para-NOSH-aspirins. We also made a head-to-head evaluation of the effects of these three positional isomers of NOSH-aspirin on colon cancer cell kinetics and induction of reactive oxygen species, which in recent years has emerged as a key event in causing cancer cell regression. Electron donating/withdrawing groups incorporated about the benzoate moiety significantly affected the potency of these compounds with respect to colon cancer cell growth inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Awareness and Detection of Traffic and Obstacles Using Synthetic and Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.
2012-01-01
Research literature are reviewed and summarized to evaluate the awareness and detection of traffic and obstacles when using Synthetic Vision Systems (SVS) and Enhanced Vision Systems (EVS). The study identifies the critical issues influencing the time required, accuracy, and pilot workload associated with recognizing and reacting to potential collisions or conflicts with other aircraft, vehicles and obstructions during approach, landing, and surface operations. This work considers the effect of head-down display and head-up display implementations of SVS and EVS as well as the influence of single and dual pilot operations. The influences and strategies of adding traffic information and cockpit alerting with SVS and EVS were also included. Based on this review, a knowledge gap assessment was made with recommendations for ground and flight testing to fill these gaps and hence, promote the safe and effective implementation of SVS/EVS technologies for the Next Generation Air Transportation System
Dual pricing algorithm in ISO markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Richard P.; Castillo, Anya; Eldridge, Brent
The challenge to create efficient market clearing prices in centralized day-ahead electricity markets arises from inherent non-convexities in unit commitment problems. When this aspect is ignored, marginal prices may result in economic losses to market participants who are part of the welfare maximizing solution. In this essay, we present an axiomatic approach to efficient prices and cost allocation for a revenue neutral and non-confiscatory day-ahead market. Current cost allocation practices do not adequately attribute costs based on transparent cost causation criteria. Instead we propose an ex post multi-part pricing scheme, which we refer to as the Dual Pricing Algorithm. Lastly,more » our approach can be incorporated into current dayahead markets without altering the market equilibrium.« less
NASA Astrophysics Data System (ADS)
Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping
2014-12-01
High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.
Dual pricing algorithm in ISO markets
O'Neill, Richard P.; Castillo, Anya; Eldridge, Brent; ...
2016-10-10
The challenge to create efficient market clearing prices in centralized day-ahead electricity markets arises from inherent non-convexities in unit commitment problems. When this aspect is ignored, marginal prices may result in economic losses to market participants who are part of the welfare maximizing solution. In this essay, we present an axiomatic approach to efficient prices and cost allocation for a revenue neutral and non-confiscatory day-ahead market. Current cost allocation practices do not adequately attribute costs based on transparent cost causation criteria. Instead we propose an ex post multi-part pricing scheme, which we refer to as the Dual Pricing Algorithm. Lastly,more » our approach can be incorporated into current dayahead markets without altering the market equilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassa, Mateos; Hall, Carrie; Ickes, Andrew
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuelmore » is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air and port injected fuel to flow back out of the cylinders into the intake manifold. The fuel that is pushed back in the intake manifold is then unevenly redistributed across the cylinders largely due to the dominating direction of the flow in the intake manifold. The effects of IVC as well as the impact of intake runner length on fuel distribution were quantitatively analyzed and a model was developed that can be used to accurately predict the fuel distribution of the port injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow.« less
Phesatcha, Burarat; Wanapat, Metha; Phesatcha, Kampanat; Ampapon, Thiwakorn; Kang, Sungchhang
2016-10-01
Four rumen-fistulated dairy steers, 3 years old with 180 ± 15 kg body weight (BW), were randomly assigned according to a 4 × 4 Latin square design to investigate on the effect of Flemingia macrophylla hay meal (FMH) and cassava hay meal (CH) supplementation on rumen fermentation efficiency and estimated methane production. The treatments were as follows: T1 = non-supplement, T2 = CH supplementation at 150 g/head/day, T3 = FMH supplementation at 150 g/head/day, and T4 = CH + FMH supplementation at 75 and 75 g/head/day. All steers were fed rice straw ad libitum and concentrate was offered at 0.5 % of BW. Results revealed that supplementation of CH and/or FMH did not affect on feed intake (P > 0.05) while digestibility of crude protein and neutral detergent fiber were increased especially in steers receiving FMH and CH+FMH (P < 0.05). Ruminal pH, temperature, and blood urea nitrogen were similar among treatments while ammonia nitrogen was increased in all supplemented groups (P < 0.05). Furthermore, propionic acid (C3) was increased while acetic acid (C2), C2:C3 ratio, and estimated methane production were decreased by dietary treatments. Protozoa and fungi population were not affected by dietary supplement while viable bacteria count increased in steers receiving FMH. Supplementation of FMH and/or FMH+CH increased microbial crude protein and efficiency of microbial nitrogen supply. This study concluded FMH (150 g/head/day) and/or CH+FMH (75 and 75 g/head/day) supplementation could be used as a rumen enhancer for increasing nutrient digestibility, rumen fermentation efficiency, and microbial protein synthesis while decreasing estimated methane production without adverse effect on voluntary feed intake of dairy steers fed rice straw.
Bender, B; Schabel, C; Fenchel, M; Ernemann, U; Korn, A
2015-01-01
Objective: With further increase of CT numbers and their dominant contribution to medical exposure, there is a recent quest for more effective dose control. While reintroduction of iterative reconstruction (IR) has proved its potential in many applications, a novel focus is placed on more noise efficient detectors. Our purpose was to assess the potential of IR in combination with an integrated circuit detector (ICD) for aggressive dose reduction in head CT. Methods: Non-contrast low-dose head CT [190 mAs; weighted volume CT dose index (CTDIvol), 33.2 mGy] was performed in 50 consecutive patients, using a new noise efficient detector and IR. Images were assessed in terms of quantitative and qualitative image quality and compared with standard dose acquisitions (320 mAs; CTDIvol, 59.7 mGy) using a conventional detector and filtered back projection. Results: By combining ICD and IR in low-dose examinations, the signal to noise was improved by about 13% above the baseline level in the standard-dose control group. Both, contrast-to-noise ratio (2.02 ± 0.6 vs 1.88 ± 0.4; p = 0.18) and objective measurements of image sharpness (695 ± 84 vs 705 ± 151 change in Hounsfield units per pixel; p = 0.79) were fully preserved in the low-dose group. Likewise, there was no significant difference in the grading of several subjective image quality parameters when both noise-reducing strategies were used in low-dose examinations. Conclusion: Combination of noise efficient detector with IR allows for meaningful dose reduction in head CT without compromise of standard image quality. Advances in knowledge: Our study demonstrates the feasibility of almost 50% dose reduction in head CT dose (1.1 mSv per scan) through combination of novel dose-reducing strategies. PMID:25827204
NASA Astrophysics Data System (ADS)
Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel
2017-11-01
Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome models.
A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves
NASA Astrophysics Data System (ADS)
Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan
2018-05-01
Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.
Alternative refrigerants and refrigeration cycles for domestic refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, J.R.; Rice, C.L.; Vineyard, E.A.
1992-12-01
This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z)more » capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.« less
Veiga, Sonia Rosa; Ge, Xuemei; Mercer, Carol A; Hernández-Alvarez, María Isabel; Thomas, Hala Elnakat; Hernández-Losa, Javier; Ramón Y Cajal, Santiago; Zorzano, Antonio; Thomas, George; Kozma, Sara C
2018-04-24
Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mammalian target of rapamycin (mTOR) for the treatment of HCC. However, such inhibitors induce glycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor Phenformin could reverse both side effects, impose an energetic-stress on cancer cells and suppress the growth of HCC. Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and Phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated pre-clinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. We found Phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with Phenformin, was highly efficacious in controlling tumor burden. However, more striking, pretreatment with Phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Treatment of HCC cells in vitro with the biguanide Phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Copyright ©2018, American Association for Cancer Research.
Evaluation of dual γ-ray imager with active collimator using various types of scintillators.
Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung
2011-10-01
The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.
Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks
Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang
2018-01-01
In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439
NASA Astrophysics Data System (ADS)
Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo
2017-03-01
Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.
Feasibility of Developing a Human Simulator for CBRN IPE Testing
2007-08-01
side to side, calisthenic arm movements, running in place, pumping a tire pump, and walking in place. For testing high efficiency (HE) PAPRs, the head...not be appropriate for mouth movement to cause abnormal bulges or depressions in the simulator’s cheek. The arms should be able to mimic calisthenic ...Exercises FIT TEST Exercise NIOSH NIOSH HE PAPR OSHA(" LRPL Head: Up/Down x - x x Head: Side/Side x - x x Calisthenic Arm Movements x - - - Running in
Chen, X; Fujiwara, T; Ohtoshi, K; Inamori, S; Nakamachi, K; Tsuno, H
2010-01-01
A novel oxidation ditch system using anaerobic tanks and innovative dual dissolved oxygen (DO) control technology is proposed for biological nitrogen and phosphorus removal from domestic sewage. A continuous bench-scale experiment running for more than 300 days was performed to evaluate the system. Monitoring and controlling the airflow and recirculation flow rate independently using DO values at two points along the ditch permitted maintenance of aerobic and anoxic zone ratios of around 0.30 and 0.50, respectively. The ability to optimize aerobic and anoxic zone ratios using the dual DO control technology meant that a total nitrogen removal efficiency of 83.2-92.9% could be maintained. This remarkable nitrogen removal performance minimized the nitrate recycle to anaerobic tanks inhibiting the phosphorus release. Hence, the total phosphorus removal efficiency was also improved and ranged within 72.6-88.0%. These results demonstrated that stabilization of the aerobic and anoxic zone ratio by dual DO control technology not only resulted in a marked improvement of nitrogen removal, but it also enhanced phosphorus removal.
Dual-wavelength and efficient continuous-wave operation of a Yb:CaGd0.1Y0.9AlO4 laser
NASA Astrophysics Data System (ADS)
Di, J. Q.; Sai, Q. L.; Sun, X. H.; Xu, X. D.; Kong, L. C.; Xie, G. Q.; Liu, Y. L.; Teng, F.; Zhu, L.
2018-05-01
The spectra and laser properties of single crystalline Yb:CaGd0.1Y0.9AlO4 were investigated for the first time. The peak absorption cross-sections of 4.01 cm2 and 1.39 × 10‑20 cm2 with full width at half maximum of 17 and 32 nm, and the maximum emission cross-sections of 2.11 and 1.53 × 10‑20 cm2 were obtained for π and σ polarizations, respectively. The fluorescence decay time was 638 µs. The maximum continuous-wave laser achieved was 1.60 W with a slope efficiency of 23.4% for an a-cut Yb:CaGd0.1Y0.9AlO4 crystal. Dual-wavelength lasers at 1041.7 and 1044.9 nm were also demonstrated. The results show that Yb:CaGd0.1Y0.9AlO4 crystal is a promising ultra-short and dual-wavelength laser medium.
NASA Astrophysics Data System (ADS)
Xu, Bin; Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Huiying; Cai, Zhiping; Moncorgé, Richard
2016-07-01
Calibrated room temperature polarized emission spectra recorded between 850 and 1400 nm and nearly free from any reabsorption effect are presented for the first time. A laser output power of 2.35 W is obtained at 1063.45 nm with a laser slope efficiency of about 56% by pumping an uncoated Nd:LaF3 single crystal with a fiber-coupled laser diode at 790 nm inside a standard two-mirror linear laser cavity. True dual-wavelength laser operation on two orthogonally polarized laser lines around 1040 and 1065 nm as well as continuous laser wavelength tuning around 1040 nm, 1048 nm and 1064 nm are also achieved for the first time by using either an intracavity etalon or a birefringent filter. Laser operation is finally obtained around 1330.73 nm with a maximum output power of 0.18 W and a laser slope efficiency of about 4% and simultaneous dual-wavelength laser operation at 1329.04 and 1359.67 nm is demonstrated by using a glass etalon.
Modified Dual Three-Pulse Modulation technique for single-phase inverter topology
NASA Astrophysics Data System (ADS)
Sree Harsha, N. R.; Anitha, G. S.; Sreedevi, A.
2016-01-01
In a recent paper, a new modulation technique called Dual Three Pulse Modulation (DTPM) was proposed to improve the efficiency of the power converters of the Electric/Hybrid/Fuel-cell vehicles. It was simulated in PSIM 9.0.4 and uses analog multiplexers to generate the modulating signals for the DC/DC converter and inverter. The circuit used is complex and many other simulation softwares do not support the analog multiplexers as well. Also, the DTPM technique produces modulating signals for the converter, which are essentially needed to produce the modulating signals for the inverter. Hence, it cannot be used efficiently to switch the valves of a stand-alone inverter. We propose a new method to generate the modulating signals to switch MOSFETs of a single phase Dual-Three pulse Modulation based stand-alone inverter. The circuits proposed are simulated in Multisim 12.0. We also show an alternate way to switch a DC/DC converter in a way depicted by DTPM technique both in simulation (MATLAB/Simulink) and hardware. The circuitry is relatively simple and can be used for the further investigations of DTPM technique.
NASA Astrophysics Data System (ADS)
Xiao, H.; Ren, G.; Dong, Y.; Li, H.; Xiao, S.; Wu, B.; Jian, S.
2018-06-01
A numerical analysis of a GeO2-doped single-mode optical fiber with a multi-step index core toward stimulated Brillouin scattering (SBS) based dual-parameter sensing applications is proposed. Adjusting the parameters in the fiber design, higher-order acoustic modes are sufficiently enhanced, making the fiber feasible for discriminative measurements of temperature and strain in the meantime. Numerical simulations indicate that the Brillouin frequency shifts and peak SBS efficiencies are strongly dependent on the doping concentration and the thickness of low-index ring in the proposed fiber. With appropriate structural and optical parameters, this fiber could support two distinct acoustic modes with comparable peak SBS efficiencies and well-spaced Brillouin frequency shifts. The sensing characteristics contributed by the dual-peak feature in the Brillouin gain spectrum are explored. Calculated accuracies of temperature and strain in simultaneous measurements can be up to 0.64 °C and 15.4 με, respectively. The proposed fiber might have potential applications for long-haul distributed dual-parameter simultaneous measurements.
Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie
2015-08-01
In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.
Obata, Yosuke; Saito, Shunsuke; Takeda, Naoya; Takeoka, Shinji
2009-05-01
We have synthesized a series of cationic amino acid-based lipids having a spacer between the cationic head group and hydrophobic moieties and examined the influence of the spacer on a liposome gene delivery system. As a comparable spacer, a hydrophobic spacer with a hydrocarbon chain composed of 0, 3, 5, 7, or 11 carbons, and a hydrophilic spacer with an oxyethylene chain (10 carbon and 3 oxygen molecules) were investigated. Plasmid DNA (pDNA)-encapsulating liposomes were prepared by mixing an ethanol solution of the lipids with an aqueous solution of pDNA. The zeta potentials and cellular uptake efficiency of the cationic liposomes containing each synthetic lipid were almost equivalent. However, the cationic lipids with the hydrophobic spacer were subject to fuse with biomembrane-mimicking liposomes. 1,5-Dihexadecyl-N-lysyl-N-heptyl-l-glutamate, having a seven carbon atom spacer, exhibited the highest fusogenic potential among the synthetic lipids. Increased fusion potential correlated with enhanced gene expression efficiency. By contrast, an oxyethylene chain spacer showed low gene expression efficiency. We conclude that a hydrophobic spacer between the cationic head group and hydrophobic moieties is a key component for improving pDNA delivery.
Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.
Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet
2012-12-01
The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
48 CFR 231.205-18 - Independent research and development and bid and proposal costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... development of technologies identified as critical under 10 U.S.C. 2522. (6) Increase the development and promotion of efficient and effective applications of dual-use technologies. (7) Provide efficient and... and life-cycle costs of military systems. (3) Strengthen the defense industrial and technology base of...
Testbed for remote telepresence research
NASA Astrophysics Data System (ADS)
Adnan, Sarmad; Cheatham, John B., Jr.
1992-11-01
Teleoperated robots offer solutions to problems associated with operations in remote and unknown environments, such as space. Teleoperated robots can perform tasks related to inspection, maintenance, and retrieval. A video camera can be used to provide some assistance in teleoperations, but for fine manipulation and control, a telepresence system that gives the operator a sense of actually being at the remote location is more desirable. A telepresence system comprised of a head-tracking stereo camera system, a kinematically redundant arm, and an omnidirectional mobile robot has been developed at the mechanical engineering department at Rice University. This paper describes the design and implementation of this system, its control hardware, and software. The mobile omnidirectional robot has three independent degrees of freedom that permit independent control of translation and rotation, thereby simulating a free flying robot in a plane. The kinematically redundant robot arm has eight degrees of freedom that assist in obstacle and singularity avoidance. The on-board control computers permit control of the robot from the dual hand controllers via a radio modem system. A head-mounted display system provides the user with a stereo view from a pair of cameras attached to the mobile robotics system. The head tracking camera system moves stereo cameras mounted on a three degree of freedom platform to coordinate with the operator's head movements. This telepresence system provides a framework for research in remote telepresence, and teleoperations for space.
Design of optimized piezoelectric HDD-sliders
NASA Astrophysics Data System (ADS)
Nakasone, Paulo H.; Yoo, Jeonghoon; Silva, Emilio C. N.
2010-04-01
As storage data density in hard-disk drives (HDDs) increases for constant or miniaturizing sizes, precision positioning of HDD heads becomes a more relevant issue to ensure enormous amounts of data to be properly written and read. Since the traditional single-stage voice coil motor (VCM) cannot satisfy the positioning requirement of high-density tracks per inch (TPI) HDDs, dual-stage servo systems have been proposed to overcome this matter, by using VCMs to coarsely move the HDD head while piezoelectric actuators provides fine and fast positioning. Thus, the aim of this work is to apply topology optimization method (TOM) to design novel piezoelectric HDD heads, by finding optimal placement of base-plate and piezoelectric material to high precision positioning HDD heads. Topology optimization method is a structural optimization technique that combines the finite element method (FEM) with optimization algorithms. The laminated finite element employs the MITC (mixed interpolation of tensorial components) formulation to provide accurate and reliable results. The topology optimization uses a rational approximation of material properties to vary the material properties between 'void' and 'filled' portions. The design problem consists in generating optimal structures that provide maximal displacements, appropriate structural stiffness and resonance phenomena avoidance. The requirements are achieved by applying formulations to maximize displacements, minimize structural compliance and maximize resonance frequencies. This paper presents the implementation of the algorithms and show results to confirm the feasibility of this approach.
43 CFR 13.4 - Terms of permit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... § 13.4 Terms of permit. Every permit shall describe the location of the vending facilities and shall be... Interior bureau or office for each location. The head of the Interior bureau or office may require... efficiency as may be prescribed by the head of the Interior bureau or office. Such standards shall conform...
An improved apparatus for pressure-injecting fluid into trees
Garold F. Gregory; Thomas W. Jones
1975-01-01
Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.
Candidate Materials Evaluated for a High-Temperature Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Bowman, Randy R.; Ritzert, Frank J.
2005-01-01
The Department of Energy and NASA have identified Stirling Radioisotope Generators (SRGs) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel-base superalloy 718. The current operating temperature is at the limit of alloy 718 s capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, personnel at the NASA Glenn Research Center are evaluating advanced materials for a high-temperature heater head to allow a higher convertor temperature ratio and, thus, increase the system efficiency. A generic list of properties that were used to screen the candidate materials follows: (1) creep, (2) fabricability, (3) helium gas containment, (4) long-term stability and compatibility, (5) ability to form a hermetical closeout seal, and (6) ductility and toughness.
Sieve efficiency in benthic sampling as related to chironomid head capsule width
Hudson, Patrick L.; Adams, Jean V.
1998-01-01
The width of the head capsule in chironomid larvae is the most important morphometric character controlling retention of specimens in sieving devices. Knowledge of the range in size of these widths within any chironomid community is fundamental to sampling and interpreting the resulting data. We present the head capsule widths of 30 species of chironomids and relate their size distribution to loss or retention in several experiments using graded sieve sizes. Based on our measurements and those found in the literature we found the head capsule width of fourth instars in half the chironomids species to be less than 350 I?m. Many species may never be collected with the commonly used U.S. Standard No. 30 sieve (589 I?m), and the No. 60 (246 I?m) screen appears to retain most species only qualitatively. We found 70 to 90% of the chironomid larvae and 19 to 34% of their biomass can pass through a No. 80 sieve (177 I?m). The implications of sieve loss and other factors affecting sieving efficiency are discussed.
Multiview face detection based on position estimation over multicamera surveillance system
NASA Astrophysics Data System (ADS)
Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh
2012-02-01
In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.
Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis
Doolittle, Elizabeth; Peiris, Pubudu M.; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P.; Karathanasis, Efstathios
2015-01-01
Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection. PMID:26203676
Studies on biogas-fuelled compression ignition engine under dual fuel mode.
Mahla, Sunil Kumar; Singla, Varun; Sandhu, Sarbjot Singh; Dhir, Amit
2018-04-01
Experimental investigation has been carried out to utilize biogas as an alternative source of energy in compression ignition (CI) engine under dual fuel operational mode. Biogas was inducted into the inlet manifold at different flow rates along with fresh air through inlet manifold and diesel was injected as a pilot fuel to initiate combustion under dual fuel mode. The engine performance and emission characteristics of dual fuel operational mode were analyzed at different biogas flow rates and compared with baseline conventional diesel fuel. Based upon the improved performance and lower emission characteristics under the dual fuel operation, the optimum flow rate of biogas was observed to be 2.2 kg/h. The lower brake thermal efficiency (BTE) and higher brake-specific energy consumption (BSEC) were noticed with biogas-diesel fuel under dual fuel mode when compared with neat diesel operation. Test results showed reduced NO x emissions and smoke opacity level in the exhaust tailpipe emissions. However, higher hydrocarbon (HC) and carbon monoxide (CO) emissions were noticed under dual fuel mode at entire engine loads when compared with baseline fossil petro-diesel. Hence, the use of low-cost gaseous fuel such as biogas would be an economically viable proposition to address the current and future problems of energy scarcity and associated environmental concerns.
Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis.
Doolittle, Elizabeth; Peiris, Pubudu M; Doron, Gilad; Goldberg, Amy; Tucci, Samantha; Rao, Swetha; Shah, Shruti; Sylvestre, Meilyn; Govender, Priya; Turan, Oguz; Lee, Zhenghong; Schiemann, William P; Karathanasis, Efstathios
2015-08-25
Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvβ3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.
Design of a fuel-efficient guidance system for a STOL aircraft
NASA Technical Reports Server (NTRS)
Mclean, J. D.; Erzberger, H.
1981-01-01
In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.
Crumb rubber filtration: a potential technology for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2006-05-01
The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).
On the efficiency of the golf swing
NASA Astrophysics Data System (ADS)
White, Rod
2006-12-01
A non-driven double pendulum model is used to explain the principle underlying the surprising efficiency of the golf swing. The principle can be described as a parametric energy transfer between the arms and the club head due to the changing moment of inertia of the club. The transfer is a consequence of conservation of energy and angular momentum. Because the pendulum is not driven by an external force, it shows that the golfer need do little more than accelerate the arms with the wrists cocked and let the double pendulum transfer kinetic energy to the club head. A driven double pendulum model is used to study factors affecting the efficiency of a real golf swing. It is concluded that the wrist-cock angle is the most significant efficiency-determining parameter under the golfer's control and that improvements in golf technology have had a significant impact on driving distance.
NASA Astrophysics Data System (ADS)
Pec, Michał; Bujacz, Michał; Strumiłło, Paweł
2008-01-01
The use of Head Related Transfer Functions (HRTFs) in audio processing is a popular method of obtaining spatialized sound. HRTFs describe disturbances caused in the sound wave by the human body, especially by head and the ear pinnae. Since these shapes are unique, HRTFs differ greatly from person to person. For this reason measurement of personalized HRTFs is justified. Measured HRTFs also need further processing to be utilized in a system producing spatialized sound. This paper describes a system designed for efficient collecting of Head Related Transfer Functions as well as the measurement, interpolation and verification procedures.
Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission
NASA Astrophysics Data System (ADS)
Cho, C. Y.; Chang, C. C.; Chen, Y. F.
2015-01-01
We develop a theoretical model for designing a compact efficient multi-wavelength laser with dual gain media in a shared resonator. The developed model can be used to analyze the optimal output reflectivity for each wavelength to achieve maximum output power for multi-wavelength emission. We further demonstrate a dual-wavelength laser at 946 nm and 1064 nm with Nd:YAG and Nd:YVO4 crystals to confirm the numerical analysis. Under optimum conditions and at incident pump power of 17 W, output power at 946 nm and 1064 nm was up to 2.51 W and 2.81 W, respectively.
NASA Astrophysics Data System (ADS)
Kajiyama, Shinya; Fujito, Masamichi; Kasai, Hideo; Mizuno, Makoto; Yamaguchi, Takanori; Shinagawa, Yutaka
A novel 300MHz embedded flash memory for dual-core microcontrollers with a shared ROM architecture is proposed. One of its features is a three-stage pipeline read operation, which enables reduced access pitch and therefore reduces performance penalty due to conflict of shared ROM accesses. Another feature is a highly sensitive sense amplifier that achieves efficient pipeline operation with two-cycle latency one-cycle pitch as a result of a shortened sense time of 0.63ns. The combination of the pipeline architecture and proposed sense amplifiers significantly reduces access-conflict penalties with shared ROM and enhances performance of 32-bit RISC dual-core microcontrollers by 30%.
A diode-pumped Nd:YAlO3 dual-wavelength yellow light source
NASA Astrophysics Data System (ADS)
Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao
2013-11-01
We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.
Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng
2015-05-15
Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200 mW with a slope efficiency of 33.4%.
Dual-wavelength laser operation in a-cut Nd:MgO:LiNbO3
NASA Astrophysics Data System (ADS)
Fan, M. Q.; Li, T.; Zhao, S. Z.; Li, G. Q.; Li, D. C.; Yang, K. J.; Qiao, W. C.; Li, S. X.
2016-03-01
Diode-pumped dual-wavelength a-cut Nd:MgO:LiNbO3 lasers near 1085 and 1093 nm were experimentally and theoretically investigated. The simultaneous dual-wavelength emitting was mainly attributed to the Boltzmann distribution of the occupation in the Stark-split energy-levels in manifold 4I11/2. Under an absorbed pump power of 7.45 W, a maximum continuous wave (CW) output power of 1.23 W was obtained, giving a slope efficiency of 21.2%. Using Cr:YAG as saturable absorber, the shortest pulse duration of 28 ns was obtained with a repetition rate of 24 kHz, resulting in a peak power of 729 W.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.
Huang, Jiyan; Zhang, Ying; Luo, Shan
2017-12-15
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars
Zhang, Ying; Luo, Shan
2017-01-01
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727
High-concentration planar microtracking photovoltaic system exceeding 30% efficiency
NASA Astrophysics Data System (ADS)
Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.
2017-08-01
Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system <2 cm thick that operates at fixed tilt with a microscale triple-junction solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.
Compact and efficient blue laser sheet for measurement
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia
2017-10-01
Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.
Carnot efficiency at divergent power output
NASA Astrophysics Data System (ADS)
Polettini, Matteo; Esposito, Massimiliano
2017-05-01
The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely slow processes overlooks the dual scenario of infinitely fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.
Assimilation efficiency for sediment-sorbed benzo(a)pyrene by Diporeia spp.
Lydy, M.J.; Landrum, P.F.
1993-01-01
Two methods are currently available for determining contaminant assimilation efficiencies (AE) from ingested material in benthic invertebrates. These methods were compared using the Great Lakes amphipod Diporeia spp. and [14C]benzo(a)pyrene (BaP) sorbed to Florissant sediment (< 63 µm). The first approach, the direct measurement method, uses total organic carbon as a tracer and yielded AE values ranging from 45.9~50.4%. The second approach, the dual-labeled method, uses 51Cr as a non-assimilated tracer and did not yield AE values for our data. The inability of the dual-labeled approach to estimate AEs was due, in part, to the selective feeding by Diporeia resulting in a failure of the non-assimilated tracer (51Cr) to track with the assimilated tracer ([14C]BaP). The failure of the dual-labeled approach was not a result of an uneven distribution of the labels among particle size classes, but more likely resulted from differential sorption of the two isotopically labeled materials to particles of differing composition. The [14C]BaP apparently sorbs to organic particles that are selectively ingested, while the 51Cr apparently sorbs to particles which are selectively excluded by Diporeia. The dual-labeled approach would be a viable and easier experimental approach for determining AE values if the characteristics that govern selective feeding can be determined.
NASA Astrophysics Data System (ADS)
Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.
2013-11-01
We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.
Recent activities in printed Antennas at LeRC
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1993-01-01
This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.
Peterka, Tom; Kooima, Robert L; Sandin, Daniel J; Johnson, Andrew; Leigh, Jason; DeFanti, Thomas A
2008-01-01
A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems, such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system.
Ji, Chongke; Zhao, Chun-Liu; Kang, Juan; Dong, Xinyong; Jin, Shangzhong
2012-05-01
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded tapered fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 × 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/μm for displacement in the range of 0-400 μm, and ∼0.0097 nm/°C for temperature between 20 °C and 70 °C.
Improving LADCP Velocity Profiles with External Attitude Sensors
NASA Astrophysics Data System (ADS)
Thurnherr, A. M.; Goszczko, I.
2016-12-01
Data collected with Acoustic Doppler Current Profilers installed on CTD rosettes and lowered through the water column (LADCP systems) are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (pitch, roll and heading). Of particular concern are the heading measurements because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship as well as the current-carrying winch wire. Heading data from dual-headed LADCP systems, which consist of upward and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10 degrees. In an attempt to reduce LADCP velocity errors, over 200 full-depth profiles were collected during several recent projects, including GO-SHIP, DIMES and ECOGIG, with an inexpensive (<$200) external magnetometer/accelerometer package. The resulting data permit full compass calibrations (for both hard- and soft-iron effects) from in-situ profile data and yields improved pitch and roll measurements. Results indicate greatly reduced inconsistencies between the data from the two ADCPs (horizontal-velocity processing residuals), as well as smaller biases in vertical -velocity (w) measurements. In addition, the external magnetometer package allows processing of some LADCP data collected in regions where the horizontal magnitude of the earth's magnetic field is insufficient for the ADCPs internal compasses to work at all.
Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J
2017-06-01
Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Ralph, E. L.; Linder, E. B.
1996-01-01
Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.
Zhang, Lifen; Chen, Zhenzhen; Li, Yanfeng
2013-01-01
Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]–polyethyleneimine [PEI]–SS) were synthesized through the addition of low molecular weight (800 Da) PEI cross-linked with SS (PEI-SS) to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3) with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers. PMID:24109182
Li, Xiaomin; Wang, Rui; Zhang, Fan; Zhou, Lei; Shen, Dengke; Yao, Chi; Zhao, Dongyuan
2013-01-01
Core/shell1/shell2/shell3 structured NaGdF4:Nd/NaYF4/NaGdF4:Nd,Yb,Er/NaYF4 nanocrystals were well designed and synthesized, each of the parts assume respective role and work together to achieve dual-mode upconverting (UC) and downconverting (DC) luminescence upon the low heat effect 800-nm excitation. Nd3+, Yb3+, Er3+ tri-doped NaGdF4:Nd,Yb,Er UC layer [NIR (800 nm)-to-Visible (540 nm)] with a constitutional efficient 800 nm excitable property were achieved for the in-vitro bioimaging with low auto-fluorescence and photo-damage effects. Moreover, typical NIR (800 nm)-to-NIR (860–895 nm) DC luminescence of Nd3+ has also been realized with this designed nanostructure. Due to the low heat effect, high penetration depth of the excitation and the high efficiency of the DC luminescence, the in-vivo high contrast DC imaging of a whole body nude mouse was achieved. We believe that such dual-mode luminescence NCs will open the door to engineering the excitation and emission wavelengths of NCs and will provide a new tool for a wide variety of applications in the fields of bioanalysis and biomedical. PMID:24346622
Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei
2018-01-01
In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future. PMID:29370109
Chang, Ye; Hui, Zhipeng; Wang, Xiayu; Qu, Hemi; Pang, Wei; Duan, Xuexin
2018-01-25
In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET) and a film bulk acoustic resonator (FBAR). We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b) is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS)-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.
Policy and regulatory responses to dual practice in the health sector.
García-Prado, Ariadna; González, Paula
2007-12-01
Physician dual practice is a widespread phenomenon which has implications for the equity, efficiency and quality of health care provision. Central to the analysis of physician dual practice is the trade-off between its benefits and costs, as well as the convenience of regulating it to undermine its adverse consequences. In this paper, we study and analyze different governmental responses to this activity. We find that internationally, there are wide variations in how governments tackle this issue. While some governments fully prohibit this practice, others regulate or restrict dual job holding with different intensities and regulatory instruments. The measures implemented include limiting the income physicians can earn through dual job holding, offering work benefits to physicians in exchange for their working exclusively in the public sector, raising public salaries, and allowing physicians to perform private practice at public facilities. We present the pros and cons of each of these alternatives and show how the health care market and institutional arrangements are crucial for the design and implementation of each of these strategies. The paper also identifies the need for empirical evidence on the effect of different government strategies on dual practice.
High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser
Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin
2017-01-01
We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively. PMID:28181571
Adapting Nielsen’s Design Heuristics to Dual Processing for Clinical Decision Support
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson’s standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access. PMID:28269915
High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser
NASA Astrophysics Data System (ADS)
Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin
2017-02-01
We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively.
Adapting Nielsen's Design Heuristics to Dual Processing for Clinical Decision Support.
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson's standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access.
Comparison of dual and single exposure techniques in dual-energy chest radiography.
Ho, J T; Kruger, R A; Sorenson, J A
1989-01-01
Conventional chest radiography is the most effective tool for lung cancer detection and diagnosis; nevertheless, a high percentage of lung cancer tumors are missed because of the overlap of lung nodule image contrast with bone image contrast in a chest radiograph. Two different energy subtraction strategies, dual exposure and single exposure techniques, were studied for decomposing a radiograph into bone-free and soft tissue-free images to address this problem. For comparing the efficiency of these two techniques in lung nodule detection, the performances of the techniques were evaluated on the basis of residual tissue contrast, energy separation, and signal-to-noise ratio. The evaluation was based on both computer simulation and experimental verification. The dual exposure technique was found to be better than the single exposure technique because of its higher signal-to-noise ratio and greater residual tissue contrast. However, x-ray tube loading and patient motion are problems.
Li, Jianbo; Zhang, Jinjie; Fu, Yao; Sun, Xun; Gong, Tao; Jiang, Jinghui; Zhang, Zhirong
2015-08-28
To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Measuring SeHCAT retention: a technical note.
Notghi, Alp; O'Brien, Joseph; Low, Chen Sheng; Thomson, William
2011-10-01
TauroH-23-((75)Se)selena-25-homocholic acid (SeHCAT) retention has been used for the diagnosis of bile acid malabsorption since the early 1980s. Bile acid malabsorption has been increasingly recognized as an important cause of severe chronic diarroea with subsequent increase in the number of referrals for the SeHCAT test. In this study, we review and discuss the standard techniques for the measurement of SeHCAT retention and describe a simple and modified technique using a noncollimated whole-body scanner, suitable for most modern dual-headed cameras.
Dual Durameter Blow Molded Rocker Cover Design With Unique Isolation Strategy
Freese, V, Charles Edwin
2000-07-11
The rocker arm cover on a diesel engine can be formed of a rigid molded plastic material to minimize the transmission of noise into the atmosphere. Sonic vibration of the cover can be reduced by reducing the cover material stiffness. The reduced stiffness of the cover material allows the roof area of the cover to be momentarily displaced away from the cylinder head in the presence of an acoustic wave, so that the roof area is not able to develop the restoring force that is necessary for vibrational motion.
PROCESS WATER BUILDING, TRA605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES ...
PROCESS WATER BUILDING, TRA-605. AERIAL TAKEN WHILE SEVERAL PIPE TRENCHES REMAINED OPEN. CAMERA FACES EASTERLY. NOTE DUAL PIPES BETWEEN REACTOR BUILDING AND NORTH SIDE OF PROCESS WATER BUILDING. PIPING NEAR WORKING RESERVOIR HEADS FOR RETENTION RESERVOIR. PIPE FROM DEMINERALIZER ENTERS MTR FROM NORTH. SEE ALSO TRENCH FOR COOLANT AIR DUCT AT SOUTH SIDE OF MTR AND LEADING TO FAN HOUSE AND STACK. INL NEGATIVE NO. 2966-A. Unknown Photographer, 7/31/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle
NASA Technical Reports Server (NTRS)
Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy
1994-01-01
This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.
Emotional and neutral scenes in competition: orienting, efficiency, and identification.
Calvo, Manuel G; Nummenmaa, Lauri; Hyönä, Jukka
2007-12-01
To investigate preferential processing of emotional scenes competing for limited attentional resources with neutral scenes, prime pictures were presented briefly (450 ms), peripherally (5.2 degrees away from fixation), and simultaneously (one emotional and one neutral scene) versus singly. Primes were followed by a mask and a probe for recognition. Hit rate was higher for emotional than for neutral scenes in the dual- but not in the single-prime condition, and A' sensitivity decreased for neutral but not for emotional scenes in the dual-prime condition. This preferential processing involved both selective orienting and efficient encoding, as revealed, respectively, by a higher probability of first fixation on--and shorter saccade latencies to--emotional scenes and by shorter fixation time needed to accurately identify emotional scenes, in comparison with neutral scenes.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi
2006-05-01
We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
Improving Decision Making in Schools through Teacher Participation
ERIC Educational Resources Information Center
Mualuko, Ndiku J.; Mukasa, Simiyu A.; Achoka, Judy S. K.
2009-01-01
The hierarchical structure that places head teachers at the apex of a pyramid of staff is a common feature in secondary schools in Kenya. In this arrangement, school heads are poised to use their superior knowledge and experience to direct and control the working of the entire school. This negatively affects efficiency and productivity of the…
USDA-ARS?s Scientific Manuscript database
Fusarium Head Blight is a worldwide disease of small cereals grains such as wheat. The disease is food safety concern because it produces the metabolite, deoxynivalenol (DON), which is moderately toxic to humans and non-ruminant animals. The current study was implemented to develop more efficient me...
Bravo, Hector R.; Jiang, Feng; Hunt, Randall J.
2002-01-01
Parameter estimation is a powerful way to calibrate models. While head data alone are often insufficient to estimate unique parameters due to model nonuniqueness, flow‐and‐heat‐transport modeling can constrain estimation and allow simultaneous estimation of boundary fluxes and hydraulic conductivity. In this work, synthetic and field models that did not converge when head data were used did converge when head and temperature were used. Furthermore, frequency domain analyses of head and temperature data allowed selection of appropriate modeling timescales. Inflows in the Wilton, Wisconsin, wetlands could be estimated over periods such as a growing season and over periods of a few days when heads were nearly steady and groundwater temperature varied during the day. While this methodology is computationally more demanding than traditional head calibration, the results gained are unobtainable using the traditional approach. These results suggest that temperature can efficiently supplement head data in systems where accurate flux calibration targets are unavailable.
ERIC Educational Resources Information Center
Hyser, Raymond M.
About 1900, James W. Ellsworth created the educational system of Ellsworth, Pennsylvania. His aim was to have the system serve a dual purpose: the societal uplift of foreign miners to make them better citizens and the improvement of the company's productive efficiency. Ellsworth's school offered traditional courses along with training in English…
Hybrid ultrasound and dual-wavelength optoacoustic biomicroscopy for functional neuroimaging
NASA Astrophysics Data System (ADS)
Rebling, Johannes; Estrada, Hector; Zwack, Michael; Sela, Gali; Gottschalk, Sven; Razansky, Daniel
2017-03-01
Many neurological disorders are linked to abnormal activation or pathological alterations of the vasculature in the affected brain region. Obtaining simultaneous morphological and physiological information of neurovasculature is very challenging due to the acoustic distortions and intense light scattering by the skull and brain. In addition, the size of cerebral vasculature in murine brains spans an extended range from just a few microns up to about a millimeter, all to be recorded in 3D and over an area of several dozens of mm2. Numerous imaging techniques exist that excel at characterizing certain aspects of this complex network but are only capable of providing information on a limited spatiotemporal scale. We present a hybrid ultrasound and dual-wavelength optoacoustic microscope, capable of rapid imaging of murine neurovasculature in-vivo, with high spatial resolution down to 12 μm over a large field of view exceeding 50mm2. The dual wavelength imaging capability allows for the visualization of functional blood parameters through an intact skull while pulse-echo ultrasound biomicroscopy images are captured simultaneously by the same scan head. The flexible hybrid design in combination with fast high-resolution imaging in 3D holds promise for generating better insights into the architecture and function of the neurovascular system.
NASA Astrophysics Data System (ADS)
Deng, Shi-ting; Yu, Hong; Liu, Di; Bi, Yong-guang
2017-10-01
To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.
MacAulay, Rebecca K; Wagner, Mark T; Szeles, Dana; Milano, Nicholas J
2017-07-01
Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, ps<.05. Follow-up analysis indicated that the MCI group had significantly slower dual-task gait speed but did not differ in simple-gait speed. Multivariate linear regression across groups found that executive attention performance accounted for 27.4% of the variance in dual-task gait speed beyond relevant demographic and health risk factors. The present study increases the external validity of dual-task gait assessment of MCI. Differences in dual-task gait speed appears to be largely attributable to executive attention processes. These findings have clinical implications as they demonstrate expected patterns of gait-brain behavior relationships in response to a cognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).
Novel strategy for a bispecific antibody: induction of dual target internalization and degradation.
Lee, J M; Lee, S H; Hwang, J-W; Oh, S J; Kim, B; Jung, S; Shim, S-H; Lin, P W; Lee, S B; Cho, M-Y; Koh, Y J; Kim, S Y; Ahn, S; Lee, J; Kim, K-M; Cheong, K H; Choi, J; Kim, K-A
2016-08-25
Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.