Effects of coil characteristics for femoral nerve magnetic stimulation.
Tomazin, Katja; Verges, Samuel; Decorte, Nicolas; Oulerich, Alain; Millet, Guillaume Y
2010-03-01
The aim of this study was to compare the efficiency of two coils used for femoral nerve magnetic stimulation and to compare them with electrical stimulation in inducing maximal response of the quadriceps. The mechanical and electromyographic (EMG) responses were dependent on the coil used. The 45-mm double coil showed greater efficiency to elicit a maximal quadriceps response, which was similar to electrical stimulation.
Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L
2017-11-01
Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.
Power Strategy in DC/DC Converters to Increase Efficiency of Electrical Stimulators.
Aqueveque, Pablo; Acuña, Vicente; Saavedra, Francisco; Debelle, Adrien; Lonys, Laurent; Julémont, Nicolas; Huberland, François; Godfraind, Carmen; Nonclercq, Antoine
2016-06-13
Power efficiency is critical for electrical stimulators. Battery life of wearable stimulators and wireless power transmission in implanted systems are common limiting factors. Boost DC/DC converters are typically needed to increase the supply voltage of the output stage. Traditionally, boost DC/DC converters are used with fast control to regulate the supply voltage of the output. However, since stimulators are acting as current sources, such voltage regulation is not needed. Banking on this, this paper presents a DC/DC conversion strategy aiming to increase power efficiency. It compares, in terms of efficiency, the traditional use of boost converters to two alternatives that could be implemented in future hardware designs.
Aliyev, R M; Geiger, G
2012-03-01
In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.
A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo
Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin
2015-01-01
Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.
1999-01-01
Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.
Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang
2018-01-23
Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.
1999-01-01
Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.
Zhang, Xueqin; Shen, Dongsheng; Feng, Huajun; Wang, Yanfeng; Li, Na; Han, Jingyi; Long, Yuyang
2015-01-01
A novel thermophilic bioelectrochemical system (TBES) based on electrical stimulation was established for the enhanced treatment of p-fluoronitrobenzene (p-FNB) wastewater. p-FNB removal rate constant in the TBES was 78.6% higher than that of the mesophilic BES (MBES), the elevation of which owing to high-temperature overtook the rate improvement of 50.8% in the electrocatalytic system (ECS). Additionally, an overwhelming mineralization efficiency of 91.96% ± 5.70% was obtained in the TBES. The superiority of TBES was attributed to the integrated role of electrical stimulation and high-temperature. Electrical stimulation provided an alternative for the microbial growth independent energy requirements, compensating insufficient energy support from p-FNB metabolism under the high-temperature stress. Besides, electrical stimulation facilitated microbial community evolution to form specific thermophilic biocatalysis. The uniquely selected thermophilic microorganisms including Coprothermobacter sp. and other ones cooperated to enhance p-FNB mineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prediction and control of neural responses to pulsatile electrical stimulation
NASA Astrophysics Data System (ADS)
Campbell, Luke J.; Sly, David James; O'Leary, Stephen John
2012-04-01
This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.
Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers
Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.
2011-01-01
Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602
Pulsed laser versus electrical energy for peripheral nerve stimulation
Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita
2010-01-01
Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515
Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan
2017-02-01
Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.
Ishigooka, M; Hashimoto, T; Izumiya, K; Katoh, T; Yaguchi, H; Nakada, T; Handa, Y; Hoshimiya, N
1993-01-01
Electrical pelvic floor stimulation employing a portable functional electrical stimulation system with percutaneously indwelling electrodes was carried out to improve detrusor urinary incontinence. Cyclic stimulation using negative going pulse trains of 20 Hz was applied 3 to 6 times daily to the bilateral pudendal nerves distributing to the pelvic floor muscles for the purpose of strengthening these muscles, including the urethral sphincter, and simultaneously, suppressing detrusor overactivity and increasing cystometric capacity. Electrical training for 4-8 weeks resulted in an improvement of urinary incontinence in five of six patients. In two of six cases incontinence had subjectively disappeared. Urodynamic investigations demonstrated an increase in detrusor reflex threshold and less tendency for abortive detrusor contraction. No apparent complications were encountered during these periods. This procedure appears to be efficient for the management of patients with detrusor incontinence who respond poorly to conservative therapies.
Evaluation of high-perimeter electrode designs for deep brain stimulation
NASA Astrophysics Data System (ADS)
Howell, Bryan; Grill, Warren M.
2014-08-01
Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.
NASA Astrophysics Data System (ADS)
Lu, Mai; Ueno, Shoogo
2009-04-01
In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.
Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.
Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier
2016-05-01
Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Central and peripheral cardiovascular responses to electrically induced and voluntary leg exercise
NASA Technical Reports Server (NTRS)
Saltin, B.; Strange, S.; Bangsbo, J.; Kim, C. K.; Duvoisin, M.; Hargens, A.; Gollnick, P. D.
1990-01-01
With long missions in space countermeasures have to be used to secure safe operations in space and a safe return to Earth. Exercises of various forms have been used, but the question has arisen whether electrically induced contractions of muscle especially sensitive to weightlessness and crucial for man's performance would aid in maintaining their optimal function. The physiological responses both to short term and prolonged dynamic exercise performed either voluntarily or induced by electrical stimulation were considered. The local and systemic circulatory responses were similar for the voluntary and electrically induced contractions. The metabolic response was slightly more pronounced with electrical stimulation. This could be a reflection of not only slow twitch (type 1) but also fast twitch (type 2) fibers being recruited when the contractions were induced electrically. Intramuscular pressure recordings indicated that the dominant fraction of the muscle group was engaged regardless of mode of activation. Some 70 percent of the short term peak voluntary exercise capacity could be attained with electrical stimulation. Thus, electrically induced contractions of specific muscle groups should indeed be considered as an efficient countermeasure.
Emmerson, Elaine
2017-03-01
Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al. demonstrate that electrical stimulation promotes reinnervation and neural differentiation in human acute wounds, thus accelerating wound repair. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Electrocutaneous stimulation system for Braille reading.
Echenique, Ana Maria; Graffigna, Juan Pablo; Mut, Vicente
2010-01-01
This work is an assistive technology for people with visual disabilities and aims to facilitate access to written information in order to achieve better social inclusion and integration into work and educational activities. Two methods of electrical stimulation (by current and voltage) of the mechanoreceptors was tested to obtain tactile sensations on the fingertip. Current and voltage stimulation were tested in a Braille cell and line prototype, respectively. These prototypes are evaluated in 33 blind and visually impaired subjects. The result of experimentation with both methods showed that electrical stimulation causes sensations of touch defined in the fingertip. Better results in the Braille characters reading were obtained with current stimulation (85% accuracy). However this form of stimulation causes uncomfortable sensations. The latter feeling was minimized with the method of voltage stimulation, but with low efficiency (50% accuracy) in terms of identification of the characters. We concluded that electrical stimulation is a promising method for the development of a simple and unexpensive Braille reading system for blind people. We observed that voltage stimulation is preferred by the users. However, more experimental tests must be carry out in order to find the optimum values of the stimulus parameters and increase the accuracy the Braille characters reading.
Clegg, John P; Guest, Julian F
2007-04-01
To estimate the cost-utility of bio-electric stimulation therapy (Posifect) compared to standard care in elderly patients with chronic, non-healing wounds of > 6 months duration, from the perspective of the National Health Service (NHS) in the UK. Clinical and resource use data from a 16 week clinical evaluation of bio-electric stimulation therapy among patients who had recalcitrant wounds were combined with utility data obtained from a standard gamble analysis to construct a 16 week Markov model. The model considers the decision by a clinician to continue with a patient's previous care plan or treat with bio-electric stimulation therapy. Unit resource costs at 2005/2006 prices were applied to the resource utilisation estimates within the model, enabling the cost-utility of bio-electric stimulation therapy compared to standard care to be estimated. The acquisition cost of Posifect had not been decided at the time of performing this study. Hence, the base case analysis used a cost of 50 pounds per dressing. 33% of all wounds are expected to heal within 16 weeks after the start of bio-electric stimulation therapy. Consequently, using bio-electric stimulation therapy is expected to lead to a 51% decrease in the number of domiciliary clinician visits, from 4.7 to 2.3 per week. The model also showed that using bio-electric stimulation therapy instead of patients' standard care is expected to reduce the NHS cost of managing them by 16% from 2287 pounds (95% CI: 1838 pounds; 2735 pounds) to 1921 pounds (95% CI: 1609 pounds; 2233 pounds) and result in a health gain of 0.023 QALYs over 16 weeks. Hence, bio-electric stimulation therapy was found to be a dominant treatment. Sensitivity analyses demonstrated that the cost-utility of using bio-electric stimulation therapy relative to standard care is very sensitive to the acquisition cost of the therapy, the acquisition cost of patients' drugs and the number of clinician visits and less sensitive to utility values and the acquisition cost of other dressings. Within the limitations of the model, bio-electric stimulation therapy is expected to afford the NHS a cost-effective dressing compared to standard care in the management of chronic non-healing wounds of > 6 months duration. Bio-electric stimulation therapy's acquisition cost is expected to be offset by a reduction in the requirement for domiciliary clinician visits, leading to a release of NHS resources for use elsewhere in the system, thereby generating an increase in NHS efficiency.
Guo, Tianruo; Yang, Chih Yu; Tsai, David; Muralidharan, Madhuvanthi; Suaning, Gregg J.; Morley, John W.; Dokos, Socrates; Lovell, Nigel H.
2018-01-01
The ability for visual prostheses to preferentially activate functionally-distinct retinal ganglion cells (RGCs) is important for improving visual perception. This study investigates the use of high frequency stimulation (HFS) to elicit RGC activation, using a closed-loop algorithm to search for optimal stimulation parameters for preferential ON and OFF RGC activation, resembling natural physiological neural encoding in response to visual stimuli. We evaluated the performance of a wide range of electrical stimulation amplitudes and frequencies on RGC responses in vitro using murine retinal preparations. It was possible to preferentially excite either ON or OFF RGCs by adjusting amplitudes and frequencies in HFS. ON RGCs can be preferentially activated at relatively higher stimulation amplitudes (>150 μA) and frequencies (2–6.25 kHz) while OFF RGCs are activated by lower stimulation amplitudes (40–90 μA) across all tested frequencies (1–6.25 kHz). These stimuli also showed great promise in eliciting RGC responses that parallel natural RGC encoding: ON RGCs exhibited an increase in spiking activity during electrical stimulation while OFF RGCs exhibited decreased spiking activity, given the same stimulation amplitude. In conjunction with the in vitro studies, in silico simulations indicated that optimal HFS parameters could be rapidly identified in practice, whilst sampling spiking activity of relevant neuronal subtypes. This closed-loop approach represents a step forward in modulating stimulation parameters to achieve appropriate neural encoding in retinal prostheses, advancing control over RGC subtypes activated by electrical stimulation. PMID:29615857
Mielczarek, Marzena; Konopka, Wieslaw; Olszewski, Jurek
2013-02-01
The aim of the study was to evaluate the effectiveness of electrical stimulations of the hearing organ in tinnitus treatment adapting the frequency of stimulation according to tinnitus frequency, to assess the influence of cervical spine kinesitherapy on tinnitus, as well as to evaluate hearing after electrical stimulations alone and together with cervical spine kinesitherapy. The study comprised 80 tinnitus, sensorineural hearing loss patients (119 tinnitus ears) divided into two groups. In group I (n - 58 tinnitus ears) electrical stimulation of the hearing organ was performed, in group II (n - 61 tinnitus ears) electrical stimulation together with cervical spine kinesitherapy. Hydrotransmissive, selective electrical stimulations were conducted using direct, rectangular current. The passive electrode was placed on the forehead, the active--a silver probe--was immersed in the external ear canal in 0.9% saline solution. The treatment involved fifteen applications of electrical stimulations (each lasted for 4 min) administered three or four times a week (whole treatment lasted approximately 30 days). The evaluation of the results considered a case history (change from permanent to temporary tinnitus), questionnaires (the increase/decrease of the total points) and the audiometric evaluation of hearing level. Before the treatment, group I comprised 51 ears (87.93%) with permanent, and 7 ears (12.07%) with temporary tinnitus; group II - 55 ears (90.17%) with permanent and 6 ears (9.83%) with temporary tinnitus. After the treatment, in both groups the number of ears with permanent tinnitus decreased considerably obtaining the pauses or disappearing of tinnitus. Directly after the treatment, group I comprised 25 ears (43.11%) with permanent, and 10 ears (17.24%) with temporary tinnitus, in 23 ears (39.65%) tinnitus disappeared; group II - 33 ears (54.1%) with permanent and 11 ears (18.03%) with temporary tinnitus, in 17 ears (27.87%) tinnitus disappeared. Regarding questionnaires, improvement was observed in group I - in 43.11% of ears, in group II - 32.8%. In both groups audiometric improvement of hearing was recognized. (1) Electrical stimulation of the hearing organ, with the application of current frequencies according to tinnitus frequencies (selective electrical stimulation), was an efficient method in severe tinnitus treatment. (2) Cervical spine kinesitherapy in the treatment of tinnitus, using electrical stimulation, did not have any supporting influence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Efficacy of Carcass Electrical Stimulation in Meat Quality Enhancement: A Review
Adeyemi, Kazeem Dauda; Sazili, Awis Qurni
2014-01-01
The use of electrical stimulation (ES) as a management tool to improve meat quality and efficiency of meat processing is reviewed. The basis of the efficacy of ES is its ability to fast track postmortem glycolysis, which in turn stimulates myriad histological, physical, biochemical, biophysical and physiological changes in the postmortem muscle. Electrical stimulation hastens the onset and resolution of rigor mortis thereby reducing processing time and labor and plays a vital role in improving meat tenderness and other meat quality traits. However, ES may have negative impacts on some meat quality traits such as color stability and water holding capacity in some animals. Electrical stimulation is not an end in itself. In order to achieve the desired benefits from its application, the technique must be properly used in conjunction with various intricate antemortem, perimortem and postmortem management practices. Despite extensive research on ES, the fundamental mechanisms and the appropriate commercial applications remained obscured. In addition, muscles differ in their response to ES. Thus, elementary knowledge of the various alterations with respect to muscle type is needed in order to optimize the effectiveness of ES in the improvement of meat quality. PMID:25049973
Moving-window dynamic optimization: design of stimulation profiles for walking.
Dosen, Strahinja; Popović, Dejan B
2009-05-01
The overall goal of the research is to improve control for electrical stimulation-based assistance of walking in hemiplegic individuals. We present the simulation for generating offline input (sensors)-output (intensity of muscle stimulation) representation of walking that serves in synthesizing a rule-base for control of electrical stimulation for restoration of walking. The simulation uses new algorithm termed moving-window dynamic optimization (MWDO). The optimization criterion was to minimize the sum of the squares of tracking errors from desired trajectories with the penalty function on the total muscle efforts. The MWDO was developed in the MATLAB environment and tested using target trajectories characteristic for slow-to-normal walking recorded in healthy individual and a model with the parameters characterizing the potential hemiplegic user. The outputs of the simulation are piecewise constant intensities of electrical stimulation and trajectories generated when the calculated stimulation is applied to the model. We demonstrated the importance of this simulation by showing the outputs for healthy and hemiplegic individuals, using the same target trajectories. Results of the simulation show that the MWDO is an efficient tool for analyzing achievable trajectories and for determining the stimulation profiles that need to be delivered for good tracking.
Wang, Hai-peng; Bi, Zheng-yang; Zhou, Yang; Zhou, Yu-xuan; Wang, Zhi-gong; Lv, Xiao-ying
2017-01-01
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy. A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method. Through a series of novel design concepts, including the integration of a detecting circuit and an analog-to-digital converter, a miniaturized functional electrical stimulation circuit technique, a low-power super-regeneration chip for wireless receiving, and two wearable armbands, a prototype system has been established with reduced size, power, and overall cost. Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects, the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy. Test results showed that wrist flexion/extension, hand grasp, and finger extension could be reproduced with high accuracy and low latency. This system can build a bridge of information transmission between healthy limbs and paralyzed limbs, effectively improve voluntary participation of hemiplegic patients, and elevate efficiency of rehabilitation training. PMID:28250759
Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor
Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario
2017-01-01
Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958
Salvador, R.; Silva, S.; Basser, P. J.; Miranda, P. C.
2010-01-01
Objective To determine which mechanisms lead to activation of neurons in the motor cortex during transcranial magnetic stimulation (TMS) with different current directions and pulse waveforms. Methods The total electric field induced in a simplified model of a cortical sulcus by a figure-eight coil was calculated using the finite element method (FEM). This electric field was then used as the input to determine the response of compartmental models of several types of neurons. Results The modeled neurons were stimulated at different sites: fiber bends for pyramidal tract neurons, axonal terminations for cortical interneurons and axon collaterals, and a combination of both for pyramidal association fibers. All neurons were more easily stimulated by a PA directed electric field, except association fibers. Additionally, the second phase of a biphasic pulse was found to be more efficient than the first phase of either monophasic or biphasic pulses. Conclusion The stimulation threshold for different types of neurons depends on the pulse waveform and current direction. The reported results might account for the range of responses obtained in TMS of the motor cortex when using different stimulation parameters. Significance Modeling studies combining electric field calculations and neuronal models may lead to a deeper understanding of the effect of the TMS-induced electric field on cortical tissue, and may be used to evaluate improvements in TMS coil and waveform design. PMID:21035390
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
NASA Astrophysics Data System (ADS)
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312
A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation
Heffer, Leon F; Fallon, James B
2008-01-01
Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428
Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F
2017-07-01
Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.
A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.
Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry
2011-01-01
A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies. In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad. In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation. The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.
High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
NASA Astrophysics Data System (ADS)
Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han
2018-04-01
Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.
Fatigue reduction during aggregated and distributed sequential stimulation.
Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei
2017-08-01
Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.
Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti
2017-06-01
To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.
Fil, Ayla; Armutlu, Kadriye; Atay, Ahmet Ozgur; Kerimoglu, Ulku; Elibol, Bulent
2011-01-01
To examine the efficiency of electrical stimulation in combination with Bobath techniques in the prevention of inferior and anterior shoulder subluxation in acute stroke patients. A prospective randomized controlled trial. Intensive care unit and inpatient clinics of neurology in a university hospital. Forty-eight patients with acute stroke, divided equally into control and study groups. Subjects in both groups were treated in accordance with the Bobath concept during the early hospitalization period. In addition to Bobath techniques, electrical stimulation was also applied to the supraspinatus muscle, mid and posterior portions of the deltoid muscle of patients in the study group. Two radiological methods were used to measure the horizontal, vertical and total asymmetry and vertical distance values of the shoulder joint. Motor functions of the arm were evaluated with the Motor Assessment Scale. The hospitalization period was 12.62 ± 2.24 days for the control group and 11.66 ± 1.88 days for the study group. Shoulder subluxation occurred in 9 (37.5%) subjects in the control group, whereas it was not observed in the study group. All shoulder joint displacement values were higher in the control group than in the study group (horizontal asymmetry P = 0.0001, vertical asymmetry P = 0.0001, total asymmetry P = 0.0001, vertical range P = 0.002). Application of electrical stimulation combined with the Bobath approach proved to be efficient in preventing inferior and anterior shoulder subluxation in the acute stages of stroke.
NASA Astrophysics Data System (ADS)
Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra
2018-03-01
In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.
NASA Astrophysics Data System (ADS)
Guo, Rui; Liu, Jing
2017-10-01
With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.
Skvortsov, I A; Khavkhun, L A; Ustinova, E V; I'lin, L B
1989-01-01
In 121 children with perinatal CNS damage a combined therapy was performed including, besides routine drug treatment, imitation stimulation of age-matched posture-++-tonic attitudes and motor skills, metameric reflexotherapy aimed at the CNS region lesioned, magnetotherapy, electric laser puncture targeted at correction of dysfunctioning brain structures. Treatment efficiency was controlled by the brain "development profile" derived from formalized neurological and neuropsychological investigations, and electroneuromyography. The efficiency of the therapy was considerably decreased by the 3rd semester of life.
Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing
NASA Astrophysics Data System (ADS)
Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu
2016-09-01
Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.
An improved genetic algorithm for designing optimal temporal patterns of neural stimulation
NASA Astrophysics Data System (ADS)
Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.
2017-12-01
Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.
The use of hydrogel as an electrode-skin interface for electrode array FES applications.
Cooper, Glen; Barker, Anthony T; Heller, Ben W; Good, Tim; Kenney, Laurence P J; Howard, David
2011-10-01
Functional electrical stimulation is commonly used to restore function in post-stroke patients in upper and lower limb applications. Location of the electrodes can be a problem hence some research groups have begun to experiment with electrode arrays. Electrode arrays are interfaced with a thin continuous hydrogel sheet which is high resistivity to reduce transverse currents between electrodes in the array. Research using electrode arrays has all been conducted in a laboratory environment over short time periods but it is suspected that this approach will not be feasible over longer time periods due to changes in hydrogel resistivity. High resistivity hydrogel samples were tested by leaving them in contact with the skin over a seven day period. The samples became extremely conductive with resistivities reaching around 10-50 Ωm. The effect of these resistivity changes was studied using finite element analysis to solve for the stationary current quasi-static electric field gradient in the tissue. Electrical stimulation efficiency and focality were calculated for both a high and low resistivity electrode-skin interface layer at different tissue depths. The results showed that low resistivity hydrogel produced significant decreases in stimulation efficiency and focality compared to high resistivity hydrogel. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Yoon-Kyu; Stein, John; Patterson, William R.; Bull, Christopher W.; Davitt, Kristina M.; Serruya, Mijail D.; Zhang, Jiayi; Nurmikko, Arto V.; Donoghue, John P.
2007-09-01
Recent advances in functional electrical stimulation (FES) show significant promise for restoring voluntary movement in patients with paralysis or other severe motor impairments. Current approaches for implantable FES systems involve multisite stimulation, posing research issues related to their physical size, power and signal delivery, surgical and safety challenges. To explore a different means for delivering the stimulus to a distant muscle nerve site, we have elicited in vitro FES response using a high efficiency microcrystal photovoltaic device as a neurostimulator, integrated with a biocompatible glass optical fiber which forms a lossless, interference-free lightwave conduit for signal and energy transport. As a proof of concept demonstration, a sciatic nerve of a frog is stimulated by the microcrystal device connected to a multimode optical fiber (core diameter of 62.5 µm), which converts optical activation pulses (~100 µs) from an infrared semiconductor laser source (at 852 nm wavelength) into an FES signal.
Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu
2012-09-21
Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.
Epidural electrical stimulation to improve chronic poststroke aphasia: a 5-year follow-up.
Balossier, Anne; Etard, Olivier; Descat, Chloé; Vivien, Denis; Emery, Evelyne
2012-07-01
Aphasia is an incapacitating deficit experienced by almost 25% of patients after a left hemispheric ischemic stroke. Spontaneous recovery is considered to be limited to a period of 3 to 6 months. Although speech therapy performed during the first weeks may speed up this process and enhance its outcome, beyond this period it fails to change the global prognosis. We report a case of an unusual recovery of nonfluent chronic poststroke aphasia subsequent to extradural cortical stimulation. A right-handed woman experienced aphasia and drug-resistant central poststroke facial pain after a left superficial Sylvian ischemic stroke at the age of 58 years old. Four years after the stroke, the patient was included in a clinical trial to establish the efficiency of epidural electric stimulation on neuropathic pain. As an improvement in her language performance was noted, a speech evaluation was added to the initial protocol to quantify the benefit. Twelve months after the surgical implantation, pain and language performance were assessed in a double-blind manner during two consecutive 1-month periods when the stimulator was randomly enabled or disabled. The same evaluation was performed after 5 years of stimulation. Eventually, epidural electric stimulation significantly and sustainably improved her lexical access and speech fluency. Cortical stimulation may offer a new approach for the treatment of late chronic poststroke aphasia. Copyright © 2012 Elsevier Inc. All rights reserved.
Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D
2017-08-01
We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.
Hou, Li L; Yao, Li W; Niu, Qian M; Xu, L; Yu, Qiu H; Sun, Wen Q; Yin, Pei-Hao; Li, Qi
2013-01-01
Lower deep venous thrombosis (DVT) is one of the major complications of patients with tumors or patients undergoing major surgery. Electrical acupoint stimulation, an established technique of traditional Chinese medicine (TCM), can be well combined with Western medicine to reduce the incidence of postoperative DVT, especially in elderly patients. The objectives of this study were to assess the efficiency of electrical acupoint stimulation in the prevention of postsurgery DVT in elderly patients with gastrointestinal malignant tumors and to validate an effective and safe nursing approach that integrates TCM and Western medicine. A total of 120 patients (none aged <60 years) who underwent malignant gastrointestinal tumor surgery between July 2005 and May 2007 were randomly divided into 3 groups: routine nursing group (group C1), graduated compression stockings group (group C2), and electrical acupoint stimulation group (group T). Hemorheological parameters (blood viscosity, etc) were measured and compared before and after surgery. Compared with groups C1 and C2, group T showed a significant difference in blood viscosity and blood flow velocity (P < .05). However, there were no statistical differences among groups C1, C2, and T in other hemorheological parameters. By speeding up the blood flow in patients' lower limbs, electrical acupoint stimulation showed a great potential to prevent symptomless DVT in elderly patients after malignant gastrointestinal tumor surgery. Western medical care combined with TCM can reduce the occurrence of lower DVT in elderly patients suffering from gastrointestinal cancer. This approach may help nurses to plan effective care for elderly patients.
Neuromuscular Electrical Stimulation for Skeletal Muscle Function
Doucet, Barbara M.; Lam, Amy; Griffin, Lisa
2012-01-01
Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049
Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi
Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.
Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing
2013-09-01
Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.
Characteristics of bowl-shaped coils for transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki
2015-05-01
Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.
Injectable microstimulator for functional electrical stimulation.
Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R
1991-11-01
A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.
Hart, D J; Taylor, P N; Chappell, P H; Wood, D E
2006-06-01
Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.
Combined process automation for large-scale EEG analysis.
Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E
2012-01-01
Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Feng, Huajun; Zhang, Xueqin; Guo, Kun; Vaiopoulou, Eleni; Shen, Dongsheng; Long, Yuyang; Yin, Jun
2015-01-01
Fed batch bioelectrochemical systems (BESs) based on electrical stimulation were used to treat p-fluoronitrobenzene (p-FNB) wastewater at high salinities. At a NaCl concentration of 40 g/liter, p-FNB was removed 100% in 96 h in the BES, whereas in the biotic control (BC) (absence of current), p-FNB removal was only 10%. By increasing NaCl concentrations from 0 g/liter to 40 g/liter, defluorination efficiency decreased around 40% in the BES, and in the BC it was completely ceased. p-FNB was mineralized by 30% in the BES and hardly in the BC. Microorganisms were able to store 3.8 and 0.7 times more K+ and Na+ intracellularly in the BES than in the BC. Following the same trend, the ratio of protein to soluble polysaccharide increased from 3.1 to 7.8 as the NaCl increased from 0 to 40 g/liter. Both trends raise speculation that an electrical stimulation drives microbial preference toward K+ and protein accumulation to tolerate salinity. These findings are in accordance with an enrichment of halophilic organisms in the BES. Halobacterium dominated in the BES by 56.8% at a NaCl concentration of 40 g/liter, while its abundance was found as low as 17.5% in the BC. These findings propose a new method of electrical stimulation to improve microbial salinity resistance. PMID:25819966
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
Schrag, H J; Karwath, D; Grub, C; Fragoza Padilla, F; Noack, T; Hopt, U T
2005-07-01
Many authors have suggested that the activity of the enteric inhibitory nerves is important in regulating normal gastrointestinal motility and inducing smooth muscle relaxation. Hitherto, no experimental or clinical models exist that transfer these physiological aspects to creating an autologous artificial sphincter for the treatment of major incontinence. Therefore, this study was performed to determine the contractile and relaxant capacity of gastrointestinal muscle types and to investigate the efficiency of a novel smooth muscle sphincter, based on the non-adrenergic, non-cholinergic (NANC) receptive relaxation under electrical field stimulation (EFS). For the first step, the isometric tension from isolated circular porcine fundus and colon muscle strips was recorded during pharmacological stimulation (TTX, L-NNA and atropine) and EFS. As a result, a continent electrodynamic smooth muscle sphincter (ESMS) was created by wrapping a fundus muscle flap around an isolated segment of porcine distal colon. The EFS of the free nerve fibers of the flap was realized using a circular platinum wire electrode. Parameters such as threshold of continence, intra/preluminal pressure and fluid passage were analyzed in a newly designed in vitro stoma simulator. Electrical field stimulation produced a maximal and voltage-dependent fundus relaxation to --12.4 mN/mm(2) (frequency of 40 Hz, pulse duration, train duration and voltage of 5 ms, 1 s and 60 mA respectively), which were abolished by N-nitro-L -arginine (L-NNA; 10(-4) M) in a dose-dependent manner, confirming that relaxant responses were mediated by NANC nerves. The results of eight ESMS showed that circular electrical stimulation of the muscle flap caused muscle relaxation with a concomitant and effective reduction in the occlusion pressure. The NANC-induced relaxation mechanism of porcine fundus preparations could be transferred to an efficient smooth muscle sphincter with a high threshold of continence and electrically controlled defecation.
Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation
NASA Astrophysics Data System (ADS)
Kempe, René; Huang, Yu; Parra, Lucas C.
2014-04-01
Objective. Research studies on transcranial electric stimulation, including direct current, often use a computational model to provide guidance on the placing of sponge-electrode pads. However, the expertise and computational resources needed for finite element modeling (FEM) make modeling impractical in a clinical setting. Our objective is to make the exploration of different electrode configurations accessible to practitioners. We provide an efficient tool to estimate current distributions for arbitrary pad configurations while obviating the need for complex simulation software. Approach. To efficiently estimate current distributions for arbitrary pad configurations we propose to simulate pads with an array of high-definition (HD) electrodes and use an efficient linear superposition to then quickly evaluate different electrode configurations. Main results. Numerical results on ten different pad configurations on a normal individual show that electric field intensity simulated with the sampled array deviates from the solutions with pads by only 5% and the locations of peak magnitude fields have a 94% overlap when using a dense array of 336 electrodes. Significance. Computationally intensive FEM modeling of the HD array needs to be performed only once, perhaps on a set of standard heads that can be made available to multiple users. The present results confirm that by using these models one can now quickly and accurately explore and select pad-electrode montages to match a particular clinical need.
NASA Astrophysics Data System (ADS)
Kezurer, Noa; Farah, Nairouz; Mandel, Yossi
2016-08-01
Hemorrhagic shock accounts for 30-40 percent of trauma mortality, as bleeding may sometimes be hard to control. Application of short electrical pulses on blood vessels was recently shown to elicit robust vasoconstriction and reduction of blood loss following vascular injury. In this study we present a novel approach for vasoconstriction based on endovascular application of electrical pulses for situations where access to the vessel is limited. In addition to ease of access, we hypothesize that this novel approach will result in a localized and efficient vasoconstriction. Using computer modeling (COMSOL Multiphysics, Electric Currents Module), we studied the effect of endovascular pulsed electrical treatment on abdominal aorta of pigs, and compared the efficiency of different electrodes configurations on the electric field amplitude, homogeneity and locality when applied on a blood vessel wall. Results reveal that the optimal configuration is the endovascular approach where four electrodes are used, spaced 13 mm apart. Furthermore, computer based temperature investigations (bio-heat model, COMSOL Multiphysics) show that the maximum expected temperature rise is of 1.2 degrees; highlighting the safety of the four endovascular electrodes configuration. These results can aid in planning the application of endovascular pulsed electrical treatment as an efficient and safe vasoconstriction approach.
Kezurer, Noa; Farah, Nairouz; Mandel, Yossi
2016-01-01
Hemorrhagic shock accounts for 30–40 percent of trauma mortality, as bleeding may sometimes be hard to control. Application of short electrical pulses on blood vessels was recently shown to elicit robust vasoconstriction and reduction of blood loss following vascular injury. In this study we present a novel approach for vasoconstriction based on endovascular application of electrical pulses for situations where access to the vessel is limited. In addition to ease of access, we hypothesize that this novel approach will result in a localized and efficient vasoconstriction. Using computer modeling (COMSOL Multiphysics, Electric Currents Module), we studied the effect of endovascular pulsed electrical treatment on abdominal aorta of pigs, and compared the efficiency of different electrodes configurations on the electric field amplitude, homogeneity and locality when applied on a blood vessel wall. Results reveal that the optimal configuration is the endovascular approach where four electrodes are used, spaced 13 mm apart. Furthermore, computer based temperature investigations (bio-heat model, COMSOL Multiphysics) show that the maximum expected temperature rise is of 1.2 degrees; highlighting the safety of the four endovascular electrodes configuration. These results can aid in planning the application of endovascular pulsed electrical treatment as an efficient and safe vasoconstriction approach. PMID:27534438
The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)
NASA Astrophysics Data System (ADS)
Azman, M. F.; Azman, A. W.
2017-11-01
Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.
Electrical stimulation superimposed onto voluntary muscular contraction.
Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe
2005-01-01
Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.
Benrick, Anna; Maliqueo, Manuel; Johansson, Julia; Sun, Miao; Wu, Xiaoke; Mannerås-Holm, Louise; Stener-Victorin, Elisabet
2014-12-01
To compare the effect of a single session of acupuncture with either low-frequency electrical or manual stimulation on insulin sensitivity and molecular pathways in the insulin-resistant dihydrotestosterone-induced rat polycystic ovary syndrome (PCOS) model. Both stimulations cause activation of afferent nerve fibers. In addition, electrical stimulation causes muscle contractions, enabling us to differentiate changes induced by activation of sensory afferents from contraction-induced changes. Control and PCOS rats were divided into no-stimulation, manual-, and electrical stimulation groups and insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Manually stimulated needles were rotated 180° ten times every 5 min, or low-frequency electrical stimulation was applied to evoke muscle twitches for 45 min. Gene and protein expression were analyzed by real-time PCR and Western blot. The glucose infusion rate (GIR) was lower in PCOS rats than in controls. Electrical stimulation was superior to manual stimulation during treatment but both methods increased GIR to the same extent in the post-stimulation period. Electrical stimulation decreased mRNA expression of Adipor2, Adrb1, Fndc5, Erk2, and Tfam in soleus muscle and increased ovarian Adrb2 and Pdf. Manual stimulation decreased ovarian mRNA expression of Erk2 and Sdnd. Electrical stimulation increased phosphorylated ERK levels in soleus muscle. One acupuncture session with electrical stimulation improves insulin sensitivity and modulates skeletal muscle gene and protein expression more than manual stimulation. Although electrical stimulation is superior to manual in enhancing insulin sensitivity during stimulation, they are equally effective after stimulation indicating that it is activation of sensory afferents rather than muscle contraction per se leading to the observed changes.
Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi
2017-04-01
We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.
Hsieh, Ru-Lan; Lee, Wen-Chung
2002-11-01
To investigate the therapeutic effects of one shot of low-frequency percutaneous electrical nerve stimulation one shot of transcutaneous electrical nerve stimulation in patients with low back pain. In total, 133 low back pain patients were recruited for this randomized, control study. Group 1 patients received medication only. Group 2 patients received medication plus one shot of percutaneous electrical nerve stimulation. Group 3 patients received medication plus one shot of transcutaneous electrical nerve stimulation. Therapeutic effects were measured using a visual analog scale, body surface score, pain pressure threshold, and the Quebec Back Pain Disability Scale. Immediately after one-shot treatment, the visual analog scale improved 1.53 units and the body surface score improved 3.06 units in the percutaneous electrical nerve stimulation group. In the transcutaneous electrical nerve stimulation group, the visual analog scale improved 1.50 units and the body surface score improved 3.98 units. The improvements did not differ between the two groups. There were no differences in improvement at 3 days or 1 wk after the treatment among the three groups. Simple one-shot treatment with percutaneous electrical nerve stimulation or transcutaneous electrical nerve stimulation provided immediate pain relief for low back pain patients. One-shot transcutaneous electrical nerve stimulation treatment is recommended due to the rarity of side effects and its convenient application.
Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio
2010-01-30
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.
2017-06-01
We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.1870 - Evoked response electrical stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...
21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...
On the efficiency of FES cycling: a framework and systematic review.
Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M
2012-01-01
Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.
Energy efficient neural stimulation: coupling circuit design and membrane biophysics.
Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C
2012-01-01
The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.
A Systematic Review of Electric-Acoustic Stimulation
Ching, Teresa Y. C.; Cowan, Robert
2013-01-01
Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259
The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.
Janssen, Arno M; Oostendorp, Thom F; Stegeman, Dick F
2015-05-17
The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject's head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the relationship between the coil orientation and the direction of the induced electric field on the one hand, and the head and brain anatomy on the other hand, seems crucial. Therefore, the induced electric field in the cortex as a function of the coil orientation has been examined in this study. The effect of changing the coil orientation on the induced electric field was evaluated for fourteen cortical targets. We used a finite element model to calculate the induced electric fields for thirty-six coil orientations (10 degrees resolution) per target location. The effects on the electric field due to coil rotation, in combination with target site anatomy, have been quantified. The results confirm that the electric field perpendicular to the anterior sulcal wall of the central sulcus is highly susceptible to coil orientation changes and has to be maximized for an optimal stimulation effect of the motor cortex. In order to obtain maximum stimulation effect in areas other than the motor cortex, the electric field perpendicular to the cortical surface in those areas has to be maximized as well. Small orientation changes (10 degrees) do not alter the induced electric field drastically. The results suggest that for all cortical targets, maximizing the strength of the electric field perpendicular to the targeted cortical surface area (and inward directed) optimizes the effect of TMS. Orienting the TMS coil based on anatomical information (anatomical magnetic resonance imaging data) about the targeted brain area can improve future results. The standard coil orientations, used in cognitive and clinical neuroscience, induce (near) optimal electric fields in the subject-specific head model in most cases.
Lee, Hyung-Min; Howell, Bryan; Grill, Warren M; Ghovanloo, Maysam
2018-05-01
The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.
Electric-acoustic interactions in the hearing cochlea: single fiber recordings.
Tillein, J; Hartmann, R; Kral, A
2015-04-01
The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled
VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE
Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A.; Redl, Heinz; Tracey, Kevin J.
2010-01-01
The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre–electrical vagus nerve stimulation = 1033 ± 210 s versus post–electrical vagus nerve stimulation = 585 ± 111 s; P < 0.05) and total blood loss (pre–electrical vagus nerve stimulation = 48.4 ± 6.8 mL versus post–electrical vagus nerve stimulation = 26.3 ± 6.7 mL; P < 0.05). Reduced bleeding time after vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity. PMID:19953009
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...
Vargas Luna, Jose Luis; Mayr, Winfried; Cortés-Ramirez, Jorge-Armando
2018-06-09
There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings-in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. Graphical abstract In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0-15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability.
Wang, Bo; Wang, Guangjun; To, Filip; Butler, J. Ryan; Claude, Andrew; McLaughlin, Ronald M.; Williams, Lakiesha N.; de Jongh Curry, Amy L.; Liao, Jun
2013-01-01
Recently, we have developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserved natural extracellular matrix structure, mechanical anisotropy, and vasculature templates, and also showed good cell recellularization and differentiation potential. In this study, a multi-stimulation bioreactor was built to provide coordinated mechanical and electrical stimulations for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (106 cells/ml) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that, after 2-day culture with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed cardiomyocyte-like phenotype, by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2-day bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2-day and 4-day tissue constructs were comparable to the tissue constructs produced by stirring reseeding followed by 2-week static culture, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development, but also for patients by reducing the waiting time in future clinical scenarios. PMID:23923967
Ni, D
1992-12-01
A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.
Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter
2014-01-01
To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.
Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan
2018-06-25
High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.
The Effects of Transcutaneous Electrical Stimulation on the Orthodontic Movement of Teeth.
1985-05-01
Transcutaneous electrical nerve stimulation is an alternating electrical current applied k., ’ to the skin or gingiva with surface electrodes. Many...AD-AI68 889 THE EFFECTS OF TRANSCUTANEOUS ELECTRICAL STIMULATION ON 1/i THE ORTHODONTIC MOVEMENT OF TEETH(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON...SPECIAL FIELD OF THE THESIS: of Transcutaneous Electrical Stimiu- Transcutaneous Electrical Stimulation lation on the Orthodontic Movement
Yu, Xiaoyun; Yang, Jie; Hou, Xiaohua; Zhang, Kan; Qian, Wei; Chen, J D Z
2009-05-01
The aim of this study was to investigate the effect of cisplatin on gastric myoelectrical activity and the role of gastric electrical stimulation in the treatment of cisplatin-induced emesis in dogs. Seven dogs implanted with electrodes on the gastric serosa were used in a two-session study. Cisplatin was infused in both the control session and the gastric electrical stimulation session, and gastric electrical stimulation was applied in the gastric electrical stimulation session. Gastric slow waves and emesis, as well as behaviors suggestive of nausea, were recorded during each session. The results were as follows: (1) cisplatin induced vomiting and other symptoms and induced gastric dysrhythmia. The percentage of normal slow waves decreased significantly during the 2.5 h before vomiting (P=0.01) and the period of vomiting (P<0.001). (2) Gastric electrical stimulation reduced emesis and the symptoms score. The total score in the control session was higher than that in the gastric electrical stimulation session (P=0.02). However, gastric electrical stimulation had no effects on gastric dysrhythmia. It is concluded that cisplatin induces emesis and gastric dysrhythmia. Gastric electrical stimulation may play a role in relieving chemotherapy-induced emetic responses and deserves further investigation.
Immediate effect of laryngeal surface electrical stimulation on swallowing performance.
Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto
2018-01-01
Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery more than hyoid muscles.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... devices include headaches following treatment with electrical stimulation. Potential risk of seizure--electrical stimulation of the brain may result in seizures, particularly in patients with a history of... effects from electrical stimulation of the brain--The physiological effects associated with electrical...
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...
Deng, M Q; Fan, B Q
1994-09-01
Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)
Advances in selective activation of muscles for non-invasive motor neuroprostheses.
Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L
2016-06-13
Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.
Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.
Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison
2015-10-01
Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.
Tinnitus Treatment with Precise and Optimal Electric Stimulation: Opportunities and Challenges
Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison
2015-01-01
Purpose of review Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent findings Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, non-invasive, direct-current stimulation uses an active electrode in the ear canal, tympanic membrane or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Summary Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms. PMID:26208122
Chughtai, Morad; Piuzzi, Nicholas; Yakubek, George; Khlopas, Anton; Sodhi, Nipun; Sultan, Assem A; Nasir, Salahuddin; Yates, Benjamin S T; Bhave, Anil; Mont, Michael A
2017-10-12
Patients suffering from quadriceps muscle weakness secondary to osteoarthritis or after surgeries, such as total knee arthroplasty, appear to benefit from the use of neuromuscular electrical stimulation (NMES), which can improve muscle strength and function, range of motion, exercise capacity, and quality of life. Several modalities exist that deliver this therapy. However, with the ever-increasing demand to improve clinical efficiency and costs, digitalize healthcare, optimize data collection, improve care coordination, and increase patient compliance and engagement, newer devices incorporating technologies that facilitate these demands are emerging. One of these devices, an app-controlled home-based NMES therapy system that allows patients to self-manage their condition and potentially increase adherence to the treatment, incorporates a smartphone-based application which allows a cloud-based portal that feeds real-time patient monitoring to physicians, allowing patients to be supported remotely and given feedback. This device is a step forward in improving both patient care and physician efficiency, as well as decreasing resource utilization, which potentially may reduce healthcare costs.
A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators
Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.
2013-01-01
Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972
Xu, Hao; Tong, Na; Huang, Shaobin; Zhou, Shaofeng; Li, Shuang; Li, Jianjun; Zhang, Yongqing
2018-05-03
This study aimed to investigate the degradation efficiency of 2,4,6-trichlorophenol through a batch of potentiostatic experiments (0.2 V vs. Ag/AgCl). Efficiencies in the presence and absence of acetate and glucose were compared through open-circuit reference experiments. Significant differences in degradation efficiency were observed in six reactors. The highest and lowest degradation efficiencies were observed in the closed-circuit reactor fed with glucose and in the open-circuit reactor, respectively. This finding was due to the enhanced bacterial metabolism caused by the application of micro-electrical field and degradable organics as co-substrates. The different treatment efficiencies were also caused by the distinct bacterial communities. The composition of bacterial community was affected by adding different organics as co-substrates. At the phylum level, the most dominant bacteria in the reactor with the added acetate and glucose were Proteobacteria and Firmicutes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre
2014-01-01
Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality. PMID:26770730
Chiu, Hung-Wei; Lu, Chien-Chi; Chuang, Jia-min; Lin, Wei-Tso; Lin, Chii-Wann; Kao, Ming-Chien; Lin, Mu-Lien
2013-06-01
This paper presents the design flow of two high-efficiency class-E amplifiers for the implantable electrical stimulation system. The implantable stimulator is a high-Q class-E driver that delivers a sine-wave pulsed radiofrequency (PRF) stimulation, which was verified to have a superior efficacy in pain relief to a square wave. The proposed duty-cycle-controlled class-E PRF driver designed with a high-Q factor has two operational modes that are able to achieve 100% DC-AC conversion, and involves only one switched series inductor and an unchanged parallel capacitor. The measured output amplitude under low-voltage (LV) mode using a 22% duty cycle was 0.98 V with 91% efficiency, and under high-voltage (HV) mode using a 47% duty cycle was 2.95 V with 92% efficiency. These modes were inductively controlled by a duty-cycle detector, which can detect the duty-cycle modulated signal generated from the external complementary low-Q class-E power amplifier (PA). The design methodology of the low-Q inductive interface for a non-50% duty cycle is presented. The experimental results exhibits that the 1.5-V PA that consumes DC power of 14.21 mW was able to deliver a 2.9-V sine wave to a 500 Ω load. The optimal 60% drain efficiency of the system from the PA to the load was obtained at a 10-mm coupling distance.
Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy
ERIC Educational Resources Information Center
van der Linden, Marietta
2012-01-01
In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…
Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan
2017-04-01
Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Digital electronic bone growth stimulator
Kronberg, J.W.
1993-01-01
The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.
Dudley-Javoroski, Shauna; Shields, Richard K.
2009-01-01
The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of routine gravitational and muscular loads removes a critical stimulus for maintenance of bone mineral density (BMD), precipitating neurogenic osteoporosis in paralyzed limbs. The primary adaptations of bone to reduced use are demineralization of epiphyses and thinning of the diaphyseal cortical wall. Electrical stimulation of paralyzed muscle markedly reduces deleterious post-SCI adaptations. Recent studies demonstrate that physiological levels of electrically induced muscular loading hold promise for preventing post-SCI BMD decline. Rehabilitation specialists will be challenged to develop strategies to prevent or reverse musculoskeletal deterioration in anticipation of a future cure for SCI. Quantifying the precise dose of stress needed to efficiently induce a therapeutic effect on bone will be paramount to the advancement of rehabilitation strategies. PMID:18566946
Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng
2016-06-15
Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.
2017-01-01
Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years.
NASA Astrophysics Data System (ADS)
Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.
2018-06-01
Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.
Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning
2015-01-01
[Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734
NASA Astrophysics Data System (ADS)
Veselov, F. V.; Novikova, T. V.; Khorshev, A. A.
2015-12-01
The paper focuses on economic aspects of the Russian thermal generation sector's renovation in a competitive market environment. Capabilities of the existing competitive electricity and capacity pricing mechanisms, created during the wholesale market reform, to ensure the wide-scale modernization of thermal power plants (TPPs) are estimated. Some additional stimulating measures to focus the investment process on the renovation of the thermal generation sector are formulated, and supplementing and supporting costs are assessed. Finally, the systemic effect of decelerating wholesale electricity prices caused by efficiency improvements at thermal power plants is analyzed depending on the scales of renovation and fuel prices.
Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field
Grimaldi, Piercesare; Schweers, Nicole
2013-01-01
Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271
Choi, Jong-Bae
2016-01-01
[Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689
Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men
Perez, M; Lucia, A; Santalla, A; Chicharro, J
2003-01-01
Objective: To determine the effects of electrical stimulation (ES) on oxygen uptake (VO2) kinetics and delta efficiency (DE) during gradual exercise. The hypothesis was that ES would attenuate the VO2-workload relation and improve DE. Methods: Fifteen healthy, untrained men (mean (SD) age 22 (5) years) were selected. Ten were electrostimulated on both quadriceps muscles with a frequency of 45–60 Hz, with 12 seconds of stimulation followed by eight seconds recovery for a total of 30 minutes a day, three days a week for six weeks. The remaining five subjects were assigned to a control group. A standardised exercise test on a cycle ergometer (ramp protocol, workload increases of 20 W/min) was performed by each subject before and after the experimental period. The slope of the VO2-power output (W) relation (ΔVO2/ΔW) and DE were calculated in each subject at moderate to high intensities (above the ventilatory threshold—that is, from 50–60% to 100% VO2max). Results: The mean (SEM) values for ΔVO2/ΔW and DE had significantly decreased and increased respectively after the six week ES programme (p<0.05; 9.8 (0.2) v 8.6 (0.5) ml O2/W/min respectively and 27.7 (0.9) v 31.5 (1.4)% respectively). Conclusions: ES could be used as a supplementary tool to improve two of the main determinants of endurance capacity, namely VO2 kinetics and work efficiency. PMID:12663356
Howe, D S; Dunning, J; Zorman, C; Garverick, S L; Bogie, K M
2015-02-01
Ideally, all chronic wounds would be prevented as they can become life threatening complications. The concept that a wound produces a 'current of injury' due to the discontinuity in the electrical field of intact skin provides the basis for the concept that electrical stimulation (ES) may provide an effective treatment for chronic wounds. The optimal stimulation waveform parameters are unknown, limiting the reliability of achieving a successful clinical therapeutic outcome. In order to gain a more thorough understanding of ES for chronic wound therapy, systematic evaluation using a valid in vivo model is required. The focus of the current paper is development of the flexible modular surface stimulation (MSS) device by our group. This device can be programed to deliver a variety of clinically relevant stimulation paradigms and is essential to facilitate systematic in vivo studies. The MSS version 2.0 for small animal use provides all components of a single-channel, programmable current-controlled ES system within a lightweight, flexible, independently-powered portable device. Benchtop testing and validation indicates that custom electronics and control algorithms support the generation of high-voltage, low duty-cycle current pulses in a power-efficient manner, extending battery life and allowing ES therapy to be delivered for up to 7 days without needing to replace or disturb the wound dressing.
[The role of magnetic stimulation in diagnosis of the peripheral nervous system].
Dressler, D; Benecke, R; Meyer, B U; Conrad, B
1988-12-01
Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.
Li, Xiao-Li; Jia, Tian-Ming; Luan, Bin; Liu, Tao; Yuan, Yan
2011-04-01
To study the effects of electric stimulation at the cerebellar fastigial nucleus on astrocytes in the hippocampus of neonatal rats with hypoxic-ischemic brain damage (HIBD) and the possible mechanism. One hundred and eighty 7-day-old neonatal Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group) and HIBD with and without electric stimulation (n=60 each). The HIBD model of neonatal rats was prepared by the Rice-Vennucci method. Electric stimulation at the cerebellar fastigial nucleus was given 24 hrs after the operation in the electric stimulation group once daily and lasted for 30 minutes each time. The other two groups were not subjected to electric stimulation but captured to fix in corresponding periods. Rats were sacrificed 3, 7, 14 and 21 days after stimulations to observe the glial fibrillary acidic protein (GFAP) expression by immunohistochemisty and the ultrastructural changes of astrocytes in the hippocampus under an electron microscope. Immunohistochemical analysis showed the expression of GFAP in the HIBD groups with and without electric stimulation increased significantly compared with the control group on day 3, reached the peak on day 7, and the increased expression remained till to day 21. The GFAP expression in the electric stimulation group was significantly lower than that in the untreated HIBD group at all time points. Under the electron microscope, the astrocytes in the untreated HIBD group were swollen and the amount of organelles was reduced, while the swelling of astrocytes was alleviated and the organelles remained in integrity in the electric stimulation group. The electric stimulation at the cerebellar fastigial nucleus can inhibit the excessive proliferation of astrocytes and relieve the structural damage of astrocytes in neonatal rats following HIBD.
Thompson, P D; Day, B L; Crockard, H A; Calder, I; Murray, N M; Rothwell, J C; Marsden, C D
1991-01-01
Activity in descending motor pathways after scalp electrical and magnetic brain stimulation of the motor cortex was recorded from the exposed cervico-medullary junction in six patients having trans-oral surgery of the upper cervical spine. Recordings during deep anaesthesia without muscle paralysis revealed an initial negative potential (D wave) at about 2 ms with electrical stimulation in five of the six patients. This was followed by a muscle potential which obscured any later waveforms. Magnetic stimulation produced clear potentials in only one patient. The earliest wave to magnetic stimulation during deep anaesthesia was 1-2 ms later than the earliest potential to electrical stimulation. Following lightening of the anaesthetic and the administration of muscle relaxants a series of later negative potentials (I waves) were more clearly seen to both electrical and magnetic stimulation. More I waves were recorded to magnetic stimulation during light anaesthesia than during deep anaesthesia. Increasing the intensity of electrical stimulation also produced an extra late I wave. At the highest intensity of magnetic stimulation the latency of the earliest potential was comparable to the D wave to electrical stimulation. The intervals between these various D and I waves corresponded to those previously described for the timing of single motor unit discharge after cortical stimulation. PMID:1654395
Byeon, Haewon; Koh, Hyeung Woo
2016-06-01
[Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study's findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia.
Byeon, Haewon; Koh, Hyeung Woo
2016-01-01
[Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study’s findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia. PMID:27390421
Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells
Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.
2016-01-01
Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064
Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio
2014-07-01
Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy
2018-04-01
Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.
Electrical and optical co-stimulation in the deaf white cat
NASA Astrophysics Data System (ADS)
Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter
2018-02-01
Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.
Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T
1992-09-01
Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.
Nanomaterial-Enabled Neural Stimulation
Wang, Yongchen; Guo, Liang
2016-01-01
Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938
Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire
2014-07-01
The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.
Chang, Gwo-Ching
2013-01-01
Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.
Electrical Stimulation for Pressure Injuries: A Health Technology Assessment
Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa
2017-01-01
Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years. Patients and caregivers reported that pressure injuries were burdensome and reduced their quality of life. Patients and caregivers also noted that electrical stimulation seemed to reduce the time it took the wounds to heal. Conclusions While electrical stimulation is safe to use (GRADE quality of evidence: high) there is uncertainty about whether it improves wound healing (GRADE quality of evidence: low). In Ontario, publicly funding electrical stimulation for pressure injuries could result in extra costs of $0.77 to $3.85 million yearly for the next 5 years. PMID:29201261
Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W
2011-09-01
To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-07
BACKGROUND In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. MATERIAL AND METHODS The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A - conventional TENS, B - acupuncture-like TENS, C - high-voltage electrical stimulation, D - interferential current stimulation, E - diadynamic current, and F - control group. RESULTS The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. CONCLUSIONS Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain.
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-01
Background In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. Material/Methods The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A – conventional TENS, B – acupuncture-like TENS, C – high-voltage electrical stimulation, D – interferential current stimulation, E – diadynamic current, and F – control group. Results The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. Conclusions Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain. PMID:28062862
Effects of electrical stimulation on the histological properties of wounds in diabetic mice.
Thawer, H A; Houghton, P E
2001-01-01
The purpose of this study was to identify mechanisms underlying electrically stimulated wound closure in diabetic mice. Adult male mice (n = 58) with full-thickness excisional wounds were treated five times using negative polarity over the wound site for 15 minutes each over a 16-day period with sham (0 Volts) or 5.0, 10.0, 12.5 Volts. In addition, animals (diabetic (n = 33) and nondiabetic (n = 22)) received treatments of electrical stimulation (12.5 V), or sham treatment (0 V) at wound sites which were then harvested and prepared for histological analysis at 2, 8, and 16 days postwounding. Using computerized image analysis of sections stained with a picro sirus red-fast green staining technique, we found that increasing doses of electrical stimulation reduced collagen/noncollagenous protein ratios measured in the superficial scar of nondiabetic animals, with no effect in diabetic animals. In the deep scar, lower doses of electrical stimulation (5.0 V) produced significantly (p < 0.01) increased collagen deposition in wounds of nondiabetic animals compared with sham controls. Higher doses of electrical stimulation (12.5 V) were required to produce changes in diabetic animals than were observed in nondiabetic animals. These results suggest that electrical stimulation altered collagen deposition in excisional wounds of diabetic and nondiabetic animals. Electrical stimulation had a differential effect on wound healing in diabetic compared with nondiabetic animals. These data speak to the need to study the effects of electrical stimulation on healing in disease-specific models.
Wang, Bo; Wang, Guangjun; To, Filip; Butler, J Ryan; Claude, Andrew; McLaughlin, Ronald M; Williams, Lakiesha N; de Jongh Curry, Amy L; Liao, Jun
2013-09-03
Recently, we developed an optimal decellularization protocol to generate 3D porcine myocardial scaffolds, which preserve the natural extracellular matrix structure, mechanical anisotropy, and vasculature templates and also show good cell recellularization and differentiation potential. In this study, a multistimulation bioreactor was built to provide coordinated mechanical and electrical stimulation for facilitating stem cell differentiation and cardiac construct development. The acellular myocardial scaffolds were seeded with mesenchymal stem cells (10(6) cells/mL) by needle injection and subjected to 5-azacytidine treatment (3 μmol/L, 24 h) and various bioreactor conditioning protocols. We found that after 2 days of culturing with mechanical (20% strain) and electrical stimulation (5 V, 1 Hz), high cell density and good cell viability were observed in the reseeded scaffold. Immunofluorescence staining demonstrated that the differentiated cells showed a cardiomyocyte-like phenotype by expressing sarcomeric α-actinin, myosin heavy chain, cardiac troponin T, connexin-43, and N-cadherin. Biaxial mechanical testing demonstrated that positive tissue remodeling took place after 2 days of bioreactor conditioning (20% strain + 5 V, 1 Hz); passive mechanical properties of the 2 day and 4 day tissue constructs were comparable to those of the tissue constructs produced by stirring reseeding followed by 2 weeks of static culturing, implying the effectiveness and efficiency of the coordinated simulations in promoting tissue remodeling. In short, the synergistic stimulations might be beneficial not only for the quality of cardiac construct development but also for patients by reducing the waiting time in future clinical scenarios.
Ma, Yunhan; Li, Jiayu; Wang, Ge; Ke, Qiong; Qiu, Sien; Gao, Liang; Wan, Haifeng; Zhou, Yang; Xiang, Andy Peng; Huang, Qunshan; Feng, Guoping; Zhou, Qi; Yang, Shihua
2016-01-01
The efficiency of assisted reproductive technologies (ARTs) in nonhuman primates is low due to no screening criterions for selecting sperm, oocyte, and embryo as well as its surrogate mothers. Here we analyzed 15 pairs of pregnant and non-pregnant cynomolgus monkeys, each pair of which received embryos from one batch of fertilized oocytes, and found ratio of endometrial to myometrial thicknesses in abdominal ultrasonic transverse section of uterus is a reliable indicator for selection of recipients for embryo transfer. We performed 305 ovarian stimulations in 128 female cynomolgus monkeys and found that ovarian stimulation can be performed in a whole year and repeated up to six times in the same monkey without deteriorating fertilization potential of eggs until a poor response to stimulation happened. Fertilization can be efficiently achieved with both conventional and piezo-driven intracytoplasmic sperm injection procedures. In semen collection, semen quality is higher with the penile robe electrical stimulus method compared with the rectal probe method. Moreover, caesarean section is an effective strategy for increasing baby survival rates of multiple pregnancies. These findings provide a practical guidance for the efficient use of ARTs, facilitating their use in genetic engineering of macaque monkeys for basic and translational neuroscience research. PMID:27173128
Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing
2009-10-01
Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.
Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K
1998-01-01
Background—Gastric electrical stimulation has been attempted for several years with little success. Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. Keywords: gastric electrical stimulation; gastric motility PMID:9824339
Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.
Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej
2018-05-17
Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.
Electrical resistivity measurements in the mammalian cochlea after neural degeneration.
Micco, Alan G; Richter, Claus-Peter
2006-08-01
In the present series of experiments, the effect of neural degeneration on the cochlear structure electrical resistivities was evaluated to test if it alters the current flow in the cochlea and if increased current levels are needed to stimulate the impaired cochlea. In cochlear implants, frequency information is encoded in part by stimulating discrete populations of spiral ganglion cells along the cochlea. However, electrical properties of the cochlear structures result in shunting of the current away from the auditory neurons. This consumes energy, makes cochlear implants less efficient, and drastically reduces battery life. Models of the electrically stimulated cochlea serve to make predictions on current paths using modified and improved cochlear implant electrodes. However, one of the model's shortcomings is that most of the values for tissue impedances are not direct measurements. They are derived from bulk impedance measurements, which are fitted to lumped-element models. The four-electrode reflection-coefficient technique was used to measure resistivities in the gerbil cochlea. In vivo and in vitro (the hemicochlea) models were used. Measurements were made in normal and in deafened animals. Cochlear damage was induced by neomycin injection into the animals' middle ears. Neural degeneration was allowed to occur over 2 months before performing the measurements in the deafened animals. The resistivity values in deafened animals were smaller than in the normal-hearing animals, thus altering the current flow within the cochlea. Resistivity changes and subsequent changes in current path should be considered in future designs of cochlear implants.
Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E
2016-10-01
We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.
Kana, Kujaany; Song, Hannah; Laschinger, Carol; Zandstra, Peter W; Radisic, Milica
2015-09-01
Myocardial infarction, a prevalent cardiovascular disease, is associated with cardiomyocyte cell death, and eventually heart failure. Cardiac tissue engineering has provided hopes for alternative treatment options, and high-fidelity tissue models for drug discovery. The signal transduction mechanisms relayed in response to mechanoelectrical (physical) stimulation or biochemical stimulation (hormones, cytokines, or drugs) in engineered heart tissues (EHTs) are poorly understood. In this study, an EHT model was used to elucidate the signaling mechanisms involved when insulin was applied in the presence of electrical stimulation, a stimulus that mimics functional heart tissue environment in vitro. EHTs were insulin treated, electrically stimulated, or applied in combination (insulin and electrical stimulation). Electrical excitability parameters (excitation threshold and maximum capture rate) were measured. Protein kinase B (AKT) and phosphatidylinositol-3-kinase (PI3K) phosphorylation revealed that insulin and electrical stimulation relayed electrical excitability through two separate signaling cascades, while there was a negative crosstalk between sustained activation of AKT and PI3K.
NASA Astrophysics Data System (ADS)
Meng, Zhaokai; Petrov, Georgi I.; Yakovlev, Vladislav V.
2016-02-01
Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm-1 to 4500 cm-1, sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.
Neuroprosthetics and Solutions for Restoring Sensorimotor Functions
2009-12-01
system can load drug molecules in the polymer backbones and inside the nanoholes respectively. Electrical stimulation can release drugs from both the...polymer backbones and the 13 nanoholes , which significantly improves the drug load and release efficiency. Furthermore, with one drug incorporated...in the polymer backbone during electrochemical polymerization, the nanoholes inside the polymer can act as containers to store a different drug, and
Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds
Sirivisoot, Sirinrath; Harrison, Benjamin S
2011-01-01
Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883
Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng
2015-05-01
Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.
Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.
Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki
2017-01-01
Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.
Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields
Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio
2014-01-01
Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402
2015-10-01
AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff
Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham
2016-07-01
This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.
NASA Astrophysics Data System (ADS)
Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.
2009-05-01
Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.
NASA Astrophysics Data System (ADS)
Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.
2016-05-01
Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.
Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator.
Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C; Cao, Guo Zhong; Shen, I Y; Hume, Clifford R
2015-12-01
Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. © The Author(s) 2015.
Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H
2013-11-01
To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.
Electrical stimulation in exercise training
NASA Technical Reports Server (NTRS)
Kroll, Walter
1994-01-01
Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.
Kim, Jin; Choi, Jae Young
2016-01-01
The drug regimen plus electrical stimulation was more effective in treating Bell's palsy than the conventional drug treatment alone. The effectiveness of such a sub-threshold, continuous, low frequency electrical stimulation suggests a new therapeutic approach to accelerate nerve regeneration and improve functional recovery after injury. The purpose of this study was to determine whether sub-threshold, continuous electrical stimulation at 20 Hz facilitates functional recovery of patients with Bell's palsy. The authors performed a prospective randomized study that included 60 patients with mild-to-moderate grade Bell's palsy (HB grade ≤4, SB grade ≥40), to evaluate the effect of developed electrical stimulation on the resolution of symptoms. Thirty patients were treated with prednisolone or/and acyclovir plus electrical stimulation within 7 days of the onset of symptoms. The other 30 patients were treated with only prednisolone or/and acyclovir as a control group. The overall rate of patient recovery among those treated with prednisolone or/and acyclovir plus electrical stimulation (96%) was significantly better (p < 0.05) than the rate among those treated with only prednisolone or/and acyclovir (88%).
NASA Astrophysics Data System (ADS)
Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro
2016-06-01
The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.
Vataev, S I; Malgina, N A; Oganesyan, G A
2015-07-01
The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.
[Electrical acupoint stimulation increases athletes' rapid strength].
Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming
2006-05-01
To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.
Economic evaluation of bone stimulation modalities: A systematic review of the literature.
Button, Melissa L; Sprague, Sheila; Gharsaa, Osama; Latouche, Sandra; Bhandari, Mohit
2009-04-01
Various bone stimulation modalities are commonly used in treatment of fresh fractures and nonunions; however, the effectiveness and efficiency of these modalities remain uncertain. A systematic review of trials evaluating the clinical and economical outcomes of ultrasounds, electrical stimulation, and extracorporeal sound waves on fracture healing was conducted. We searched four electronic databases for economic evaluations that assessed bone stimulation modalities using ultrasound therapy, electrical stimulation, or extracorporeal shock waves. In addition, we searched the references and related articles of eligible studies, and a content expert was contacted. Information on the clinical and economical outcomes of patients was independently extracted by reviewers. Fourteen studies met the inclusion criteria; therefore, very limited research was found on the cost associated with treatments and the corresponding outcomes. The data available focus primarily on the efficacy of newly introduced treatment methods for bone growth, but failed to incorporate the costs of implementing such treatments. One economic analysis was identified that assessed different treatment paths using ultrasound. A total cost savings of 24-40% per patient occurred when ultrasound was used for fresh fractures and nonunions (grade C recommendation). The results suggest that the ultrasound is a viable alternative for bone stimulation; however, the impacts of the other modalities are left unknown due to the lack of research available. Methodological limitations leave the overall economic and clinical impact of these modalities uncertain. Large, prospective, randomized controlled trials that include cost-effectiveness analyses are needed to further define the clinical effectiveness and financial burden associated with bone stimulation modalities.
Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation
Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki
2017-01-01
Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745
Numerical Simulation of Energy Conversion Mechanism in Electric Explosion
NASA Astrophysics Data System (ADS)
Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team
2017-06-01
Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.
Electrical Cerebral Stimulation Modifies Inhibitory Systems
NASA Astrophysics Data System (ADS)
Cuéllar-Herrera, M.; Rocha, L.
2003-09-01
Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.
Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.
Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M
2014-02-01
Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.
Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J
2013-06-10
Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.
Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha
2012-09-01
Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https://e-irb.khmccri.or.kr/eirb/receipt/index.html?code=02&status=5. Unique identifier: KHUHMDIRB 1008-02.
Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha
2015-10-01
Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.
Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David
2013-06-01
We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.
Differential effect of brief electrical stimulation on voltage-gated potassium channels
Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.
2017-01-01
Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or “fading,” may be attributed to KV-channel activation. PMID:28202576
Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko
2016-01-01
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817
NASA Astrophysics Data System (ADS)
Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko
2016-05-01
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.
NASA Technical Reports Server (NTRS)
Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.
2011-01-01
Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.
Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C
2017-01-01
Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833
Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.
Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W
2013-08-01
Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.
Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ
NASA Astrophysics Data System (ADS)
Mata, Diogo Miguel Rodrigues Marinho da
The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.
Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.
Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat
2012-12-01
Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.
Kim, Sae Hyun; Oh, Byung-Mo; Han, Tae Ryun; Jeong, Ho Joong
2015-01-01
Objective To identify the differences in the movement of the hyoid bone and the vocal cord with and without electrical stimulation in normal subjects. Methods Two-dimensional motion analysis using a videofluoroscopic swallowing study with and without electrical stimulation was performed. Surface electrical stimulation was applied during swallowing using electrodes placed at three different locations on each subject. All subjects were analyzed three times using the following electrode placements: with one pair of electrodes on the suprahyoid muscles and a second pair on the infrahyoid muscles (SI); with placement of the electrode pairs on only the infrahyoid muscles (IO); and with the electrode pairs placed vertically on the suprahyoid and infrahyoid muscles (SIV). Results The main outcomes of this study demonstrated an initial downward displacement as well as different movements of the hyoid bone with the three electrode placements used for electrical stimulation. The initial positions of the hyoid bone with the SI and IO placements resulted in an inferior and anterior displaced position. During swallowing, the hyoid bone moved in a more superior and less anterior direction, resulting in almost the same peak position compared with no electrical stimulation. Conclusion These results demonstrate that electrical stimulation caused an initial depression of the hyoid bone, which had nearly the same peak position during swallowing. Electrical stimulation during swallowing was not dependent on the position of the electrode on the neck, such as on the infrahyoid or on both the suprahyoid and infrahyoid muscles. PMID:26361589
Frequency dependence of behavioral modulation by hippocampal electrical stimulation
La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.
2013-01-01
Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322
Toward rational design of electrical stimulation strategies for epilepsy control
Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom
2009-01-01
Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525
Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide
2017-03-01
[Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.
NASA Astrophysics Data System (ADS)
Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon
2016-07-01
The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.
Electrical stimulation as a means for achieving recovery of function in stroke patients.
Popović, Dejan B; Sinkaer, Thomas; Popović, Mirjana B
2009-01-01
This review presents technologies used in and assesses the main clinical outcomes of electrical therapies designed to speed up and increase functional recovery in stroke patients. The review describes methods which interface peripheral systems (e.g., cyclic neural stimulation, stimulation triggered by electrical activity of muscles, therapeutic functional electrical stimulation) and transcranial brain stimulation with surface and implantable electrodes. Our conclusion from reviewing these data is that integration of electrical therapy into exercise-active movement mediated by electrical activation of peripheral and central sensory-motor mechanisms enhances motor re-learning following damage to the central nervous system. Motor re-learning is considered here as a set of processes associated with practice or experience that leads to long-term changes in the capability for movement. An important suggestion is that therapeutic effects are likely to be much more effective when treatment is applied in the acute, rather than in the chronic, phase of stroke.
Mimicking muscle activity with electrical stimulation
NASA Astrophysics Data System (ADS)
Johnson, Lise A.; Fuglevand, Andrew J.
2011-02-01
Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.
Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji
2016-04-01
[Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.
NASA Astrophysics Data System (ADS)
Deng, Zhi-De
The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can inform dosage requirements in convulsive therapies. Our results indicate that the MST electric field is more focal and more confined to the superficial cortex compared to ECT. Further, the conventional ECT current amplitude is much higher than necessary for seizure induction. One of the factors important to clinical outcome is seizure expression. However, it is unknown how the induced electric field is related to seizure onset and propagation. In this work, we explore the effect of the electric field distribution on the quantitative ictal electroencephalography and current source density in ECT and MST. We further demonstrate how the ECT electrode shape, size, spacing, and current can be manipulated to yield more precise control of the induced electric field. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Next, we demonstrate how the electric field induced by transcranial magnetic stimulation (TMS) can be controlled. We present the most comprehensive comparison of TMS coil electric field penetration and focality to date. The electric field distributions of more than 50 TMS coils were simulated. We show that TMS coils differ markedly in their electric field characteristics, but they all are subject to a consistent depth-focality tradeoff. Specifically, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electric field spread. Figure-8 type coils are fundamentally more focal compared to circular type coils. Understanding the depth-focality tradeoff can help researchers and clinicians to appropriately select coils and interpret TMS studies. This work also enables the development of novel TMS coils with electronically switchable active and sham modes as well as for deep TMS. Design considerations of these coils are extensively discussed. Part II of the dissertation aims to quantify the effect of individual, sex, and age differences in head geometry and conductivity on the induced neural stimulation strength and focality of ECT and MST. Across and within ECT studies, there is marked unexplained variability in seizure threshold and clinical outcomes. It is not known to what extent the age and sex effects on seizure threshold are mediated by interindividual variation in neural excitability and/or anatomy of the head. Addressing this question, we examine the effect on ECT and MST induced field characteristics of the variability in head diameter, scalp and skull thicknesses and conductivities, as well as brain volume, in a range of values that are representative of the patient population. Variations in the local tissue properties such as scalp and skull thickness and conductivity affect the existing ECT configurations more than MST. On the other hand, the existing MST coil configurations show greater sensitivity to head diameter variation compared to ECT. Due to the high focality of MST compared to ECT, the stimulated brain volume in MST is more sensitive to variation in tissue layer thicknesses. We further demonstrate how individualization of the stimulus pulse current amplitude, which is not presently done in ECT or MST, can be used as a means of compensating for interindividual anatomical variability, which could lead to better and more consistent clinical outcomes. Part III of the dissertation aims to systemically investigate, both computationally and experimentally, the safety of TMS and ECT in patients with a deep-brain stimulation system, and propose safety guidelines for the dual-device therapy. We showed that the induction of significant voltages in the subcutaneous leads in the scalp during TMS could result in unintended and potentially dangerous levels of electrical currents in the DBS electrode contacts. When applying ECT in patients with intracranial implants, we showed that there is an increase in the electric field strength in the brain due to conduction through the burr holes, especially when the burr holes are not fitted with nonconductive caps. Safety concerns presently limit the access of patients with intracranial electronic devices to therapies involving transcranial stimulation technology, which may preclude them from obtaining appropriate medical treatments. Gaining better understanding of the interactions between transcranial and implanted stimulation devices will demarcate significant safety risks from benign interactions, and will provide recommendations for reducing risk, thus enhancing the patient's therapeutic options.
Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia
2013-08-01
Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Electrical Stimulation Modulates High γ Activity and Human Memory Performance
Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt
2018-01-01
Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403
Spontaneous Activity Drives Local Synaptic Plasticity In Vivo.
Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, Christian
2015-07-15
Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in the mouse visual cortex in vivo. Analyzing activity changes across large populations of synapses revealed a simple and efficient local plasticity rule: synapses that exhibit low synchronicity with nearby neighbors (<12 μm) become depressed in their transmission frequency. Asynchronous electrical stimulation of individual synapses in hippocampal slices showed that this is due to a decrease in synaptic transmission efficiency. Accordingly, experimentally increasing local synchronicity, by stimulating synapses in response to spontaneous activity at neighboring synapses, stabilized synaptic transmission. Finally, blockade of the high-affinity proBDNF receptor p75(NTR) prevented the depression of asynchronously stimulated synapses. Thus, spontaneous activity drives local synaptic plasticity at individual synapses in an "out-of-sync, lose-your-link" fashion through proBDNF/p75(NTR) signaling to refine neuronal connectivity. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.
Ponnath, Abhilash; Farris, Hamilton E.
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437
Ponnath, Abhilash; Farris, Hamilton E
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren
2017-08-01
We evaluated whether combination therapy with transcutaneous electrical nerve stimulation and oxybutynin results in a superior treatment response compared to either therapy alone in children with urge incontinence. In this placebo controlled study 66 children with a mean ± SD age of 7.3 ± 1.6 years who were diagnosed with urge incontinence were randomized to 3 treatment groups. Group 1 consisted of 22 children undergoing transcutaneous electrical nerve stimulation plus active oxybutynin administration. Group 2 included 21 children undergoing active transcutaneous electrical nerve stimulation plus placebo oxybutynin administration. Group 3 consisted of 23 children undergoing active oxybutynin administration plus placebo transcutaneous electrical nerve stimulation. The children received active or placebo transcutaneous electrical nerve stimulation over the sacral S2 to S3 outflow for 2 hours daily in combination with 5 mg active or placebo oxybutynin twice daily. The intervention period was 10 weeks. Primary outcome was number of wet days weekly. Secondary outcomes were severity of incontinence, frequency, maximum voided volume over expected bladder capacity for age, average voided volume over expected bladder capacity for age and visual analogue scale score. Combination therapy was superior to oxybutynin monotherapy, with an 83% greater chance of treatment response (p = 0.05). Combination therapy was also significantly more effective than transcutaneous electrical nerve stimulation monotherapy regarding reduced number of wet days weekly (mean difference -2.28, CI -4.06 to -0.49), severity of incontinence (-3.11, CI -5.98 to -0.23) and daily voiding frequency (-2.82, CI -4.48 to -1.17). Transcutaneous electrical nerve stimulation in combination with oxybutynin for childhood urge incontinence was superior to monotherapy consisting of transcutaneous electrical nerve stimulation or oxybutynin, although the latter only reached borderline statistical significance. Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond
2008-01-01
To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.
NASA Astrophysics Data System (ADS)
Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil
2017-10-01
Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.
Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R
2010-01-01
We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves
Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo
2013-01-01
Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506
Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.
2012-01-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026
Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E
2006-08-01
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.
Quessy, Stephan; Freedman, Edward G
2004-06-01
The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.
Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation
Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.
2014-01-01
Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494
Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.
Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M
2014-08-01
Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.
Handler, Michael; Schier, Peter P; Fritscher, Karl D; Raudaschl, Patrik; Johnson Chacko, Lejo; Glueckert, Rudolf; Saba, Rami; Schubert, Rainer; Baumgarten, Daniel; Baumgartner, Christian
2017-01-01
Our sense of balance and spatial orientation strongly depends on the correct functionality of our vestibular system. Vestibular dysfunction can lead to blurred vision and impaired balance and spatial orientation, causing a significant decrease in quality of life. Recent studies have shown that vestibular implants offer a possible treatment for patients with vestibular dysfunction. The close proximity of the vestibular nerve bundles, the facial nerve and the cochlear nerve poses a major challenge to targeted stimulation of the vestibular system. Modeling the electrical stimulation of the vestibular system allows for an efficient analysis of stimulation scenarios previous to time and cost intensive in vivo experiments. Current models are based on animal data or CAD models of human anatomy. In this work, a (semi-)automatic modular workflow is presented for the stepwise transformation of segmented vestibular anatomy data of human vestibular specimens to an electrical model and subsequently analyzed. The steps of this workflow include (i) the transformation of labeled datasets to a tetrahedra mesh, (ii) nerve fiber anisotropy and fiber computation as a basis for neuron models, (iii) inclusion of arbitrary electrode designs, (iv) simulation of quasistationary potential distributions, and (v) analysis of stimulus waveforms on the stimulation outcome. Results obtained by the workflow based on human datasets and the average shape of a statistical model revealed a high qualitative agreement and a quantitatively comparable range compared to data from literature, respectively. Based on our workflow, a detailed analysis of intra- and extra-labyrinthine electrode configurations with various stimulation waveforms and electrode designs can be performed on patient specific anatomy, making this framework a valuable tool for current optimization questions concerning vestibular implants in humans.
Direct Intracochlear Acoustic Stimulation Using a PZT Microactuator
Luo, Chuan; Omelchenko, Irina; Manson, Robert; Robbins, Carol; Oesterle, Elizabeth C.; Cao, Guo Zhong; Hume, Clifford R.
2015-01-01
Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays. PMID:26631107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu
Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less
Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa
2010-06-01
The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor-adrenaline and dopamine concentrations (P < 0.05) than non-transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.
Differential effect of brief electrical stimulation on voltage-gated potassium channels.
Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W
2017-05-01
Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or "fading," may be attributed to K V -channel activation. Copyright © 2017 the American Physiological Society.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue
NASA Astrophysics Data System (ADS)
Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.
Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.
Cheney, P D; Griffin, D M; Van Acker, G M
2013-10-01
Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.
Öncü, Emine; Zincir, Handan
2017-07-01
The aim of the present study was to assess the efficacy of transcutaneous electrical nerve stimulation in patients with acute exacerbation of chronic obstructive pulmonary disease. In patients with stable chronic obstructive pulmonary disease, transcutaneous electrical nerve stimulation has been known to attain improvement in forced expiratory volume in 1 seconds, physical activity, and quality of life. However, information about the effects of transcutaneous electrical nerve stimulation on acute exacerbation of chronic obstructive pulmonary disease is quite limited. A single-blind, randomised controlled trial. Data were collected between August 2013-May 2014. Eighty-two patients who were hospitalised with a diagnosis of acute exacerbation of chronic obstructive pulmonary disease were randomly assigned to a transcutaneous electrical nerve stimulation group receiving transcutaneous electrical nerve stimulation treatment for 20 seance over the acupuncture points with pharmacotherapy or placebo group receiving the same treatment without electrical current output from the transcutaneous electrical nerve stimulation device. Pulmonary functional test, six-minute walking distance, dyspnoea and fatigue scale, and St. George's Respiratory Questionnaire scores were assessed pre- and postprogram. The program started at the hospital by the researcher was sustained in the patient's home by the caregiver. All patients were able to complete the program, despite the exacerbation. The 20 seance transcutaneous electrical nerve stimulation program provided clinically significant improvement in forced expiratory volume in 1 seconds 21 ml, 19·51% but when compared with the placebo group, the difference was insignificant (p > 0·05). The six-minute walking distance increased by 48·10 m more in the placebo group (p < 0·05). There were no significant differences between the two groups' St. George's Respiratory Questionnaire, dyspnoea and fatigue score (p > 0·05). Adding transcutaneous electrical nerve stimulation therapy to pharmacotherapy in patients with acute exacerbation of chronic obstructive pulmonary disease provided clinical improvement in forced expiratory volume in 1 seconds and add benefit in exercise capacity, but no significant effect on the other outcomes measured. Transcutaneous electrical nerve stimulation can be used as a non-invasive complementary therapy due to its beneficial effects on forced expiratory volume in 1 seconds and exercise capacity in patients with acute exacerbation of chronic obstructive pulmonary disease. © 2016 John Wiley & Sons Ltd.
Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Crujido, Lisa; Wright-Harp, Wilhelmina; Payne, Joan; Jeffries, Neal; Sonies, Barbara C.; Ludlow, Christy L.
2006-01-01
Surface electrical stimulation is currently used in therapy for swallowing problems, although little is known about its physiological effects on neck muscles or swallowing. Previously, when one surface electrode placement was used in dysphagic patients at rest, it lowered the hyo-laryngeal complex. Here we examined the effects of nine other placements in normal volunteers to determine: 1) if movements induced by surface stimulation using other placements differ, and 2) if lowering the hyo-laryngeal complex by surface electrical stimulation interfered with swallowing in healthy adults. Ten bipolar surface electrode placements overlying the submental and laryngeal regions were tested. Maximum tolerated stimulation levels were applied at rest while participants held their mouths closed. Videofluoroscopic recordings were used to measure hyoid bone and subglottic air column (laryngeal) movements from resting position and while swallowing 5ml of liquid barium with and without stimulation. Videofluoroscopic recordings of swallows were rated blind to condition using the NIH-Swallowing Safety Scale (NIH-SSS). Significant (p<0.0001) laryngeal and hyoid descent occurred with stimulation at rest. During swallowing, significant (p≤0.01) reductions in both the larynx and hyoid bone peak elevation occurred during stimulated swallows. The stimulated swallows were also judged less safe than non-stimulated swallows using the NIH-SSS (p=0.0275). Because surface electrical stimulation reduced hyo-laryngeal elevation during swallowing in normal volunteers, our findings suggest that surface electrical stimulation will reduce elevation during swallowing therapy for dysphagia. PMID:16873602
Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.
Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J
2014-04-01
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus
Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.
2014-01-01
In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368
Zhou, J. A.; Woo, S. J.; Park, S. I.; Kim, E. T.; Seo, J. M.; Chung, H.; Kim, S. J.
2008-01-01
This article reports on a retinal stimulation system for long-term use in animal electrical stimulation experiments. The presented system consisted of an implantable stimulator which provided continuous electrical stimulation, and an external component which provided preset stimulation patterns and power to the implanted stimulator via a paired radio frequency (RF) coil. A rechargeable internal battery and a parameter memory component were introduced to the implanted retinal stimulator. As a result, the external component was not necessary during the stimulation mode. The inductive coil pair was used to pass the parameter data and to recharge the battery. A switch circuit was used to separate the stimulation mode from the battery recharging mode. The implantable stimulator was implemented with IC chips and the electronics, except for the stimulation electrodes, were hermetically packaged in a biocompatible metal case. A polyimide-based gold electrode array was used. Surgical implantation into rabbits was performed to verify the functionality and safety of this newly designed system. The electrodes were implanted in the suprachoroidal space. Evoked cortical potentials were recorded during electrical stimulation of the retina. Long-term follow-up using OCT showed no chorioretinal abnormality after implantation of the electrodes. PMID:18317521
Zenina, O Yu; Kromin, A A
2012-10-01
Stimulation of the lateral hypothalamus in preliminary fed animals in the presence of the food is associated with successful food-procuring behavior, accompanied by regular generation of high-amplitude slow electrical waves by muscles of the lesser curvature, body, and antrum of the stomach, which was reflected in the structure of temporal organization of slow electrical activity in the form of unimodal distribution of slow wave periods typical of satiation state. Despite increased level of food motivation caused by stimulation of the lateral hypothalamus, the additional food intake completely abolished the inhibitory effects of hunger motivation excitement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach of satiated rabbits. Changes in slow electrical activity of the stomach muscles in rabbits deprived of food over 24 h and offered food and associated food-procuring behavior during electrical stimulation of the lateral hypothalamus have a two-phase pattern. Despite food intake during phase I of electrical stimulation, the downstream inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature of stomach abolishes the stimulating effect of food reinforcement on slow electrical muscle activity in the lesser curvature, body, and antrum of the stomach. During phase II of electrical stimulation, the food reinforcement decreases inhibitory effect of hunger motivation excitement on myogenic pacemaker of the lesser curvature that paces maximal rhythm of slow electrical waves for muscles activity in the lesser curvature, body, and antrum of the stomach, which is reflected by unimodal distribution of slow electrical wave periods. Our results indicated that the structure of temporal organization of slow electrical activity of the stomach muscles reflects convergent interactions of food motivation and reinforcement excitations on the dorsal vagal complex neurons in medulla oblongata.
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... manual stimulation or before the carcass chain is started in an automatic system. (c) Operation—(1... personnel, the electricity supplied to the stimulating surfaces shall be locked-off when cleaning...
Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.
Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A
2017-09-01
Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.
Study of driving fatigue alleviation by transcutaneous acupoints electrical stimulations.
Wang, Fuwang; Wang, Hong
2014-01-01
Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.
Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans
2013-03-01
Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.
Hara, Yukihiro
2008-02-01
In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the brain during functional activity has shown that cerebral blood flow in the sensory-motor cortex on the injured side is higher during a power-assisted FES session than during simple active movement or simple electrical stimulation. Nevertheless, evidence-based strategies for motor rehabilitation are more easily available, particularly for patients with hemiparesis.
NASA Astrophysics Data System (ADS)
Lee, Mun Bae; Kwon, Oh-In
2018-04-01
Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.
Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site
Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Williamson, Adam J.; Kergoat, Loïg; Rivnay, Jonathan; Khodagholy, Dion; Berggren, Magnus; Bernard, Christophe; Malliaras, George G.
2016-01-01
Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents. PMID:27506784
Steinberg, Holger
2013-07-01
Today's brain stimulation methods are commonly traced back historically to surgical brain operations. With this one-sided historical approach it is easy to overlook the fact that non-surgical electrical brain-stimulating applications preceded present-day therapies. The first study on transcranial electrical brain stimulation for the treatment of severe mental diseases in a larger group of patients was carried out in the 1870s. Between 1870 and 1878 German psychiatrist Rudolph Gottfried Arndt published the results of his studies in three reports. These are contextualized with contemporary developments of the time, focusing in particular on the (neuro-) sciences. As was common practice at the time, Arndt basically reported individual cases in which electricity was applied to treat severe psychoses with depressive symptoms or even catatonia, hypochondriac delusion and melancholia. Despite their lengthiness, there is frequently a lack of precise physical data on the application of psychological-psychopathological details. Only his 1878 report includes general rules for electrical brain stimulation. Despite their methodological shortcomings and lack of precise treatment data impeding exact understanding, Arndt's studies are pioneering works in the field of electric brain stimulation with psychoses and its positive impacts. Today's transcranial direct current stimulation, and partly vagus nerve stimulation, can be compared with Arndt's methods. Although Arndt's only tangible results were indications for the application of faradic electricity (for inactivity, stupor, weakness and manic depressions) and galvanic current (for affective disorders and psychoses), a historiography of present-day brain stimulation therapies should no longer neglect studies on electrotherapy published in German and international psychiatric and neurological journals and monographs in the 1870s and 1880s. Copyright © 2013 Elsevier Inc. All rights reserved.
Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.
2011-01-01
When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416
Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom
2011-01-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345
Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom
2012-10-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.
Howell, Bryan; McIntyre, Cameron C
2016-06-01
Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
NASA Astrophysics Data System (ADS)
Howell, Bryan; McIntyre, Cameron C.
2016-06-01
Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.
Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père
2012-12-01
Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.
Tao, Ye; Chen, Tao; Liu, Zhong-Yu; Wang, Li-Qiang; Xu, Wei-Wei; Qin, Li-Min; Peng, Guang-Hua; Yi-Fei, Huang
2016-09-01
To quantify the transcorneal electrical stimulation (TES)-induced effects on regional photoreceptors and visual signal pathway of N-methyl-N-nitrosourea (MNU)-treated retinas via topographic measurements. N-methyl-N-nitrosourea-administered mice received TES or sham stimulations and were subsequently subjected to electroretinography (ERG), multielectrode array (MEA), and histologic and immunohistochemistry examinations. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were also performed to determine the mRNA levels of Bax, Bcl-2, Calpain-2, Caspase-3, brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Amplitudes of ERG b-wave in the TES-treated mice were significantly larger than those in the sham controls (P < 0.01). Microelectrode array examination revealed that the photoreceptors in TES-treated retina were efficiently preserved (P < 0.01). Morphologic measurements showed that the central retina region was more consolidated than the other areas in the TES-treated mice. Together with the disproportionate distribution of immunostaining in retinal flat mounts, these findings indicated that different rescuing kinetics existed among regional photoreceptors. Compared with the sham controls, a significantly increased signal-to-noise ratio was also found in the TES-treated mice (TES100: 2.02 ± 1.12; TES200: 4.42 ± 1.51; sham: 0.25 ± 0.13; P < 0.01). Moreover, qRT-PCR measurements suggested that the altered expression of several apoptotic factors and neurotrophic cytokines was correlated with TES-induced protection. Regional photoreceptors in the MNU-administered retinas exhibit different sensitivities to TES. Transcorneal electrical stimulation is capable of ameliorating MNU-induced photoreceptor degeneration and rectifying abnormalities in the inner visual signal pathways.
Triolo, Ronald J.; Bailey, Stephanie Nogan; Lombardo, Lisa M.; Miller, Michael E.; Foglyano, Kevin; Audu, Musa L.
2014-01-01
Objective To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion. Design Single-subject design case series with subjects acting as their own concurrent controls. Setting Hospital-based clinical biomechanics laboratory. Participants Six (4M, 2F age 46±10.8yrs) long-time users (6.1±3.9yrs) of implanted neuroprostheses for lower extremity function with chronic (8.6±2.8yrs) mid-cervical or thoracic level injuries (C6-T10). Interventions Continuous low level stimulation to the hip (gluteus maximus, posterior adductor or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes. Main Outcome Measure(s) Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length and maximum forward lean), and peak shoulder moment at preferred speed over 10m level surface; speed, pushrim kinetics and subjective ratings of effort for level 100m sprints and up a 30.5m ramp of approximately 5% grade. Results Three out of five subjects demonstrated reduced peak resultant pushrim forces (p≤0.014) and improved efficiency, (p≤0.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in three subjects and increased in two others (p<0.001). Maximal forward trunk lean also increased by 19-26% (p<0.001) with stimulation in these three subjects. Stroke lengths were unchanged by stimulation in all subjects, and two showed extremely small (5%) but statistically significant increases in cadence (p≤0.021). Performance measures for sprints and inclines were generally unchanged with stimulation, however subjects consistently rated propulsion with stimulation to be easier for both surfaces. Conclusions Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort. PMID:23628377
Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.
Wee, A S; Jiles, K; Brennan, R
2001-01-01
Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.
Contralaterally Controlled Functional Electrical Stimulation for Stroke Rehabilitation
Knutson, Jayme S.; Harley, Mary Y.; Hisel, Terri Z.; Makowski, Nathaniel S.; Fu, Michael J.; Chae, John
2012-01-01
Contralaterally controlled functional electrical stimulation (CCFES) is an innovative method of delivering neuromuscular electrical stimulation for rehabilitation of paretic limbs after stroke. It is being studied to evaluate its efficacy in improving recovery of arm and hand function and ankle dorsiflexion in chronic and subacute stroke patients. The initial studies provide preliminary evidence supporting the efficacy of CCFES. PMID:23365893
Paik, Young-Rim; Lee, Jeong-Hoon; Lee, Doo-Ho; Park, Hee-Su; Oh, Dong-Hwan
2017-12-01
[Purpose] This study investigated the effects of mirror therapy and neuromuscular electrical stimulation on upper extremity function in stroke patients. [Subjects and Methods] This study recruited 8 stroke patients. All patients were treated with mirror therapy and neuromuscular electrical stimulation five times per week for 4 weeks. Upper limb function evaluation was performed using upper extremity part of fugl meyer assessment. [Results] Before and after intervention, fugl meyer assessment showed significant improvement. [Conclusion] In this study, mirror therapy and neuromuscular electrical stimulation are effective methods for upper extremity function recovery in stroke patients.
Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W
2015-04-01
Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Does preoperative electrical stimulation of the skin alter the healing process?
Borba, Graziela C; Hochman, Bernardo; Liebano, Richard E; Enokihara, Milvia M S S; Ferreira, Lydia M
2011-04-01
In vitro studies have demonstrated that electrical current may affect fibroblast proliferation and synthesis of collagen fibers. In humans, the application of electrical current by positioning the positive electrode on skin wounds resulted in thinner hypertrophic scars. The aim of this study was to evaluate the effects of preoperative electrical stimulation on cutaneous wound healing in rats. Forty rats were divided into two groups of 20 animals each. In the control group, an incision was made on the back of the animals. In the stimulation group, a preoperative electrical stimulation was applied using a rectangular pulse current at a frequency of 7.7 Hz, and intensity of 8 mA, for 30 min, with the positive electrode placed on the back of the animal, and the negative electrode placed on the abdominal wall. Following, an incision was made on their back. Biopsy was carried out on postoperative day 7 and 14, and histologic analysis was performed. The number of newly formed vessels, fibroblasts, and type III collagen fibers in the stimulation group on postoperative day 7 were greater than those in the control group. Preoperative positive-polarity electrical stimulation positively affects angiogenesis and fibroblast proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.
Sun, Li; Yeh, Judy; Xie, Zhuojun; Kuang, Mei; Damaser, Margot S; Zutshi, Massarat
2016-05-01
We have explored cell-based therapy to aid anal sphincter repair, but a conditioning injury is required to direct stem cells to the site of injury because symptoms usually manifest at a time remote from injury. We aimed to investigate the effect of local electrical stimulation followed by mesenchymal stem cell delivery on anal sphincter regeneration at a time remote from injury. With the use of a rat model, electrical stimulation parameters and cell delivery route were selected based on in vivo cytokine expression and luciferase-labeled cell imaging of the anal sphincter complex. Three weeks after a partial anal sphincter excision, rats were randomly allocated to 4 groups based on different local interventions: no treatment, daily electrical stimulation for 3 days, daily stimulation for 3 days followed by stem cell injection on the third day, and daily electrical stimulation followed by stem cell injection on the first and third days. Histology-assessed anatomy and anal manometry evaluated physiology 4 weeks after intervention. The electrical stimulation parameters that significantly upregulated gene expression of homing cytokines also achieved mesenchymal stem cell retention when injected directly in the anal sphincter complex in comparison with intravascular and intraperitoneal injections. Four weeks after intervention, there was significantly more new muscle in the area of injury and significantly improved anal resting pressure in the group that received daily electrical stimulation for 3 days followed by a single injection of 1 million stem cells on the third day at the site of injury. This was a pilot study and therefore was not powered for functional outcome. In this rat injury model with optimized parameters, electrical stimulation with a single local mesenchymal stem cell injection administered 3 weeks after injury significantly improved both new muscle formation in the area of injury and anal sphincter pressures.
Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering
Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana
2010-01-01
In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379
Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations
Wang, Fuwang; Wang, Hong
2014-01-01
Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242
Mobile optogenetic modules for mice
NASA Astrophysics Data System (ADS)
Rusakov, Konstantin; Radzewicz, Czesław; Czajkowski, Rafał; Konopka, Witold; Chilczuk, Joanna
2017-08-01
We present a set of novel optogenetic devices for mice freely moving in cages. The purpose of the devices is to stimulate specific brain regions using light. The devices we have constructed consist of an electrical connector, cannula and micro- LED chip operating at 470 nm as light source for delivering light into the stimulated region of the mouse brain. We have also demonstrated light conversion from 470 nm to 590 nm by applying a silicate orange phosphor directly to the LED chip. The measured conversion efficiency is approximately 80% for ZIP595I phosphor. We discuss the properties of various forms of implant needles with respect to the ease of LED attachment and experimental validation of the constructed optogenetic implants.
Ultralow-threshold microcavity Raman laser on a microelectronic chip
NASA Astrophysics Data System (ADS)
Kippenberg, T. J.; Spillane, S. M.; Armani, D. K.; Vahala, K. J.
2004-06-01
Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 µm^3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 µW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.
Ultralow-threshold microcavity Raman laser on a microelectronic chip.
Kippenberg, T J; Spillane, S M; Armani, D K; Vahala, K J
2004-06-01
Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 (microm)3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 microW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.
Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren
2017-09-01
In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin
2015-01-01
Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595
Electrical management of neurogenic lower urinary tract disorders.
Joussain, C; Denys, P
2015-09-01
Management of lower urinary tract dysfunction (LUTD) in neurological diseases remains a priority because it leads to many complications such as incontinence, renal failure and decreased quality of life. A pharmacological approach remains the first-line treatment for patients with neurogenic LUTD, but electrical stimulation is a well-validated and recommended second-line treatment. However, clinicians must be aware of the indications, advantages and side effects of the therapy. This report provides an update on the 2 main electrical stimulation therapies for neurogenic LUTD - inducing direct bladder contraction with the Brindley procedure and modulating LUT physiology (sacral neuromodulation, tibial posterior nerve stimulation or pudendal nerve stimulation). We also describe the indications of these therapies for neurogenic LUTD, following international guidelines, as illustrated by their efficacy in patients with neurologic disorders. Electrical stimulation could be proposed for neurogenic LUTD as second-line treatment after failure of oral pharmacologic approaches. Nevertheless, further investigations are needed for a better understanding of the mechanisms of action of these techniques and to confirm their efficacy. Other electrical investigations, such as deep-brain stimulation and repetitive transcranial magnetic stimulation, or improved sacral anterior root stimulation, which could be associated with non-invasive and highly specific deafferentation of posterior roots, may open new fields in the management of neurogenic LUTD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Miura, Naoto; Watanabe, Takashi
2016-01-01
Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...
21 CFR 868.2775 - Electrical peripheral nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...
van Laack, R L; Smulders, F J
1990-01-01
From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.
Vomiting Center reanalyzed: An electrical stimulation study
NASA Technical Reports Server (NTRS)
Miller, A. D.; Wilson, V. J.
1982-01-01
Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.
Dose, Francesco; Zanon, Patrizia; Coslovich, Tamara; Taccola, Giuliano
2014-01-01
Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits. PMID:24658101
NASA Astrophysics Data System (ADS)
Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.
2018-04-01
Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175 × larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4 × larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and almost completely restored iBCI decoding performance (>90% recovery for surface stimulation and full recovery for intramuscular stimulation). The results demonstrate that FES-induced artifacts can be easily mitigated in FES + iBCI systems by using LRR for artifact reduction, and suggest that the LRR method may also be useful in other noise reduction applications.
Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures
NASA Astrophysics Data System (ADS)
James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.
2017-12-01
It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2015-10-01
AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...DATES COVERED 30 Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage...instability, among other traumatic affections of joints, and occupations or sports that subject joints to high levels of impact and torsional loading
MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, K; Karvat, A; Liu, J
Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Opticalmore » Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in salivary gland activity. The conductivity changes imaged through EIT are potentially useful for the purpose of salivary monitoring.« less
Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram
2011-04-01
Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing
2017-11-08
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko
2016-06-01
An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.
Transcranial Magnetic Stimulation-coil design with improved focality
NASA Astrophysics Data System (ADS)
Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.
2017-05-01
Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.
An investigation into the induced electric fields from transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration
Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.
Kromin, A A; Zenina, O Yu
2013-09-01
In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.
An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.
Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O
2013-03-01
Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.
An electric stimulation system for electrokinetic particle manipulation in microfluidic devices
NASA Astrophysics Data System (ADS)
Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.
2013-03-01
Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.
Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.
2015-01-01
Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719
Design of electrical stimulation bioreactors for cardiac tissue engineering.
Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G
2008-01-01
Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.
Asai, Takashi
2017-05-01
From the mid-18th century, several different stimulations were used to attempt to resuscitate apparently dead people. These include sound, smell, and light stimulation to the ear, nose and eyes, rubbing the body surface and spirit given to the oral cavity. The most notable stimulation was use of electricity, which was initiated by better understanding of its power by Benjamin Franklin and Luigi A. Galvani. Charles Kite developed the first electrical machine to stimulate the heart, and by 1800, it was found that the most effective site for applying electricity was over the heart.
Aasvang, E K; Werner, M U; Kehlet, H
2014-09-01
Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment and preventive strategies. Thus, there is a need for development of methods with direct stimulation of suspected hyperalgesic tissues to identify the peripheral origin of nociceptive input. We compared the reliability of an ultrasound-guided needle stimulation protocol of electrical detection and pain thresholds to pressure algometry, by performing identical test-retest sequences 10 days apart, in deep tissues in the groin region. Electrical stimulation was performed by five up-and-down staircase series of single impulses of 0.04 ms duration, starting from 0 mA in increments of 0.2 mA until a threshold was reached and descending until sensation was lost. Method reliability was assessed by Bland-Altman plots, descriptive statistics, coefficients of variance and intraclass correlation coefficients. The electrical stimulation method was comparable to pressure algometry regarding 10 days test-retest repeatability, but with superior same-day reliability for electrical stimulation (P < 0.05). Between-subject variance rather than within-subject variance was the main source for test variation. There were no systematic differences in electrical thresholds across tissues and locations (P > 0.05). The presented tissue-specific direct deep tissue electrical stimulation technique has equal or superior reliability compared with the indirect tissue-unspecific stimulation by pressure algometry. This method may facilitate advances in mechanism based preventive and treatment strategies in acute and chronic post-surgical pain states. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
IFESS 2005 Special Session 5 Artifical Vision. Final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, James D.
A special session on visual prostheses was held during the Annual Meeting of the International Functional Electrical Stimulation Society (IFESS), in Montreal, Canada, July 5-9, 2005. IFESS is a meeting that typically attracts researchers in implantable nerve stimulators, functional electrical stimulation, and rehabilitation. All of these areas have significant overlap with the retinal prosthesis, but these areas have decades of research behind them. The special session provided a forum for researchers with vast experience in nerve stimulation to interact with leading research in retinal and cortical visual prostheses. The grant paid for the travel and conference costs of the presentersmore » in the session. The session was chaired by James Weiland (the PI on this grant). The session co-chair was Phil Troyk, Ph.D., from the Illinois Institute of Technology. The Department of Energy was acknowledged at the start of the session as the sponsor. The following talks were delivered: Clinical Trial of a Prototype Retinal Prosthesis James Weiland, Ph.D. Doheny Eye Institute, Los Angeles, California The U.S. Department of Energy's Artificial Sight Program Elias Greenbaum, Ph.D. Oak Ridge National Laboratory, Oak Ridge, Tennessee A 16-Channel stimulator ASIC for use in an intracortical visual prosthesis Phillip R. Troyk, Ph.D. Illinois Institute of Technology, Chicago, Illinois Two approaches to the Optic Nerve Visual Prosthesis Jean Delbeke, M.D. University Cath de Louvain, Louvain, Belgium Design and Implementation of High Power Efficiency Modules for a Cortical Visual Stimulator Mohammad Sawan, Ph.D. Ecole Polytechnique de Montreal, Montreal, Canada Remaining funds from the grant were used to support Dr. Weiland's travel to the Association for Research in Vision and Ophthalmology in May 2006, with DOE approval, where several projects, supported by the DOE artificial retina program, were presented.« less
Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.
Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B
2014-07-01
In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.
Emotions induced by intracerebral electrical stimulation of the temporal lobe.
Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo
2006-01-01
To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.
Byeon, Haewon
2016-01-01
[Purpose] The aim of this study was to compare improvements in swallowing function by the intervention of the Masako maneuver and neuromuscular electrical stimulation in patients with dysphagia caused by stroke. [Subjects and Methods] The Masako maneuver (n=23) and neuromuscular electrical stimulation (n=24) were conducted in 47 patients with dysphagia caused by stroke over a period of 4 weeks. Swallowing recovery was recorded using the functional dysphagia scale based on videofluoroscopic studies. [Results] Mean functional dysphagia scale values for the Masako maneuver and neuromuscular electrical stimulation groups decreased after the treatments. However, the pre-post functional dysphagia scale values showed no statistically significant differences between the groups. [Conclusion] The Masako maneuver and neuromuscular electrical stimulation each showed significant effects on the improvement of swallowing function for the patients with dysphagia caused by stroke, but no significant difference was observed between the two treatment methods. PMID:27512266
FES in Europe and Beyond: Current Translational Research
Coste, Christine Azevedo; Mayr, Winfried; Bijak, Manfred; Musarò, Antonio; Carraro, Ugo
2016-01-01
Capacity of adult neural and muscle tissues to respond to external Electrical Stimulation (ES) is the biological basis for the development and implementation of mobility impairment physiotherapy protocols and of related assistive technologies, e.g, Functional Electrical Stimulation (FES). All body tissues, however, respond to electrical stimulation and, indeed, the most successful application of FES is electrical stimulation of the heart to revert or limit effects of arrhythmias (Pace-makers and Defibrillators). Here, we list and discuss results of FES current research activities, in particular those presented at 2016 Meetings: the PaduaMuscleDays, the Italian Institute of Myology Meeting, the 20th International Functional Electrical Stimulation Society (IFESS) conference held in Montpellier and the Vienna Workshop on FES. Several papers were recently e-published in the European Journal of Translational Myology as reports of meeting presentations. All the events and publications clearly show that FES research in Europe and beyond is alive and promisses translation of results into clinical management of a very large population of persons with deficiencies. PMID:28078074
Feasibility of controlled micturition through electric stimulation.
Schmidt, R A; Tanagho, E A
1979-01-01
Historically, man has been aware of bioelectric phenomena for some 4,000 years. Yet it has only been during the last 20 years that technology has advanced to the stage where controlled bladder emptying has become feasible. A great deal of interest followed the introduction of transistor and bladder stimulation via the principle of radio frequency induction. Spinal cord, sacral, and pelvic nerve and direct bladder stimulation have all been attempted. Only direct bladder stimulation in lower motor neuron situations has shown any promise. The many difficulties associated with bladder stimulation include simultaneous sphincter contraction, pain, electrode and insulation difficulties, and fibroplasia due to movement of electrodes placed in pliable tissues. In addition, the role of the prostate, increased urethral length, and erection responses in the male have received little investigation. These problems are outlined and experimental observations of attempts to achieve controlled micturition in canines areresented. These studies were carried out over a 3-year period, and emphasize responses to stimulation of the spinal cord and sacral roots. It was concluded that the most efficient manner by which to effect simulated micturition is via stimulation of the ventral sacral root dominant for bladder responsiveness, and combine this with selective division of somatic fibers of only the root being stimulated.
Coil optimisation for transcranial magnetic stimulation in realistic head geometry.
Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J
Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2017-10-01
expected. Statistics: Comparisons were analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic
Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone
2016-10-01
AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone
Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco
2016-11-01
Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.; Strietzel, C. J.
2000-01-01
Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.
2000-01-01
Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo
2017-09-01
Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present regardless of the tested EAFDs. Based on the present findings, we conclude that there is an asymmetry between the electric and the acoustic masker modalities. These observations have implications for the design and fitting of EAS sound-coding strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin
2018-01-10
To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.
Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved
2010-01-01
Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613
Stimulating Music: The Pleasures and Dangers of “Electric Music,” 1750–1900
Kennaway, James
2014-01-01
Far from being a purely modern idea, the notion of “electric music” was already common in the eighteenth and nineteenth centuries. The shift in thinking about music from cosmic harmony to nervous stimulation made metaphors and speculative theories relating music and electricity irresistible. This essay considers the development of the idea of electric music, looking at its associations with a sexual “body electric.” It will then examine how this conception of music went from being the subject of sympathy to becoming part of a medical critique of music as a dangerous stimulant, with echoes in music criticism and beyond. PMID:24587689
Electronic enhancement of tear secretion
NASA Astrophysics Data System (ADS)
Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel
2016-02-01
Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.
Taylor, Tom; West, Daniel J; Howatson, Glyn; Jones, Chris; Bracken, Richard M; Love, Thomas D; Cook, Christian J; Swift, Eamon; Baker, Julien S; Kilduff, Liam P
2015-05-01
During congested fixture periods in team sports, limited recovery time and increased travel hinder the implementation of many recovery strategies; thus alternative methods are required. We examined the impact of a neuromuscular electrical stimulation device on 24-h recovery from an intensive training session in professional players. Twenty-eight professional rugby and football academy players completed this randomised and counter-balanced study, on 2 occasions, separated by 7 days. After baseline perceived soreness, blood (lactate and creatine kinase) and saliva (testosterone and cortisol) samples were collected, players completed a standardised warm-up and baseline countermovement jumps (jump height). Players then completed 60 m × 50 m maximal sprints, with 5 min recovery between efforts. After completing the sprint session, players wore a neuromuscular electrical stimulation device or remained in normal attire (CON) for 8 h. All measures were repeated immediately, 2 and 24-h post-sprint. Player jump height was reduced from baseline at all time points under both conditions; however, at 24-h neuromuscular electrical stimulation was significantly more recovered (mean±SD; neuromuscular electrical stimulation -3.2±3.2 vs. CON -7.2±3.7%; P<0.001). Creatine kinase concentrations increased at all time points under both conditions, but at 24-h was lower under neuromuscular electrical stimulation (P<0.001). At 24-h, perceived soreness was significantly lower under neuromuscular electrical stimulation, when compared to CON (P=0.02). There was no effect of condition on blood lactate, or saliva testosterone and cortisol responses (P>0.05). Neuromuscular electrical stimulation improves recovery from intensive training in professional team sports players. This strategy offers an easily applied recovery strategy which may have particular application during sleep and travel. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Maruyama, Yoshihiro; Kawano, Aimi; Okamoto, Shizuko; Ando, Tomoko; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Inoue, Ayako; Imanaga, Junko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Akiyoshi, Jotaro
2012-01-01
Background Cortisol is an essential hormone in the regulation of the stress response along the HPA axis, and salivary cortisol has been used as a measure of free circulating cortisol levels. Recently, salivary alpha-amylase (sAA) has also emerged as a novel biomarker for psychosocial stress responsiveness within the sympathetic adrenomedullary (SAM) system. Principal Findings We measured sAA and salivary cortisol in healthy volunteers after exposure to the Trier Social Stress Test (TSST) and electric stimulation stress. One hundred forty-nine healthy volunteers participated in this study. All subjects were exposed to both the TSST and electric stimulation stress on separate days. We measured sAA and salivary cortisol levels three times immediately before, immediately after, and 20 min after the stress challenge. The State (STAI-S) and Trait (STAI-T) versions of the Spielberger Anxiety Inventory test and the Profile of Mood State (POMS) tests were administered to participants before the electrical stimulation and TSST protocols. We also measured HF, LF and LF/HF Heart Rate Variability ratio immediately after electrical stimulation and TSST exposure. Following TSST exposure or electrical stimulation, sAA levels displayed a rapid increase and recovery, returning to baseline levels 20 min after the stress challenge. Salivary cortisol responses showed a delayed increase, which remained significantly elevated from baseline levels 20 min after the stress challenge. Analyses revealed no differences between men and women with regard to their sAA response to the challenges (TSST or electric stimulations), while we found significantly higher salivary cortisol responses to the TSST in females. We also found that younger subjects tended to display higher sAA activity. Salivary cortisol levels were significantly correlated with the strength of the applied electrical stimulation. Conclusions These preliminary results suggest that the HPA axis (but not the SAM system) may show differential response patterns to distinct kinds of stressors. PMID:22859941
Nowak, Dennis A; Linder, Stefan; Topka, Helge
2005-09-01
Earlier investigations have suggested that isolated conduction block of the facial nerve to transcranial magnetic stimulation early in the disorder represents a very sensitive and potentially specific finding in Bell's palsy differentiating the disease from other etiologies. Stimulation of the facial nerve was performed electrically at the stylomastoid foramen and magnetically at the labyrinthine segment of the Fallopian channel within 3 days from symptom onset in 65 patients with Bell's palsy, five patients with Zoster oticus, one patient with neuroborreliosis and one patient with nuclear facial nerve palsy due to multiple sclerosis. Absence or decreased amplitudes of muscle responses to early transcranial magnetic stimulation was not specific for Bell's palsy, but also evident in all cases of Zoster oticus and in the case of neuroborreliosis. Amplitudes of electrically evoked muscle responses were more markedly reduced in Zoster oticus as compared to Bell's palsy, most likely due to a more severe degree of axonal degeneration. The degree of amplitude reduction of the muscle response to electrical stimulation reliably correlated with the severity of facial palsy. Transcranial magnetic stimulation in the early diagnosis of Bell's palsy is less specific than previously thought. While not specific with respect to the etiology of facial palsy, transcranial magnetic stimulation seems capable of localizing the site of lesion within the Fallopian channel. Combined with transcranial magnetic stimulation, early electrical stimulation of the facial nerve at the stylomastoid foramen may help to establish correct diagnosis and prognosis.
Electrical Polarization of Titanium Surfaces for the Enhancement of Osteoblast Differentiation
Gittens, Rolando A.; Olivares-Navarrete, Rene; Rettew, Robert; Butera, Robert J.; Alamgir, Faisal M.; Boyan, Barbara D.; Schwartz, Zvi
2014-01-01
Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. PMID:23996899
Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom
2013-10-15
Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. Copyright © 2013 Elsevier B.V. All rights reserved.
Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom
2013-01-01
Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of trans-cranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES. PMID:23954780
Hazime, Fuad Ahmad; de Freitas, Diego Galace; Monteiro, Renan Lima; Maretto, Rafaela Lasso; Carvalho, Nilza Aparecida de Almeida; Hasue, Renata Hydee; João, Silvia Maria Amado
2015-01-31
Chronic non-specific low back pain is a major socioeconomic public health issue worldwide and, despite the volume of research in the area, it is still a difficult-to-treat condition. The conservative analgesic therapy usually comprises a variety of pharmacological and non-pharmacological strategies, such as transcutaneous electrical nerve stimulation. The neuromatrix pain model and the new findings on the process of chronicity of pain point to a higher effectiveness of treatments that address central rather than peripheral structures. The transcranial direct current stimulation is a noninvasive technique of neuromodulation that has made recent advances in the treatment of chronic pain. The simultaneous combination of these two electrostimulation techniques (cerebral and peripheral) can provide an analgesic effect superior to isolated interventions. However, all the evidence on the analgesic efficacy of these techniques, alone or combined, is still fragmented. This is a protocol for a randomized clinical trial to investigate whether cerebral electrical stimulation combined with peripheral electrical stimulation is more effective in relieving pain than the isolated application of electrical stimulations in patients with chronic nonspecific low back pain. Ninety-two patients will be randomized into four groups to receive transcranial direct current stimulation (real/sham) + transcutaneous electrical nerve stimulation (real/sham) for 12 sessions over a period of four weeks. The primary clinical outcome (pain intensity) and the secondary ones (sensory and affective aspects of pain, physical functioning and global perceived effect) will be recorded before treatment, after four weeks, in Month 3 and in Month 6 after randomization. Confounding factors such as anxiety and depression, the patient's satisfaction with treatment and adverse effects will also be listed. Data will be collected by an examiner unaware of (blind to) the treatment allocation. The results of this study may assist in clinical decision-making about the combined use of cerebral and peripheral electrical stimulation for pain relief in patients with chronic low back pain. NCT01896453.
A partial hearing animal model for chronic electro-acoustic stimulation
NASA Astrophysics Data System (ADS)
Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.
2014-08-01
Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual hearing following cochlear implantation. The ability to record CAPs via the CI has clinical direct relevance for obtaining objective measures of residual hearing.
Electrical stimulation in the treatment of pain.
Rushton, David N
2002-05-20
To review the published literature concerning the treatment of painful conditions using devices that deliver electrical stimulation to nervous structures. The review briefly surveys the results obtained using surface electrodes ("TENS") as well as implanted devices. The method used is a critical review of the important published literature up to mid-1999. References were obtained using Medline and the keywords "pain", together with "electrical", "stimulation", "neurostimulation" or "TENS". Electrical stimulation has been found to be of potential benefit in the management of a range of painful conditions. Adequately controlled trials of electrical stimulation are often difficult to achieve. Implanted devices tend to be used in the more severe intractable pain conditions. It is likely that there is more than one mechanism of action. The mechanisms of action are however still often poorly understood, even though historically theoretical and experimental advances in the understanding of pain mechanisms prompted the development of clinical systems and the institution of clinical studies. TENS has proved to be remarkably safe, and provides significant analgesia in about half of patients experiencing moderate predictable pain. Implanted devices can be more effective, but they carry a risk of device failure, implant infection or surgical complication, and are reserved for the more severe intractable chronic pains. The main implanted devices used clinically are the spinal cord stimulator and the deep brain stimulator.
The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke.
Gandolla, Marta; Ward, Nick S; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra
2016-01-01
Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership-the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.
Channon, H A; Walker, P J; Kerr, M G; Baud, S R
2003-12-01
This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.
Fulop, Tiberiu; Smith, Corey
2007-11-30
Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.
Antognini, J F; Bravo, E; Atherley, R; Carstens, E
2006-09-01
Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.
Eiber, Calvin D; Dokos, Socrates; Lovell, Nigel H; Suaning, Gregg J
2017-05-01
The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.
Transient finite element modeling of functional electrical stimulation.
Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J
2011-03-01
Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.
Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.
Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo
2003-02-13
Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.
Electrical stimulation in white oyster mushroom (Pleurotus florida) production
NASA Astrophysics Data System (ADS)
Roshita, I.; Nurfazira, K. M. P.; Fern, C. Shi; Ain, M. S. Nur
2017-09-01
White oyster mushroom (Pleurotus florida) is an edible mushroom that gained popularity due to its nutritional values, low production cost and ease of cultivation. There are several research reported on the mushroom fruiting bodies which were actively developed when applying electrical shock treatment. This study was aimed to investigate the effects of different electrical voltages on the growth and yield of white oyster mushroom (Pleurotus florida). Five different electrical voltages had been applied during spawning period which were 6V, 9V, 12V, 15V and mushroom bags without any treatment served as control. Treatment at 6V showed the highest rate for mycelium growth while 15V took the shortest time for fruiting body formation. However, no significant different (P>0.05) among all the treatments was observed for the time taken for the mycelium to fill-up the bag and pinhead emergence. The total fresh weight and percentage of biological efficiency for treatment at 9V showed higher values compared to control. Treatment at 9V also showed the largest pileus diameter and the most firm in the pileus texture. Meanwhile, treatment at 6V showed the highest a* value (redness). In addition, different electrical voltage treatments applied did not show any significant effect on substrate utilization efficiency, colour L* and b* values. In conclusion, among all the electrical treatments applied, 9V could be considered as the best treatment to enhance the yield of white oyster mushroom.
NASA Astrophysics Data System (ADS)
Wood, Matthew D.; Willits, Rebecca Kuntz
2009-08-01
Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.
NASA Astrophysics Data System (ADS)
Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.
2017-08-01
Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off visual pathways.
Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering
Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.
2009-01-01
Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486
Ashrafi, Mohammed; Alonso-Rasgado, Teresa; Baguneid, Mohamed; Bayat, Ardeshir
2017-02-01
Current gold standard lower extremity cutaneous wound management is not always effective. Cutaneous wounds generate a "current of injury" which is directly involved in wound healing processes. Application of exogenous electrical stimulation has been hypothesised to imitate the natural electric current that occurs in cutaneous wounds. The aim of this extensive review was to provide a detailed update on the variety of electrical stimulation modalities used in the management of lower extremity wounds. Several different waveforms and delivery methods of electrical stimulation have been used. Pulsed current appears superior to other electrical modalities available. The majority of studies support the beneficial effects of pulsed current over conservative management of lower extremity cutaneous wounds. Although it appears to have no benefit over causal surgical intervention, it is a treatment option which could be utilised in those patients unsuitable for surgery. Other waveforms and modalities appear promising; however, they still lack large trial data to recommend a firm conclusion with regards to their use. Current studies also vary in quantity, quality and protocol across the different modalities. The ideal electrical stimulation device needs to be non-invasive, portable and cost-effective and provides minimal interference with patients' daily life. Further studies are necessary to establish the ideal electrical stimulation modality, parameters, method of delivery and duration of treatment. The development and implementation of newer devices in the management of acute and chronic wounds provides an exciting direction in the field of electrotherapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Effects of Electroacupuncture on Cyclophosphamide-Induced Emesis in Ferrets.
1996-07-01
Other studies conducted by Dundee’s group showed that acupressure and transcutaneous electrical stimulation ( TENS ) of the same acupoints also benefited...typically left in place for 20-30 minutes. The effects of acupuncture may be augmented with electrical stimulation (EA) and/or heat (e.g. moxibustion). Side...electrodes (Grass) were attached to the end of the needles and electrical stimulation was applied (the EA parameters will be described in detail later
2016-10-01
AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...COVERED 29 Sep 2015 - 28 Sep 2016 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2016-10-01
analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial fibroblasts migrated to a maximum depth of ~250...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...COVERED 30 Sep 2015 – 29 Sep 2016 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic
Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan
2014-01-01
Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808
Arts, Remo A G J; George, Erwin L J; Janssen, Miranda A M L; Griessner, Andreas; Zierhofer, Clemens; Stokroos, Robert J
2018-06-01
Previous studies show that intracochlear electrical stimulation independent of environmental sounds appears to suppress tinnitus, even long-term. In order to assess the viability of this potential treatment option it is essential to study the effects of this tinnitus specific electrical stimulation on speech perception. A randomised, prospective crossover design. Ten patients with unilateral or asymmetric hearing loss and severe tinnitus complaints. The audiological effects of standard clinical CI, formal auditory training and tinnitus specific electrical stimulation were investigated. Results show that standard clinical CI in unilateral or asymmetric hearing loss is shown to be beneficial for speech perception in quiet, speech perception in noise and subjective hearing ability. Formal auditory training does not appear to improve speech perception performance. However, CI-related discomfort reduces significantly more rapidly during CI rehabilitation in subjects receiving formal auditory training. Furthermore, tinnitus specific electrical stimulation has neither positive nor negative effects on speech perception. In combination with the findings from previous studies on tinnitus suppression using intracochlear electrical stimulation independent of environmental sounds, the results of this study contribute to the viability of cochlear implantation based on tinnitus complaints.
Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen
2012-01-01
For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.
Ipsilateral masking between acoustic and electric stimulations.
Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang
2011-08-01
Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.
Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Lee, Sung Eun; Jun, Sang Bum; Kim, Sung June
2013-01-01
A wireless power delivery system is developed to deliver electrical power to the neuroprosthetic devices that are implanted into animals freely moving inside the cage. The wireless powering cage is designed for long-term animal experiments without cumbersome wires for power supply or the replacement of batteries. In the present study, we propose a novel wireless power transmission system using resonator-based inductive links to increase power efficiency and to minimize the efficiency variations. A columnar transmitter coil is proposed to provide lateral uniformity of power efficiency. Using this columnar transmitter coil, only 7.2% efficiency fluctuation occurs from the maximum transmission efficiency of 25.9%. A flexible polymer-based planar type receiver coil is fabricated and assembled with a neural stimulator and an electrode. Using the designed columnar transmitter coil, the implantable device successfully operates while it moves freely inside the cage.
NASA Astrophysics Data System (ADS)
Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.
2018-04-01
Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.
Yang, Li-Zhuang; Shi, Bin; Li, Hai; Zhang, Wei; Liu, Ying; Wang, Hongzhi; Zhou, Yanfei; Wang, Ying; Lv, Wanwan; Ji, Xuebing; Hudak, Justin; Zhou, Yifeng; Fallgatter, Andreas J; Zhang, Xiaochu
2017-08-01
Applying electrical stimulation over the prefrontal cortex can help nicotine dependents reduce cigarette craving. However, the underlying mechanism remains ambiguous. This study investigates this issue with functional magnetic resonance imaging. Thirty-two male chronic smokers received real and sham stimulation over dorsal lateral prefrontal cortex (DLPFC) separated by 1 week. The neuroimaging data of the resting state, the smoking cue-reactivity task and the emotion task after stimulation were collected. The craving across the cue-reactivity task was diminished during real stimulation as compared with sham stimulation. The whole-brain analysis on the cue-reactivity task revealed a significant interaction between the stimulation condition (real vs sham) and the cue type (smoking vs neutral) in the left superior frontal gyrus and the left middle frontal gyrus. The functional connectivity between the left DLPFC and the right parahippocampal gyrus, as revealed by both psychophysical interaction analysis and the resting state functional connectivity, is altered by electrical stimulation. Moreover, the craving change across the real and sham condition is predicted by alteration of functional connectivity revealed by psychophysical interaction analysis. The local and long-distance coupling, altered by the electrical stimulation, might be the underlying neural mechanism of craving regulation. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin
2015-09-01
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less
Electrical Heart Defibrillation with Ion Channel Blockers
NASA Astrophysics Data System (ADS)
Feeney, Erin; Clark, Courtney; Puwal, Steffan
Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.
Ye, Hui; Steiger, Amanda
2015-08-12
In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural basis of cell-field interaction as well as the biological effects of electric stimulation.
Adopting new technologies in stroke rehabilitation: the influence of the US health care system.
Stein, J
2009-06-01
Stroke rehabilitation is entering a new era of technological innovation, including the development of robotic aids for therapy, peripheral electrical stimulation devices, and brain stimulation systems. These technologies have the potential to significantly improve the efficiency and efficacy of stroke rehabilitation. The United States health care system creates both opportunities for new technologies to be created and adopted, as well as important barriers. Inadequate support of clinical trials of the efficacy of new non-invasive devices is a particular concern for practitioners seeking to determine if new devices are clinically useful. Government support of clinical trials of efficacy, coupled with reform of FDA approval processes for novel therapies, is needed to create an evidence-based approach to improving stroke rehabilitation.
Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa
2011-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.
An Electrical Muscle Stimulation Suit for Increasing Blood Pressure
2008-09-01
an exploratory way in about 100 trials. Maximal indi- vidual stimulation intensity was selected to give a solid, tetanic muscle contraction without...therapy and in muscle strength training in athletes. However, if the electrical stimulation is too intense, the result will be muscle contraction pain...Each subject was instructed to have the investigator lower the intensity or stop the stimulation if muscle contraction pain was experienced
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... beam sensors form the enclosure, the stimulating equipment shall be automatically shut off when the sensor signals are broken. (3) Mandatory Warning Devices and Signals. The following warning devices or.... (ii) An ANSI Z53.1-Color Code sign reading (a) “Danger Electrical Hazard” for stimulating voltage...
9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... beam sensors form the enclosure, the stimulating equipment shall be automatically shut off when the sensor signals are broken. (3) Mandatory Warning Devices and Signals. The following warning devices or.... (ii) An ANSI Z53.1-Color Code sign reading (a) “Danger Electrical Hazard” for stimulating voltage...
Preliminary results of sacral transcutaneous electrical nerve stimulation for fecal incontinence.
Leung, Edmund; Francombe, James
2013-03-01
Fecal incontinence is a common debilitating condition. The aim of this study is to investigate the feasibility of sacral transcutaneous electrical nerve stimulation as an alternative treatment modality for fecal incontinence. All consecutive patients who presented with fecal incontinence to the senior author's clinic were prospectively recruited between June 2009 and September 2010. The severity of their fecal incontinence was assessed by the Wexner and Vaizey scores and anal physiology. Any improvement following a period of sacral transcutaneous electrical nerve stimulation treatment was determined by repeating the scores. In addition, patient satisfaction with the procedure was assessed by using a patient impression score. Twenty female patients with a median age of 57.5 years (range, 30-86) were evaluated. The median follow-up was 10 months (range, 5-12 months). Two patients did not record a change in their Vaizey score. The overall mean Wexner score was 7.9 ± 4.2 before in comparison with 4.0 ± 3.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 2.2-5.7, SE = 0.832). The overall mean Vaizey score was 12.7 ± 5.7 before in comparison with 5.8 ± 5.6 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 4.5-9.4, SE = 1.162). The pretreatment patient impression score was set at a mean of 1 ± 0 in comparison with 2.8 ± 1.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 1.2-2.3, SE = 0.25). The preliminary results suggest sacral transcutaneous electrical nerve stimulation is a promising noninvasive alternative to existing modalities in the treatment of idiopathic fecal incontinence.
Youssef, Tamer; Youssef, Mohamed; Thabet, Waleed; Lotfy, Ahmed; Shaat, Reham; Abd-Elrazek, Eman; Farid, Mohamed
2015-10-01
The objective of this study was to evaluate the efficacy of transcutaneous electrical posterior tibial nerve stimulation in treatment of patients with chronic anal fissure and to compare it with the conventional lateral internal sphincterotomy. Consecutive patients with chronic anal fissure were randomly allocated into two treatment groups: transcutaneous electrical posterior tibial nerve stimulation group and lateral internal sphincterotomy group. The primary outcome measures were number of patients with clinical improvement and healed fissure. Secondary outcome measures were complications, VAS pain scores, Wexner's constipation and Peascatori anal incontinence scores, anorectal manometry, and quality of life index. Seventy-three patients were randomized into two groups of 36 patients who were subjected to transcutaneous electrical nerve stimulation and 37 patients who underwent lateral internal sphincterotomy. All (100%) patients in lateral internal sphincterotomy group had clinical improvement at one month following the procedure in contrast to 27 (75%) patients in transcutaneous electrical nerve stimulation group. Recurrence of anal fissure after one year was reported in one (2.7%) and 11 (40.7%) patients in lateral internal sphincterotomy and transcutaneous electrical nerve stimulation groups respectively. Resting anal pressure and functional anal canal length were significantly reduced after lateral internal sphincterotomy. Transcutaneous electrical posterior tibial nerve stimulation for treatment of chronic anal fissure is a novel, non-invasive procedure and has no complications. However, given the higher rate of clinical improvement and fissure healing and the lower rate of fissure recurrence, lateral internal sphincterotomy remains the gold standard for treating chronic anal fissure. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Wang, Yong-Hui; Meng, Fei; Zhang, Yang; Xu, Mao-Yu; Yue, Shou-Wei
2016-06-01
To investigate whether full-movement neuromuscular electrical stimulation, which can generate full range of movement, reduces spasticity and/or improves motor function more effectively than control, sensory threshold-neuromuscular electrical stimulation, and motor threshold-neuromuscular electrical stimulation in sub-acute stroke patients. A randomized, single-blind, controlled study. Physical therapy room and functional assessment room. A total of 72 adult patients with sub-acute post-stroke hemiplegia and plantar flexor spasticity. Patients received 30-minute sessions of neuromuscular electrical stimulation on the motor points of the extensor hallucis and digitorum longus twice a day, five days per week for four weeks. Composite Spasticity Scale, Ankle Active Dorsiflexion Score, and walking time in the Timed Up and Go Test were assessed at pretreatment, posttreatment, and at two-week follow-up. After four weeks of treatment, when comparing interclass pretreatment and posttreatment, only the full-movement neuromuscular electrical stimulation group had a significant reduction in the Composite Spasticity Scale (mean % reduction = 19.91(4.96)%, F = 3.878, p < 0.05) and improvement in the Ankle Active Dorsiflexion Score (mean scores = 3.29(0.91), F = 3.140, p < 0.05). Furthermore, these improvements were maintained two weeks after the treatment ended. However, there were no significant differences in the walking time after four weeks of treatment among the four groups (F = 1.861, p > 0.05). Full-movement neuromuscular electrical stimulation with a stimulus intensity capable of generating full movement can significantly reduce plantar flexor spasticity and improve ankle active dorsiflexion, but cannot decrease walking time in the Timed Up and Go Test in sub-acute stroke patients. © The Author(s) 2015.
Electrotonic and action potentials in the Venus flytrap.
Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S
2013-06-15
The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. Copyright © 2013 Elsevier GmbH. All rights reserved.
Biceps brachii muscle oxygenation in electrical muscle stimulation.
Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori
2010-09-01
The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.
Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun
2012-09-01
Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.
Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin
2012-01-01
Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436
Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik
2017-04-01
This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.
Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation
NASA Astrophysics Data System (ADS)
Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.
Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.
Hou, Lili; Chen, Cuiping; Xu, Lei; Yin, Peihao; Peng, Wen
2013-04-01
To compare the effects of electrical stimulation of different acupoint combinations among postoperative bedridden elderly patients on hemorheology and deep venous blood flow velocity and investigate the.role of electrical stimulation against deep vein thrombosis (DVT). From November 2010 to October 2011, a total of 160 elderly bedridden patients after major surgery were divided into the conventional care group, invigorating and promoting Qi group, blood-activating and damp-eliminating group, and acupoint-combination stimulation group. Whole blood viscosity, plasma viscosity, D-dimer levels, lower limb skin temperature, lower limb circumference, and flow velocities of the external iliac vein, femoral vein, popliteal vein, and deep calf veins in all patients were documented and compared among the four groups. Whole blood viscosity, plasma viscosity, D-dimer levels, and lower limb circumference were significantly reduced in the blood-activating and damp-eliminating group compared with the conventional care group (P < 0.05) and were almost equal to those in the acupoint-combination stimulation group (P > 0.05). Lower limb venous flow velocities were accelerated in the invigorating and promoting Qi group compared with the other groups, excluding the acupoint-combination stimulation group (P < 0.05). Hemorheological indices in postoperative bedridden elderly patients were improved after combined electrical stimulation at Yinlingquan (SP 9) and Sanyinjiao (SP 6). Combined electrical stimulation at Zusanli (ST 36) and Taichong (LR 3), on the other hand, accelerated lower limb venous flow.
Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.
Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack
2002-08-01
Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.
Communication calls produced by electrical stimulation of four structures in the guinea pig brain
Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.
2018-01-01
One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746
Communication calls produced by electrical stimulation of four structures in the guinea pig brain.
Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N
2018-01-01
One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.
A wireless wearable surface functional electrical stimulator
NASA Astrophysics Data System (ADS)
Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong
2017-09-01
In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.
Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.
Hogan, D L; Yao, B; Isenberg, J I
1998-01-01
Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).
Multi-channel orbicularis oculi stimulation to restore eye-blink function in facial paralysis.
Somia, N N; Zonnevijlle, E D; Stremel, R W; Maldonado, C; Gossman, M D; Barker, J H
2001-01-01
Facial paralysis due to facial nerve injury results in the loss of function of the muscles of the hemiface. The most serious complication in extreme cases is the loss of vision. In this study, we compared the effectiveness of single- and multiple-channel electrical stimulation to restore a complete and cosmetically acceptable eye blink. We established bilateral orbicularis oculi muscle (OOM) paralysis in eight dogs; the OOM of one side was directly stimulated using single-channel electrical stimulation and the opposite side was stimulated using multi-channel electrical stimulation. The changes in the palpebral fissure and complete palpebral closure were measured. The difference in current intensities between the multi-channel and single-channel simulation groups was significant, while only multi-channel stimulation produced complete eyelid closure. The latest electronic stimulation circuitry with high-quality implantable electrodes will make it possible to regulate precisely OOM contractions and thus generate complete and cosmetically acceptable eye-blink motion in patients with facial paralysis. Copyright 2001 Wiley-Liss, Inc.
Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes
Miller, L.G.; Oremland, R.S.
2008-01-01
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.
[Functional electric stimulation (FES) in cerebral palsy].
Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R
1992-01-01
Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.
Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp
2007-09-15
Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.
Gender effect on discrimination of location and frequency in surface electrical stimulation.
Geng, Bo; Paramanathan, Senthoopiya A; Pedersen, Karina F; Lauridsen, Mette V; Gade, Julie; Lontis, Romulus; Jensen, Winnie
2015-01-01
This work investigated the gender effect on discrimination of surface electrical stimulation applied on the human forearm. Three experiments were conducted to examine the abilty of discriminating stimulation frequency, location, or both parameters in 14 healthy subjects. The results indicated a statistically significant impact of gender on the discrimination performance in all the three experiments (p <; 0.01, p <; 0.01, and p <; 0.001, respectively). The female group performed noticeably better than the male group (i.e., mean difference 15.4%, 11.9%, and 16.7% in repective experiment). The findings may provide evidence of gender difference in perceiving and interpreting electrical stimulation. Considering the gender difference may improve the efficacy of electrically evoked sensory feedback in applications such as prosthetic use and pain relief.
The Electrical Response to Injury: Molecular Mechanisms and Wound Healing
Reid, Brian; Zhao, Min
2014-01-01
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358
Spellman, Timothy; Peterchev, Angel V.; Lisanby, Sarah H.
2009-01-01
Electroconvulsive therapy (ECT) is a mainstay in the treatment of severe, medication resistant depression. The antidepressant efficacy and cognitive side effects of ECT are influenced by the position of the electrodes on the head and by the degree to which the electrical stimulus exceeds the threshold for seizure induction. However, surprisingly little is known about the effects of other key electrical parameters such as current directionality, polarity, and electrode configuration. Understanding these relationships may inform the optimization of therapeutic interventions to improve their risk/benefit ratio. To elucidate these relationships, we evaluated a novel form of ECT (focal electrically administered seizure therapy, FEAST) that combines unidirectional stimulation, control of polarity, and an asymmetrical electrode configuration, and contrasted it with conventional ECT in a nonhuman primate model. Rhesus monkeys had their seizure thresholds determined on separate days with ECT conditions that crossed the factors of current directionality (unidirectional or bidirectional), electrode configuration (standard bilateral or FEAST (small anterior and large posterior electrode)), and polarity (assignment of anode and cathode in unidirectional stimulation). Ictal expression and post-ictal suppression were quantified via scalp EEG. Findings were replicated and extended in a second experiment with the same subjects. Seizures were induced in each of 75 trials, including 42 FEAST procedures. Seizure thresholds were lower with unidirectional than with bidirectional stimulation (p<0.0001), and lower in FEAST than in bilateral ECS (p=0.0294). Ictal power was greatest in posterior-anode unidirectional FEAST, and post-ictal suppression was strongest in anterior-anode FEAST (p=0.0008 and p=0.0024, respectively). EEG power was higher in the stimulated hemisphere in posterior-anode FEAST (p=0.0246), consistent with the anode being the site of strongest activation. These findings suggest that current directionality, polarity, and electrode configuration influence the efficiency of seizure induction with ECT. Unidirectional stimulation and novel electrode configurations such as FEAST are two approaches to lowering seizure threshold. Furthermore, the impact of FEAST on ictal and post-ictal expression appeared to be polarity-dependent. Future studies may examine whether these differences in seizure threshold and expression have clinical significance for patients receiving ECT. PMID:19225453
Spellman, Timothy; Peterchev, Angel V; Lisanby, Sarah H
2009-07-01
Electroconvulsive therapy (ECT) is a mainstay in the treatment of severe, medication-resistant depression. The antidepressant efficacy and cognitive side effects of ECT are influenced by the position of the electrodes on the head and by the degree to which the electrical stimulus exceeds the threshold for seizure induction. However, surprisingly little is known about the effects of other key electrical parameters such as current directionality, polarity, and electrode configuration. Understanding these relationships may inform the optimization of therapeutic interventions to improve their risk/benefit ratio. To elucidate these relationships, we evaluated a novel form of ECT (focal electrically administered seizure therapy, FEAST) that combines unidirectional stimulation, control of polarity, and an asymmetrical electrode configuration, and contrasted it with conventional ECT in a nonhuman primate model. Rhesus monkeys had their seizure thresholds determined on separate days with ECT conditions that crossed the factors of current directionality (unidirectional or bidirectional), electrode configuration (standard bilateral or FEAST (small anterior and large posterior electrode)), and polarity (assignment of anode and cathode in unidirectional stimulation). Ictal expression and post-ictal suppression were quantified through scalp EEG. Findings were replicated and extended in a second experiment with the same subjects. Seizures were induced in each of the 75 trials, including 42 FEAST procedures. Seizure thresholds were lower with unidirectional than with bidirectional stimulation (p<0.0001), and lower in FEAST than in bilateral ECS (p=0.0294). Ictal power was greatest in posterior-anode unidirectional FEAST, and post-ictal suppression was strongest in anterior-anode FEAST (p=0.0008 and p=0.0024, respectively). EEG power was higher in the stimulated hemisphere in posterior-anode FEAST (p=0.0246), consistent with the anode being the site of strongest activation. These findings suggest that current directionality, polarity, and electrode configuration influence the efficiency of seizure induction with ECT. Unidirectional stimulation and novel electrode configurations such as FEAST are two approaches to lowering seizure threshold. Furthermore, the impact of FEAST on ictal and post-ictal expression appeared to be polarity dependent. Future studies may examine whether these differences in seizure threshold and expression have clinical significance for patients receiving ECT.
Strategies to improve electrode positioning and safety in cochlear implants.
Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M
1999-03-01
An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.
Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments.
Yang, Yonggang; Lu, Zijiang; Lin, Xunke; Xia, Chunyu; Sun, Guoping; Lian, Yingli; Xu, Meiying
2015-03-01
To test the long-term applicability of scaled-up sediment microbial fuel cells (SMFCs) in simultaneous bioremediation of toxic-contaminated sediments and power-supply for electronic devices, a 100 L SMFC inoculate with heavily contaminated sediments has been assembled and operated for over 2 years without external electron donor addition. The total organic chemical (TOC) degradation efficiency was 22.1% in the electricity generating SMFCs, which is significantly higher than that in the open-circuited SMFC (3.8%). The organic matters including contaminants in the contaminated sediments were sufficient for the electricity generation of SMFCs, even up to 8.5 years by the present SMFC theoretically. By using a power management system (PMS), the SMFC electricity could be harvested into batteries and used by commercial electronic devices. The results indicated that the SMFC-PMS system could be applied as a long-term and effective tool to simultaneously stimulate the bioremediation of the contaminated sediments and supply power for commercial devices. Copyright © 2014 Elsevier Ltd. All rights reserved.
2011-01-01
Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101
Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng
2017-02-05
Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.
Zotz, T.G.G.; de Paula, J.B.
2015-01-01
Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223
Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma
2010-01-01
Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.
Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng
2014-10-01
The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.
NASA Astrophysics Data System (ADS)
Habib, Amgad G.; Cameron, Morven A.; Suaning, Gregg J.; Lovell, Nigel H.; Morley, John W.
2013-06-01
Objective. Visual prostheses currently in development aim to restore some form of vision to patients suffering from diseases such as age-related macular degeneration and retinitis pigmentosa. Most rely on electrically stimulating inner retinal cells via electrodes implanted on or near the retina, resulting in percepts of light termed ‘phosphenes’. Activation of spatially distinct populations of cells in the retina is key for pattern vision to be produced. To achieve this, the electrical stimulation must be localized, activating cells only in the direct vicinity of the stimulating electrode(s). With this goal in mind, a hexagonal return (hexapolar) configuration has been proposed as an alternative to the traditional monopolar or bipolar return configurations for electrically stimulating the retina. This study investigated the efficacy of the hexapolar configuration in localizing the activation of retinal ganglion cells (RGCs), compared to a monopolar configuration. Approach. Patch-clamp electrophysiology was used to measure the activation thresholds of RGCs in whole-mount rabbit retina to monopolar and hexapolar electrical stimulation, applied subretinally. Main results. Hexapolar activation thresholds for RGCs located outside the hex guard were found to be significantly (>2 fold) higher than those located inside the area of tissue bounded by the hex guard. The hexapolar configuration localized the activation of RGCs more effectively than its monopolar counterpart. Furthermore, no difference in hexapolar thresholds or localization was observed when using cathodic-first versus anodic-first stimulation. Significance. The hexapolar configuration may provide an improved method for electrically stimulating spatially distinct populations of cells in retinal tissue.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-04-21
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-01-01
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892
Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.
Parkins, C W; Colombo, J
1987-12-31
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.
2013-01-01
Background To date, in Myotonic Dystrophy type 1 (DM1) the rehabilitative interventions have always been aimed at muscle strengthening, increasing of fatigue resistance and improving of aerobic metabolism efficiency whereas the electrical membrane fault has always been addressed pharmacologically. Neuromuscular electrical stimulation (NMES) is a useful therapeutic tool in sport medicine and in the rehabilitation of many clinical conditions characterized by motor impairment such as stroke, cerebral palsy and spinal cord injury. The aim of our pilot study was to evaluate the effects of chronic electrical stimulation both on functional and electrical properties of muscle in a small group of DM1 patients. Methods Five DM1 patients and one patient with Congenital Myotonia (CM) performed a home electrical stimulation of the tibialis anterior muscle lasting 15 days with a frequency of two daily sessions of 60 minutes each. Muscle strength was assessed according to the MRC scale (Medical Research Council) and functional tests (10 Meter Walking Test, 6 Minutes Walking Test and Timed Up and Go Test) were performed. We analyzed the average rectified value of sEMG signal amplitude (ARV) to characterize the sarcolemmal excitability. Results After the treatment an increase of muscle strength in those DM1 patients with a mild strength deficit was observed. In all subjects an improvement of 10MWT was recorded. Five patients improved their performance in the 6MWT. In TUG test 4 out of 6 patients showed a slight reduction in execution time. All patients reported a subjective improvement when walking. A complete recovery of the normal increasing ARV curve was observed in 4 out of 5 DM1 patients; the CM patient didn’t show modification of the ARV pattern. Conclusions NMES determined a clear-cut improvement of both the muscular weakness and the sarcolemmal excitability alteration in our small group of DM1 patients. Therefore this rehabilitative approach, if confirmed by further extensive studies, could be considered early in the management of muscular impairment in these patients. An attractive hypothesis to explain our encouraging result could be represented by a functional inhibition of SK3 channels expressed in muscle of DM1 subjects. PMID:23938156
42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).
Code of Federal Regulations, 2010 CFR
2010-10-01
... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...
NASA Astrophysics Data System (ADS)
Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.
2018-05-01
Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.
Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco
2013-01-01
This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453
Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco
2013-04-01
This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.
Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation
NASA Astrophysics Data System (ADS)
Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.
1997-05-01
We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom
2013-06-01
Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.
Electrical stimulation modulates injury potentials in rats after spinal cord injury
Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu
2013-01-01
An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563
Benefits and Risks of Cochlear Implants
... The cochlear implant stimulates the nerves directly with electrical currents. Although this stimulation appears to be safe, the long term effect of these electrical currents on the nerves is unknown. May not ...
Alvarado, C Z; Sams, A R
2000-09-01
This study was conducted to evaluate the effects of electrical stimulation (ES) on rigor mortis development, calpastatin activity, and tenderness in anatomically similar avian muscles composed primarily of either red or white muscle fibers. A total of 72 broilers and 72 White Pekin ducks were either treated with postmortem (PM) ES (450 mA) at the neck in a 1% NaCl solution for 2 s on and 1 s off for a total of 15 s or were used as nonstimulated controls. Both pectoralis muscles were harvested from the carcasses after 0.25, 1.25, and 24 h PM and analyzed for pH, inosine:adenosine ratio (R-value), sarcomere length, gravimetric fragmentation index, calpastatin activity, shear value, and cook loss. All data were analyzed within species for the effects of ES. Electrically stimulated ducks had a lower muscle pH at 0.25 and 1.25 h PM and higher R-values at 0.25 h PM compared with controls. Electrically stimulated broilers had a lower muscle pH at 1.25 h and higher R-values at 0.25 and 1.25 h PM compared with controls. Muscles of electrically stimulated broilers exhibited increased myofibrillar fragmentation at 0.25 and 1.25 h PM, whereas there was no such difference over PM time in the duck muscle. Electrical stimulation did not affect calpastatin activity in either broilers or ducks; however, the calpastatin activity of the broilers did decrease over the aging time period, whereas that of the ducks did not. Electrical stimulation decreased shear values in broilers at 1.25 h PM compared with controls; however, there was no difference in shear values of duck muscle due to ES at any sampling time. Cook loss was lower for electrically stimulated broilers at 0.25 and 1.25 h PM compared with the controls, but had no effect in the ducks. These results suggest that the red fibers of the duck pectoralis have less potential for rigor mortis acceleration and tenderization due to ES than do the white fibers of the broiler pectoralis.
Ballesteros, Carolina Irurita; de Oliveira Galvão, Bruno; Maisonette, Silvia; Landeira-Fernandez, J.
2014-01-01
The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed. PMID:24404134
Motor neuron activation in peripheral nerves using infrared neural stimulation
NASA Astrophysics Data System (ADS)
Peterson, E. J.; Tyler, D. J.
2014-02-01
Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.
Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor
2014-01-01
Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453
Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation
Peterson, EJ; Tyler, DJ
2014-01-01
Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923
Ludlow, Christy L.; Humbert, Ianessa; Saxon, Keith; Poletto, Christopher; Sonies, Barbara; Crujido, Lisa
2006-01-01
We tested two hypotheses using surface electrical stimulation in chronic pharyngeal dysphagia: that stimulation 1) lowered the hyoid bone and/or larynx when applied at rest, and 2) increased aspiration, penetration or pharyngeal pooling during swallowing. Bipolar surface electrodes were placed on the skin overlying the submandibular and laryngeal regions. Maximum tolerated levels of stimulation were applied while patients held their mouth closed at rest. Videofluoroscopic recordings were used to measure hyoid movements in the superior-inferior (s-i) and anterior-posterior (a-p) dimensions and the subglottic air column (s-i) position while stimulation was on and off. Patients swallowed 5 ml liquid when stimulation was off, at low sensory stimulation levels, and at maximum tolerated levels (motor). Speech pathologists blinded to condition, tallied the frequency of aspiration, penetration, pooling and esophageal entry from videofluorographic recordings of swallows. Only significant (p=0.0175) hyoid depression occurred during stimulation at rest. Aspiration and pooling were significantly reduced only with low sensory threshold levels of stimulation (p=0.025) and not during maximum levels of surface electrical stimulation. Those patients who had reduced aspiration and penetration during swallowing with stimulation had greater hyoid depression during stimulation at rest (p= 0.006). Stimulation may have acted to resist patients’ hyoid elevation during swallowing. PMID:16718620
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi
2005-01-01
Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626
Physics for Allied Health Students
NASA Astrophysics Data System (ADS)
Goldick, Howard
2000-04-01
In this paper I will describe two courses that I have been teaching for the past 6 years to physical therapy and occupational therapy students Emphasis will be paced on those points that distinguish these courses from others with which I am familiar. I will discuss the syllabus: homework, exams, labs and the final grade. I will also present a topic outline of the courses showing how examples are drawn from the human body to illustrate the physics concept under discussion and to stimulate the students's interest in the material. The following basic concepts of physics will be covered (each with human body examples): vectors, components, statics, conservation of energy, efficiency, change of state, heat transfer, electric charge, electric field, voltage and capacitance.
A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina
Maturana, Matias I.; Apollo, Nicholas V.; Hadjinicolaou, Alex E.; Garrett, David J.; Cloherty, Shaun L.; Kameneva, Tatiana; Grayden, David B.; Ibbotson, Michael R.; Meffin, Hamish
2016-01-01
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143
Thibaut, Aurore; Moissenet, Florent; Di Perri, Carol; Schreiber, Céline; Remacle, Angélique; Kolanowski, Elisabeth; Chantraine, Frédéric; Bernard, Claire; Hustinx, Roland; Tshibanda, Jean-Flory; Filipetti, Paul; Laureys, Steven; Gosseries, Olivia
2017-01-01
Recent studies have shown that stimulation of the peroneal nerve using an implantable 4-channel peroneal nerve stimulator could improve gait in stroke patients. To assess structural cortical and regional cerebral metabolism changes associated with an implanted peroneal nerve electrical stimulator to correct foot drop related to a central nervous system lesion. Two stroke patients presenting a foot drop related to a central nervous system lesion were implanted with an implanted peroneal nerve electrical stimulator. Both patients underwent clinical evaluations before implantation and one year after the activation of the stimulator. Structural magnetic resonance imaging (MRI) and [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) were acquired before and one year after the activation of the stimulator. Foot drop was corrected for both patients after the implantation of the stimulator. After one year of treatment, patient 1 improved in three major clinical tests, while patient 2 only improved in one test. Prior to treatment, FDG-PET showed a significant hypometabolism in premotor, primary and supplementary motor areas in both patients as compared to controls, with patient 2 presenting more widespread hypometabolism. One year after the activation of the stimulator, both patients showed significantly less hypometabolism in the damaged motor cortex. No difference was observed on the structural MRI. Clinical improvement of gait under peroneal nerve electrical stimulation in chronic stroke patients presenting foot drop was paralleled to metabolic changes in the damaged motor cortex.
Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe
2017-03-03
It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.
Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia
Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.
2014-01-01
BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4–8 Hz). In all rats with SN electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS Electrical stimulation of the VTA, but not the SN, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816
Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents
Kanchiku, Tsukasa; Kato, Yoshihiko; Suzuki, Hidenori; Imajo, Yasuaki; Yoshida, Yuichiro; Moriya, Atsushi; Taguchi, Toshihiko; Jung, Ranu
2012-01-01
Background Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. Objective To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. Methods The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength–duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. Results Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. Conclusions This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries. PMID:22507026
Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro
2017-01-01
Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189
Economic substitutability of electrical brain stimulation, food, and water.
Green, L; Rachlin, H
1991-01-01
Concurrent variable-ratio schedules of electrical brain stimulation, food, and water were paired in various combinations as reinforcement of rats' lever presses. Relative prices of the concurrent reinforcers were varied by changing the ratio of the response requirements on the two levers. Economic substitutability, measured by the sensitivity of response ratio to changes in relative price, was highest with brain stimulation reinforcement of presses on both levers and lowest with food reinforcement of presses on one lever and water reinforcement of presses on the other. Substitutability with brain stimulation reinforcement of presses on one lever and either food or water reinforcement for presses on the other was about as high as with brain stimulation for presses on both levers. Electrical brain stimulation for rats may thus serve as an economic substitute for two reinforcers, neither of which is substitutable for the other. PMID:2037823
Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery
Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian
2016-01-01
Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients’ ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. PMID:27106613
Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao
2014-01-01
Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728
Electrical stimulation of transplanted motoneurons improves motor unit formation
Liu, Yang; Grumbles, Robert M.
2014-01-01
Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463
NASA Astrophysics Data System (ADS)
O'Shea, Daniel J.; Shenoy, Krishna V.
2018-04-01
Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.
Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.
Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik
2014-08-01
Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.
Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi
2014-04-24
Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.
Wu, Xiang; Zhang, Chao; Feng, Junfeng; Mao, Qing; Gao, Guoyi; Jiang, Jiyao
2017-07-10
Traumatic brain injury (TBI) has become the most common cause of death and disability in persons between 15 and 30 years of age, and about 10-15% of patients affected by TBI will end up in a coma. Coma caused by TBI presents a significant challenge to neuroscientists. Right median nerve electrical stimulation has been reported as a simple, inexpensive, non-invasive technique to speed recovery and improve outcomes for traumatic comatose patients. This multicentre, prospective, randomised (1:1) controlled trial aims to demonstrate the efficacy and safety of electrical right median nerve stimulation (RMNS) in both accelerating emergence from coma and promoting long-term outcomes. This trial aims to enrol 380 TBI comatose patients to partake in either an electrical stimulation group or a non-stimulation group. Patients assigned to the stimulation group will receive RMNS in addition to standard treatment at an amplitude of 15-20 mA with a pulse width of 300 μs at 40 Hz ON for 20 s and OFF for 40 s. The electrical treatment will last for 8 h per day for 2 weeks. The primary endpoint will be the percentage of patients regaining consciousness 6 months after injury. The secondary endpoints will be Extended Glasgow Outcome Scale, Coma Recovery Scale-Revised and Disability Rating Scale scores at 28 days, 3 months and 6 months after injury; Glasgow Coma Scale, Glasgow Coma Scale Motor Part and Full Outline of Unresponsiveness scale scores on day 1 and day 7 after enrolment and 28 days, 3 months and 6 months after injury; duration of unconsciousness and mechanical ventilation; length of intensive care unit and hospital stays; and incidence of adverse events. Right median nerve electrical stimulation has been used as a safe, inexpensive, non-invasive therapy for neuroresuscitation of coma patients for more than two decades, yet no trial has robustly proven the efficacy and safety of this treatment. The Asia Coma Electrical Stimulation (ACES) trial has the following novel features compared with other major RMNS trials: (1) the ACES trial is an Asian multicentre randomised controlled trial; (2) RMNS therapy starts at an early stage 7-14 days after the injury; and (3) various assessment scales are used to evaluate the condition of patients. We hope the ACES trial will lead to optimal use of right median nerve electrical treatment. ClinicalTrials.gov, NCT02645578 . Registered on 23 December 2015.
Wu, Lien-Chen; Weng, Pei-Wei; Chen, Chia-Hsien; Huang, Yi-You; Tsuang, Yang-Hwei; Chiang, Chang-Jung
2018-01-01
Background and Objectives This study is a meta-analysis of randomized controlled trials comparing the efficacy of transcutaneous electrical nerve stimulation (TENS) to a control and to other nerve stimulation therapies (NSTs) for the treatment of chronic back pain. Methods Citations were identified in MEDLINE, the Cochrane Library, Google Scholar, and ClinicalTrials.gov through June 2014 using the following keywords: nerve stimulation therapy, transcutaneous electrical nerve stimulation, back pain, chronic pain. Control treatments included sham, placebo, or medication only. Other NSTs included electroacupuncture, percutaneous electrical nerve stimulation, and percutaneous neuromodulation therapy. Results Twelve randomized controlled trials including 700 patients were included in the analysis. The efficacy of TENS was similar to that of control treatment for providing pain relief (standardized difference in means [SDM] = −0.20; 95% confidence interval [CI], −0.58 to 0.18; P = 0.293). Other types of NSTs were more effective than TENS in providing pain relief (SDM = 0.86; 95% CI, 0.15–1.57; P = 0.017). Transcutaneous electrical nerve stimulation was more effective than control treatment in improving functional disability only in patients with follow-up of less than 6 weeks (SDM = −1.24; 95% CI, −1.83 to −0.65; P < 0.001). There was no difference in functional disability outcomes between TENS and other NSTs. Conclusions These results suggest that TENS does not improve symptoms of lower back pain, but may offer short-term improvement of functional disability. PMID:29394211
Optical imaging of the retina in response to the electrical stimulation
NASA Astrophysics Data System (ADS)
Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo
2008-02-01
Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.
Acetylation mediates Cx43 reduction caused by electrical stimulation
Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra
2015-01-01
Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759
Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.
Bickel, C Scott; Gregory, Chris M; Dean, Jesse C
2011-10-01
Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.
Nowak, Karl; Mix, Eilhard; Gimsa, Jan; Strauss, Ulf; Sriperumbudur, Kiran Kumar; Benecke, Reiner; Gimsa, Ulrike
2011-01-01
Deep brain stimulation (DBS) has become a treatment for a growing number of neurological and psychiatric disorders, especially for therapy-refractory Parkinson's disease (PD). However, not all of the symptoms of PD are sufficiently improved in all patients, and side effects may occur. Further progress depends on a deeper insight into the mechanisms of action of DBS in the context of disturbed brain circuits. For this, optimized animal models have to be developed. We review not only charge transfer mechanisms at the electrode/tissue interface and strategies to increase the stimulation's energy-efficiency but also the electrochemical, electrophysiological, biochemical and functional effects of DBS. We introduce a hemi-Parkinsonian rat model for long-term experiments with chronically instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1) elucidating the electrochemical processes at the electrode/tissue interface, (2) analyzing the molecular, cellular and behavioral stimulation effects, (3) testing new target regions for DBS, (4) screening for potential neuroprotective DBS effects, and (5) improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation. PMID:21603182
Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.
Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka
2017-05-01
Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun
2014-12-01
We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.
Lewis, P K; Babiker, S A
1983-01-01
Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carney, M.V.
The Logan Generating Plant is a $500 million, 202-megawatt (MW), pulverized-coal cogeneration facility. Its electricity output - enough for 270,000 homes - is sold to Atlantic Electric. It also supplies all of the steam (up to 50,000 pounds per hour) to a nearby Monsanto facility. The plant went into commercial service in September 1994. Currently, the facility employs 62 people. In addition to becoming an active, long-term employer in Logan Township, the plant will help stimulate the local economy for years to come as a consumer of goods and services. In addition, local and state revenues from the Logan plantmore » provide a much needed economic boost. Cogeneration, which is the production of electric power and thermal energy (heat) from a single energy source, provides efficiency benefits in fuel consumption, capital investment and operating costs. Electricity and process steam from the Logan plant helps Monsanto control its energy costs, thus helping it remain competitive. The Logan Generating Plant plays an important role in the economic development of southern New Jersey by providing clean, dependable and competitively priced electricity to Atlantic Electric for resale to its utility customers. The environmental and economic benefits of the facility are discussed.« less
Malezic, M; Hesse, S
1995-03-01
Restoration of standing and of gait by functional electrical stimulation in clinically complete paraplegic patients was modified in the course of treatment and in the stimulation parameters. By substituting an initial cyclic muscle strengthening with an active stimulated standing, four patients with T3-11 lesions started walking with electrical stimulation in 10-17 days. They walked without ankle-foot orthoses. With a satisfactory stride length of 0.75-0.97 m, their gait velocity ranged from very slow to that of a leisurely healthy gait. Already established stimulation of the quadriceps muscles for standing and of the peroneal nerves for lower limb flexion during the swing phase of gait was applied. Diminished limb flexion after several weeks was restored by an increase of the stimulation frequency of the peroneal nerve from 20 to 60 Hz. EMG and kinesiological measurements displayed an improved direct response of the ankle as well as of the reflex mediated hip, knee and ankle flexion response. At the same time stimulation frequency was reduced to 16 Hz for the quadriceps muscles in order to reduce fatigue.
[Transcranial magneto- and electrostimulation in patients with obesity and erectile dysfunction].
Ponomarenko, G N; Bin'iash, T G; Raĭgorodskiĭ, Iu M; Guliaev, A S; Shul'diakov, V A; Kiriliuk, A M; Vartanova, L Iu
2009-01-01
The objective of the present study was to evaluate therapeutic efficiency of transcranial magnetotherapy (TcMT) and electric stimulation (ES) included in the combined treatment of 143 patients with erectile dysfunction (ED) and abdominal obesity. The majority of the patients had waist circumference over 102 cm. An AMO-ATOS complex was used to stimulate the hypothalamic region and other brain structures. Transdermal myostimulation of the abdominal and femoral regions was achieved with a Miovolna device. It was shown that both TcM and ES improved lipid metabolism and erectile function; moreover, they exerted hypotensive and sedative action. Specifically, the testosterone level in the patients increased by a mean of 27% compared with the pre-treatment values while the number of patients complaining of erectile dysfunction decreased by 31%.
Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.
2016-01-01
The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609
Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A
2015-11-01
A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.
Durgam, Hymavathi; Sapp, Shawn; Deister, Curt; Khaing, Zin; Chang, Emily; Luebben, Silvia; Schmidt, Christine E
2010-01-01
Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(epsilon-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy-PCL and PPy-PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy-PCL, 19 S/cm for PPy-PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy-PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy-PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).
1992-04-10
vi LIST OF FIGURES.......................................... Viii CHAPTER 1: INTRODUCTION ................................... 1... INTRODUCTION Physical therapists have used neuromuscular electrical stimulation (NMES) to strengthen muscle (improve muscle performance, ie torque) and prevent...found NMES induced strength gains, though showing a positive trend, to be statistically insignificant.39,52 These results may be due to technological
Tong, K C; Lo, Sing Kai; Cheing, Gladys L
2007-10-01
To determine whether alternating frequency transcutaneous electric nerve stimulation (TENS) at 2 and 100Hz (2/100Hz) has a more potent hypoalgesic effect than a fixed frequency at 2 or 100Hz in healthy participants. A single-blind randomized controlled trial with a convenience sample. University physiotherapy department. Sixty-four healthy volunteers (32 men [mean age, 28.1+/-5.9y], 32 women [mean age, 27.7+/-5.6y]) were recruited and randomly divided into 4 groups. The 4 groups received TENS delivered at (1) 2Hz; (2) 100Hz; (3) 2/100Hz alternating frequency; and (4) no treatment (control group), respectively. Electric stimulation was applied over the anterior aspect of the dominant forearm for 30 minutes. Mechanical pain thresholds (MPTs) and heat pain thresholds (HPTs) were recorded before, during, and after TENS stimulation. The data were analyzed using linear mixed models, with group treated as a between-subject factor and time a within-subject factor. During and shortly after electric stimulation, HPT increased significantly in the alternating frequency stimulation group (P=.024). MPT increased significantly in both the 100Hz (P=.008) and the alternating frequency groups (P=.012), but the increase was substantially larger in the 100Hz group. Alternating frequency stimulation produced a greater elevation in the HPT, but a greater increase in the MPT was achieved using 100Hz stimulation.
Spatial and temporal variability in response to hybrid electro-optical stimulation
NASA Astrophysics Data System (ADS)
Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco
2012-06-01
Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.
Mimosa pudica: Electrical and mechanical stimulation of plant movements.
Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S
2010-02-01
Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.
Vo, Lechi; Drummond, Peter D
2017-06-01
The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.
Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito
2017-10-01
During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Buonocore, M.; Camuzzini, N.; Cecini, M.; Dalla Toffola, E.
2013-01-01
Background. TENS (transcutaneous electrical nerve stimulation) is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females) underwent three different sessions: in two, heat pain thresholds (HPTs) were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec) of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application. PMID:24027756
Kamali, Fahimeh; Mirkhani, Hossein; Nematollahi, Ahmadreza; Heidari, Saeed; Moosavi, Elahesadat; Mohamadi, Marzieh
2017-04-01
Transcutaneous electrical nerve stimulation (TENS) is a widely-practiced method to increase blood flow in clinical practice. The best location for stimulation to achieve optimal blood flow has not yet been determined. We compared the effect of TENS application at sympathetic ganglions and acupuncture points on blood flow in the foot of healthy individuals. Seventy-five healthy individuals were randomly assigned to three groups. The first group received cutaneous electrical stimulation at the thoracolumbar sympathetic ganglions. The second group received stimulation at acupuncture points. The third group received stimulation in the mid-calf area as a control group. Blood flow was recorded at time zero as baseline and every 3 minutes after baseline during stimulation, with a laser Doppler flow-meter. Individuals who received sympathetic ganglion stimulation showed significantly greater blood flow than those receiving acupuncture point stimulation or those in the control group (p<0.001). Data analysis revealed that blood flow at different times during stimulation increased significantly from time zero in each group. Therefore, the application of low-frequency TENS at the thoracolumbar sympathetic ganglions was more effective in increasing peripheral blood circulation than stimulation at acupuncture points. Copyright © 2017 Medical Association of Pharmacopuncture Institute. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.
2015-07-01
Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.
Langeard, Antoine; Bigot, Lucile; Chastan, Nathalie; Gauthier, Antoine
2017-05-01
The lower limb muscle functions of the elderly are known to be preferentially altered by ageing. Traditional training effectively counteracts some of these functional declines but is not always accessible due to its cost and to the accessibility of the training centers and to the incapacities of some seniors to practice some exercises. Neuromuscular electrical stimulation (NMES) could provide an interesting alternative muscle training technique because it is inexpensive and transportable. The aim of this systematic review was to summarize the current evidence on the effect of the use of lower limb NMES as a training technique for healthy elderly rehabilitation. Electronic databases were searched for trials occurring between 1971 (first occurrence of NMES training) and November 2016. Ten published articles were retrieved. Training programs either used NMES alone, or NMES associated with voluntary muscle contraction (NMES+). They either targeted calves or thigh muscles and their training length and intensity were heterogeneous but all studies noted positive effects of NMES on the elderly's functional status. Indeed, NMES efficiently improved functional and molecular muscle physiology, and, depending on the studies, could lead to better gait and balance performances especially among less active elderly. Given the association between gait, balance and the risk of falls among the elderly, future research should focus on the efficiency of NMES to reduce the high fall rate among this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Forestieri, Patrícia; Bolzan, Douglas W; Santos, Vinícius B; Moreira, Rita Simone Lopes; de Almeida, Dirceu Rodrigues; Trimer, Renata; de Souza Brito, Flávio; Borghi-Silva, Audrey; de Camargo Carvalho, Antonio Carlos; Arena, Ross; Gomes, Walter J; Guizilini, Solange
2018-01-01
To evaluate the impact of a short-term neuromuscular electrical stimulation program on exercise tolerance in hospitalized patients with advanced heart failure who have suffered an acute decompensation and are under continuous intravenous inotropic support. A randomized controlled study. Initially, 195 patients hospitalized for decompensated heart failure were recruited, but 70 were randomized. Patients were randomized into two groups: control group subject to the usual care ( n = 35); neuromuscular electrical stimulation group ( n = 35) received daily training sessions to both lower extremities for around two weeks. The baseline 6-minute walk test to determine functional capacity was performed 24 hours after hospital admission, and intravenous inotropic support dose was daily checked in all patients. The outcomes were measured in two weeks or at the discharge if the patients were sent back home earlier than two weeks. After losses of follow-up, a total of 49 patients were included and considered for final analysis (control group, n = 25 and neuromuscular electrical stimulation group, n = 24). The neuromuscular electrical stimulation group presented with a higher 6-minute walk test distance compared to the control group after the study protocol (293 ± 34.78 m vs. 265.8 ± 48.53 m, P < 0.001, respectively). Neuromuscular electrical stimulation group also demonstrated a significantly higher dose reduction of dobutamine compared to control group after the study protocol (2.72 ± 1.72 µg/kg/min vs. 3.86 ± 1.61 µg/kg/min, P = 0.001, respectively). A short-term inpatient neuromuscular electrical stimulation rehabilitation protocol improved exercise tolerance and reduced intravenous inotropic support necessity in patients with advanced heart failure suffering a decompensation episode.
Wang, Liping; Huang, Qianwei; Wang, Jin-Ye
2015-11-10
A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.
Wolfe, Jace; Neumann, Sara; Schafer, Erin; Marsh, Megan; Wood, Mark; Baker, R Stanley
2017-02-01
A number of published studies have demonstrated the benefits of electric-acoustic stimulation (EAS) over conventional electric stimulation for adults with functional low-frequency acoustic hearing and severe-to-profound high-frequency hearing loss. These benefits potentially include better speech recognition in quiet and in noise, better localization, improvements in sound quality, better music appreciation and aptitude, and better pitch recognition. There is, however, a paucity of published reports describing the potential benefits and limitations of EAS for children with functional low-frequency acoustic hearing and severe-to-profound high-frequency hearing loss. The objective of this study was to explore the potential benefits of EAS for children. A repeated measures design was used to evaluate performance differences obtained with EAS stimulation versus acoustic- and electric-only stimulation. Seven users of Cochlear Nucleus Hybrid, Nucleus 24 Freedom, CI512, and CI422 implants were included in the study. Sentence recognition (assayed using the pediatric version of the AzBio sentence recognition test) was evaluated in quiet and at three fixed signal-to-noise ratios (SNR) (0, +5, and +10 dB). Functional hearing performance was also evaluated with the use of questionnaires, including the comparative version of the Speech, Spatial, and Qualities, the Listening Inventory for Education Revised, and the Children's Home Inventory for Listening Difficulties. Speech recognition in noise was typically better with EAS compared to participants' performance with acoustic- and electric-only stimulation, particularly when evaluated at the less favorable SNR. Additionally, in real-world situations, children generally preferred to use EAS compared to electric-only stimulation. Also, the participants' classroom teachers observed better hearing performance in the classroom with the use of EAS. Use of EAS provided better speech recognition in quiet and in noise when compared to performance obtained with use of acoustic- and electric-only stimulation, and children responded favorably to the use of EAS implemented in an integrated sound processor for real-world use. American Academy of Audiology
Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.
Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin
2015-07-16
Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.
Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation
Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin
2015-01-01
Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273
Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D
2014-04-23
The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.
Carbon Nanotube Electrodes for Effective Interfacing with Retinal Tissue
Shoval, Asaf; Adams, Christopher; David-Pur, Moshe; Shein, Mark; Hanein, Yael; Sernagor, Evelyne
2009-01-01
We have investigated the use of carbon nanotube coated microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60, 30 μm diameter electrodes at spacing of 200 μm. These electrodes were coated via chemical vapor deposition of carbon nanotubes, resulting in conducting, three dimensional surfaces with a high interfacial area. These attributes are important both for the quality of the cell-surface coupling as well as for electro-chemical interfacing efficiency. The entire chip was packaged to fit a commercial multielectrode recording and stimulation system. Electrical recordings of spontaneous spikes from whole-mount neonatal mouse retinas were consistently obtained minutes after retinas were placed over the electrodes, exhibiting typical bursting and propagating waves. Most importantly, the signals obtained with carbon nanotube electrodes have exceptionally high signal to noise ratio, reaching values as high as 75. Moreover, spikes are marked by a conspicuous gradual increase in amplitude recorded over a period of minutes to hours, suggesting improvement in cell-electrode coupling. This phenomenon is not observed in conventional commercial electrodes. Electrical stimulation using carbon nanotube electrodes was also achieved. We attribute the superior performances of the carbon nanotube electrodes to their three dimensional nature and the strong neuro-carbon nanotube affinity. The results presented here show the great potential of carbon nanotube electrodes for retinal interfacing applications. Specifically, our results demonstrate a route to achieve a reduction of the electrode down to few micrometers in order to achieve high efficacy local stimulation needed in retinal prosthetic devices. PMID:19430595
Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut
2015-11-01
The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.
Zhang, L X; Li, X L; Wang, L; Han, J S
1997-01-16
Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.
Bdaiwi, Alya H; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M
2015-07-01
Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Controlled laboratory study. Human performance laboratory. Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Neuromuscular electrical stimulation of the LT and SA. Ultrasound measurement of the acromiohumeral distance. Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t(19) = -3.89, P = .004), SA muscle (t(19) = -7.67, P = .001), and combined LT and SA muscles (t(19) = -5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F(2,57) = 3.109, P = .08). Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance.
Effects of electrical stimulation on House-Brackmann scores in early Bell's palsy.
Alakram, Prisha; Puckree, Threethambal
2010-04-22
ABSTRACT Limited evidence may support the application of electrical stimulation in the subacute and chronic stages of facial palsy, yet some physiotherapists in South Africa have been applying this modality in the acute stage in the absence of published evidence of clinical efficacy. This preliminary study's aim was to determine the safety and potential efficacy of applying electrical stimulation to the facial muscles during the early phase of Bells palsy. A pretest posttest control vs. experimental groups design composed of 16 patients with Bell's palsy of less than 30 days' duration. Adult patients with clinical diagnosis of Bell's palsy were systematically (every second patient) allocated to the control and experimental groups. Each group (n = 8) was pretested and posttested using the House-Brackmann index. Both groups were treated with heat, massage, exercises, and a home program. The experimental group also received electrical stimulation. The House-Brackmann Scale of the control group improved between 17% and 50% with a mean of 30%. The scores of the experimental group ranged between 17% and 75% with a mean of 37%. The difference between the groups was not statistically significant (two-tailed p = 0.36). Electrical stimulation as used in this study during the acute phase of Bell's palsy is safe but may not have added value over spontaneous recovery and multimodal physiotherapy. A larger sample size or longer stimulation time or both should be investigated.
Evoked Electromyographically Controlled Electrical Stimulation
Hayashibe, Mitsuhiro
2016-01-01
Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448
"Bionic Man" Showcases Medical Research | NIH MedlinePlus the Magazine
... Wisconsin Implantable Sensors for Prosthesis Control Implantable myoelectric (electrical properties of muscle) sensors detect nerve signals above ... treatments reach the brain. Spinal Stimulation for Paralysis Electrical stimulation of the spinal cord is being used ...
Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery.
Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian
2016-04-22
Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients' ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.
NASA Astrophysics Data System (ADS)
Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.
2011-12-01
Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.
Functional electrical stimulation equipment: a review of marketplace availability and reimbursement.
Teeter, J O; Moora, C R
2000-01-01
Functional electrical stimulation (FES) is a rehabilitation tool that has broad application in disability management for improving consumer health and independence. This review examines the availability and delivery of electrical stimulation equipment in a managed care environment, focusing particularly on recent advances and marketplace influences. New electrical stimulation products that are unique in their ability to improve function after disease or injury over conventional drug therapy, surgical intervention, or other rehabilitation techniques are described. Research directions, including new uses for existing products to expand patient indications, are discussed. Guidelines to assist providers and developers of FES technology with managing the reimbursement process are provided. The successful introduction of recent FES products should pave the way for even more exciting developments. However, reimbursement requires careful and early planning to ensure that FES technologies are available to people who may benefit from them.
Sayenko, Dimitry G; Nguyen, Robert; Hirabayashi, Tomoyo; Popovic, Milos R; Masani, Kei
2015-09-01
A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol. © The Author(s) 2014.
Poorjavad, Marziyeh; Talebian Moghadam, Saeed; Daemi, Mostafa
2014-01-01
Neuromuscular electrical stimulation (NMES) for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by stroke. The present review aimed to introduce and discuss studies that have evaluated the efficacy of this method amongst dysphagic patients following stroke with emphasis on the intensity of stimulation (sensory or motor level) and the method of electrode placement on the neck. The majority of the reviewed studies describe some positive effects of the NMES on the neck musculature in the swallowing performance of poststroke dysphagic patients, especially when the intensity of the stimulus is adjusted at the sensory level or when the motor electrical stimulation is applied on the infrahyoid muscles during swallowing. PMID:24804147
Huff, Terry B; Shi, Yunzhou; Sun, Wenjing; Wu, Wei; Shi, Riyi; Cheng, Ji-Xin
2011-03-03
High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS) imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.
Bhasin, Neha; Reddy, Sreedevi; Nagarajappa, Anil Kumar; Kakkad, Ankur
2015-06-01
Saliva is a complex fluid, whose important role is to maintain the well being of oral cavity. Salivary gland hypofunction or hyposalivation is the condition of having reduced saliva production which leads to the subjective complaint of oral dryness termed xerostomia.(7) Management of xerostomia includes palliative therapy using topical agents or systemic therapy. Electrostimulation to produce saliva was studied in the past and showed moderate promise but never became part of mainstream therapy. Hence, this study was undertaken to evaluate the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate in healthy adults and to evaluate how long this effect of TENS lasts on salivary flow. One hundred healthy adult subjects were divided into five age groups with each group containing 20 subjects equally divided into males and females in each group. Unstimulated saliva was collected using a graduated test tube fitted with funnel and quantity was measured. Transcutaneous electrical nerve stimulation unit was activated and stimulated saliva was collected. Saliva was again collected 30 minutes and 24 hours post stimulation. The mean unstimulated whole saliva flow rate for all subjects (n = 100) was 2.60 ml/5 min. During stimulation, it increased to 3.60 ± 0.39 ml/5 min. There was 38.46% increase in salivary flow. Ninety six out of 100 responded positively to TENS therapy. Salivary flow remained increased 30 minutes and 24 hours post stimulation with the values being 3.23 ± 0.41 ml/5 min and 2.69 ± 0.39 ml/5 min respectively. Repeated measures One way analysis of variance (ANOVA) test showed that the difference between these values were statistically significant. Transcutaneous electrical nerve stimulation therapy was effective for stimulation of whole saliva in normal, healthy subjects and its effect retained till 30 minutes and a little up to 24 hours. Transcutaneous electrical nerve stimulation may work best synergistically with other sialagogues and can be used for the management of xerostomia.
Orientation selective deep brain stimulation
NASA Astrophysics Data System (ADS)
Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom
2017-02-01
Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.
Direct current stimulation of titanium interbody fusion devices in primates.
Cook, Stephen D; Patron, Laura P; Christakis, Petros M; Bailey, Kirk J; Banta, Charles; Glazer, Paul A
2004-01-01
The fusion rate for anterior lumbar interbody fusion (ALIF) varies widely with the use of different interbody devices and bone graft options. Adjunctive techniques such as electrical stimulation may improve the rate of bony fusion. To determine if direct current (DC) electrical stimulation of a metallic interbody fusion device enhanced the incidence or extent of anterior bony fusion. ALIF was performed using titanium alloy interbody fusion devices with and without adjunctive DC electrical stimulation in nonhuman primates. ALIF was performed through an anterolateral approach in 35 macaques with autogenous bone graft and either a titanium alloy (Ti-6Al-4V) fusion device or femoral allograft ring. The fusion devices of 19 animals received high (current density 19.6 microA/cm2) or low (current density 5.4 microA/cm2) DC electrical stimulation using an implanted generator for a 12- or 26-week evaluation period. Fusion sites were studied using serial radiographs, computed tomography imaging, nondestructive mechanical testing and qualitative and semiquantitative histology. Fusion was achieved with the titanium fusion device and autogenous bone graft. At 12 weeks, the graft was consolidating and early to moderate bridging callus was observed in and around the device. By 26 weeks, the anterior callus formation was more advanced with increased evidence of bridging trabeculations and early bone remodeling. The callus formation was not as advanced or abundant for the allograft ring group. Histology revealed the spinal fusion device had an 86% incidence of bony fusion at 26 weeks compared with a 50% fusion rate for the allograft rings. DC electrical stimulation of the fusion device had a positive effect on anterior interbody fusion by increasing both the presence and extent of bony fusion in a current density-dependent manner. Adjunctive DC electrical stimulation of the fusion device improved the rate and extent of bony fusion compared with a nonstimulated device. The fusion device was equivalent to or better than the femoral allograft ring in all evaluations. The use of adjunctive direct current electrical stimulation may provide a means of improving anterior interbody fusion.
Drummond, Peter D
2007-01-01
What is already known about this subject Repeated cycles of electrical stimulation inhibit cutaneous vasoconstriction to noradrenaline, but the mechanism is unknown. Investigating this is important because peripheral electrical stimulation is useful for pain modulation and appears to assist cutaneous wound healing. What this study adds Intermittent, brief electrical stimulation of the forearm over a 10-day period inhibited vasoconstriction and axon-reflex vasodilation to noradrenaline, but did not affect vasoconstriction to vasopressin or axon-reflex vasodilation to histamine. Thus, electrical stimulation may evoke a specific reduction in responsiveness to noradrenaline. Aim To investigate whether desensitization to the vasomotor effects of noradrenaline is a specific effect of electrical stimulation. Methods Three sites on the forearm of 10 healthy volunteers were stimulated with 0.2 mA direct current for 2 min twice daily for 10 days. Noradrenaline and histamine were then displaced from ring-shaped iontophoresis chambers into two of the pretreated sites and two untreated sites on the contralateral forearm. Axon-reflex vasodilation was measured from the centre of the ring described by the iontophoresis chamber with a laser Doppler flowmeter. One or two days later, noradrenaline and vasopressin were introduced into pretreated and untreated sites by iontophoresis, and vasoconstriction at sites of administration was measured in the heated forearm. Results The pretreatment blocked vasoconstriction to noradrenaline [median increase in flow 1%, interquartile range (IR) −41 to 52%; median decrease at the untreated site 53%, IR. −70 to −10%; P < 0.05], but did not block vasoconstriction to vasopressin (median decrease 42% at the untreated site and 45% at the pretreated site). Axon-reflex vasodilation to noradrenaline was diminished at the pretreated site (median increase in flow 33%, IR 2–321%; untreated site 247%, IR 31–1087%; P < 0.05). However, axon-reflex vasodilation to histamine did not differ significantly between the pretreated site (median increase 1085%) and the untreated site (median increase 1345%). Conclusions The conditioning pretreatment appears to evoke a specific decrease in responsiveness to noradrenaline. Repeated cycles of electrical stimulation may downregulate neural and vascular responses to noradrenaline by repetitively activating cutaneous sympathetic nerve fibres. PMID:17441931
Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A
2015-07-01
Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhu, Yongjun; Feng, Yuxing; Peng, Lihua
2017-11-21
Transcutaneous electrical nerve stimulation is a possible adjunctive therapy to pharmacological treatment for controlling pain after total knee arthroplasty. However, the results are controversial. A systematic review and meta-analysis was conducted to explore the effect of transcutaneous electrical nerve stimulation on patients with total knee arthroplasty. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation on patients with total knee arthroplasty were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. Primary outcome was visual analogue scale (VAS) score over a period of 24 h. Meta-analysis was performed using a random-effect model. Six randomized controlled trials involving 529 patients were included in the meta-analysis. Overall, compared with control intervention, transcutaneous electrical nerve stimulation supplementation intervention was found to significantly reduce VAS scores and total postoperative morphine dose over a period of 24 h, and to improve active range of knee motion (standard mean difference (SMD) = 0.37; 95% confidence interval (95% CI) = 0.06-0.68; p = 0.02), but had no effect on VAS scores at 2 weeks (SMD = 0.20; 95% CI = -0.07 to 0.48; p = 0.15). Compared with control intervention, transcutaneous electrical nerve stimulation supplementation intervention was found to significantly reduce pain and morphine requirement over a period of 24 h and to promote functional recovery in patients who have undergone total knee arthroplasty.
Almeida, Camila Cadena de; Silva, Vinicius Z Maldaner da; Júnior, Gerson Cipriano; Liebano, Richard Eloin; Durigan, Joao Luiz Quagliotti
2018-02-02
Transcutaneous electrical nerve stimulation and interferential current have been widely used in clinical practice. However, a systematic review comparing their effects on pain relief has not yet been performed. To investigate the effects of transcutaneous electrical nerve stimulation and interferential current on acute and chronic pain. We use Pubmed, Embase, LILACS, PEDro and Cochrane Central Register of Controlled Trials as data sources. Two independent reviewers that selected studies according to inclusion criteria, extracted information of interest and verified the methodological quality of the studies made study selection. The studies were selected if transcutaneous electrical nerve stimulation and interferential current were used as treatment and they had pain as the main outcome, as evaluated by a visual analog scale. Secondary outcomes were the Western Ontario Macmaster and Rolland Morris Disability questionnaires, which were added after data extraction. Eight studies with a pooled sample of 825 patients were included. The methodological quality of the selected studies was moderate, with an average of six on a 0-10 scale (PEDro). In general, both transcutaneous electrical nerve stimulation and interferential current improved pain and functional outcomes without a statistical difference between them. Transcutaneous electrical nerve stimulation and interferential current have similar effects on pain outcome The low number of studies included in this meta-analysis indicates that new clinical trials are needed. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel.
Chiu, Loraine L Y; Janic, Katarina; Radisic, Milica
2012-04-30
Surface topography and electrical field stimulation are important guidance cues that aid the organization and contractility of cardiomyocytes in vivo. We report here on the use of these biomimetic cues in vitro to engineer an implantable contractile cardiac tissue. Photocrosslinkable collagen-chitosan hydrogels with microgrooves of 10 µm, 20 µm and 100 µm in width were fabricated using polydimethylsiloxane (PDMS) molds. The hydrogels were seeded with cardiomyocytes, placed into a bioreactor array with the microgrooves aligned with the electrical field lines, and stimulated with biphasic square pulses at 1 Hz and 2.5 V/cm. At Day 6, cardiomyocytes were aligned in the direction of the microgrooves. When cultivated without electrical stimulation, the excitation threshold of engineered cardiac tissues using micropatterned hydrogels was significantly lower than using smooth hydrogels, thus showing the importance of cell alignment to cardiac function. The success rate of achieving beating constructs was higher with the application of electrical stimulation. In addition, formation of dense contractile cardiac organoids was observed in groups with both biomimetic cues. The cultivation of cardiomyocytes on hydrogels with 10 µm grooves yielded 100% beating tissues with or without electrical stimulation, thus suggesting a smaller groove width is necessary for cells to communicate and form proper gap junctions. However, electrical field stimulation further increased cell density and enhanced tissue morphology which may be essential for the integration of the tissue construct to the native heart tissue upon implantation. The biodegradability of the hydrogel substrate allows for the rapid translation of the engineered, oriented cardiac tissue to clinical applications.
Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana
2012-01-01
Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772
Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie
2008-12-01
To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.
Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin
2017-12-01
To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P < 0.05), and passive range of motion ( P < 0.05) showed obvious improvements between patients in the mirror therapy and control groups. Patients in the mirror therapy + neuromuscular electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P < 0.05). There was no significant difference in spasticity between patients in the two intervention groups. However, compared with patients in the control group, patients in the mirror therapy + neuromuscular electrical stimulation group showed a significant decrease in spasticity ( P < 0.001). Therapy combining mirror therapy and neuromuscular electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.
Wexler, Anna
In recent years, neuroscientists and ethicists have warned of the dangers of the unsupervised home use of transcranial direct current stimulation (tDCS), in which individuals stimulate their own brains with low levels of electricity for self-improvement purposes. Although the home use of tDCS is often referred to as a novel phenomenon, in reality the late nineteenth and early twentieth century saw a proliferation of electrical stimulation devices for home use. In particular, the use of an object known as the medical battery bears a number of striking similarities to the modern-day use of tDCS. This article reviews a number of features thought to be unique to the present day home use of brain stimulation, with a particular focus on analogies between tDCS and the medical battery. Archival research was conducted at the Bakken Museum and at the American Medical Association's Historical Health Fraud Archives. Many of the features characterizing the contemporary home use tDCS-a do-it-yourself (DIY) movement, anti-medical establishment themes, conflicts between lay and professional usage-are a repetition of themes that occurred a century ago with regard to the medical battery. A number of features, however, seem to be unique to the present, such as the dominant discourse about risk and safety, the division between cranial and non-cranial stimulation, and utilization for cognitive enhancement purposes. Viewed in the long durée, the contemporary use of electrical stimulation at home is not a novel phenomenon, but rather the latest wave in a series of ongoing attempts by lay individuals to utilize electricity for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.
Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin.
Aasvang, E K; Werner, M U; Kehlet, H
2015-08-01
Persistent postherniotomy pain is located around the scar and external inguinal ring and is often described as deep rather than cutaneous, with frequent complaints of pain in adjacent areas. Whether this pain is due to local pathology or referred/projected pain is unknown, hindering mechanism-based treatment. Deep tissue electrical pain stimulation by needle electrodes in the right groin (rectus muscle, ilioinguinal/iliohypogastric nerve and perispermatic cord) was combined with assessment of referred/projected pain and the cutaneous heat pain threshold (HPT) at three prespecified areas (both groins and the lower right arm) in 19 healthy subjects. The assessment was repeated 10 days later to assess the reproducibility of individual responses. Deep electrical stimulation elicited pain at the stimulation site in all subjects, and in 15 subjects, pain from areas outside the stimulation area was reported, with 90-100% having the same response on both days, depending on the location. Deep pain stimulation significantly increased the cutaneous HPT (P<0.014). Individual HPT responses before and during deep electrical pain stimulation were significantly correlated (ρ>0.474, P≤0.040) at the two test days for the majority of test areas. Our results corroborate a systematic relationship between deep pain and changes in cutaneous nociception. The individual referred/projected pain patterns and cutaneous responses are variable, but reproducible, supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment and prevention. ClinicalTrials.gov (NCT01701427). © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe
2012-01-01
Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.
Treatment of Post-Herpetic Neuralgia by Prolonged Electric Stimulation
Nathan, P. W.; Wall, P. D.
1974-01-01
The results of treating patients with severe post-herpetic neuralgia with prolonged self-administered electric stimulation from a portable apparatus were good in 11 out of 30 patients. None of these patients had had as good relief of pain with other forms of treatment. In 10 patients some effects from stimulation continued after stimulation stopped. In eight there was an improvement in the course of the neuralgia, and in two there was a cure. Imagesp646-a PMID:4425789
Gondin, Julien; Cozzone, Patrick J; Bendahan, David
2011-10-01
We aimed at providing an overview of the currently acknowledged benefits and limitations of neuromuscular electrical stimulation (NMES) training programs in both healthy individuals and in recreational and competitive athletes regarding muscle performance. Typical NMES resistance exercises are performed under isometric conditions and involve the application of electrical stimuli delivered as intermittent high frequencies trains (>40-50 Hz) through surface electrodes. NMES has been acknowledged as an efficient modality leading to significant improvements in isometric maximal voluntary strength. However, the resulting changes in dynamic strength, motor performance skills and explosive movements (i.e., jump performance, sprint ability) are still ambiguous and could only be obtained when NMES is combined with voluntary dynamic exercise such as plyometrics. Additionally, the effects of NMES on muscle fatigability are still poorly understood and required further investigations. While NMES effectiveness could be partially related to several external adjustable factors such as training intensity, current characteristics (e.g., intensity, pulse duration…) or the design of training protocols (number of contractions per session, number of sessions per week…), anatomical specificities (e.g., morphological organization of the axonal branches within the muscle) appear as the main factor accounting for the differences in NMES response. Overall, NMES cannot be considered as a surrogate training method, but rather as an adjunct to voluntary resistance training. The combination of these two training modalities should optimally improve muscle function.
NASA Astrophysics Data System (ADS)
Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong
2012-11-01
To establish safe and efficient transcranial direct current stimulation (tDCS), it is of particular importance to understand the electrical effects of tDCS in the brain. Since the current density (CD) and electric field (EF) in the brain generated by tDCS depend on various factors including complex head geometries and electrical tissue properties, in this work, we investigated the influence of anisotropic conductivity in the skull and white matter (WM) on tDCS via a 3D anatomically realistic finite element head model. We systematically incorporated various anisotropic conductivity ratios into the skull and WM. The effects of anisotropic tissue conductivity on the CD and EF were subsequently assessed through comparisons to the conventional isotropic solutions. Our results show that the anisotropic skull conductivity significantly affects the CD and EF distribution: there is a significant reduction in the ratio of the target versus non-target total CD and EF on the order of 12-14%. In contrast, the WM anisotropy does not significantly influence the CD and EF on the targeted cortical surface, only on the order of 1-3%. However, the WM anisotropy highly alters the spatial distribution of both the CD and EF inside the brain. This study shows that it is critical to incorporate anisotropic conductivities in planning of tDCS for improved efficacy and safety.
Bikson, Marom; Paneri, Bhaskar; Mourdoukoutas, Andoni; Esmaeilpour, Zeinab; Badran, Bashar W; Azzam, Robin; Adair, Devin; Datta, Abhishek; Fang, Xiao Hui; Wingeier, Brett; Chao, Daniel; Alonso-Alonso, Miguel; Lee, Kiwon; Knotkova, Helena; Woods, Adam J; Hagedorn, David; Jeffery, Doug; Giordano, James; Tyler, William J
We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with regard to output performance and standing regulation, the availability of tDCS, tACS, or tPCS to the public would not introduce risk, provided such devices are responsibly manufactured and legally marketed. In Part 3, we develop voluntary manufacturer guidance for limited output tES that is aligned with current regulatory standards. Based on established medical engineering and scientific principles, we outline a robust and transparent technical framework for ensuring limited output tES devices are designed to minimize risks, while also supporting access and innovation. Alongside applicable medical and government activities, this voluntary industry standard (LOTES-2017) further serves an important role in supporting informed decisions by the public. Copyright © 2017 Elsevier Inc. All rights reserved.
A CONTINUED INVESTIGATION OF ELECTRICALLY STIMULATED FABRIC FILTRATION
The report summarizes three experiments performed by Southern Research Institute under a cooperative agreement with EPA. First was a demonstration of electrostatically stimulated fabric filtration (ESFF) used to collect particulate matter (PM) from fossil fuel electrical power pl...
Electrical stimulation of a small brain area reversibly disrupts consciousness.
Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne
2014-08-01
The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.
Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung
2015-05-01
Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types. © 2014 Wiley Periodicals, Inc.
Metallic taste from electrical and chemical stimulation.
Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne
2005-03-01
A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.
Emerging modalities in dysphagia rehabilitation: neuromuscular electrical stimulation.
Huckabee, Maggie-Lee; Doeltgen, Sebastian
2007-10-12
The aim of this review article is to advise the New Zealand medical community about the application of neuromuscular electrical stimulation (NMES) as a treatment for pharyngeal swallowing impairment (dysphagia). NMES in this field of rehabilitation medicine has quickly emerged as a widely used method overseas but has been accompanied by significant controversy. Basic information is provided about the physiologic background of electrical stimulation. The literature reviewed in this manuscript was derived through a computer-assisted search using the biomedical database Medline to identify all relevant articles published until from the initiation of the databases up to January 2007. The reviewers used the following search strategy: [(deglutition disorders OR dysphagia) AND (neuromuscular electrical stimulation OR NMES)]. In addition, the technique of reference tracing was used and very recently published studies known to the authors but not yet included in the database systems were included. This review elucidates not only the substantive potential benefit of this treatment, but also potential key concerns for patient safety and long term outcome. The discussion within the clinical and research communities, especially around the commercially available VitalStim stimulator, is objectively explained.
Quandt, Fanny; Hummel, Friedhelm C
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333
Electrical Stimulation for Wound-Healing: Simulation on the Effect of Electrode Configurations
2017-01-01
Endogenous electric field is known to play important roles in the wound-healing process, mainly through its effects on protein synthesis and cell migration. Many clinical studies have demonstrated that electrical stimulation (ES) with steady direct currents is beneficial to accelerating wound-healing, even though the underlying mechanisms remain unclear. In the present study, a three-dimensional finite element wound model was built to optimize the electrode configuration in ES. Four layers of the skin, stratum corneum, epidermis, dermis, and subcutis, with defined thickness and electrical properties were modeled. The main goal was to evaluate the distributions of exogenous electric fields delivered with direct current (DC) stimulation using different electrode configurations such as sizes and positions. Based on the results, some guidelines were obtained in designing the electrode configuration for applications of clinical ES. PMID:28497054
Characterizing Deep Brain Stimulation effects in computationally efficient neural network models.
Latteri, Alberta; Arena, Paolo; Mazzone, Paolo
2011-04-15
Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the activity of specific brain nuclei, called Basal Ganglia (BG). This clinical protocol gave the possibility to analyse and inspect signals measured from the electrodes implanted into the deep brain regions. The analysis of these signals led to the possibility to study the PD as a specific case of dynamical synchronization in biological neural networks, with the advantage to apply the theoretical analysis developed in such scientific field to find efficient treatments to face with this important disease. Experimental results in fact show that the PD neurological diseases are characterized by a pathological signal synchronization in BG. Parkinsonian tremor, for example, is ascribed to be caused by neuron populations of the Thalamic and Striatal structures that undergo an abnormal synchronization. On the contrary, in normal conditions, the activity of the same neuron populations do not appear to be correlated and synchronized. To study in details the effect of the stimulation signal on a pathological neural medium, efficient models of these neural structures were built, which are able to show, without any external input, the intrinsic properties of a pathological neural tissue, mimicking the BG synchronized dynamics.We start considering a model already introduced in the literature to investigate the effects of electrical stimulation on pathologically synchronized clusters of neurons. This model used Morris Lecar type neurons. This neuron model, although having a high level of biological plausibility, requires a large computational effort to simulate large scale networks. For this reason we considered a reduced order model, the Izhikevich one, which is computationally much lighter. The comparison between neural lattices built using both neuron models provided comparable results, both without traditional stimulation and in presence of all the stimulation protocols. This was a first result toward the study and simulation of the large scale neural networks involved in pathological dynamics.Using the reduced order model an inspection on the activity of two neural lattices was also carried out at the aim to analyze how the stimulation in one area could affect the dynamics in another area, like the usual medical treatment protocols require.The study of population dynamics that was carried out allowed us to investigate, through simulations, the positive effects of the stimulation signals in terms of desynchronization of the neural dynamics. The results obtained constitute a significant added value to the analysis of synchronization and desynchronization effects due to neural stimulation. This work gives the opportunity to more efficiently study the effect of stimulation in large scale yet computationally efficient neural networks. Results were compared both with the other mathematical models, using Morris Lecar and Izhikevich neurons, and with simulated Local Field Potentials (LFP).
McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G
2010-12-01
Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.
Concepts and methods in neuromodulation and functional electrical stimulation: an introduction.
Holsheimer, J
1998-04-01
This article introduces two clinical fields in which stimulation is applied to the nervous system: neuromodulation and functional electrical stimulation. The concepts underlying these fields and their main clinical applications, as well as the methods and techniques used in each field, are described. Concepts and techniques common in one field that might be beneficial to the other are discussed. 1998 Blackwell Science, Inc.
Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan
2014-12-01
Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical Neuromuscular Stimulation treatment did not alter quadriceps central activation ratio or maximal voluntary isometric contraction. Unlike other types of muscle stimulation, PENS did not result in a reduction of quadriceps torque. Level III.
Transcranial electric stimulation for the investigation of speech perception and comprehension
Zoefel, Benedikt; Davis, Matthew H.
2017-01-01
ABSTRACT Transcranial electric stimulation (tES), comprising transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), involves applying weak electrical current to the scalp, which can be used to modulate membrane potentials and thereby modify neural activity. Critically, behavioural or perceptual consequences of this modulation provide evidence for a causal role of neural activity in the stimulated brain region for the observed outcome. We present tES as a tool for the investigation of which neural responses are necessary for successful speech perception and comprehension. We summarise existing studies, along with challenges that need to be overcome, potential solutions, and future directions. We conclude that, although standardised stimulation parameters still need to be established, tES is a promising tool for revealing the neural basis of speech processing. Future research can use this method to explore the causal role of brain regions and neural processes for the perception and comprehension of speech. PMID:28670598
Rubinstein, J T; Spelman, F A
1988-01-01
The cable model of a passive, unmyelinated fiber in an applied extracellular field is derived. The solution is valid for an arbitrary, time-varying, applied field, which may be determined analytically or numerically. Simple analytical computations are presented. They explain a variety of known phenomena and predict some previously undescribed properties of extracellular electrical stimulation. The polarization of a fiber in an applied field behaves like the output of a spatial high-pass and temporal low-pass filter of the stimulus. High-frequency stimulation results in a more spatially restricted region of fiber excitation, effectively reducing current spread relative to that produced by low-frequency stimulation. Chronaxie measured extracellularly is a function of electrode position relative to the stimulated fiber, and its value may differ substantially from that obtained intracellularly. Frequency dependence of psychophysical threshold obtained by electrical stimulation of the macaque cochlea closely follows the frequency dependence of single-fiber passive response. PMID:3233274
Conducting polymer electrodes for visual prostheses.
Green, R A; Devillaine, F; Dodds, C; Matteucci, P; Chen, S; Byrnes-Preston, P; Poole-Warren, L A; Lovell, N H; Suaning, G J
2010-01-01
Conducting polymers (CPs) have the potential to provide superior neural interfaces to conventional metal electrodes by introducing more efficient charge transfer across the same geometric area. In this study the conducting polymer poly(ethylene dioxythiophene) (PEDOT) was coated on platinum (Pt) microelectrode arrays. The in vitro electrical characteristics were assessed during biphasic stimulation regimes applied between electrode pairs. It was demonstrated that PEDOT could reduce the potential excursion at a Pt electrode interface by an order of magnitude. The charge injection limit of PEDOT was found to be 15 x larger than Pt. Additionally, PEDOT coated electrodes were acutely implanted in the suprachoroidal space of a cat retina. It was demonstrated that PEDOT coated electrodes also had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the vision cortex.
Kumar, Deepesh; Verma, Sunny; Bhattacharya, Sutapa; Lahiri, Uttama
2016-06-13
Neurological disorders often manifest themselves in the form of movement deficit on the part of the patient. Conventional rehabilitation often used to address these deficits, though powerful are often monotonous in nature. Adequate audio-visual stimulation can prove to be motivational. In the research presented here we indicate the applicability of audio-visual stimulation to rehabilitation exercises to address at least some of the movement deficits for upper and lower limbs. Added to the audio-visual stimulation, we also use Functional Electrical Stimulation (FES). In our presented research we also show the applicability of FES in conjunction with audio-visual stimulation delivered through VR-based platform for grasping skills of patients with movement disorder.
Bower, W F; Moore, K H; Adams, R D; Shepherd, R
1998-12-01
We studied the effect of surface neuromodulation on cystometric pressure and volume parameters in women with detrusor instability or sensory urgency. Electrical current was delivered to the suprapubic region and third sacral foramina via a transcutaneous electrical nerve stimulator with sham neuromodulation control. A consecutive series of women with proved detrusor instability or sensory urgency were randomized to 3 surface neuromodulation groups. Volume and pressure parameters were the main outcomes of transcutaneous electrical nerve stimulation applied during second cystometric fill. Sham transcutaneous electrical nerve stimulation did not alter the outcome measures. However, neuromodulation delivered across the suprapubic and sacral skin effected a reduction in mean maximum height of detrusor contraction. A current which inhibits motor activity was not superior to that which inhibits sensory perception in reducing detrusor pressure. Response in sensory urgency was poor. Results from our sham controlled study suggest that short-term surface neuromodulation via transcutaneous electrical nerve stimulation may have a role in the treatment of detrusor instability. Future studies must examine the clinical effect of long-term surface neuromodulation.
Challenges associated with nerve conduction block using kilohertz electrical stimulation
NASA Astrophysics Data System (ADS)
Patel, Yogi A.; Butera, Robert J.
2018-06-01
Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.
Park, Seong Hoon; Hwangbo, Gak
2015-03-01
[Purpose] The aim of this study was to investigate the effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with osteoarthritis of the knee. [Subjects] Thirty women over 65 years of age diagnosed with knee osteoarthritis participated in the present study. The subjects were randomly assigned to a control group (n=10), a progressive resistance training group (n=10), or a Russian electrical stimulation group (n=10). [Methods] Each group was treated 3 times weekly for 8 weeks, and each session lasted 45 minutes. Muscle strength was assessed by measuring the peak torque of the quadriceps femoris muscle. Outcome measurements were performed at baseline and at the fourth and eighth weeks of the treatment period. [Results] All groups showed significant intragroup differences in the quadriceps femoris muscle peak torque after the treatment intervention. There were significant intergroup differences between the Russian electrical stimulation group and the other groups. [Conclusion] The results of this study suggest that combined application of progressive resistance training and Russian electrical stimulation can be effective in strengthening the quadriceps femoris muscle in elderly women with knee osteoarthritis.
Electrical and mechanical stimulation of cardiac cells and tissue constructs.
Stoppel, Whitney L; Kaplan, David L; Black, Lauren D
2016-01-15
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.
Aoyagi, Yoichiro; Tsubahara, Akio
2004-01-01
Upper extremity hemiplegia after stroke is common and disabling. Apart from conventional physical and occupational therapy, a number of additional approaches that use devices such as orthoses, prostheses, electrical stimulation, and robots have been introduced. The purpose of this review was to assess the clinical efficacy of such devices used for the affected upper extremities of acute, subacute, and chronic stroke patients. Assessments of their effectiveness and recommendations were based on the weight of published scientific evidence. The amount of evidence with respect to hand splints and shoulder slings is limited. Further study with a well-designed randomized controlled trial (RCT) is required to investigate accurately their short- and long-term efficacy. A number of studies suggested that the use of electrical stimulation for reducing shoulder subluxation or improving the function of wrist and finger extensors is effective during or shortly after the daily treatment period. The robotic approach to hemiplegic upper extremities appears to be a novel therapeutic strategy that may help improve hand and arm function. However, the longer term effectiveness after discontinuation as well as the motor recovery mechanism of electrical stimulation or robotic devices remains unclear. More research is needed to determine the evidence-based effectiveness of electrical stimulation or other devices for stroke survivors.
Hypothesis that vagal reinervation of diaphragm could sensitise it to electrical stimulation.
Pavlovic, Dragan; Wendt, Michael
2003-03-01
The hypothesis proposed is that restoration of functional capacity of denervated diaphragm may be achieved by reinervating it with vagus nerve. Following trauma, carcinomatose infiltration, and/or large thoracic surgery and neck surgery, phrenic nerve is frequently injured. Reinervation even in the most favourable conditions would not follow and diaphragm would rest permanently denervated and paralysed. This results in unilateral or bilateral paralysis of diaphragm. In principle, intermittent electrical stimulation of the phrenic nerve or diaphragm could elicit regular diaphragm contractions and maintain satisfactory respiration. While this technique could be used in upper motor neurone injury, in lower motor neurone injury and denervated diaphragm, that imposes too high electrical resistance, direct diaphragm pacing is practically impossible. In these cases, long term artificial ventilation is often necessary. Nevertheless, those patients are at high risk to suffer from atelectasis and respiratory infections. We project a hypothesis that reinervation of denervated diaphragm by vagus nerve could re-establishes its sensitivity to intramuscular electrical stimulation and may allow stimulation of the diaphragm by implanted pace-maker electrodes. An appropriate electrical stimulation might then be possible and diaphragm pacing could replace prolonged artificial ventilation in those patients. Restoration of functional capacity of denervated diaphragm could open a perspective for long term diaphragm pacing in patients with irreversible phrenic nerve injury and diaphragm paralysis.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
Takano, Yoshio; Matsuse, Hiroo; Tsukada, Yuuya; Omoto, Masayuki; Hashida, Ryuki; Shiba, Naoto
2016-01-01
The hybrid training system (HTS) resists the motion of a volitionally contracting agonist muscle using force generated by its electrically stimulated antagonist. We have developed a new training method using the principle of HTS. This study was designed to evaluate the effect of HTS with electrical stimulation on muscle strength and physical function by comparing it against training without electrical stimulation in older adults. 16 subjects were randomly divided into two groups: the squat and single leg lift training (control, CTR) group, and the CTR with HTS training group. Some electrical stimulation was applied to the quadriceps and hamstring muscles in the HTS group. The subjects performed training for 25 min per session 3 times a week for 12 weeks. At points before and after the research maximal isokinetic torque, knee-flexors (KFT) and knee-extensors (KET), a one-leg standing test (OLT), a functional reach test (FRT), a 10-meter maximal gait time (10MGT) and Timed up & go test (TUG) were conducted. None of the subjects had any injuries during the study period. TUG significantly improved after the training period in both the HTS group (7.15 sec to 6.01 sec P = 0.01) and in the CTR.
The cholinergic and purinergic components of detrusor contractility in a whole rabbit bladder model.
Chancellor, M B; Kaplan, S A; Blaivas, J G
1992-09-01
Whole rabbit bladders were suspended in a bath chamber and stimulated with ATP, bethanechol, electrical field stimulation, and bethanechol + ATP. Detrusor pressure and fluid expelled by the bladder were recorded, synchronized, and digitized. Detrusor work and power were calculated with a computer program. Maximum work was 61.4 +/- 28.7, 83.3 +/- 17.0, 85.0 +/- 15.0, 90.8 +/- 13.1 cm. H2O, ml. for ATP, bethanechol, electrical and bethanechol + ATP, respectively. Maximum power generated by ATP was 4.8 +/- 3.0 cm. H2O, ml./sec and was approximately 66% of that generated by bethanechol, and 50% of that generated by electrical stimulation, and bethanechol + ATP. ATP cannot empty the bladder with moderate outlet resistance while bethanechol and electrical stimulation can. Our results suggest that ATP is able to generate detrusor power and achieve work in bladder emptying. However, ATP generated power and work is considerably less than that of electrical stimulation or bethanechol alone. ATP mediated contraction is not inhibited by atropine or tetrodotoxin but is inhibited by P2 purinoceptor desensitization, suggesting a functional role of purine receptors on detrusor smooth muscle. Since ATP generated pressure is more rapid than with bethanechol alone, we support the hypothesis that ATP may be important in the initiation of micturition.
Hyvärinen, Antti; Tarkka, Ina M; Mervaala, Esa; Pääkkönen, Ari; Valtonen, Hannu; Nuutinen, Juhani
2008-12-01
The purpose of this study was to assess clinical and neurophysiological changes after 6 mos of transcutaneous electrical stimulation in patients with unresolved facial nerve paralysis. A pilot case series of 10 consecutive patients with chronic facial nerve paralysis either of idiopathic origin or because of herpes zoster oticus participated in this open study. All patients received below sensory threshold transcutaneous electrical stimulation for 6 mos for their facial nerve paralysis. The intervention consisted of gradually increasing the duration of electrical stimulation of three sites on the affected area for up to 6 hrs/day. Assessments of the facial nerve function were performed using the House-Brackmann clinical scale and neurophysiological measurements of compound motor action potential distal latencies on the affected and nonaffected sides. Patients were tested before and after the intervention. A significant improvement was observed in the facial nerve upper branch compound motor action potential distal latency on the affected side in all patients. An improvement of one grade in House-Brackmann scale was observed and some patients also reported subjective improvement. Transcutaneous electrical stimulation treatment may have a positive effect on unresolved facial nerve paralysis. This study illustrates a possibly effective treatment option for patients with the chronic facial paresis with no other expectations of recovery.
Application of electrical stimulation for functional tissue engineering in vitro and in vivo
NASA Technical Reports Server (NTRS)
Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)
2013-01-01
The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.
Comparison between two methods of scorpion venom milking in Morocco
2013-01-01
Background The present study compared two methods used successfully in a large-scale program for the collection of scorpion venoms, namely the milking of adult scorpions via manual and electrical stimulation. Results Our immunobiochemical characterizations clearly demonstrate that regularly applied electrical stimulation obtains scorpion venom more easily and, most importantly, in greater quantity. Qualitatively, the electrically collected venom showed lack of hemolymph contaminants such as hemocyanin. In contrast, manual obtainment of venom subjects scorpions to maximal trauma, leading to hemocyanin secretion. Our study highlighted the importance of reducing scorpion trauma during venom milking. Conclusions In conclusion, to produce high quality antivenom with specific antibodies, it is necessary to collect venom by the gentler electrical stimulation method. PMID:23849043
Gao, J X; Liu, L
1990-10-01
In urethane-anesthetized, vagotomized and paralyzed rabbits, effects of electrical stimulation of the dorso-medial area of the nucleus facialis (DMNF) on the respiration-related units (RRUs) in ventro-lateral region of nucleus tractus solitaris (VLNTS) were observed. The experimental results showed that during electrical stimulation of DMNF the majority of the inspiratory (I) neurons (64.4%) were increased in frequency and duration of discharge, some to a marked extent. During electrical stimulation of DMNF the expiratory neurons (35%) were decreased in their frequency and duration of discharge, some to a marked extent too. The responses of RRUs in ipsilateral and contralateral VLNTS to stimulation of DMNF was not statistically significant (P greater than 0.05). It is suggested that DMNF may have a facilitating effect on the inspiratory neurons and an inhibiting effect on the expiratory neurons in VLNTS.
Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.
2016-01-01
We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041
Rational modulation of neuronal processing with applied electric fields.
Bikson, Marom; Radman, Thomas; Datta, Abhishek
2006-01-01
Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.
Monga, Ash K; Tracey, Michael R; Subbaroyan, Jeyakumar
2012-08-01
The aim of this manuscript was to provide a systematic literature review of clinical trial evidence for a range of electrical stimulation therapies in the treatment of lower urinary tract symptoms (LUTS). The databases MEDLINE, BIOSIS Previews, Inside Conferences, and EMBASE were searched. Original clinical studies with greater than 15 subjects were included. Seventy-three studies were included, representing implanted sacral nerve stimulation (SNS), percutaneous posterior tibial nerve stimulation (PTNS), and transcutaneous electrical stimulation (TENS) therapy modalities. Median mean reductions in incontinence episodes and voiding frequency were similar for implanted SNS and PTNS. However, long-term follow-up data to validate the sustained benefit of PTNS are lacking. Despite a substantial body of research devoted to SNS validation, it is not possible to definitively define the appropriate role of this therapy owing largely to study design flaws that inhibited rigorous intention to treat analyses for the majority of these studies.
A technique for sequential segmental neuromuscular stimulation with closed loop feedback control.
Zonnevijlle, Erik D H; Abadia, Gustavo Perez; Somia, Naveen N; Kon, Moshe; Barker, John H; Koenig, Steven; Ewert, D L; Stremel, Richard W
2002-01-01
In dynamic myoplasty, dysfunctional muscle is assisted or replaced with skeletal muscle from a donor site. Electrical stimulation is commonly used to train and animate the skeletal muscle to perform its new task. Due to simultaneous tetanic contractions of the entire myoplasty, muscles are deprived of perfusion and fatigue rapidly, causing long-term problems such as excessive scarring and muscle ischemia. Sequential stimulation contracts part of the muscle while other parts rest, thus significantly improving blood perfusion. However, the muscle still fatigues. In this article, we report a test of the feasibility of using closed-loop control to economize the contractions of the sequentially stimulated myoplasty. A simple stimulation algorithm was developed and tested on a sequentially stimulated neo-sphincter designed from a canine gracilis muscle. Pressure generated in the lumen of the myoplasty neo-sphincter was used as feedback to regulate the stimulation signal via three control parameters, thereby optimizing the performance of the myoplasty. Additionally, we investigated and compared the efficiency of amplitude and frequency modulation techniques. Closed-loop feedback enabled us to maintain target pressures within 10% deviation using amplitude modulation and optimized control parameters (correction frequency = 4 Hz, correction threshold = 4%, and transition time = 0.3 s). The large-scale stimulation/feedback setup was unfit for chronic experimentation, but can be used as a blueprint for a small-scale version to unveil the theoretical benefits of closed-loop control in chronic experimentation.
... techniques that focus on neuromodulation, which incorporates electrical, magnetic or other forms of energy to stimulate brain ... electroconvulsive therapy (ECT), vagus-nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and the experimental deep-brain stimulation ( ...
Carmel, Jason B; Kimura, Hiroki; Martin, John H
2014-01-08
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.
Lyubashina, Olga A; Panteleev, Sergey S; Sokolov, Alexey Y
2017-02-01
Electrical stimulation of the greater occipital nerve (GON) has recently shown promise as an effective non-pharmacological prophylactic therapy for drug-resistant chronic primary headaches, but the neurobiological mechanisms underlying its anticephalgic action are not elucidated. Considering that the spinal trigeminal nucleus (STN) is a key segmental structure playing a prominent role in pathophysiology of headaches, in the present study we evaluated the effects of GON electrical stimulation on ongoing and evoked firing of the dura-sensitive STN neurons. The experiments were carried out on urethane/chloralose-anesthetized, paralyzed and artificially ventilated male Wistar rats. Extracellular recordings were made from 11 neurons within the caudal part of the STN that received convergent input from the ipsilateral facial cutaneous receptive fields, dura mater and GON. In each experiment, five various combinations of the GON stimulation frequency (50, 75, 100 Hz) and intensity (1, 3, 6 V) were tested successively in 10 min interval. At all parameter sets, preconditioning GON stimulation (250 ms train of pulses applied before each recording) produced suppression of both the ongoing activity of the STN neurons and their responses to electrical stimulation of the dura mater. The inhibitory effect depended mostly on the GON stimulation intensity, being maximally pronounced when a stimulus of 6 V was applied. Thus, the GON stimulation-induced inhibition of trigeminovascular nociceptive processing at the level of STN has been demonstrated for the first time. The data obtained can contribute to a deeper understanding of neurophysiological mechanisms underlying the therapeutic efficacy of GON stimulation in primary headaches.
Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram
2016-09-01
Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Cheing, G L; Hui-Chan, C W
1999-03-01
To investigate to what extent a single 60-minute session of transcutaneous electrical nerve stimulation (TENS) would modify chronic clinical pain, acute experimental pain, and the flexion reflex evoked in chronic low back pain patients. Thirty young subjects with chronic low back pain were randomly allocated to two groups, receiving either TENS or placebo stimulation to the lumbosacral region for 60 minutes. The flexion reflex was elicited by an electrical stimulation applied to the subject's right sole and recorded electromyographically from the biceps femoris and the tibialis anterior muscles. Subjective sensation of low back pain and the electrically induced pain were measured by two separate visual analog scales, termed VAS(LBP) and VAS(FR), respectively. Data obtained before, during, and 60 minutes after TENS and placebo stimulations were analyzed using repeated measures ANOVA. The VAS(LBP) score was significantly reduced to 63.1% of the prestimulation value after TENS (p<.001), but the reduction was negligible after placebo stimulation (to 96.7%, p = .786). In contrast, no significant change was found in the VASFR score (p = .666) and the flexion reflex area (p = .062) during and after stimulation within each group and between the two groups (p = .133 for VASFR and p = .215 for flexion reflex area). The same TENS protocol had different degrees of antinociceptive influence on chronic and acute pain in chronic low back pain patients.
Peripheral nerve recruitment curve using near-infrared stimulation
NASA Astrophysics Data System (ADS)
Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine
2018-02-01
In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.
Somatic Treatments for Mood Disorders
Rosa, Moacyr A; Lisanby, Sarah H
2012-01-01
Somatic treatments for mood disorders represent a class of interventions available either as a stand-alone option, or in combination with psychopharmacology and/or psychotherapy. Here, we review the currently available techniques, including those already in clinical use and those still under research. Techniques are grouped into the following categories: (1) seizure therapies, including electroconvulsive therapy and magnetic seizure therapy, (2) noninvasive techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial electric stimulation, (3) surgical approaches, including vagus nerve stimulation, epidural electrical stimulation, and deep brain stimulation, and (4) technologies on the horizon. Additionally, we discuss novel approaches to the optimization of each treatment, and new techniques that are under active investigation. PMID:21976043
Possover, Marc; Forman, Axel
2017-01-01
Introduction: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves in a SCI patient. Case Presentation: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves. The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical stimulation of the pelvic nerves. Neither intraoperative direct stimulation of the pelvic nerves nor postoperative stimulation induced any sensation or muscle reactions. After 2 years of passive continuous low-frequency stimulation, the patient developed progressive recovery of electrically assisted voluntary motor functions below the lesions: he was first able to extend the right knee and 6 months later, the left. He is currently capable of voluntary weight-bearing standing and walking (with voluntary knee movements) about 50 m with open cuff crutches and drop foot braces. Discussion: Our findings suggest that continuous low-frequency pelvic nerve stimulation in combination with FES-assisted training might induce changes that affect both the upper and the lower motor neuron and allow supra- and infra-spinal inputs to engage residual spinal and peripheral pathways. PMID:28503316
NASA Astrophysics Data System (ADS)
Chang Chien, Jia-Ren; Lin, Guo-Hong; Hsu, Ar-Tyan
2011-10-01
In this study, a portable electromyogram (EMG) system and a stimulator are developed for patellofemoral pain syndrome patients, with the objective of reducing the pain experienced by these patients; the patellar pain is caused by an imbalance between the vastus medialis obliquus (VMO) and the vastus lateralis (VL). The EMG measurement circuit and the electrical stimulation device proposed in this study are specifically designed for the VMO and the VL; they are capable of real-time waveform recording, possess analyzing functions, and can upload their measurement data to a computer for storage and analysis. The system can calculate and record the time difference between the EMGs of the VMO and the VL, as well as the signal strengths of both the EMGs. As soon as the system detects the generation of the EMG of the VL, it quickly calculates and processes the event and stimulates the VMO as feedback through electrical stimulation units, in order to induce its contraction. The system can adjust the signal strength, time length, and the sequence of the electrical stimulation, both manually and automatically. The output waveform of the electrical stimulation circuit is a dual-phase asymmetrical pulse waveform. The primary function of the electrical simulation circuit is to ensure that the muscles contract effectively. The performance of the device can be seen that the width of each pulse is 20-1000 μs, the frequency of each pulse is 10-100 Hz, and current strength is 10-60 mA.
Hollis, Sharon; McClure, Philip
2017-12-01
Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.
Liebscher, Thomas; Schauer, Thomas; Stephan, Ralph; Prilipp, Erik; Niedeggen, Andreas; Ekkernkamp, Axel; Seidl, Rainer O
2016-11-01
To examine whether, by enhancing breathing depth and expectoration, early use of breathing-synchronised electrical stimulation of the abdominal muscles (abdominal functional electrical stimulation, AFES) is able to reduce pulmonary complications during the acute phase of tetraplegia. Prospective proof-of-concept study. Spinal cord unit at a level 1 trauma center. Following cardiovascular stabilisation, in addition to standard treatments, patients with acute traumatic tetraplegia (ASIA Impairment Scale A or B) underwent breathing-synchronised electrical stimulation of the abdominal muscles to aid expiration and expectoration. The treatment was delivered in 30-minute sessions, twice a day for 90 days. The target was for nine of 15 patients to remain free of pneumonia meeting Centers for Disease Control and Prevention (CDC) diagnostic criteria. Eleven patients were recruited to the study between October 2011 and November 2012. Two patients left the study before completion. None of the patients contracted pneumonia during the study period. No complications from electrical stimulation were observed. AFES led to a statistically significant increase in peak inspiratory and expiratory flows and a non-statistically significant increase in tidal volume and inspiratory and expiratory flow. When surveyed, 6 out of 9 patients (67%) reported that the stimulation procedure led to a significant improvement in breathing and coughing. AFES appears to be able to improve breathing and expectoration and prevent pneumonia in the acute phase of tetraplegia (up to 90 days post-trauma). This result is being validated in a prospective multicentre comparative study.
Ownership of an artificial limb induced by electrical brain stimulation
Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.
2017-01-01
Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147
NASA Astrophysics Data System (ADS)
Battecha, Kadria H.; Atya, Azza M.
2011-09-01
Reduced microcirculation is a morbid element of neuropathy and one of the most common complications of uncontrolled diabetes. Many physical modalities have gained a considerable attention for enhancing cutaneous microcirculation in diabetic patients and prevent its serious complications. Accordingly, the present study was conducted to compare between the effect of low intensity laser therapy (LILT) and transcutaneous electrical nerve stimulation (TENS) on microcirculation in diabetic neuropathy. Thirty diabetic polyneuropathic patients ranged in age from 45-60 years participated in this study. They were randomly divided into two groups of equal number; patients in group (A) received LILT on plantar surface of foot with a dose of 3 J/cm2 and wavelength (904 nm), while those in group (B) received TENS on lower leg for 30 minutes with frequency (2 HZ). Treatment was conducted 3 times/week for 6 weeks. The cutaneous microcirculation was evaluated by Laser Doppler flowmetry at the baseline and at the end of treatment. Results revealed that group (A) showed statistically significant increase in the cutaneous microcirculation compared with group (B). So, it was concluded that LILT has to be more efficient than TENS in increasing cutaneous microcirculation in patients with diabetic neuropathy.