Sample records for efficient electromagnetic shielding

  1. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  2. Electromagnetic characteristics of systems of prolate and oblate ellipsoids

    NASA Astrophysics Data System (ADS)

    Karimi, Pouyan; Amiri-Hezaveh, Amirhossein; Ostoja-Starzewski, Martin; Jin, Jian-Ming

    2017-11-01

    The present study suggests a novel model for simulating electromagnetic characteristics of spheroidal nanofillers. The electromagnetic interference shielding efficiency of prolate and oblate ellipsoids in the X-band frequency range is studied. Different multilayered nanocomposite configurations incorporating carbon nanotubes, graphene nanoplatelets, and carbon blacks are fabricated and tested. The best performance for a specific thickness is observed for the multilayered composite with a gradual increase in the thickness and electrical conductivity of layers. The simulation results based on the proposed model are shown to be in good agreement with the experimental data. The effect of filler alignment on shielding efficiency is also studied by using the nematic order parameter. The ability of a nanocomposite to shield the incident power is found to decrease by increasing alignment especially for high volume fractions of prolate fillers. The interaction of the electromagnetic wave and the fillers is mainly affected by the polarization of the electric field; when the electric field is perpendicular to the equatorial axis of a spheroid, the interaction is significantly reduced and results in a lower shielding efficiency. Apart from the filler alignment, size polydispersity is found to have a significant effect on reflected and transmitted powers. It is demonstrated that the nanofillers with a higher aspect ratio mainly contribute to the shielding performance. The results are of interest in both shielding structures and microwave absorbing materials.

  3. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film.

    PubMed

    Jia, Li-Chuan; Yan, Ding-Xiang; Liu, Xiaofeng; Ma, Rujun; Wu, Hong-Yuan; Li, Zhong-Ming

    2018-04-11

    Electromagnetic protection in optoelectronic instruments such as optical windows and electronic displays is challenging because of the essential requirements of a high optical transmittance and an electromagnetic interference (EMI) shielding effectiveness (SE). Herein, we demonstrate the creation of an efficient transparent EMI shielding film that is composed of calcium alginate (CA), silver nanowires (AgNWs), and polyurethane (PU), via a facile and low-cost Mayer-rod coating method. The CA/AgNW/PU film with a high optical transmittance of 92% achieves an EMI SE of 20.7 dB, which meets the requirements for commercial shielding applications. A superior EMI SE of 31.3 dB could be achieved, whereas the transparent film still maintains a transmittance of 81%. The integrated efficient EMI SE and high transmittance are superior to those of most previously reported transparent EMI shielding materials. Moreover, our transparent films exhibit a highly reliable shielding ability in a complex service environment, with 98 and 96% EMI SE retentions even after 30 min of ultrasound treatment and 5000 bending cycles (1.5 mm radius), respectively. The comprehensive performance that is associated with the facile fabrication strategy imparts the CA/AgNW/PU film with great potential as an optimized EMI shielding material in emerging optoelectronic devices, such as flexible solar cells, displays, and touch panels.

  4. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic.

    PubMed

    Xu, Yadong; Yang, Yaqi; Yan, Ding-Xiang; Duan, Hongji; Zhao, Guizhe; Liu, Yaqing

    2018-06-06

    Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe 3 O 4 ) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe 3 O 4 and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe 3 O 4 over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an "absorb-reflect-reabsorb" process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe 3 O 4 @rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE R ) is only 2.4 dB and the power coefficient of reflectivity ( R) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding.

  5. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  6. [Inefficiency of electrosmog-shielding mats. Part 2: radio frequency range].

    PubMed

    Leitgeb, N; Cech, R

    2005-09-01

    It could already be shown that electromagnetic shielding mats do not reduce but even enhance electric field exposure in daily life situations. By measurements and numerical simulations the claims of manufacturers were checked who pretend that radio frequency electromagnetic fields can be shielded to 99% and more, and transferred to earth by earth cables (if attached). It could be shown that in the radio frequency range such products do not fulfil the justified expectations of customers, but in most cases even cause the opposite. The results depend on the electric properties of the material. Good electric conductivity of shielding mats even considerably increases electromagnetic field exposure. To connect the mats with earth potential by an attached cable might increase the beliefs on a protective effect, however, this is not capable to enhance the shielding effect. The investigation demonstrates that in spite of references made to experts opinions manufacturers claims about the shielding efficiency of radio frequency fields are misleading and fool clients about the real situation. Overall, acquisition and use of electrosmog shielding mats must be discouraged. If at all, shielding can be reached by placing a shielding cover between the source and the person. However, even in this case, efficiency is much lower than promised by manufacturers and decreases even more if it is taken into account that the head naturally remains uncovered and hence unshielded.

  7. Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding.

    PubMed

    Zhang, Jijun; Li, Jiawei; Tan, Guoguo; Hu, Renchao; Wang, Junqiang; Chang, Chuntao; Wang, Xinmin

    2017-12-06

    Thin and flexible materials that can provide efficient electromagnetic interference (EMI) shielding are urgently needed, especially if they can be easily processed and withstand harsh environments. Herein, layer-structured Fe-Si-B/Ni-Cu-P metallic glass composites have been developed by simple electroless plating Ni-Cu-P coating on commercial Fe-Si-B metallic glasses. The 0.1 mm-thick composite shows EMI shielding effectiveness of 40 dB over the X-band frequency range, which is higher than those of traditional metals, metal oxides, and their polymer composites of larger thickness. Most of the applied electromagnetic waves are proved to be absorbed rather than bounced back. This performance originates from the combination of a superior soft magnetic property, excellent electrical conductivity, and multiple internal reflections from multilayer composites. In addition, the flexible composites also exhibit good corrosion resistance, high thermal stability, and excellent tensile strength, making them suitable for EMI shielding in harsh chemical or thermal environments.

  8. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less

  9. Electromagnetic interference shielding performance of nano-layered Ti3SiC2 ceramics at high-temperatures

    NASA Astrophysics Data System (ADS)

    Li, Sigong; Tan, Yongqiang; Xue, Jiaxiang; Liu, Tong; Zhou, Xiaosong; Zhang, Haibin

    2018-01-01

    The X-band electromagnetic interference (EMI) shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE) close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.

  10. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    PubMed

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  11. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    PubMed

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  12. Engineering Nanostructures by Decorating Magnetic Nanoparticles onto Graphene Oxide Sheets to Shield Electromagnetic Radiations.

    PubMed

    Mural, Prasanna Kumar S; Pawar, Shital Patangrao; Jayanthi, Swetha; Madras, Giridhar; Sood, Ajay K; Bose, Suryasarathi

    2015-08-05

    In this study, a minimum reflection loss of -70 dB was achieved for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanoparticles (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTs (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends with MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

  13. Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) for light-weight superior electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqing

    2017-02-01

    Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) with superior electromagnetic interferece (EMI) shielding efficiency (SE) was fabricated through a UV enhanced hydrothermal process. In this study, a composite with 10 wt% of 3D-RGO/ZnO was tested in a broadband frequency range from 2 to 18 GHz. Under the whole test conditions, the ratio of SEA/SET is higher than 50% and the maximum value can reach to 94%, indicating the shielding mechanism mainly attributes to absorption. The EMI SE showed that the thinnest thicknesses to shield different frequency range are 0.7 mm for 10 dB, 1.6 mm for 20 dB and 3.7 mm for 30 dB, which suggests 3D-RGO/ZnO could meet the requirement of new generate EMI shielding material.

  14. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    DTIC Science & Technology

    2016-05-23

    another application, electromagnetic wave shielding . Electromagnetic wave induces current which results in loss of energy. Thus magnetic nanoparticles...applicable for electromagnetic wave shielding . For better electromagnetic wave shielding capability, i) high dielectric constant, ii) high magnetic ...electromagnetic wave shielding properties7,8. In such point of view, designing a structure, magnetic nanoparticles in two dimensional electric conductive matrix

  15. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.

    PubMed

    Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin

    2018-05-30

    Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of metal shielding on a wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  17. Investigation of Woven Characteristics on Electromagnetic Shielding Behaviour

    NASA Astrophysics Data System (ADS)

    Javadi Toghchi, M.; Loghin, C.; Cristian, I.; Campagne, C.; Bruniaux, P.; Cayla, A.

    2018-06-01

    Textiles have been highly applied for electromagnetic shielding purposes due to the increasing concern about health issues caused by human exposure to radiation. Properties of conductive yarn, fabric structure, and garment design have extreme effects on the electromagnetic behaviour and comfort of the final product. Lots of electromagnetic shielding textiles are made of metallic yarns regarding their high electrical conductivity. Therefore, some researchers have worked on electromagnetic shielding textiles made of metals. For example; the shielding effectiveness of woven fabrics made of hybrid yarns containing stainless steel wire was investigated. As discussed earlier, the fabric structure has significant effects on electromagnetic protection. Consequently, woven samples were produced using two different commercial electroconductive yarns (PA12 coated with Ag and Inox) to investigate the effects of the fabric structure. The main purpose was to define the best pattern among three basic woven patterns leads to the highest electromagnetic shielding. Moreover, the different weft yarn densities were applied to examine the effects of yarn density on the level of electromagnetic shielding. The electromagnetic shielding effectiveness of all the 2-layer samples was evaluated in the frequency range from 0.8 to10 GHz in an anechoic chamber. The woven sample with higher yarn density of PA12 coated with Ag yarns shows higher protection against radiation. To conclude, the results show that the yarn properties play the main role in shielding as well as yarn density and fabric pattern.

  18. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-07-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding-cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are - 15 dB and - 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( - 55 °C-80 °C ) and strength durability (160-1600μɛ, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life.

  19. Effectiveness of low-cost electromagnetic shielding using nail-together galvanized steel: Test results. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Kennedy, E.L.; McCormack, R.G.

    1992-09-01

    The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less

  20. Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance

    NASA Astrophysics Data System (ADS)

    Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch

    2017-10-01

    Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.

  1. Electromagnetic shielding effectiveness of 3D printed polymer composites

    NASA Astrophysics Data System (ADS)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  2. Effects of Sm addition on electromagnetic interference shielding property of Mg-Zn-Zr alloys

    NASA Astrophysics Data System (ADS)

    Yang, Chubin; Pan, Fusheng; Chen, Xianhua; Luo, Ning

    2017-06-01

    The electromagnetic interference (EMI) shielding of Sm-containing magnesium alloys in the 30-1500 MHz testing frequency range was investigated by coaxial cable method. The results demonstrated that Mg-3Zn alloys displayed the best electromagnetic shielding property. When 0.5 wt% of Zr was added for crystal grain refinement, the shielding effectiveness (SE) was apparently reduced. The addition of the rare earth element Sm in ZK magnesium alloys can improve the electromagnetic interference shielding of magnesium alloys. The main reason for the differences in electromagnetic interference shielding of magnesium alloys was the change in conductivity. The addition of Zr in Mg-Zn alloys can refine the grains and consequently improve the grain boundary area significantly. Therefore, the number of irregularly arranged atoms at the grain boundaries increased, decreasing the conductivity of magnesium alloys and leading to a decrease in the electromagnetic interference shielding. Following the Sm addition, the Mg-Zn-Sm phase was precipitated at the grain boundaries and in cores. The precipitation of Sm-containing rare earth phases could consume the solid-soluted Zn atoms within the Mg, resulting in an increase in electrical conductivity and electromagnetic interference shielding improvement.

  3. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  4. Robust electromagnetic absorption by graphene/polymer heterostructures

    NASA Astrophysics Data System (ADS)

    Lobet, Michaël; Reckinger, Nicolas; Henrard, Luc; Lambin, Philippe

    2015-07-01

    Polymer/graphene heterostructures present good shielding efficiency against GHz electromagnetic perturbations. Theory and experiments demonstrate that there is an optimum number of graphene planes, separated by thin polymer spacers, leading to maximum absorption for millimeter waves Batrakov et al (2014 Sci. Rep. 4 7191). Here, electrodynamics of ideal polymer/graphene multilayered material is first approached with a well-adapted continued-fraction formalism. In a second stage, rigorous coupled wave analysis is used to account for the presence of defects in graphene that are typical of samples produced by chemical vapor deposition, namely microscopic holes, microscopic dots (embryos of a second layer) and grain boundaries. It is shown that the optimum absorbance of graphene/polymer multilayers does not weaken to the first order in defect concentration. This finding testifies to the robustness of the shielding efficiency of the proposed absorption device.

  5. Verification of Small Hole Theory for Application to Wire Chaffing Resulting in Shield Faults

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2011-01-01

    Our work is focused upon developing methods for wire chafe fault detection through the use of reflectometry to assess shield integrity. When shielded electrical aircraft wiring first begins to chafe typically the resulting evidence is small hole(s) in the shielding. We are focused upon developing algorithms and the signal processing necessary to first detect these small holes prior to incurring damage to the inner conductors. Our approach has been to develop a first principles physics model combined with probabilistic inference, and to verify this model with laboratory experiments as well as through simulation. Previously we have presented the electromagnetic small-hole theory and how it might be applied to coaxial cable. In this presentation, we present our efforts to verify this theoretical approach with high-fidelity electromagnetic simulations (COMSOL). Laboratory observations are used to parameterize the computationally efficient theoretical model with probabilistic inference resulting in quantification of hole size and location. Our efforts in characterizing faults in coaxial cable are subsequently leading to fault detection in shielded twisted pair as well as analysis of intermittent faulty connectors using similar techniques.

  6. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  7. Magnetic radiation shielding - An idea whose time has returned?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    One solution to the problem of shielding crew from particulate radiation in space is to use active electromagnetic shielding. Practical types of shield include the magnetic shield, in which a strong magnetic field diverts charged particles from the crew region, and the magnetic/electrostatic plasma shield, in which an electrostatic field shields the crew from positively charged particles, while a magnetic field confines electrons from the space plasma to provide charge neutrality. Advances in technology include high-strength composite materials, high-temperature superconductors, numerical computational solutions to particle transport in electromagnetic fields, and a technology base for construction and operation of large superconducting magnets. These advances make electromagnetic shielding a practical alternative for near-term future missions.

  8. Enhanced conductive loss in nickel–cobalt sulfide nanostructures for highly efficient microwave absorption and shielding

    NASA Astrophysics Data System (ADS)

    Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua

    2018-06-01

    Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of  ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.

  9. Study on textile comfort properties of polypropylene blended stainless steel woven fabric for the application of electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.

    2017-10-01

    In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.

  10. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers

    NASA Astrophysics Data System (ADS)

    Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E.

    2017-03-01

    We report on the mechanisms of the electromagnetic interference shielding effect of graphene based paint like composite layers. In particular, we studied the absorption and reflection of electromagnetic radiation in the 4-20 GHz frequency of various dispersions employing different amounts of graphene nanoplatelets, polyaniline, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), special attention given on the relative contribution of each process in the shielding effect. Moreover, the influence of the composition, the thickness and the conductivity of the composite layers on the electromagnetic shielding was also examined.

  11. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    PubMed Central

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-01-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed. PMID:24248277

  12. Study on the adjustment capability of the excitation system located inside superconducting machine electromagnetic shield

    NASA Astrophysics Data System (ADS)

    Xia, D.; Xia, Z.

    2017-12-01

    The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.

  13. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  14. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  15. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  16. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  17. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  18. Utilizing electromagnetic shielding textiles in wireless body area networks.

    PubMed

    Sung, Grace H H; Aoyagi, Takahiro; Hernandez, Marco; Hamaguchi, Kiyoshi; Kohno, Ryuji

    2010-01-01

    For privacy and radio propagation controls, electromagnetic shielding textile could be adopted in WBANs. The effect of including a commercially available electromagnetic shielding apron in WBANs was examined in this paper. By having both the coordinator and the sensor covered by the shielding apron, signal could be confined around the body; however signal strength can be greatly influenced by body movements. Placing the shielding apron underneath both antennas, the transmission coefficient could be on average enhanced by at least 10dB, with less variation comparing to the case when apron does not exist. Shielding textiles could be utilized in designing a smart suit to enhance WBANs performance, and to prevent signals travelling beyond its intended area.

  19. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paddubskaya, A.; Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius; Valynets, N.

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbonmore » layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.« less

  20. Numerical Electromagnetics Simulations of the Leakage Through the Pump-out Holes in the DISC Electromagnetic Interference Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.

    In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less

  1. High temperature metal purification using a compact portable rf heating and levitation system on the wake shield

    NASA Technical Reports Server (NTRS)

    Hahs, C. A.

    1990-01-01

    The Wake Shield Facility (WSF) can provide an ideal vacuum environment for the purification of high temperature metals in space. The Modular Electromagnetic Levitator (MEL), will provide the opportunity to study undercooling of metals in space and allow to determine material properties in space. The battery powered rf levitation and heating system developed for the MEL demonstrated efficiency of 36 percent. This system is being considered to purify metals at temperatures below 3000 C.

  2. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-01

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  3. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding.

    PubMed

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-27

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  4. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  5. Cost efficient PMMA/NG nanocomposites for electromagnetic interference shielding applications

    NASA Astrophysics Data System (ADS)

    Yadav, Prachi; Rattan, Sunita; Tripathi, Ambuj; Kumar, Sandeep

    2017-06-01

    Cost-efficient polymethylmethacrylate/exfoliated nanographite (PMMA/NG) nanocomposites were prepared through the melt blending technique. The crystalline size of NG in nanocomposites was estimated using Scherrer’s formula and was found to be in the range of 42.4-50.6 nm. Scanning electron micrographs showed the homogeneous dispersion of NG in the PMMA matrix. The thermal degradation temperature (T d) of nanocomposites was found to rise monotonically with increase in the loading of NG. Differential scanning calorimetry measurement showed a significant improvement in glass transition temperature (T g) from 97.2 °C for neat PMMA to 106.4 °C for 4.0 wt% PMMA/NG nanocomposites. DC electrical conductivity measurement revealed that the prepared nanocomposites exhibited a low percolation threshold of 0.45 vol%. The s-parameters (S 11 and S 21) were measured through vector network analyser and were explored in the estimation of electromagnetic interference (EMI) shielding effectiveness (SE). The EMI SE of 19.2 dB (~ 99% attenuation of incoming microwave (MW) power) was attained in the 4.0 wt% PMMA/NG nanocomposite at 12.7 GHz MW frequency. Moreover, the observed broadband EMI SE spectra indicate that the prepared nanocomposites can be employed in lightweight and low-cost commercial EMI shielding applications.

  6. Electromagnetic interference and shielding: An introduction (revised version of 1991-23)

    NASA Astrophysics Data System (ADS)

    Dehoop, A. T.; Quak, D.

    The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.

  7. Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures.

    PubMed

    Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang

    2017-09-06

    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.

  8. 77 FR 48514 - Certain New Chemicals; Receipt and Status Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... emission; Use as an additive for electromagnetic interface (EMI) shielding; Use as a pigment; use as a... additive for heat transfer and thermal emission; Use as an additive for electromagnetic interface (EMI... electromagnetic interface (EMI) shielding; Use as a pigment; Use as a functional additive in composites and paints...

  9. [Electromagnetic Shielding Alters Behaviour of Rats].

    PubMed

    Temuryants, N A; Kostyuk, A S; Tumanyants, K N

    2015-01-01

    It has been found that long-term electromagnetic shielding (19 hours per day for 10 days) leads to an increase in the duration of passive swimming time in male rats, decrease the duration of active swimming in the "forced swim" test as well as decrease of libido. On the other hand animals kept under the "open field" conditions do not show significant deviations from their normal behavior. Therefore, one could conclude that moderate electromagnetic shielding causes a depression-like state in rats.

  10. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration

    PubMed Central

    Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-01-01

    The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718

  11. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  12. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Tudose, I. V.; Tzagkarakis, G.; Kenanakis, G.; Katharakis, M.; Drakakis, E.; Koudoumas, E.

    2015-10-01

    We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4-20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  13. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance.

    PubMed

    Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele

    2017-01-11

    A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding ability.

  14. Electromagnetic shielding of thermal protection system for hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Albano, M.; Micheli, D.; Gradoni, G.; Morles, R. B.; Marchetti, M.; Moglie, F.; Mariani Primiani, V.

    2013-06-01

    The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2-8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.

  15. Fabrication of single/multi-walled hybrid buckypaper composites and their enhancement of electromagnetic interference shielding performance

    NASA Astrophysics Data System (ADS)

    Lu, Shaowei; Shao, Junyan; Ma, Keming; Wang, Xiaoqiang; Zhang, Lu; Meng, Qingshi

    2016-11-01

    Multi-walled carbon nanotubes and single-walled carbon nanotubes show great potential for the application as an electromagnetic interference shielding material. In this paper, the electromagnetic interference shielding the effectiveness of a composite surface coated single/multi-walled carbon nanotube hybrid buckypaper was measured, which showed an average shielding effectiveness of ~55 dB with a buckypaper thickness of 50 µm, and bukypaper density of 0.76 g cm-3, it is much higher than other carbon nanotube/resin materials when sample thickness is on the similar order. The structural, specific surface area and conductivity of the buckypapers were examined by field-emission scanning electron microscopy, specific surface area analyzer and four probes resistance tester, respectively.

  16. Flexible barrier materials for protection against electromagnetic fields and their characterization

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Maciej

    2015-10-01

    Composite materials for electromagnetic shielding can be manufactured as textiles using conductive yarns and textiles with conductivity obtained by various finishing processes on textile surfaces. The EM shielding effectiveness of fabrics are improved by lowering its conductivity using different methods and materials. An alternative is the usage of new light shielding materials in the form of metallized nonwoven fabrics or textiles. Their advantages are: a general availability on the market, a low price, good mechanical properties (strength, elasticity) and resistance to the environmental conditions. The composite anisotropic materials with a sandwich structure constituting of materials with different spatial orientations of fibers allow one to achieve relatively high and constant values of the shielding effectiveness which, together with the materials' mechanical properties, leads to a wide range of applicability in various disciplines of modern technology. This article is devoted to innovative flexible materials shielding electromagnetic field. The results of the PEM shielding effectiveness obtained for the polypropylene (PP) nonwoven fabrics metallized by pulsed magnetron sputtering are presented.

  17. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Huang, Yu'an; Yang, Yang; Shen, Jianyi; Tang, Tao; Huang, Runsheng

    2010-10-01

    Composite materials containing electrically conductive expanded graphite (EG) and magnetic iron nano-particles for electromagnetic shielding were prepared by impregnating EG with an ethanol solution containing iron nitrate and acetic acid, followed by drying and reduction in H 2. Magnetic nano-iron particles were found to be highly dispersed on the surface of EG in the Fe/EG composites, and played the role of enhancing the electromagnetic shielding effectiveness (SE) at low frequencies (0.3-10 MHz), which seemed to depend proportionally on magnetic hysteresis loss of loaded iron nano-particles.

  18. Electromagnetic shielding effectiveness studies on polyaniline/CSA-WO3 composites at KU band frequencies

    NASA Astrophysics Data System (ADS)

    Sastry, D. Nagesa; Revanasiddappa, M.; Suresh, T.; Kiran, Y. T. Ravi; Raghavendra, S. C.

    2018-05-01

    This paper highlights the Electromagnetic Interference (EMI) Shielding Effectiveness and electromagnetic wave attenuation behavior of Polyaniline/Camphor Sulphonic Acid (PANI-CSA) - tungsten oxide (WO3) composites. Insitu polymerization of aniline monomer with camphor sulphonic acid (CSA) as a dopant was carried out in the presence of ammonium persulphate an oxidizing agent to synthesize PANI-CSA tungsten oxide composites (PANI/CSA-WO3) by chemical oxidation method. The composites have been synthesized with various compositions (10, 20, 30, 40 and 50 wt %) of tungsten oxide in PANI/CSA matrix. The EMI shielding measurements were carried out in the broad microwave spectrum covering the frequency range from 12 to 18 GHz (Ku-Band). The results show the influence of tungsten oxide in PANI/CSA over the EMI shielding Effectiveness. The composites have shown excellent microwave absorption behavior confirmed by the EMI Shielding Effectiveness values of the order of -15 to -16 dB.

  19. The effects of annealing temperature on the permittivity and electromagnetic attenuation performance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming

    2018-05-01

    Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.

  20. Shields for protecting cables from the effects of electromagnetic noise and interference

    NASA Astrophysics Data System (ADS)

    Hoeft, L. O.; Hofstra, J. S.; Karaskiewicz, R. J.; Torres, B. W.

    1988-12-01

    The intrinsic electromagnetic property of a cable or connector shield is its surface transfer impedance. This is the ratio of the longitudinal open circuit voltage measured on one side of the shield (normally the inside) to the axial current on the other side (normally the outside). In cases where a high electric field is present at the surface of the shield, the transfer admittance or charge transfer elastance is also important. Measurements of typical cables, connectors, backshells and cable terminations are presented and explained in terms of simple models.

  1. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Long, Zhihang; Wan, Xinyi; Zhang, Jiemin; He, Shuangjiang; He, Yi

    2018-06-01

    To obtain high-performance electromagnetic shielding materials, structure and morphology are two key factors. We here developed an efficient and facial method to prepare high-performance 3D carbon nanofiber mats (CFM)/Fe3O4 hybrid electromagnetic shielding materials. For this purpose, the CFM were chemically modified by mussel-inspired poly-dopamine coating, which were further used as templates for decoration of Fe3O4 nanoparticles via solvothermal route. It was found that the Fe3O4 nano-spheres with diameters of 200-250 nm were uniformly coated on the surface of 3D carbon nanofibers. More importantly, the morphology and structure of resulting 3D carbon nanofiber mats/Fe3O4 hybrids could be easily controlled by altering the experiment parameters, which were examined by FT-IR, XPS, TGA, XRD, SEM, and TEM. The measured magnetic properties showed that saturation magnetism and coercivity increased from 13.4 to 39.7 emu/g and 85.3 to 104.6 Oe, respectively. The lowest reflectivity of resulting hybrid was calculated to be -47 dB at 10.0 GHz (2.5 mm). In addition, the reflectivity of 3D carbon nanofiber mats/Fe3O4 hybrid was less than -25 dB in the range of 7-13 GHz. Moreover, the resulting 3D carbon nanofiber mats/Fe3O4 hybrid exhibited an EMI shielding performance of -62.6 dB in the frequency range of 8.2-12.4 GHz. Therefore, 3D carbon fiber mats/Fe3O4 hybrids can be ideal EMI materials with strong absorption, low density, and wide absorption range.

  2. Tollen’s reagent assisted synthesis of hollow polyaniline microsphere/Ag nanocomposite and its applications in sugar sensing and electromagnetic shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panigrahi, R.; Srivastava, S.K., E-mail: sunit@chem.iitkgp.ernet.in

    Graphical abstract: Probable scheme to demonstrate the mechanism of PnHMAg showing enhanced EMI shielding compared to PnHM. - Highlights: • Hollow polyaniline microsphere (PnHM) exhibits superior properties due to its enhanced surface to volume ratio. • PnHMAg has been used in developing efficient sensor for the detection of sugar. • Presence of Ag nanoparticles enhances the electrical conductivity of PnHMAg resulting in the improvement of electromagnetic interference shielding in both X- and S-band regions. • Such properties could be harnessed effectively for development of devices for commercial as well as national purposes. - Abstract: The present study is focused onmore » synthesis of polyaniline hollow microspheres (PnHM) nanocomposites of silver (Ag) i.e., PnHMAg by emulsion polymerization of aniline and Tollen’s reagent as a source for Ag nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis of PnHMAg indicated presence of silver nanoparticles dispersed on polyaniline surface. The electrical conductivity of PnHMAg is increased by ∼6 times compared to PnHM. Cyclic voltammogram of PnHM in sugar sensing exhibits characteristics redox peaks at ∼0.09 (sugar) and ∼0.53 V (polyaniline). Interestingly, PnHMAg showed a single peak at ∼−0.18 V with increased intensity (∼5 times) indicating its high sugar sensing ability. PnHMAg also exhibits high shielding efficiency of 19.5 dB (11.2 GHz) due to the presence of highly conducting Ag nanoparticles. TEM studies confirmed that Ag nanoparticles are well distributed on PnHM. As a result, a continuous electronic path is developed due to enhanced interconnectivity of PnHM.« less

  3. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    PubMed Central

    Panigrahi, Ritwik; Srivastava, Suneel K.

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59–23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported. PMID:25560384

  4. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light.

    PubMed

    Tan, Jiubin; Lu, Zhengang

    2007-02-05

    This paper presents the experimental study on an inductive mesh composed of contiguous metallic rings fabricated using UV-lithography on quartz glass. Experimental results indicate that, at the same period and linewidth as square mesh, ring mesh has better transmissivity for its higher obscuration ratio, stronger electromagnetic shielding performance for its smaller maximum aperture, and less degradation of imaging quality for its lower ratio and uniform distribution of high order diffraction energy. It is therefore concluded that this kind of ring mesh can be used as high-pass filters to provide electromagnetic shielding of optical transparent elements.

  5. Reducing electromagnetic irradiation and fields alleviates experienced health hazards of VDU work.

    PubMed

    Hagström, M; Auranen, J; Johansson, O; Ekman, R

    2012-04-01

    Word Heath Organisation (WHO) outlined in 2005 recommendations, how to treat people suffering from the functional impairment electrohypersensitivity in its document "Electromagnetic fields and public health". Unfortunately the reduction of electromagnetic fields was not considered as a treatment option. The aim of the current study was to shield the computer user from the emitted electromagnetic irradiation and fields and to correlate that to the subjective symptoms reported by electrohypersensitive volunteers. The irradiation of the shielding cabinets was recorded. They housed either separate computer screens or whole laptops. When the volunteers had used the shielding cabinet for 1-7 years, they were able work with their computers whole working day, Those who had used the shielding cabined for 2-3 months were partially symptom free. The person who had used the cabinet only for 1 week reported some alleviation of her nausea. it seems that reducing the electromagnetic irradiation of the computer can lessen the symptoms of electrohypersensitivity and permit working without problems. Further studies are needed to clarify how the symptoms of different organ systems recover and make computer users to work also professionally. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: application to the flat panel display.

    PubMed

    Lee, C Y; Lee, D E; Hong, Y K; Shim, J H; Jeong, C K; Joo, J; Zang, D S; Shim, M G; Lee, J J; Cha, J K; Yang, H G

    2003-04-01

    We have developed an electromagnetic (EM) wave propagation theory through a single layer and multiple layers in the near-field and far-field regions, and have constructed a matrix formalism in terms of the boundary conditions of the EM waves. From the shielding efficiency (SE) against EM radiation in the near-field region calculated by using the matrix formalism, we propose that the effect of multiple layers yields enhanced shielding capability compared to a single layer with the same total thickness in conducting layers as the multiple layers. We compare the intensities of an EM wave propagating through glass coated with conducting indium tin oxide (ITO) on one side and on both sides, applying it to the electromagnetic interference (EMI) shielding filter in a flat panel display such as a plasma display panel (PDP). From the measured intensities of EMI noise generated by a PDP loaded with ITO coated glass samples, the two-side coated glass shows a lower intensity of EMI noise compared to the one-side coated glass. The result confirms the enhancement of the SE due to the effect of multiple layers, as expected in the matrix formalism of EM wave propagation in the near-field region. In the far-field region, the two-side coated glass with ITO in multiple layers has a higher SE than the one-side coated glass with ITO, when the total thickness of ITO in both cases is the same.

  7. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  8. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  9. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  10. A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment

    NASA Astrophysics Data System (ADS)

    Kim, Kwan-Woo; Han, Woong; Kim, Byoung-Suhk; Kim, Byung-Joo; An, Kay-Hyeok

    2017-09-01

    In order to develop the high quality electromagnetic interference shielding efficiency (EMI-SE) materials, Ni-plated carbon fiber fabrics (Ni-CFFs) were prepared by an electroless method. Effects of post heat-treatment conditions on EMI-SE and electrical conductivity of Ni-CFFs/epoxy composites were also investigated. The morphologies and structural properties of Ni-CFFs were measured by a SEM and a XRD. It was found that all the Ni peaks increased with increasing post-heat treatment temperature, indicating that some impurities were removed and nickel particle sharp crystalline peaks. Also, It was found that the EMI-SE of composites enhanced was increased after post heat-treatment. In the frequency range of electromagnetic wave occurred from appliances (3.0 × 107-6.0 × 108), EMI-SE of post-heat treatment Ni-CFs was increased. This result concludes that the EMI-SE of the composites can be enhanced according to the microstructure of Ni in the Ni-CFFs/epoxy composites.

  11. Ground Systems Integration Domain (GSID) Materials for Ground Platforms

    DTIC Science & Technology

    2010-09-20

    Vehicles • Heavy Brigade Combat Team • Strykers • MRAPs • Ground Combat Vehicles (Future) Tactical Vehicles • HMMWVs • Trailers • Heavy, Medium and...efficient structural material solutions • Signature management, electromagnetic shielding over potentially non-metallic surfaces • Diagnostics...Occupant-Centric Survivability Focused): 1. 4500 lbs + trailer towing capacity; 4-6 man crew compartmentPayload 2. 14,000 lb curb vehicle weightPerformance

  12. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    NASA Astrophysics Data System (ADS)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  13. Specific features of the planarian Dugesia tigrina regeneration and mollusk Helix albescens nociception under weak electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Temur'yants, N. A.; Demtsun, N. A.; Kostyuk, A. S.; Yarmolyuk, N. S.

    2012-12-01

    It has been demonstrated that weak electromagnetic shielding stimulates regeneration in the planarian Dugesia tigrina, the stimulating intensity being dependent on both the initial state of the animals, which is determined by season, and their functional asymmetry. As has been shown, the effect of a weak electromagnetic field induces phasic changes in the nociceptive sensitivity of the mollusk Helix albescens: an increase in the sensitivity to a thermal stimulus is replaced by the development of the hypalgesic effect.

  14. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    NASA Astrophysics Data System (ADS)

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  15. Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band

    NASA Astrophysics Data System (ADS)

    Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen

    2014-09-01

    As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.

  16. Shielded resistive electromagnets of arbitrary surface geometry using the boundary element method and a minimum energy constraint.

    PubMed

    Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A

    2013-09-01

    Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  18. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene.

    PubMed

    Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling

    2017-10-04

    Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

  19. Scalable Fabrication of Natural-Fiber Reinforced Composites with Electromagnetic Interference Shielding Properties by Incorporating Powdered Activated Carbon

    PubMed Central

    Xia, Changlei; Zhang, Shifeng; Ren, Han; Shi, Sheldon Q.; Zhang, Hualiang; Cai, Liping; Li, Jianzhang

    2015-01-01

    Kenaf fiber—polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution. PMID:28787808

  20. Polypyrrole-MWCNT-Ag composites for electromagnetic shielding: Comparison between chemical deposition and UV-reduction approaches

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh

    2018-07-01

    In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.

  1. Involvement of Melatonin in Changing Depression-Like and Aggressive Behaviour in Rats Under Moderate Electromagnetic Shielding

    NASA Astrophysics Data System (ADS)

    Temuryants, N. A.; Tumanyants, K. N.; Khusainov, D. R.; Cheretaev, I. V.; Tumanyants, E. N.

    2017-12-01

    It was found that moderate electromagnetic shielding, which attenuates constant and variable components of the geomagnetic field (19 h per day for 10 days), induces in male rats the development of depression-like behavior. This behavior is diagnosed on the basis of increased passive swimming time and a decreased duration of active swimming in the Porsolt test. These behaviors reach their peak on days 3-4 of the experiment. The daily administration of 1 mg/kg exogenous melatonin reduces these depression-like behaviors as soon as day 1 of the experiment, and this effect persists throughout all stages of the experiment. Electromagnetic shielding and the administration of 1 mg/kg exogenous melatonin do not change the levels of intraspecies aggressiveness. An increase in melatonin dosage to 5 mg/kg even further reduces depression-like symptoms and stops the increase in intraspecies aggressiveness during the experiment. The conclusion is made that melatonin plays an important role in the mechanisms of physiological effects of a weakened electromagnetic geomagnetic field.

  2. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.

    PubMed

    Liu, Chang; Wang, Xiaoling; Huang, Xin; Liao, Xuepin; Shi, Bi

    2018-04-25

    Leather matrix (LM), a natural dielectric material, features a hierarchically suprafibrillar structure and abundant dipoles, which provides the possibility to dissipate electromagnetic waves (EW) energy via dipole relaxation combined with multiple diffuse reflections. Conventionally, metal-based materials are used as EW shielding materials due to that their high conductivity can reflect EW effectively. Herein, a lightweight and high-performance EW shielding composite with both absorption and reflection ability to EW was developed by coating metal nanoparticles (MNPs) onto LM. The as-prepared metal/LM membrane with only 4.58 wt % of coated MNPs showed excellent EW shielding effectiveness of ∼76.0 dB and specific shielding effectiveness of ∼200.0 dB cm 3 g -1 in the frequency range of 0.01-3.0 GHz, implying that more than 99.98% of EW was shielded. Further investigations indicated that the high shielding performances of the metal/LM membrane were attributed to the cooperative shielding mechanism between LM and the coating of MNPs.

  3. Low-cost electromagnetic shielding using drywall composites: results of RFI (radio-frequency interference) testing of a shielding effectiveness. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.F.; Heyen, K.K.; McCormack, R.G.

    1987-10-01

    Because of developments in electronics technology, the need for electromagnetic shielding has increased. To reduce the cost of this shielding, new materials are needed. The U.S. Army Corps of Engineers, Fort Worth District (FWD), and the U.S. Army Construction Engineering Research Laboratory (USA-CERL) have developed composite materials that use standard, construction-grade, aluminum foil-backed gypsum board in combination with either a metal mesh or lead foil. Special seams for these composites were designed by U.S. Gypsum Company. USA-CERL evaluated the adequacy of each material and seam design by using radio-frequency antennas and receivers to measure its shielding effectiveness when mounted inmore » the wall of a shielded room. These evaluations showed that the composite panels met the specified requirement of 60 decibels (dB) of shielding. The composites were also shown to be adequate for most communications security applications. However, the addition of a seam decreased shielding by as much as 10 dB.« less

  4. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  5. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    PubMed

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  6. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    PubMed Central

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578

  7. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  8. Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.

    2013-04-01

    Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.

  9. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  10. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  11. Transparent self-cleaning dust shield

    DOEpatents

    Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.

    2005-06-28

    A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.

  12. Synthesis of MoS2-reduced graphene oxide/Fe3O4 nanocomposite for enhanced electromagnetic interference shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Prasad, Jagdees; Singh, Ashwani Kumar; Shah, Jyoti; Kotnala, R. K.; Singh, Kedar

    2018-05-01

    This article presents a facile two step hydrothermal process for the synthesis of MoS2-reduced graphene oxide/Fe3O4 (MoS2-rGO/Fe3O4) nanocomposite and its application as an excellent electromagnetic interference shielding material. Characterization tools like; scanning electron microscope, transmission electron microscope, x-ray diffraction, and Raman spectroscopy were used to confirm the formation of nanocomposite and found that spherical Fe3O4 nanoparticles are well dispersed over MoS2-rGO composite with average particle size ∼25–30 nm was confirmed by TEM. Structural characterization done by XRD was found inconsistent with the known lattice parameter of MoS2 nanosheet, reduced graphene oxide and Fe3O4 nanoparticles. Electromagnetic shielding effectiveness of MoS2-rGO/Fe3O4 nanocomposite was evaluated and found to be an excellent EMI shielding material in X-band range (8.0–12.0 GHz). MoS2-rGO composite shows poor shielding capacity (SET ∼ 3.81 dB) in entire range as compared to MoS2-rGO/Fe3O4 nanocomposite (SET ∼ 8.27 dB). It is due to interfacial polarization in the presence of EM field. The result indicates that MoS2-rGO/Fe3O4 nanocomposite provide a new stage for the next generation in high-performance EM wave absorption and EMI shielding effectiveness.

  13. Multifunctional Stiff Carbon Foam Derived from Bread.

    PubMed

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  14. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse

    PubMed Central

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young

    2017-01-01

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100–700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material. PMID:28976931

  15. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    NASA Astrophysics Data System (ADS)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  16. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse.

    PubMed

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young; Singh, Jitendra Kumar; Ismail, Mohamed A

    2017-10-04

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100-700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material.

  17. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites

    NASA Astrophysics Data System (ADS)

    Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo

    2018-03-01

    A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.

  18. Development and optimization of hardware for delta relaxation enhanced MRI.

    PubMed

    Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J

    2014-10-01

    Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.

  19. Homogenized boundary conditions and resonance effects in Faraday cages

    PubMed Central

    Hewitt, I. J.

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775

  20. Cellulose-derived carbon aerogels supported goethite (α-FeOOH) nanoneedles and nanoflowers for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Jiao, Yue; Qiang, Tiangang; Li, Jian

    2017-01-20

    We describe a rapid and facile chemical precipitation method to grow goethite (α-FeOOH) nanoneedles and nanoflowers on the carbon aerogels which was obtained from the pyrolysis of cellulose aerogels. When evaluated as electromagnetic interference (EMI) shielding materials, the α-FeOOH/cellulose-derived carbon aerogels composite displays the highest SE total value of 34.0dB at the Fe 3+ /Fe 2+ concentration of 0.01M, which is about 4.8 times higher than that of the individual α-FeOOH (5.9dB). When the higher or lower Fe 3+ /Fe 2+ concentrations were used, the EMI shielding performance deterioration occurred. The integration of α-FeOOH with the carbon aerogels transforms the reflection-dominant mechanism for α-FeOOH into the adsorption-dominant mechanism for the composite. The adsorption-dominant mechanism undoubtedly makes contribution to alleviating secondary radiation, which is regarded as more attractive alternative for developing electromagnetic radiation protection products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Homogenized boundary conditions and resonance effects in Faraday cages

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.; Hewitt, I. J.

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  2. Homogenized boundary conditions and resonance effects in Faraday cages.

    PubMed

    Hewett, D P; Hewitt, I J

    2016-05-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.

  3. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    NASA Astrophysics Data System (ADS)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  4. Analysis and measurements of low frequency lightning component penetration through aerospace vehicle metal and graphite skins

    NASA Technical Reports Server (NTRS)

    Robb, J. D.; Chen, T.

    1980-01-01

    An analysis of the shielding properties of mixed metal and graphite composite structures has illustrated some important aspects of electromagnetic field penetration into the interior. These include: (1) that graphite access doors on metallic structures will attenuate lightning magnetic fields very little; conversely, metal doors on a graphite structure will also attenuate fields from lightning strike currents very little, i.e., homogeneity of the shield is a critical factor in shielding and (2) that continuous conductors between two points inside a graphite skin such as an air data probe metallic tubing connection to an air data computer can allow large current penetrations into a vehicle interior. The true weight savings resulting from the use of composite materials can only be evaluated after the resulting electromagnetic problems such as current penetrations have been solved, and this generally requires weight addition in the form of cable shields, conductor bonding or external metallization.

  5. International Symposium on Electromagnetic Compatibility, Wakefield, MA, August 20-22, 1985, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. The general topics addressed include: EMI transient/impulsive disturbances, electromagnetic shielding, antennas and propagation, measurement technology, anechoic chamber/open site measurements, communications systems, electrostatic discahrge, cables/transmission lines. Also considered are: elecromagnetic environments, antennas, electromagnetic pulse, nonlinear effect, computer/data transmission systems, EMI standards and requirements, enclosures/TEM cells, systems EMC, and test site measurements.

  6. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  7. A solid-state controllable power supply for a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Tripp, John S.

    1991-01-01

    The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  8. Intercalated graphite fiber composites as EMI shields in aerospace structures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.

  9. Synthesis and electromagnetic interference shielding of cellulose-derived carbon aerogels functionalized with α-Fe2O3 and polypyrrole.

    PubMed

    Wan, Caichao; Li, Jian

    2017-04-01

    Eco-friendly cellulose-derived carbon aerogels (CDCA) were employed as porous substrate to integrate with α-Fe 2 O 3 and polypyrrole (PPy) via pyrolysis and vapor-phase polymerization. The SEM and TEM observations present that the wrinkled PPy sheets and the α-Fe 2 O 3 nanoparticles were well dispersed in CDCA. The strong interactions (such as hydrogen bonding) between the substrate and the nanomaterials were demonstrated by the FTIR and XPS analysis. When utilized as electromagnetic interference (EMI) shielding materials, the α-Fe 2 O 3 /PPy/CDCA (FPCA) composite has the highest total shielding effectiveness (SE total ) of 39.4dB, about 2.0, 2.9, and 1.3 times that of the acid-treated CDCA (19.3dB), PPy (13.6dB), and α-Fe 2 O 3 /CDCA (29.3dB), respectively. Moreover, the shielding effectiveness due to absorption accounts for 78.2%-84.2% of SE total for FPCA, indicative of the absorption-dominant shielding mechanism contributing to alleviating secondary radiation. These features make the composite a useful alternative candidate for EMI shielding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  11. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    NASA Astrophysics Data System (ADS)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  12. Electromagnetic simulation of helicon plasma antennas for their electrostatic shield design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakos, Yorgos, E-mail: y.stratakos@gmail.com; Zeniou, Angelos, E-mail: a.zeniou@inn.demokritos.gr; Gogolides, Evangelos, E-mail: e.gogolides@inn.demokritos.gr

    A detailed electromagnetic parametric analysis of the helicon antenna (half Nagoya type) is shown at 13.56 MHz using a CST Microwave Studio 2012. The antenna is used to excite plasma inside a dielectric cylinder similar to a commercial reactor. Instead of focusing on the plasma state, the authors focus on the penetration and the three dimensional distribution of electric fields through the dielectric wall. Our aim is to reduce capacitive coupling which produces unwanted longitudinal and radial electric fields. Comparison of the helicon antenna electromagnetic performance under diverse boundary conditions shows that one is allowed to use vacuum simulations without plasmamore » present in the cylinder, or approximate the plasma as a column of gyrotropic material with a tensor dielectric permittivity and with a sheath of a few millimeters in order to qualitatively predict the electric field distribution, thus avoiding a full plasma simulation. This way the analysis of the full problem is much faster and allows an optimal shield design. A detailed study of various shields shows that one can reduce the radial and axial fields by more than 1 order of magnitude compared to the unshielded antenna, while the azimuthal field is reduced only by a factor of 2. Optimal shield design in terms of pitch and spacing of openings is determined. Finally, an experimental proof of concept of the effect of shielding on reduced wall sputtering is provided, by monitoring the roughness created during oxygen plasma etching of an organic polymer.« less

  13. Structural and functional polymer-matrix composites for electromagnetic applications

    NASA Astrophysics Data System (ADS)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES) bulk composites. At 13 vol.%, it gives 90 dB of shielding at 1.0 GHz, compared to 46 dB for nickel powder (20-40 mum) and the prior value of 87 dB reported by Shui and Chung for nickel filament (0.4 mum diameter). The minimum filler content for high shielding is 7-13 vol.% for both nickel powders, compared to 3-7 vol.% for nickel filament. Due to the skin effect, a small filler unit size helps the shielding, which is dominated by reflection. Carbon filament (0.1 mum, >100 mum long, >1000 in aspect ratio) is effective for enhancing the shielding effectiveness of a coating made from a water-based colloid that contains graphite particle (0.7-0.8 mum, 22 wt.%) and a starch-type binder. The filament addition increases the shielding from 11 to 20 dB at 1.0 GHz. This increase in shielding is associated with increase in reflectivity and decrease in electrical resistivity. Graphite flake (5 mum) at the same volume proportion is even more effective; its addition increases the shielding from 11 to 28 dB. The combined use of the graphite flake and a low proportion of stainless steel fiber (11 mum diameter, 2 mm long, 180 in aspect ratio) is yet more effective; it increases the shielding from 11 to 34 dB. Alumina particle (5 mum size, 15 vol.%) is effective for increasing the impedance of a coating made from the graphite colloid by 290%, though the shielding effectiveness is reduced from 18 to 11 dB at 1.0 GHz. The high impedance is attractive for MRIcompatible pacemaker leads. The interface between filler and matrix also affects the shielding. Silane treatment of the surface of graphite flake (5 mum) used in the graphite colloid decreases the viscosity (e.g., from 1750 to 1460 CP), but it also decreases the shielding effectiveness (e.g., from 20 to 16 dB at 1 GHz). Ozone treatment gives a similar effect. The decrease of the shielding effectiveness is attributed to the increase in resistivity due to the surface treatment. Measured and calculated values of the reflection loss are comparable, with the measured value lower than the corresponding calculated value, when the resistivity is sufficiently low (e.g., resistivity below 10 O.cm in case of PES-matrix composites) and a strongly magnetic filler such as mumetal is absent. The agreement is better when the skin depth approaches the specimen thickness. The agreement is worse for the latex paint-based composites than the PES-matrix composites, probably due to superior electrical connectivity in the latter.

  14. Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.

  15. Nonlinear Effects in Transformation Optics-Based Metamaterial Shields for Counter Directed Energy Weapon Defense

    DTIC Science & Technology

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATERIAL SHIELDS FOR COUNTER DIRECTED...2014 to 06-17-2016 4. TITLE AND SUBTITLE NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATE- RIAL SHIELDS FOR COUNTER DIRECTED ENERGY WEAPON...and magnetization fields with respect to incident electromagnetic field intensities. As those field intensities rise, such as from a hypothetical

  16. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  17. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    NASA Astrophysics Data System (ADS)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  18. Designing of Multiphase Fly Ash/MWCNT/PU Composite Sheet Against Electromagnetic Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Gujral, Parth; Varshney, Swati; Dhawan, S. K.

    2016-06-01

    Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.

  19. An exploration of the effectiveness of artificial mini-magnetospheres as a potential Solar Storm shelter for long term human space missions

    NASA Astrophysics Data System (ADS)

    Bamford, Ruth; Kellett, Barry; Bradford, John; Todd, Tom N.; Stafford-Allen, Robin; Alves, E. Paulo; Silva, Luis; Collingwood, Cheryl; Crawford, Ian A.; Bingham, Robert

    2014-12-01

    In this paper we explore the effectiveness of an artificial mini-magnetosphere as a potential radiation shelter for long term human space missions. Our study includes the differences that the plasma environment makes to the efficiency of the shielding from the high energy charged particle component of solar and cosmic rays, which radically alters the power requirements. The incoming electrostatic charges are shielded by fields supported by the self captured environmental plasma of the solar wind, potentially augmented with additional density. The artificial magnetic field generated on board acts as the means of confinement and control. Evidence for similar behaviour of electromagnetic fields and ionised particles in interplanetary space can be gained by the example of the enhanced shielding effectiveness of naturally occurring "mini-magnetospheres" on the moon. The shielding effect of surface magnetic fields of the order of ~100s nanoTesla is sufficient to provide effective shielding from solar proton bombardment that culminate in visible discolouration of the lunar regolith known as "lunar swirls". Supporting evidence comes from theory, laboratory experiments and computer simulations that have been obtained on this topic. The result of this work is, hopefully, to provide the tools for a more realistic estimation of the resources versus effectiveness and risk that spacecraft engineers need to work with in designing radiation protection for long-duration human space missions.

  20. Self-shielding printed circuit boards for high frequency amplifiers and transmitters

    NASA Technical Reports Server (NTRS)

    Galvin, D.

    1969-01-01

    Printed circuit boards retaining as much copper as possible provide electromagnetic shielding between stages of the high frequency amplifiers and transmitters. Oscillation is prevented, spurious output signals are reduced, and multiple stages are kept isolated from each other, both thermally and electrically.

  1. Metallized Nanotube Polymer Composite (MNPC) and Methods for Making Same

    NASA Technical Reports Server (NTRS)

    Harrison, Joycelyn S. (Inventor); Lowther, Sharon E. (Inventor); Lillehei, Peter T. (Inventor); Park, Cheol (Inventor); Taylor, Larry (Inventor); Kang, Jin Ho (Inventor); Nazem, Negin (Inventor); Kim, Jae-Woo (Inventor); Sauti, Godfrey (Inventor)

    2017-01-01

    A novel method to develop highly conductive functional materials which can effectively shield various electromagnetic effects (EMEs) and harmful radiations. Metallized nanotube polymer composites (MNPC) are composed of a lightweight polymer matrix, superstrong nanotubes (NT), and functional nanoparticle inclusions. MNPC is prepared by supercritical fluid infusion of various metal precursors (Au, Pt, Fe, and Ni salts), incorporated simultaneously or sequentially, into a solid NT-polymer composite followed by thermal reduction. The infused metal precursor tends to diffuse toward the nanotube surface preferentially as well as the surfaces of the NT-polymer matrix, and is reduced to form nanometer-scale metal particles or metal coatings. The conductivity of the MNPC increases with the metallization, which provides better shielding capabilities against various EMEs and radiations by reflecting and absorbing EM waves more efficiently. Furthermore, the supercritical fluid infusion process aids to improve the toughness of the composite films significantly regardless of the existence of metal.

  2. Electromagnetic Interactions in a Shielded PET/MRI System for Simultaneous PET/MR Imaging in 9.4 T: Evaluation and Results

    NASA Astrophysics Data System (ADS)

    Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David

    2012-10-01

    We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.

  3. Microwave thawing package and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.

    2004-03-16

    A package for containing frozen liquids during an electromagnetic thawing process includes: a first section adapted for containing a frozen material and exposing the frozen material to electromagnetic energy; a second section adapted for receiving thawed liquid material and shielding the thawed liquid material from further exposure to electromagnetic energy; and a fluid communication means for allowing fluid flow between the first section and the second section.

  4. Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.

    PubMed

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav

    2015-08-03

    The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.

  5. New Materials for EMI Shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  6. Engineering Design Handbook. Electromagnetic Compatibility

    DTIC Science & Technology

    1977-03-01

    sliding action between turns. For more effective shielding, it may be covered with one or more layers of woven metal braid . The hose must be used in...shield. Details on this structure are given in Military Standards MS 51010 and 51011. In addition, flexible metal hoses of both braided and solid...signal cables. Flexible conduits for high- and low-voltage shield- ing usually consist of flexible metal hoses over which are wound one or more

  7. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Li, Guolin

    2017-11-01

    Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA), which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T) of the transient current of the gas main switch and the dominant frequency (F) of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  8. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  9. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards

    NASA Astrophysics Data System (ADS)

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-01

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  10. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    NASA Astrophysics Data System (ADS)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  11. Shielding Effectiveness in a Two-Dimensional Reverberation Chamber Using Finite-Element Techniques

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.

    2006-01-01

    Reverberation chambers are attaining an increased importance in determination of electromagnetic susceptibility of avionics equipment. Given the nature of the variable boundary condition, the ability of a given source to couple energy into certain modes and the passband characteristic due the chamber Q, the fields are typically characterized by statistical means. The emphasis of this work is to apply finite-element techniques at cutoff to the analysis of a two-dimensional structure to examine the notion of shielding-effectiveness issues in a reverberating environment. Simulated mechanical stirring will be used to obtain the appropriate statistical field distribution. The shielding effectiveness (SE) in a simulated reverberating environment is compared to measurements in a reverberation chamber. A log-normal distribution for the SE is observed with implications for system designers. The work is intended to provide further refinement in the consideration of SE in a complex electromagnetic environment.

  12. Effect of carbon fiber addition on the electromagnetic shielding properties of carbon fiber/polyacrylamide/wood based fiberboards.

    PubMed

    Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng

    2018-05-11

    Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).

  13. Design of Measurement Apparatus for Electromagnetic Shielding Effectiveness Using Flanged Double Ridged Waveguide

    NASA Astrophysics Data System (ADS)

    Kwon, Jong Hwa; Choi, Jae Ick; Yook, Jong Gwan

    In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20dB within the frequency range of 1-10GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10GHz were indirectly compared with those obtained from the ASTM D4935 from 30MHz to 1GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.

  14. Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust

    NASA Astrophysics Data System (ADS)

    Korja, T.; Hjelt, S.-E.

    1993-12-01

    Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of the Svecofennian Domain.

  15. Mechanically Robust Magnetic Carbon Nanotube Papers Prepared with CoFe2O4 Nanoparticles for Electromagnetic Interference Shielding and Magnetomechanical Actuation.

    PubMed

    Lim, Guh-Hwan; Woo, Seongwon; Lee, Hoyoung; Moon, Kyoung-Seok; Sohn, Hiesang; Lee, Sang-Eui; Lim, Byungkwon

    2017-11-22

    The introduction of inorganic nanoparticles into carbon nanotube (CNT) papers can provide a versatile route to the fabrication of CNT papers with diverse functionalities, but it may lead to a reduction in their mechanical properties. Here, we describe a simple and effective strategy for the fabrication of mechanically robust magnetic CNT papers for electromagnetic interference (EMI) shielding and magnetomechanical actuation applications. The magnetic CNT papers were produced by vacuum filtration of an aqueous suspension of CNTs, CoFe 2 O 4 nanoparticles, and poly(vinyl alcohol) (PVA). PVA plays a critical role in enhancing the mechanical strength of CNT papers. The magnetic CNT papers containing 73 wt % of CoFe 2 O 4 nanoparticles exhibited high mechanical properties with Young's modulus of 3.2 GPa and tensile strength of 30.0 MPa. This magnetic CNT paper was successfully demonstrated as EMI shielding paper with shielding effectiveness of ∼30 dB (99.9%) in 0.5-1.0 GHz, and also as a magnetomechanical actuator in an audible frequency range from 200 to 20 000 Hz.

  16. Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems

    NASA Astrophysics Data System (ADS)

    Zieve, Peter; Ng, James; Fiedberg, Robert

    1991-10-01

    The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.

  17. Smaller but Fully Functional Backshell for Cable Connector

    NASA Technical Reports Server (NTRS)

    Stephenson, Gregory

    2009-01-01

    An improved design for the backshell of a connector for a shielded, multiplewire cable reduces the size of the backshell, relative to traditional designs of backshells of otherwise identical cable connectors. Notwithstanding the reduction in size, the design provides all the functionality typically demanded of such a backshell, including (1) termination of the cable shield (that is, grounding of the shield to the backshell), (2) strain relief for the cable, and (3) protection against electromagnetic interference (EMI).

  18. Analysis of Power Supply Heating Effect during High Temperature Experiments Based on the Electromagnetic Steel Teeming Technology

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng

    2017-04-01

    For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.

  19. Microwave-Assisted Synthesis of Boron and Nitrogen co-doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band.

    PubMed

    Umrao, Sima; Gupta, Tejendra K; Kumar, Shiv; Singh, Vijay K; Sultania, Manish K; Jung, Jung Hwan; Oh, Il-Kwon; Srivastava, Anchal

    2015-09-09

    The electromagnetic interference (EMI) shielding of reduced graphene oxide (MRG), B-doped MRG (B-MRG), N-doped MRG (N-MRG), and B-N co-doped MRG (B-N-MRG) have been studied in the Ku-band frequency range (12.8-18 GHz). We have developed a green, fast, and cost-effective microwave assisted route for synthesis of doped MRG. B-N-MRG shows high electrical conductivity in comparison to MRG, B-MRG and N-MRG, which results better electromagnetic interference (EMI) shielding ability. The co-doping of B and N significantly enhances the electrical conductivity of MRG from 21.4 to 124.4 Sm(-1) because N introduces electrons and B provides holes in the system and may form a nanojunction inside the material. Their temperature-dependent electrical conductivity follows 2D-variable range hopping (2D-VRH) and Efros-Shklovskii-VRH (ES-VRH) conduction model in a low temperature range (T<50 K). The spatial configuration of MRG after doping of B and N enhances the space charge polarization, natural resonance, dielectric polarization, and trapping of EM waves by internal reflection leading to a high EMI shielding of -42 dB (∼99.99% attenuation) compared to undoped MRG (-28 dB) at a critical thickness of 1.2 mm. Results suggest that the B-N-MRG has great potential as a candidate for a new type of EMI shielding material useful in aircraft, defense industries, communication systems, and stealth technology.

  20. Photonic Bandgap (PBG) Shielding Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  1. Measurement of the transient shielding effectiveness of shielding cabinets

    NASA Astrophysics Data System (ADS)

    Herlemann, H.; Koch, M.

    2008-05-01

    Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  2. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    NASA Astrophysics Data System (ADS)

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.

    2017-02-01

    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

  3. EMC design for actuators in the FAST reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Yan; Wu, Ming-Chang; Yue, You-Ling; Gan, Heng-Qian; Hu, Hao; Huang, Shi-Jie

    2018-04-01

    An active reflector is one of the three main innovations incorporated in the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The deformation of such a huge spherically shaped reflector into different transient parabolic shapes is achieved by using 2225 hydraulic actuators which change the position of the 2225 nodes through the connected down tied cables. For each different tracking process of the telescope, more than 1/3 of these 2225 actuators must be in operation to tune the parabolic aperture accurately and meet the surface error restriction. This means that some of these actuators are inevitably located within the main beam of the receiver, and Electromagnetic Interference (EMI) from the actuators must be mitigated to ensure the scientific output of the telescope. Based on the threshold level of interference detrimental to radio astronomy described in ITU-R Recommendation RA.769 and EMI measurements, the shielding efficiency (SE) requirement for each actuator is set to be 80 dB in the frequency range from 70 MHz to 3 GHz. Therefore, Electromagnetic Compatibility (EMC) was taken into account in the actuator design by measures such as power line filters, optical fibers, shielding enclosures and other structural measures. In 2015, all the actuators had been installed at the FAST site. Till now, no apparent EMI from the actuators has been detected by the receiver, which demonstrates the effectiveness of these EMC measures.

  4. New Definitions of Electromagnetic Screening of Cases in Front of Radiates Interferences

    NASA Astrophysics Data System (ADS)

    Garcia Perez, Luis Gines

    Electromagnetic shielding enclosures are simulated in this PhD thesis. Metallic enclosures with a frontal aperture have been implemented and shielding effectiveness has been calculated in frequency and time domains. The CST Microwave Studio application has been used, and necessary electromagnetic shielding measurements have been implemented in order to confirm the simulated results. An anechoic chamber and the network vector analyser ZVA 67 R&S have been employed. There were different set-ups that consist on two shielding enclosures with different apertures on their frontal walls, as well as an electric and a magnetic probes, and an external log-periodic antenna. The electromagnetic field shielding of enclosures against radiated interferences, and its study in the frequency and time domains requires to determine specific parameters for the measurement of the shielding effectiveness (SE). With this target recently it has been essayed indicators based on the peak reduction of electric and magnetic fields and the energy density in the time domain. Although many papers have been published with numeric simulations, rarely real measures in laboratory have been published. In the first part of this study, some important theoretical concepts have been explained, as the high intensity penetration of radiated fields in enclosures with apertures, several ways to define the shielding effectiveness, analytic formulations and different parameters among other concepts, in the frequency and time domains. Then, the system is defined, as from the implementations for simulations and calculations in CST Microwave Studio point of view, as from the set-ups implemented in laboratory point of view. In this section the features and utilization of the network vector analyser ZVA 67 R&S;, anechoic chamber design and dimensions, log-periodic antenna features, and all the different probes, enclosures and apertures employed have been detailed. After de system definition simulated and measured results have been obtained for some definitions and used SE indicators for incident plane wave against enclosures in a specific bandwidth. The plane wave has been treated as a reference interference to compare to other electromagnetic interference cases. It has been verified that the laboratory measurements and the simulations are in good agreement. The effects of the electric (dipole) and magnetic (loop) probes presences have been analysed too, as they can modified the results. In this study new SE definitions (new indicators) have been evaluated too, and they have been compared with the classical time-domain SE definitions. These new indicators have been studied as function of several parameters that can be modified in the enclosures as the aperture dimensions or the enclosure dimensions. Finally, in order to get more generic solutions that can be useful to later SE studies, the new SE results have been analysed and interpreted for an aperture size scanning that provide an unique value for the more critical SE indicator and for an specific bandwidth allowing direct SE comparisons with other enclosures.

  5. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing

    NASA Astrophysics Data System (ADS)

    Lu, Zhengang; Ma, Limin; Tan, Jiubin; Wang, Heyan; Ding, Xuemei

    2017-06-01

    A high-performance transparent electromagnetic interference (EMI) shielding material based on a graphene/metallic mesh/transparent dielectric (GMTD) hybrid structure is designed and characterized. It consists of stacked graphene and metallic mesh layers, with neighboring layers separated by a quartz-glass substrsate. The GMTD hybrid structure combines the microwave-reflecting characteristics of the metallic mesh and the microwave-absorbing characteristics of graphene to achieve simultaneously high visible transmittance, strong microwave shielding effectiveness (SE), and low microwave reflection. Experiments show that a double-graphene and double-metallic mesh GMTD hybrid structure with a mesh periodicity of 160 µm provides microwave SE exceeding 47.79 dB in the K u-band, and an SE exceeding 32.12 dB in the K a-band, with a maximum value of 37.78 dB at 26.5 GHz. SE by absorption exceeds 30.78 dB in the K a-band, with a maximum value of 34.55 dB at 26.5 GHz, while maintaining a normalized visible transmittance of ~85% at 700 nm. This remarkable performance favors the application of the proposed structure as a transparent microwave shield and absorber, and offers a new strategy for transparent EMI shielding.

  6. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding.

    PubMed

    Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing

    2017-08-01

    Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.

  8. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less

  9. Experimental realization of open magnetic shielding

    NASA Astrophysics Data System (ADS)

    Gu, C.; Chen, S.; Pang, T.; Qu, T.-M.

    2017-05-01

    The detection of extremely low magnetic fields has various applications in the area of fundamental research, medical diagnosis, and industry. Extracting the valuable signals from noises often requires magnetic shielding facilities. We demonstrated directly from Maxwell's equations that specifically designed superconductor coils can exactly shield the magnetic field to an extremely low value. We experimentally confirmed this effect in the frequency spectrum of 0.01-10 000 Hz and improved the electromagnetic environment in a hospital, a leading hospital in magnetocardiograph study in China.

  10. Technical Note: On EM reconstruction of a multi channel shielded applicator for cervical cancer brachytherapy: A feasibility study.

    PubMed

    Tho, Daline; Racine, Emmanuel; Easton, Harry; Song, William Y; Beaulieu, Luc

    2018-04-01

    Electromagnetic tracking (EMT) is a promising technology for automated catheter and applicator reconstructions in brachytherapy. In this work, a proof-of-concept is presented for reconstruction of the individual channels of a new shielded tandem (140 mm long shield) dedicated to intensity-modulated brachytherapy. All six channels of a straight prototype were reconstructed using an electromagnetic (EM) system from Aurora (NDI, Waterloo, ON, Canada). The influence of the shield on the EMT system was characterized by taking measurements at nine different positions with and without the shielded part of the applicator next to the probe. A Student t-test was used to analyze the data. For registration purposes, the center-to-center distance (4 mm) was taken from the computed-assisted design (CAD) structure. The computed interchannel distances from the three opposite pairs were 4.33 ± 0.40 mm, 4.14 ± 0.35 mm, and 3.88 ± 0.26 mm. All interchannel distances were within the geometrical tolerance in the shielded portion of the applicator (±0.6 mm) and account for the fact that the sensor (0.8 mm diameter) was smaller than the channel diameter. According to the paired Student t-test, the data given by the EM system with and without the shielded applicator tip are not significantly different. This study shows that the reconstruction of channel path is possible within the mechanical accuracy of the applicator. © 2018 American Association of Physicists in Medicine.

  11. Characterization and reduction of gradient-induced eddy currents in the RF shield of a TEM resonator.

    PubMed

    Alecci, Marcello; Jezzard, Peter

    2002-08-01

    Radiofrequency (RF) shields that surround MRI transmit/receive coils should provide effective RF screening, without introducing unwanted eddy currents induced by gradient switching. Results are presented from a detailed examination of an effective RF shield design for a prototype transverse electromagnetic (TEM) resonator suitable for use at 3 Tesla. It was found that effective RF shielding and low eddy current sensitivity could be achieved by axial segmentation (gap width = 2.4 mm) of a relatively thick (35 microm) copper shield, etched on a kapton polyimide substrate. This design has two main advantages: first, it makes the TEM less sensitive to the external environment and RF interference; and second, it makes the RF shield mechanically robust and easy to handle and assemble. Copyright 2002 Wiley-Liss, Inc.

  12. 3-D Electromagnetic field analysis of wireless power transfer system using K computer

    NASA Astrophysics Data System (ADS)

    Kawase, Yoshihiro; Yamaguchi, Tadashi; Murashita, Masaya; Tsukada, Shota; Ota, Tomohiro; Yamamoto, Takeshi

    2018-05-01

    We analyze the electromagnetic field of a wireless power transfer system using the 3-D parallel finite element method on K computer, which is a super computer in Japan. It is clarified that the electromagnetic field of the wireless power transfer system can be analyzed in a practical time using the parallel computation on K computer, moreover, the accuracy of the loss calculation becomes better as the mesh division of the shield becomes fine.

  13. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  14. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  15. Grounding and Shielding Requirements for the Radiation and EMP Environments of an Underground Nuclear Test

    DTIC Science & Technology

    1978-03-17

    the trailers as Electro-magnetic Interference ( EMI ) tight as possible; such items included removal of all unnecessary wiring penetrations, conductive...20 12. CABLE TRAYS, GROUT-FILLED ............ .................. 21 13. THE MESA TRAILER PARK CONSIDERATIONS...enclosed cable shields. 12. The mesa trailer park received some attention regarding the GSP, although not as intense as the tunnel environment. Specifically

  16. Fault current limiter with shield and adjacent cores

    DOEpatents

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  17. AC conductivity, magnetic and shielding effectiveness studies on polyaniline embedded Co0.5Mn0.5Fe2O4 nanoparticles for electromagnetic interference suppression

    NASA Astrophysics Data System (ADS)

    Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.

    2018-05-01

    Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.

  18. Evaluation of a method to shield a welding electron beam from magnetic interference

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    It is known that electron beams are easily deflected by magnetic and electrostatic fields. Therefore, to prevent weld defects, stray electromagnetic fields are avoided in electron beam welding chambers if at all possible. The successful results of tests conducted at MSFC to evaluate a simple magnetic shield made from steel tubing are reported. Tests indicate that this shield was up to 85 percent effective in reducing magnetic effects on the electron beam of a welding machine. In addition, residual magnetic fields within the shield were so nearly uniform that the net effect on the beam alignment was negligible. It is concluded that the shield, with the addition of a tungsten liner, could be used in production welding.

  19. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  20. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  1. Overview of active methods for shielding spacecraft from energetic space radiation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  2. Miniature, shielded electrical connector with strain relief

    NASA Technical Reports Server (NTRS)

    Diep, Chuong H. (Inventor)

    2006-01-01

    An electrical connector assembly includes a wire bundle having at least one wire with a metal shield surrounding at least a portion of the wire. The shield has an end portion and provides electromagnetic interference protection to the wire. A backshell includes a body and a cover secured to the body together defining an internal cavity with the wire at least partially arranged within the cavity. The backshell provides EMI protection for the portion of the wire bundle not covered by the shield. The backshell includes a hole in a wall of either the body or the cover with the end portion of the shield extending through the hole. The clamp is secured about the body and the cover with the end portion of the shield arranged between the clamp and the backshell grounding the shield to the backshell. The clamp forces the backshell into engagement with the wire bundle to provide strain relief for the wire bundle.

  3. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDFmore » matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.« less

  4. Statistical EMC: A new dimension electromagnetic compatibility of digital electronic systems

    NASA Astrophysics Data System (ADS)

    Tsaliovich, Anatoly

    Electromagnetic compatibility compliance test results are used as a database for addressing three classes of electromagnetic-compatibility (EMC) related problems: statistical EMC profiles of digital electronic systems, the effect of equipment-under-test (EUT) parameters on the electromagnetic emission characteristics, and EMC measurement specifics. Open area test site (OATS) and absorber line shielded room (AR) results are compared for equipment-under-test highest radiated emissions. The suggested statistical evaluation methodology can be utilized to correlate the results of different EMC test techniques, characterize the EMC performance of electronic systems and components, and develop recommendations for electronic product optimal EMC design.

  5. A Determination of the Risk of Intentional and Unintentional Electromagnetic Radiation Emitters Degrading Installed Components in Closed Electromagnetic Environments

    DTIC Science & Technology

    2015-06-01

    shield that tends to lower the EM levels at the surface of the Earth (Christopoulos 2007). It is important to note for the purposes of this paper...ELECTROMAGNETIC ENVIRONMENTS 5. FUNDING NUMBERS 6. AUTHOR( S ) Jared A. Johnson 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School...Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME( S ) AND ADDRESS(ES) N/A 10. SPONSORING

  6. Design Performance of Front Steering-Type Electron Cyclotron Launcher for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, K.; Imai, T.; Kobayashi, N.

    2005-01-15

    The performance of a front steering (FS)-type electron cyclotron launcher designed for the International Thermonuclear Experimental Reactor (ITER) is evaluated with a thermal, electromagnetic, and nuclear analysis of the components; a mechanical test of a spiral tube for the steering mirror; and a rotational test of bearings. The launcher consists of a front shield and a launcher plug where three movable optic mirrors to steer incident multimegawatt radio-frequency beam power, waveguide components, nuclear shields, and vacuum windows are installed. The windows are located behind a closure plate to isolate the transmission lines from the radioactivated circumstance (vacuum vessel). The waveguidemore » lines of the launcher are doglegged to reduce the direct neutron streaming toward the vacuum windows and other components. The maximum stresses on the critical components such as the steering mirror, its cooling tube, and the front shield are less than their allowable stresses. It was also identified that the stress on the launcher, which yielded from electromagnetic force caused by plasma disruption, was a little larger than the criteria, and a modification of the launcher plug structure was necessary. The nuclear analysis result shows that the neutron shield capability of the launcher satisfies the shield criteria of the ITER. It concludes that the design of the FS launcher is generally suitable for application to the ITER.« less

  7. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material.

    PubMed

    Singh, Ashwani Kumar; Kumar, Ajit; Haldar, Krishna Kamal; Gupta, Vinay; Singh, Kedar

    2018-06-15

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe 3 O 4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe 3 O 4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl 3 , ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe 3 O 4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe 3 O 4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SE R ), shielding effectiveness due to absorption (SE A ), and total shielding effectiveness (SE T ) were also plotted against frequency over a broad range (8-12 GHz). A significant change in all parameters (SE A value from 5 dB to 35 dB for Fe 3 O 4 nanoparticles to rGO-Fe 3 O 4 nanoparticle composite) was found. An actual shielding effectiveness (SE T ) up to 55 dB was found in the rGO-Fe 3 O 4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  8. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Kumar, Ajit; Kamal Haldar, Krishna; Gupta, Vinay; Singh, Kedar

    2018-06-01

    This work reports a detailed study of reduced graphene oxide (rGO)-Fe3O4 nanoparticle composite as an excellent electromagnetic (EM) interference shielding material in GHz range. A rGO-Fe3O4 nanoparticle composite was synthesized using a facile, one step, and modified solvothermal method with the reaction of FeCl3, ethylenediamine and graphite oxide powder in the presence of ethylene glycol. Various structural, microstructural and optical characterization tools were used to determine its synthesis and various properties. Dielectric, magnetic and EM shielding parameters were also evaluated to estimate its performance as a shielding material for EM waves. X-ray diffraction patterns have provided information about the structural and crystallographic properties of the as-synthesized material. Scanning electron microscopy micrographs revealed the information regarding the exfoliation of graphite into rGO. Well-dispersed Fe3O4 nanoparticles over the surface of the graphene can easily be seen by employing transmission electron microscopy. For comparison, rGO nanosheets and Fe3O4 nanoparticles have also been synthesized and characterized in a similar fashion. A plot of the dielectric and magnetic characterizations provides some useful information related to various losses and the relaxation process. Shielding effectiveness due to reflection (SER), shielding effectiveness due to absorption (SEA), and total shielding effectiveness (SET) were also plotted against frequency over a broad range (8–12 GHz). A significant change in all parameters (SEA value from 5 dB to 35 dB for Fe3O4 nanoparticles to rGO-Fe3O4 nanoparticle composite) was found. An actual shielding effectiveness (SET) up to 55 dB was found in the rGO-Fe3O4 nanoparticle composite. These graphs give glimpses of how significantly this material shows shielding effectiveness over a broad range of frequency.

  9. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  10. Electromagnetic dissociation effects in galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.

    1986-01-01

    Methods for calculating cross sections for the breakup of galactic heavy ions by the Coulomb fields of the interacting nuclei are presented. By using the Weizsacker-Williams method of virtual quanta, estimates of electromagnetic dissociation cross sections for a variety of reactions applicable to galactic cosmic ray shielding studies are presented and compared with other predictions and with available experimental data.

  11. Army Logistician. Volume 40, Issue 4, July-August 2008

    DTIC Science & Technology

    2008-08-01

    has industrial-grade connectors. It has no additional electromagnetic interference ( EMI ) shielding and no tests for EMI , no internal relay for...Transit Visibility During Operations Desert Shield and Desert Storm, thousands of containers had to be opened, inventoried, resealed, and reinserted...900-gallon “Camel” water trailers and 5-gallon water jugs for resupplying company and platoon locations. Field feeding. Each FSC will require an

  12. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  13. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such approach.

  14. Investigation of Possible Electromagnetic Disturbances caused by Spacecraft-Plasma Interactions at 4 Radii

    NASA Technical Reports Server (NTRS)

    Okada, M.; Tsurutani, B. T.; Goldstein, G. E.; Matsumoto, H.; Brinca, A. L.; Kellogg, P. J.

    1995-01-01

    The proposed Small Solar Probe mission features a close approach to the sun with a perihelion of 4 radii. Carbon molecules emitted from the spacecraft's heat shield will become ionized by electron impact and photoionization. The newly created ions and electrons may generate electromagnetic and electrostatic plasma waves which are possible sources of interference with in-situ plasma measurements.

  15. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range

    NASA Astrophysics Data System (ADS)

    González, M.; Crespo, M.; Baselga, J.; Pozuelo, J.

    2016-05-01

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials. Electronic supplementary information (ESI) available: Scheme of hydrogenated derivative of diglycidyl ether of bisphenol-A (HDGEBA) and m-xylylenediamine; X-ray diffractograms of pristine CNT and oxidized CNT; glass transition temperatures of composites; electromagnetic shielding analysis in the 1-18 GHz frequency range. See DOI: 10.1039/c6nr02133f

  16. United States Air Force Summer Faculty Research Program: Program Management Report

    DTIC Science & Technology

    1988-12-01

    Laboratory 64 Realization of Sublayer Relative Dr. Lane Clark Shielding Order in Electromagnetic Topology 65 Diode Laser Probe of Vibrational Dr. David...given. In addition, all possible sublayer topologies with relative shielding order at most 5 are explicitly given. S863 Diode Laser Probe of...dioxide at 193 nm to prepare the SO radicals. High resolution diode laser absorption spectrometry will be used to obtain time-dependent concentrations

  17. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding.

    PubMed

    Wu, Ying; Wang, Zhenyu; Liu, Xu; Shen, Xi; Zheng, Qingbin; Xue, Quan; Kim, Jang-Kyo

    2017-03-15

    Ultralight, high-performance electromagnetic interference (EMI) shielding graphene foam (GF)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are developed by drop coating of PEDOT:PSS on cellular-structured, freestanding GFs. To enhance the wettability and the interfacial bonds with PEDOT:PSS, GFs are functionalized with 4-dodecylbenzenesulfonic acid. The GF/PEDOT:PSS composites possess an ultralow density of 18.2 × 10 -3 g/cm 3 and a high porosity of 98.8%, as well as an enhanced electrical conductivity by almost 4 folds from 11.8 to 43.2 S/cm after the incorporation of the conductive PEDOT:PSS. Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE (SSE) of 3124 dB·cm 3 /g, both of which are the highest among those reported in the literature for carbon-based polymer composites. The excellent electrical conductivities of composites arising from both the GFs with three-dimensionally interconnected conductive networks and the conductive polymer coating, as well as the left-handed composites with absolute permittivity and/or permeability larger than one give rise to significant microwave attenuation by absorption.

  18. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

  19. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    NASA Astrophysics Data System (ADS)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-05-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  20. Investigation of Mechanical and Electromagnetic Interference Shielding Properties of Nickel-CFRP Textile Composites

    NASA Astrophysics Data System (ADS)

    Tugirumubano, Alexandre; Vijay, Santhiyagu Joseph; Go, Sun Ho; Kwac, Lee Ku; Kim, Hong Gun

    2018-04-01

    The most common materials used for electromagnetic interference shielding are metals and their alloys. However, those materials are heavy and highly reflective. In order to eliminate or reduce the intensity of wave radiation in their working environment, lightweight materials that have interference shielding properties are needed. In this paper, nickel wire mesh yarns (warps) were woven into carbon fibers-reinforced plastic yarns (wefts) to produce metal-carbon textile composite materials. The plain weave and 2/2 twill weave techniques were used, and the woven fabrics were laminated to manufacture experimental test samples. The nickel, which has high magnetic permeability and good electric conductivity, and carbon fibers, which have good electrical, thermal and mechanical properties, were used together to achieve the desired properties. The shielding effectiveness of each sample was investigated using a network analyzer connected with coaxial transmission line test in accordance with ASTM 4935-99 standard, with the frequencies ranging from 500 MHz to 1.5 GHz. Here, the plain weave structure showed higher shielding effectiveness than twill weave. The absorption losses for both materials were relatively greater than reflection losses. In reference to the orientation of wire mesh yarns about the loading axis, the tensile strengths in the transversal direction were 19.04 and 16.34% higher than the tensile strengths in longitudinal direction for plain weave and twill weave, respectively. The fractography analysis with SEM showed a ductile fracture of wire mesh and brittle fracture of epoxy matrix and carbon fibers.

  1. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

    PubMed Central

    2011-01-01

    Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633

  2. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, B. V.; Kale, Nikita; Kothavale, B. S.; Kale, S. N.

    2016-06-01

    Radar X-band electromagnetic interference shielding (EMS) is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT) has been homogeneously integrated (0 - 9 wt%) with polymer, poly (vinylidene fluoride, PVDF) to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE) of 17.7 dB/(g/cm3) (99.6% EMS), with maintained hardness and improved conductivity. With multilayer stacking (900 microns) of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3) (99.93% EMS). Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  3. Wiring design for the control of electromagnetic interference (EMI)

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1995-01-01

    Wiring design is only one important aspect of EMI control. Other important areas for EMI are: circuit design, filtering, grounding, bonding, shielding, lighting, electrostatic discharge (ESD), transient suppression, and electromagnetic pulse (EMP). Topics covered include: wire magnetic field emissions at low frequencies; wire radiated magnetic field emissions at frequencies; wire design guidelines for EMI control; wire design guidelines for EMI control; high frequency emissions from cables; and pulse frequency spectra.

  4. Electromagnetic-Pulse Handbook for Electric Power Systems

    DTIC Science & Technology

    1975-02-04

    penetratlor.s such as communications cables, antenna leads, etc.). (6) Avoid connecting the power neutral and external cable shields to the same point on the...prepared primarily for the power, communications , and systems engineer who must be concerned with the offects of the nuclear electromagnetic pulse on...INTRODUCTION Until a few years ago, the nuclear EMP community gave little attention to commer- cial power systems other than to recommend surge arrestors

  5. Evaluation of Time Domain EM Coupling Techniques. Volume II.

    DTIC Science & Technology

    1980-08-01

    tool for the analysis of elec- tromangetic coupling and shielding problems: the finite-difference, time-domain (FD- TD ) solution of Maxwell’s equations...The objective of the program was to evaluate the suitability of the FD- TD method to determine the amount of electromagnetic coupling through an...specific questfiowwere addressed during this program: 1. Can the FD- TD method accurately model electromagnetic coupling into a conducting structure for

  6. America’s Achilles Heel: Defense Against High-altitude Electromagnetic Pulse-policy vs. Practice

    DTIC Science & Technology

    2014-12-12

    Directives SCADA Supervisory Control and Data Acquisition Systems SHIELD Act Secure High-voltage Infrastructure for Electricity from Lethal Damage Act...take place, it is important to understand the effects of the components of EMP from a high-altitude nuclear detonation. The requirements for shielding ...Mass Ejection (CME). A massive, bubble-shaped burst of plasma expanding outward from the Sun’s corona, in which large amounts of superheated

  7. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    PubMed Central

    Szczurek, Andrzej; Plyushch, Artyom; Macutkevic, Jan

    2018-01-01

    Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF) resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM) properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated. PMID:29723961

  8. Hyperthermia heating apparatus. [cancer therapy

    NASA Technical Reports Server (NTRS)

    Gammell, P. M. (Inventor)

    1982-01-01

    Electromagnetic energy is delivered to a localized area of a patient's body in a hyperthermic treatment so that it provides a uniform distribution of electromagnetic flux lines within the localized area of the patient's body and produces a uniform and localized heating gradient. An electrode array includes a number of electrodes which are arranged in pair, with the electrodes in each pair being spaced a particular distance apart. The array is driven by a balanced line system which is electromagnetically coupled to each pair of electrodes and which is shielded by a ground coaxial shield which itself is ground to the body of the patient. Each electrode is embedded in a Teflon stand-off in order to move the region of strong field, from the body, produced by rapidly changing potentials. The two pairs of electrodes forming a cross-like geometry are used with the balanced line systems. The electrical power is either multiplexed among the electrodes or the second pair is driven by a potential which is sinusoidal and which is 90% out of phase with the first balanced line system which is also sinusoidal.

  9. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  10. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  11. Vegetation Use for Resolving Electromagnetic Compatibility and Ecology Issues

    NASA Astrophysics Data System (ADS)

    Zvezdina, M. Yu; Shokova, Yu A.; Cherckesova, L. V.; Golovko, T. M.; Cherskaya, A. A.

    2017-05-01

    The wide spread of Information and Communication Technologies and the development of Internet-enabled mobile applications have aggravated electromagnetic compatibility and ecology problems. Inability to excite electromagnetic field of a desired structure and strength with traditional approaches actualizes additional actions, including providing diffraction on propagation path, to resolve these issues. Diffraction on a stand-alone obstacle along the propagation path and the one on set of obstacles near receive antenna location can be considered as the additional actions in ultrashort band. The accomplished studies have shown that one the most effective means to lower electromagnetic field strength is to shield the receive antenna with vegetation from jamming radio equipment. Moreover, vegetation resolves electromagnetic ecology issues, for the energy flux density can be lowered by about two orders of magnitude.

  12. Magnetic Imaging: a New Tool for UK National Nuclear Security

    NASA Astrophysics Data System (ADS)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  13. Magnetic Imaging: a New Tool for UK National Nuclear Security

    PubMed Central

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications. PMID:25608957

  14. Magnetic imaging: a new tool for UK national nuclear security.

    PubMed

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  15. Lunar base applications of superconductivity: Lunar base systems study task 3.4

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The application of superconductor technology to several key aspects of an advanced-stage Lunar Base is described. Applications in magnetic energy storage, electromagnetic launching, and radiation shielding are discussed.

  16. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  17. Operation Sun Beam, Shots Little Feller I, II and Johnie Boy. Project officers report. Project 6. 6. Electromagnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, W.D.; Livingston, P.M.; Rutter, R.L.

    Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.

  18. Shielded-Twisted-Pair Cable Model for Chafe Fault Detection via Time-Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2012-01-01

    This report details the development, verification, and validation of an innovative physics-based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found on aircraft and offers an ideal proving ground for detection of small holes in a shield well before catastrophic damage occurs. The accuracy of this model is verified through numerical electromagnetic simulations using a commercially available software tool. The model is shown to be representative of more realistic (analytically intractable) cable configurations as well. A probabilistic framework is developed for validating the model accuracy with reflectometry data obtained from real aircraft-grade cables chafed in the laboratory.

  19. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  20. Clastogenic effects of radiofrequency radiations on chromosomes of Tradescantia.

    PubMed

    Haider, T; Knasmueller, S; Kundi, M; Haider, M

    1994-06-01

    The clastogenicity of electromagnetic fields (EMF) has so far been studied only under laboratory conditions. We used the Tradescantia-micronucleus (Trad-MCN) bioassay in an in situ experiment to find out whether short-wave electromagnetic fields used for broadcasting (10-21 MHz) may show genotoxic effects. Plant cuttings bearing young flower buds were exposed (30 h) on both sides of a slewable curtain antenna (300/500 kW, 40-170 V/m) and 15 m (90 V/m) and 30 m (70 V/m) distant from a vertical cage antenna (100 kW) as well as at the neighbors living near the broadcasting station (200 m, 1-3 V/m). The exposure at both sides of the slewable curtain antenna was performed simultaneously within cages, one of the Faraday type shielding the field and one non-shielding mesh cage. Laboratory controls were maintained for comparison. Higher MCN frequencies than in laboratory controls were found for all exposure sites in the immediate vicinity of the antennae, where the exposure standards of the electric field strength of the International Radiation Protection Association (IRPA) were exceeded. The results at all exposure sites except one were statistically significant. Since the parallel exposure in a non-shielding and a shielding cage also revealed significant differences in MCN frequencies (the latter showing no significant differences from laboratory controls), the clastogenic effects are clearly attributable to the short-wave radiation from the antennae.

  1. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.

    PubMed

    Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng

    2017-11-30

    Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.

  2. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  3. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  4. Long-term prospects: Mitigation of supernova and gamma-ray burst threat to intelligent beings

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2016-12-01

    We consider global catastrophic risks due to cosmic explosions (supernovae, magnetars and gamma-ray bursts) and possible mitigation strategies by humans and other hypothetical intelligent beings. While by their very nature these events are so huge to daunt conventional thinking on mitigation and response, we wish to argue that advanced technological civilizations would be able to develop efficient responses in the domain of astroengineering within their home planetary systems. In particular, we suggest that construction of shielding swarms of small objects/particles confined by electromagnetic fields could be one way of mitigating the risk of cosmic explosions and corresponding ionizing radiation surges. Such feats of astroengineering could, in principle, be detectable from afar by advanced Dysonian SETI searches.

  5. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  6. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics Corporation in America. EME and AE signals were collected at sampling rate larger than 1 MHz, while strain signals at sampling interval of 0.1 second. Abnormal strong EME signals were usually observed at the same moment with the main crack indicated by strain signals. There are too many AE signals but too little EME signals collected during the rock-cracking experiments. Even AE signals with amplitude larger than 60dB were hardly found accompanied by EME signals. Few data indicate that EME and AE signals occur simultaneously. Abnormal EME signals were always detected after rock specimens were cracked, indicated by the torn strain gauges. The lag of EME signals behind the cracking signals revealed by strain gauges may indicate that EME signals were caused by the fast movement of charged rock fragments. This study was sponsored by National Natural Science Foundation of China (NSFC, grant 41004029) and Institute of Geophysics, CEA (Project No.: DQJB10B14). We would like to thank Shuqing Qian, Zhiwei Guo and Zhengyi Liu to take part in the experiments.

  7. Electromagnetic inhibition of high frequency thermal bonding machine

    NASA Astrophysics Data System (ADS)

    He, Hong; Zhang, Qing-qing; Li, Hang; Zhang, Da-jian; Hou, Ming-feng; Zhu, Xian-wei

    2011-12-01

    The traditional high frequency thermal bonding machine had serious radiation problems at dominant frequency, two times frequency and three times frequency. Combining with its working principle, the problems of electromagnetic compatibility were studied, three following measures were adopted: 1.At the head part of the high frequency thermal bonding machine, resonant circuit attenuator was designed. The notch groove and reaction field can make the radiation being undermined or absorbed; 2.The electromagnetic radiation shielding was made for the high frequency copper power feeder; 3.Redesigned the high-frequency oscillator circuit to reduce the output of harmonic oscillator. The test results showed that these measures can make the output according with the national standard of electromagnetic compatibility (GB4824-2004-2A), the problems of electromagnetic radiation leakage can be solved, and good social, environmental and economic benefits would be brought.

  8. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  9. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  10. Interaction between EMP (Electromagnetic Pulses), Lightning and Static Electricity with Aircraft and Missile Avionics Systems

    DTIC Science & Technology

    1986-05-01

    integral fuel tanks, the various conductors in the fuel systems (e.g. pipes, fuel gauge wiring etc.) can be a fuel explosion risk of very high currents...without sparking. The energy contained in the sparking is most certainly a grave fuel explosion risk . Similar hazards must be avoided with any wiring or...conductors parallel to the cable, transmission lines can be formed. This mehod can only be used for shielded cables. The shield must be accessible somewhere

  11. Electromagnetic radiation and behavioural response of ticks: an experimental test.

    PubMed

    Vargová, Blažena; Majláth, Igor; Kurimský, Juraj; Cimbala, Roman; Kosterec, Michal; Tryjanowski, Piotr; Jankowiak, Łukasz; Raši, Tomáš; Majláthová, Viktória

    2018-05-01

    Factors associated with the increased usage of electronic devices, wireless technologies and mobile phones nowadays are present in increasing amounts in our environment. All living organisms are constantly affected by electromagnetic radiation which causes serious environmental pollution. The distribution and density of ticks in natural habitats is influenced by a complex of abiotic and biotic factors. Exposure to radio-frequency electromagnetic field (RF-EMF) constitutes a potential cause altering the presence and distribution of ticks in the environment. Our main objective was to determine the affinity of Dermacentor reticulatus ticks towards RF-EMF exposure. Originally designed and constructed radiation-shielded tube (RST) test was used to test the affinity of ticks under controlled laboratory conditions. All test were performed in an electromagnetic compatibility laboratory in an anechoic chamber. Ticks were irradiated using a Double-Ridged Waveguide Horn Antenna to RF-EMF at 900 and 5000 MHz, 0 MHz was used as control. The RF-EMF exposure to 900 MHz induced a higher concentration of ticks on irradiated arm of RST as opposed to the RF-EMF at 5000 MHz, which caused an escape of ticks to the shielded arm. This study represents the first experimental evidence of RF-EMF preference in D. reticulatus. The projection of obtained results to the natural environment could help assess the risk of tick borne diseases and could be a tool of preventive medicine.

  12. Low eddy current RF shielding enclosure designs for 3T MR applications.

    PubMed

    Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S

    2018-03-01

    Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    DOEpatents

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  14. Mushrooming vulnerability to EMP

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1984-08-01

    The electromagnetic pulse (EMP) generated by a single thermonuclear bomb detonated above the continental U.S. could set up electrical fields of 50 kV/m over nearly all of North America. Since the progressively microminiaturized integrated circuits of current military and civilian electronics become more vulnerable with decreasing circuit element size, even shield-protected chips can now be destroyed by the substantially shield-dampened EMP pulses. It is noted as a source of special concern that, as nuclear weapons have evolved, the EMP characteristically generated by them has shifted to increasingly shorter wavelengths, requiring significant redesign of EMP shields devised a decade or more ago. The surge arresters currently employed may not react sufficiently rapidly for existing weapons.

  15. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  16. Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.

  17. Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1975-01-01

    In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.

  18. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  19. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  20. Prospects for using carbon-carbon composites for EMI shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.

  1. Diffuse dispersive delay and the time convolution/attenuation of transients

    NASA Technical Reports Server (NTRS)

    Bittner, Burt J.

    1991-01-01

    Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.

  2. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    PubMed

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  3. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    NASA Astrophysics Data System (ADS)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.

  4. Propagation of monochromatic light in a hot and dense medium

    NASA Astrophysics Data System (ADS)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  5. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  6. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Li, Jian

    2016-10-05

    Hybrid aerogels consisting of graphene oxide (GO) and cellulose were prepared via a solution mixing-regeneration-freeze drying process. The presence of GO affected the micromorphology of the hybrid aerogels, and a self-assembly behavior of cellulose was observed after the incorporation of GO. Moreover, there is no remarkable modification in the crystallinity index and thermal stability after the insertion of GO. After the reduction of GO in the hybrid aerogels by l-ascorbic acid and the subsequent pyrolysis of the aerogels, the resultant displays some interesting characteristics, including good electromagnetic interference (EMI) shielding capacity (SEtotal=58.4dB), high electrical conductivity (19.1Sm(-1)), hydrophobicity, and fire resistance, which provide an opportunity for some advanced applications such as EMI protection, electrochemical devices, water-proofing agents, and fire retardants. Moreover, this work possibly helps to facilitate the development of both cellulose and GO-based materials and expand their application scope. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Multifunctional Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  8. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tantawy, Hesham Ramzy; Aston, D. Eric, E-mail: aston@uidaho.edu; Kengne, Blaise-Alexis F.

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested.more » They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)« less

  9. Effective electromagnetic interference shielding for electronic equipment.

    PubMed

    Sheedy, Billy

    2003-11-01

    With the development of tough, durable compounds, plastics are the preferred material for electronic equipment housings. The availability of economical, effective coating materials that can give plastics some of the desirable properties lost in the switch from metals are helping to allow the design of reliable medical equipment.

  10. Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Yongqiang; Luo, Heng; Zhang, Haibin, E-mail: hbzhang@caep.cn, E-mail: pengshuming@caep.cn

    2016-03-15

    Lightweight graphene nanoplatelet (GNP)/boron carbide (B{sub 4}C) composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI) shielding effectiveness (SE) has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B{sub 4}C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B{sub 4}C composite is demonstratedmore » to be promising candidate of high-temperature microwave EMI shielding material.« less

  11. A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters

    NASA Technical Reports Server (NTRS)

    Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.

    1984-01-01

    The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.

  12. Performance of a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Raitses, Yevgeny; Fisch, Nathaniel J.

    2008-01-01

    While Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope down to 100W while maintaining an efficiency of 45- 55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from the order of 50 Watts up to 1 kW. These thrusters exhibit performance characteristics which are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHT has a lower insulator surface area to discharge chamber volume ratio. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion. This makes the CHT geometry promising for low-power applications. Recently, a CHT that uses permanent magnets to produce the magnetic field topology was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed electromagnets. Data are presented for two purposes: to expose the effect different controllable parameters have on the discharge and to summarize performance measurements (thrust, Isp, efficiency) obtained using a thrust stand. These data are used to gain insight into the thruster's operation and to allow for quantitative comparisons between the permanent magnet CHT and the electromagnet CHT.

  13. Characterization and biocompatibility studies of lead free X-ray shielding polymer composite for healthcare application

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Singh, Rakesh Kumar; Sharma, Bhupesh; Tyagi, Ajay Kumar

    2017-09-01

    Lead based X-ray shielding systems are widely being used in healthcare and radiation processing centers to protect technicians, operators and patients from unwanted exposure to ionizing radiation. However, the use of lead is avoided mainly due to its toxic effects on human health and environment, and also discomfort due to heavier in weight. Hence, production of non-toxic, environment friendly, lead-free X-ray shielding system with less weight and good radiation shielding efficiency compared to conventional lead-based shielding systems is a challenging issue and need of the day. The objectives of present study are to develop, characterize and establish synergy of the materials making radiation shielding composition and their biocompatibility without compromising on radiation shielding efficiency and physico-mechanical attributes vis-à-vis lead based systems.

  14. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response

    NASA Astrophysics Data System (ADS)

    Saini, Parveen; Arora, Manju; Gupta, Govind; Gupta, Bipin Kumar; Singh, Vidya Nand; Choudhary, Veena

    2013-05-01

    Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00634d

  15. Characteristics of Ferromagnetic Flux Focusing Lens in the Development of Surface/Subsurface Flaw Detector

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min; Simpson, John

    1993-01-01

    Electromagnetic NDE techniques have in the past steered away from the use of ferromagnetic materials. Although their high permeabilities lead to increased field levels, the properties of ferrous elements in the presence of alternating magnetic fields are difficult to determine. In addition, their use leads to losses which can be minimized through the use of low conductivity ferrites. In fact, the eddy current probes which do incorporate ferromagnetic materials have focused on these losses and the shielding which can be obtained by surrounding a probe with a high permeability, conducting material. Eddy current probes enclosed in conducting and magnetic shields have been used to prevent the generated fields from interacting with materials in the vicinity of the probe, such as when testing near material boundaries. A recent invention has used ferromagnetic shielding to magnetically separate individual concentric eddy current probes in order to eliminate cross-talk between the probes so that simultaneous detection of different types of flaws at different depths can be achieved. In contrast to the previous uses of ferromagnetic materials purely as magnetic shields, an electromagnetic flaw detector recently developed at NASA Langley Research Center takes advantage of the flux focusing properties of a ferromagnetic mild steel in order to produce a simple, effective device for the non-destructive evaluation of conducting materials. The Flux Focusing Eddy Current Probe has been shown to accurately measure material thickness and fatigue damage. The straight forward flaw response of the probe makes the device ideal for rapid inspection of large structures, and has lead to its incorporation in a computer controlled search routine to locate fatigue crack tips and monitor experimental fatigue crack growth experiments.

  16. Security aspects of RFID communication systems

    NASA Astrophysics Data System (ADS)

    Bîndar, Valericǎ; Popescu, Mircea; Bǎrtuşicǎ, Rǎzvan; Craciunescu, Razvan; Halunga, Simona

    2015-02-01

    The objective of this study is to provide an overview of basic technical elements and security risks of RFID communication systems and to analyze the possible threats arising from the use of RFID systems. A number of measurements are performed on a communication system including RFID transponder and the tag reader, and it has been determined that the uplink signal level is 62 dB larger than the average value of the noise at the distance of 1m from the tag, therefore the shielding effectiveness has to exceed this threshold. Next, the card has been covered with several shielding materials and measurements were carried, under similar conditions to test the recovery of compromising signals. A very simple protection measure to prevent unauthorized reading of the data stored on the card has been proposed, and some electromagnetic shielding materials have been proposed and tested.

  17. EMC Test Report Electrodynamic Dust Shield

    NASA Technical Reports Server (NTRS)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  18. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer's charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. PMID:24475024

  19. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    PubMed

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  20. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  1. 40 CFR 63.4768 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...

  2. 40 CFR 63.4768 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...

  3. 40 CFR 63.4168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...

  4. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  5. 40 CFR 63.4168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements in paragraphs (c)(3)(i) through (vii) of this section. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement...) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. (iv) If...

  6. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  7. 40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...

  8. Transparent, conducting films based on metal/dielectric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario

    1999-07-01

    A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.

  9. Electromagnetic wrap

    DOEpatents

    Tremblay, Paul L [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID

    2010-09-28

    A device and method for altering the line reactance of a transmission line having a transmission line, a first floating conductor and a grounding (shielding) conductor. The first floating conductor is positioned between and electrically insulated from the transmission line and the grounding conductor. A source and a load are connected at opposite ends of the transmission line.

  10. Simulated E-Bomb Effects on Electronically Equipped Targets

    DTIC Science & Technology

    2009-09-01

    coupling model program (CEMPAT), pursuing a feasible geometry of attack, practical antennas, best coupling approximations of ground conductivity and...procedure to determine these possible effects is to estimate the electromagnetic coupling from first principles and simulations using a coupling model ...Applications .................................... 16 B. SYSTEM OF INTEREST MODEL AS A TARGET ............................. 16 1. Shielding Methods, as

  11. Changes to Tensile Strength and Electromagnetic Shielding Effectiveness in Neutron Irradiated Carbon Nanocomposites

    DTIC Science & Technology

    2013-03-01

    3 II. Background ...Agilent Technologies E8362B PNA Series Microwave Network Analyzer. The waveguide is secured by hex cap screws and nuts tightened to the torque...believed to result in a reduction in tensile strength of the composite. 5 II. Background Chapter Overview This chapter describes the

  12. Through-barrier electromagnetic imaging with an atomic magnetometer.

    PubMed

    Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio

    2017-07-24

    We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

  13. Biological processes, quantum mechanics and electromagnetic fields: the possibility of device-encapsulated human intention in medical therapies.

    PubMed

    Kohane, M J; Tiller, W A

    2001-06-01

    The general hypothesis that quantum mechanics (QM) and thermodynamic concepts relate to biological systems is discussed and applied to the biological influence of: (1) electromagnetic fields (EMFs); and (2) EMFs that have been exposed to human intention. We illustrate our hypothesis with experiments involving four simultaneous treatments: exposure to ambient EMFs in the laboratory environment (C), exposure in a Faraday cage (F) and exposure in a Faraday cage with either: (i) an electronic device (IIED) which had been exposed to a specific human intention (d,j); or (ii) a non-exposed, physically identical, device (d,o). Experimental systems were fitness and energy metabolism in Drosophila melanogaster, in vitro enzyme activity and molecular concentration variability over time. Results indicated that shielding from ambient EMFs via a Faraday cage (F) made a significant difference relative to the unshielded control (C). Further, (d,o) had a significant lowering effect in the shielded environment. Finally, there was a strong 'intention' effect with the IIED (d,j) producing significant and positive effects in comparison to (d,o) in each experimental system. Copyright 2001 Harcourt Publishers Ltd.

  14. A secular technetium-molybdenum generator

    NASA Astrophysics Data System (ADS)

    Araujo, Wagner L.; Campos, Tarcisio P. R.

    2015-05-01

    A compact secular molybdenium generator is subject of this paper. This generator represents a nuclear system that comprises a hydrogen-isotopes fusor, moderator, reflector and shield. Deuterium fusion reactions in a tritiated or deuterated target provide the neutron source. A moderation fluid slowdown the neutron energy which increases 98Mo(n,γ)99Mo capture reaction rates. Neutron reflection minimizes the neutron escape and the radiation shield encloses the device. The neutron yield calculation along with electromagnetic and nuclear simulations were addressed. Results revealed the accelerator equipotential surfaces ranging from -30 to 150 kV, the ion trajectories and the energy beam profile define a deuteron current of 1 A with energy of 180 keV at the target, the spatial distribution of the neutron flux, and the 99Mo and 99mTc activities in function of transmuter operation time. The kinetics of the 99mTc correlated to its precursor activity demonstrates a secular equilibrium providing 2 Ci in a operational time of 150 h. As conclusion, the investigated nuclear and electromagnetic features have demonstrated that such generator shall have a notable potential for feeding the 99mTc clinical application.

  15. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.

    PubMed

    Yamamoto, Takahiko; Koshiji, Kohji; Homma, Akihiko; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2008-01-01

    Transcutaneous energy transmission (TET) that uses electromagnetic induction between the external and internal coils of a transformer is the most promising method to supply driving energy to a totally implantable artificial heart without invasion. Induction-heating (IH) cookers generate magnetic flux, and if a cooker is operated near a transcutaneous transformer, the magnetic flux generated will link with the external and internal coils of the transcutaneous transformer. This will affect the performance of the TET and the artificial heart system. Hence, it is necessary to improve the magnetic field immunity of the TET system. During operation of the system, if the transcutaneous transformer is in close proximity to an IH cooker, the electric power generated by the cooker and coupled to the transformer can drive the artificial heart system. To prevent this coupling, the external coil was shielded with a conductive shield that had a slit in it. This reduces the coupling between the transformer and the magnetic field generated by the induction cooker. However, the temperature of the shield increased due to heating by eddy currents. The temperature of the shield can be reduced by separating the IH cooker and the shield.

  16. Electromagnetic compatibility (EMC) standard test chamber upgrade requirements for spacecraft design verification tests

    NASA Technical Reports Server (NTRS)

    Dyer, Edward F.

    1992-01-01

    In view of the serious performance deficiencies inherent in conventional modular and welded shielding EMC test enclosures, in which multipath reflections and resonant standing waves can damage flight hardware during RF susceptibility tests, NASA-Goddard has undertaken the modification of a 20 x 24 ft modular-shielded enclosure through installation of steel panels to which ferrite tiles will be mounted with epoxy. The internally reflected RF energy will thereby be absorbed, and exterior power-line noise will be reduced. Isolation of power-line filters and control of 60-Hz ground connections will also be undertaken in the course of upgrading.

  17. Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber.

    PubMed

    Jang, Dae-Hwan; Song, Hanbok; Lee, Young-In; Lee, Kun-Jae; Kim, Ki Hyeon; Oh, Sung-Tag; Lee, Sang-Kwan; Choa, Yong-Ho

    2011-01-01

    Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss. Therefore, magnetic material coating dielectric materials are required in this reason. In this study, TiO2 coated Fe nanofibers were prepared to improve their properties for electromagnetic wave absorption. Poly(vinylpyrrolidone) (PVP) and Iron (III) nitrate nonahydrate (Fe(NO3)3 x 9H2O) were used as starting materials for the synthesis of Fe oxide nanofibers. Fe oxide nanofibers were prepared by electrospinning in an electric field and heat treatment. TiO2 layer was coated on the surface of Fe oxide nanofibers using sol-gel process. After the reduction of TiO2 coated Fe oxide nanofibers, Fe nanofibers with a TiO2 coating layer of about 10 nm were successfully obtained. The morphology and structure of fibers were characterized by SEM, TEM, and XRD. In addition, the absorption properties of TiO2 coated Fe nanofibers were measured by network analyzer.

  18. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  19. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    NASA Astrophysics Data System (ADS)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  20. Search for Dark Matter with DEAP-3600

    NASA Astrophysics Data System (ADS)

    Jillings, Chris; DEAP-3600 Collaboration Collaboration

    2017-01-01

    DEAP-3600 is a single-phase liquid argon detector, which searches for dark matter particle interactions with 1 tonne fiducial target mass (3.6 tonnes total) contained in an ultra-pure acrylic vessel viewed by 255 high quantum efficiency photomultiplier tubes. It is located 2 km underground at SNOLAB, in Sudbury, Ontario. Radioactive backgrounds are controlled through pulse-shape discrimination in case of electromagnetic backgrounds (demonstrated with a smaller 7-kg prototype DEAP-1) and with a combination of excellent radiopurity, shielding and fiducialization for neutron and alpha backgrounds. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10-46 cm2 at 100 GeV/c2. Commissioning of the DEAP-3600 detector is now complete and physics data taking is starting. This talk will present an overview and status of the project, including early results demonstrating the detector performance.

  1. Shield system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, D.R.; Chandler, J.R.; Church, J.P.

    1979-01-01

    The SHIELD system is a powerful new computational tool for calculation of isotopic inventory, radiation sources, decay heat, and shielding assessment in part of the nuclear fuel cycle. The integrated approach used in this system permitss the communication and management of large fields of numbers efficiently thus permitting the user to address the technical rather than computer aspects of a problem. Emphasis on graphical outputs permits large fields of resulting numbers to be efficiently displayed.

  2. High power radiators of ultra-short electromagnetic quasi-unipolar pulses

    NASA Astrophysics Data System (ADS)

    Fedorov, V. M.; Ostashev, V. E.; Tarakanov, V. P.; Ul'yanov, A. V.

    2017-05-01

    Results of creation, operation, and diagnostics of the high power radiators for ultra-short length electromagnetic pulses (USEMPs) with a quasi-unipolar profile, which have been developed in our laboratory, are presented. The radiating module contains: the ultra-wideband (UWB) antenna array, the exciting high voltage pulse semiconductor generator (a pulser), the power source and the control unit. The principles of antenna array with a high efficiency aperture about 0.9 were developed using joint four TEM-horns with shielding electrodes in every TEM-horn. Sizes of the antenna apertures were (16-60) cm. The pulsers produced by “FID Technology” company had the following parameters: 50 Ohm connector impedance, unipolar pulses voltages (10-100) kV, the rise-time (0.04-0.15) ns, and the width (0.2-1) ns. The modules radiate the USEMPs of (0.1-10) GHz spectrum, their repetition rate is (1-100) kHz, and the effective potential is E*R = (20-400) kV, producing the peak E-field into the far-zone of R-distance. Parameters of the USEMP waves were measured by a calibrated sensor with the following characteristics: the sensitivity 0.32V/(kV/m), the rise-time 0.03 ns, the duration up to 7 ns. The measurements were in agreement with the simulation results, which were obtained using the 3-D code “KARAT”. The USEMP waves with amplitudes (1-10) kV/m and the pulse repetition rate (0.5-100) kHz were successfully used to examine various electronic devices for an electromagnetic immunity.

  3. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  4. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Avionics system design for high energy fields: A guide for the designer and airworthiness specialist

    NASA Technical Reports Server (NTRS)

    Mcconnell, Roger A.

    1987-01-01

    Because of the significant differences in transient susceptibility, the use of digital electronics in flight critical systems, and the reduced shielding effects of composite materials, there is a definite need to define pracitices which will minimize electromagnetic susceptibility, to investigate the operational environment, and to develop appropriate testing methods for flight critical systems. The design practices which will lead to reduced electromagnetic susceptibility of avionics systems in high energy fields is described. The levels of emission that can be anticipated from generic digital devices. It is assumed that as data processing equipment becomes an ever larger part of the avionics package, the construction methods of the data processing industry will increasingly carry over into aircraft. In Appendix 1 tentative revisions to RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment, are presented. These revisions are intended to safeguard flight critical systems from the effects of high energy electromagnetic fields. A very extensive and useful bibliography on both electromagnetic compatibility and avionics issues is included.

  6. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1979-01-01

    The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.

  7. Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)

    NASA Astrophysics Data System (ADS)

    Knott, M. J.

    1982-08-01

    As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.

  8. [The evaluation of the consequences of electromagnetic irradiation of hands in operators of high-frequency welding devices].

    PubMed

    Rudakov, M L

    2000-01-01

    Method of secondary sources (method of integral equations) was applied to calculate specific absorbed intensity in hands of operators working at non-shielded high-frequency (27.12 Mhz) welding devices. The authors present calculations for "female" and "male" hand sizes, give recommendations on lower level of specific absorption.

  9. An Investigation into the Electromagnetic Interactions between a Superconducting Torus and Solenoid for the Jefferson Lab 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput-Ghoshal, Renuka; Ghoshal, Probir K.; Fair, Ruben J.

    2015-06-01

    The Jefferson Lab 12 GeV Upgrade in Hall B will need CLAS12 detector that requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a Toroidal configuration (Torus) and the second is an actively shielded solenoidal magnet (Solenoid). Both the torus and solenoid are located in close proximity to one another and are surrounded by sensitive detectors. This paper investigates the electromagnetic interactions between the two systems during normal operation as well as during various fault scenarios as part of a Risk Assessment and Mitigation (RAM).

  10. Electromagnetic sensors for general lightning application

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.

    1980-01-01

    Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.

  11. MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE

    PubMed Central

    Pothupitiya Gamage, Sudesh Jayashantha; Yang, Kihun; Braveenth, Ramanaskanda; Raagulan, Kanthasamy; Kim, Hyun Suk; Lee, Yun Seon; Yang, Cheol-Min; Moon, Jai Jung; Chai, Kyu Yun

    2017-01-01

    A series of multi-walled carbon nanotube (MWCNT) coated carbon fabrics was fabricated using a facile dip coating process, and their performance in electrical conductivity, thermal stability, tensile strength, electromagnetic interference (EMI) and shielding effectiveness (SE) was investigated. A solution of MWCNT oxide and sodium dodecyl sulfate (SDS) in water was used in the coating process. MWCNTs were observed to coat the surfaces of carbon fibers and to fill the pores in the carbon fabric. Electrical conductivity of the composites was 16.42 S cm−1. An EMI shielding effectiveness of 37 dB at 2 GHz was achieved with a single layer of C/C composites, whereas the double layers resulted in 68 dB EMI SE at 2.7 GHz. Fabricated composites had a specific SE of 486.54 dB cm3 g−1 and an absolute SE of approximately 35,000 dB cm2 g−1. According to the above results, MWCNT coated C/C composites have the potential to be used in advanced shielding applications such as aerospace and auto mobile electronic devices.

  12. Hexavalent Chrome Free Coatings for Electronics: Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.

  13. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jason

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safemore » operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.« less

  14. 2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses

    ScienceCinema

    Chou, Jason

    2018-02-13

    In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

  15. Hexavalent Chrome Free Coatings for Electronics; Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.

  16. MgB2 thick films on three-dimensional structures fabricated by HPCVD

    NASA Astrophysics Data System (ADS)

    Guo, Zhengshan; Cai, Xingwei; Liao, Xuebin; Chen, Yiling; Yang, Can; Niu, Ruirui; Luo, Wenhao; Huang, Zigeng; Feng, Qingrong; Gan, Zizhao

    2018-06-01

    Magnetic shielding has been a key factor in the measurement of ultra-weak magnetic fields, especially for shielding from low frequency electromagnetic noise. With the recent development of superconducting quantum interference devices, superconducting magnetic shielding has become an important area of research. MgB2 has shown great potential in magnetic shielding for its remarkable superconducting properties, the feasibility of its use in this capacity having been demonstrated by MgB2 bulk samples. However, the potential for application of such bulk samples is limited. In this work, we have investigated the possibility of the fabrication of MgB2 films on three-dimensional (3D) structures using a hybrid physical‑chemical vapor deposition system. MgB2 films 10 μm thick have been fabricated on the outer surface of a polycrystalline Al2O3 cylinder. The deposited film showed a transition temperature (TC) of 39 K and J C of 5.1 × 105 A · cm‑2, which are comparable to those of planar MgB2 films. This work shows the feasibility of depositing MgB2 films onto a 3D structure, and sheds light on the potential use of MgB2 films in superconducting magnetic shielding.

  17. AFRL Nanoscience Technologies: Applications, Transitions and Innovations

    DTIC Science & Technology

    2010-01-01

    other electromagnetic energy; they can interact with magnetic domains for improved superconductivity; they strengthen metals by resisting the motion of...thick platinum silicide (PtSi) layer on a silicon substrate. The basic research to establish the process of internal photoemission responsible for...pulses, saving 150 lbs per aircraft over the current metal shielding. Electrically conductive coatings using nickel nanostrands are now fielded in other

  18. Magnetic-Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments

    DTIC Science & Technology

    2016-04-01

    SUBJECT TERMS carbon nanotubes, composite, electromagnetic shielding , extreme environments, magnetism , fibers, woven composite, boron nitride...AFRL-AFOSR-VA-TR-2016-0158 Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments Konstantin...From - To) 15 Sep 2012 to 14 Nov 2017 4. TITLE AND SUBTITLE Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for

  19. A Time-Harmonic Electromagnetic Analysis of Shielded Microstrip Circuits

    DTIC Science & Technology

    1986-09-01

    surface current, J., we f i ndl Etiz.h = Viei Substituting in the Viand evaluating Et due to the TE field first E Te = J(-hENG,(Ax)G2’(Ay)gJx + jTEG(xG(A...he .. analysis..... is...... still......... pr vi in rea..n.. le results........ ..... .. onewoeetahrmec tpsiesaleog react.ais a t...e. de..........ail

  20. A Theory of Electromagnetic Shielding with Applications to MIL-STD-285, IEEE-299, and EMP Simulation

    DTIC Science & Technology

    1985-02-01

    in a building sized enclosure slot-like discontinuities may not all be small compar- ed to all wavelengths in the incident field, and slot resonan ...OFFICE OF RESEARCH/ NPP US AIR FORCE SPACE COMMAND ATTN STATE & LOCAL PROG SUPPORT O ATTN KKO 500 C STREET, SW ATTN KRQ WASHINGTON, DC 20472 ATTN XPOW

  1. Nanostructured graphene/Fe₃O₄ incorporated polyaniline as a high performance shield against electromagnetic pollution.

    PubMed

    Singh, Kuldeep; Ohlan, Anil; Pham, Viet Hung; R, Balasubramaniyan; Varshney, Swati; Jang, Jinhee; Hur, Seung Hyun; Choi, Won Mook; Kumar, Mukesh; Dhawan, S K; Kong, Byung-Seon; Chung, Jin Suk

    2013-03-21

    The development of high-performance shielding materials against electromagnetic pollution requires mobile charge carriers and magnetic dipoles. Herein, we meet the challenge by building a three-dimensional (3D) nanostructure consisting of chemically modified graphene/Fe3O4(GF) incorporated polyaniline. Intercalated GF was synthesized by the in situ generation of Fe3O4 nanoparticles in a graphene oxide suspension followed by hydrazine reduction, and further in situ polymerization with aniline to form a polyaniline composite. Spectroscopic analysis demonstrates that the presence of GF hybrid structures facilitates strong polarization due to the formation of a solid-state charge-transfer complex between graphene and polyaniline. This provides proper impedance matching and higher dipole interaction, which leads to the high microwave absorption properties. The higher dielectric loss (ε'' = 30) and magnetic loss (μ'' = 0.2) contribute to the microwave absorption value of 26 dB (>99.7% attenuation), which was found to depend on the concentration of GF in the polyaniline matrix. Moreover, the interactions between Fe3O4, graphene and polyaniline are responsible for superior material characteristics, such as excellent environmental (chemical and thermal) degradation stability and good electric conductivity (as high as 260 S m(-1)).

  2. Conductor backed and shielded multi-layer coplanar waveguide designs on LTCC for RF carrier boards for packaging PICs

    NASA Astrophysics Data System (ADS)

    Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.

    2016-05-01

    Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.

  3. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    NASA Technical Reports Server (NTRS)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  4. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  5. Infrared Thermography Approach for Effective Shielding Area of Field Smoke Based on Background Subtraction and Transmittance Interpolation.

    PubMed

    Tang, Runze; Zhang, Tonglai; Chen, Yongpeng; Liang, Hao; Li, Bingyang; Zhou, Zunning

    2018-05-06

    Effective shielding area is a crucial indicator for the evaluation of the infrared smoke-obscuring effectiveness on the battlefield. The conventional methods for assessing the shielding area of the smoke screen are time-consuming and labor intensive, in addition to lacking precision. Therefore, an efficient and convincing technique for testing the effective shielding area of the smoke screen has great potential benefits in the smoke screen applications in the field trial. In this study, a thermal infrared sensor with a mid-wavelength infrared (MWIR) range of 3 to 5 μm was first used to capture the target scene images through clear as well as obscuring smoke, at regular intervals. The background subtraction in motion detection was then applied to obtain the contour of the smoke cloud at each frame. The smoke transmittance at each pixel within the smoke contour was interpolated based on the data that was collected from the image. Finally, the smoke effective shielding area was calculated, based on the accumulation of the effective shielding pixel points. One advantage of this approach is that it utilizes only one thermal infrared sensor without any other additional equipment in the field trial, which significantly contributes to the efficiency and its convenience. Experiments have been carried out to demonstrate that this approach can determine the effective shielding area of the field infrared smoke both practically and efficiently.

  6. Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range.

    PubMed

    González, M; Crespo, M; Baselga, J; Pozuelo, J

    2016-05-19

    Control of the microscopic structure of CNT nanocomposites allows modulation of the electromagnetic shielding in the gigahertz range. The porosity of CNT scaffolds has been controlled by two freezing protocols and a subsequent lyophilization step: fast freezing in liquid nitrogen and slow freezing at -20 °C. Mercury porosimetry shows that slowly frozen specimens present a more open pore size (100-150 μm) with a narrow distribution whereas specimens frozen rapidly show a smaller pore size and a heterogeneous distribution. 3D-scaffolds containing 3, 4, 6 and 7% CNT were infiltrated with epoxy and specimens with 2, 5 and 8 mm thicknesses were characterized in the GHz range. Samples with the highest pore size and porosity presented the lowest reflected power (about 30%) and the highest absorbed power (about 70%), which allows considering them as electromagnetic radiation absorbing materials.

  7. Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure

    NASA Astrophysics Data System (ADS)

    Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe

    2014-09-01

    In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.

  8. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  9. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    NASA Astrophysics Data System (ADS)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  10. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  11. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies

    NASA Astrophysics Data System (ADS)

    Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar

    2016-10-01

    In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.

  12. Double-layer neutron shield design as neutron shielding application

    NASA Astrophysics Data System (ADS)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  13. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Throop, A; Brown, Jr., C G

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHzmore » and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our results are directly relevant to planned short-pulse ARC (advanced radiographic capability) operation on NIF.« less

  14. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  15. No effects of pulsed radio frequency electromagnetic fields on melatonin, cortisol, and selected markers of the immune system in man.

    PubMed

    Radon, K; Parera, D; Rose, D M; Jung, D; Vollrath, L

    2001-05-01

    There is growing public concern that radio frequency electromagnetic fields may have adverse biological effects. In the present study eight healthy male students were tested to see whether or not radio frequency electromagnetic fields as used in modern digital wireless telecommunication (GSM standard) have noticeable effects on salivary melatonin, cortisol, neopterin, and immunoglobulin A (sIgA) levels during and several hours after exposure. In a specifically designed, shielded experimental chamber, the circularly polarized electromagnetic field applied was transmitted by an antenna positioned 10 cm behind the head of upright sitting test persons. The carrier frequency of 900 MHz was pulsed with 217 Hz (average power flux density 1 W/m2). In double blind trials, each test person underwent a total of 20 randomly allotted 4 hour periods of exposure and sham exposure, equally distributed at day and night. The results obtained show that the salivary concentrations of melatonin, cortisol, neopterin and sIgA did not differ significantly between exposure and sham exposure. Copyright 2001 Wiley-Liss, Inc.

  16. Study of interaction of ELF-ULF range (0.1-200 Hz) electromagnetic waves with the earth's crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment)

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Velikhov, E. P.; Skorokhodov, A. A.; Kolesnikov, V. E.; Korotkova, T. G.; Ryazantsev, P. A.; Efimov, B. V.; Kolobov, V. V.; Barannik, M. B.; Prokopchuk, P. I.; Selivanov, V. N.; Kopytenko, Yu. A.; Kopytenko, E. A.; Ismagilov, V. S.; Petrishchev, M. S.; Sergushin, P. A.; Tereshchenko, P. E.; Samsonov, B. V.; Birulya, M. A.; Smirnov, M. Yu.; Korja, T.; Yampolski, Yu. M.; Koloskov, A. V.; Baru, N. A.; Poljakov, S. V.; Shchennikov, A. V.; Druzhin, G. I.; Jozwiak, W.; Reda, J.; Shchors, Yu. G.

    2015-12-01

    This article is devoted to describing the theory, technique, and first experimental results of a control source electromagnetic (CSEM) study of the Earth's crust and ionosphere with the use of two mutually orthogonal industrial transmission lines 109 and 120 km in length in the frame of FENICS (Fennoscandian Electrical Conductivity from Natural and Induction Control Source Soundings) experiment. The main part of the measurements is executed on the territory of the Fennoscandian shield at distances from the first hundreds kilometers up to 856 km from the source with the purpose of the deep electromagnetic sounding of the Earth's crust and upper mantle. According to the results of these studies clarifying the parameters of "normal" (standard) geoelectric section of the lithosphere to a depth of 60-70 km, the anisotropy parameters are evaluated and a geothermal and rheological interpretation in conjunction with the analysis of the seismic data is executed. Furthermore, to study the propagation of ELF-LLF waves (0.1-200 Hz) in an "Earth-Ionosphere" waveguide, the measurements are carried out apart from Fennoscandian shield at distances up to 5600 km from the source (in Ukraine, Spitsbergen, Poland, Kamchatka, and other areas). According to the results of these studies, the experimental estimates of the influence of the ionosphere and of the displacement currents on the propagation of ELF-ULF waves in the upper half-space at the different azimuths generation of the primary field are obtained.

  17. Electromagnetic induction imaging of concealed metallic objects by means of resonating circuits

    NASA Astrophysics Data System (ADS)

    Guilizzoni, R.; Watson, J. C.; Bartlett, P. A.; Renzoni, F.

    2016-05-01

    An electromagnetic induction system, suitable for 2D imaging of metallic samples of different electrical conductivities, has been developed. The system is based on a parallel LCR circuit comprising a ferrite-cored coil (7.8 mm x 9.5 mm, L=680 μH at 1 KHz), a variable resistor and capacitor. The working principle of the system is based on eddy current induction inside a metallic sample when this is introduced into the AC magnetic field created by the coil. The inductance of the LCR circuit is modified due to the presence of the sample, to an extent that depends on its conductivity. Such modification is known to increase when the system is operated at its resonant frequency. Characterizing different metals based on their values of conductivity is therefore possible by utilizing a suitable system operated at resonance. Both imaging and material characterization were demonstrated by means of the proposed electromagnetic induction technique. Furthermore, the choice of using a system with an adjustable resonant frequency made it possible to select resonances that allow magnetic-field penetration through conductive screens. Investigations on the possibility of imaging concealed metals by penetrating such shields have been carried out. A penetration depth of δ~3 mm through aluminium (Al) was achieved. This allowed concealed metallic samples- having conductivities ranging from 0.54 to 59.77 MSm-1 and hidden behind 1.5-mm-thick Al shields- to be imaged. Our results demonstrate that the presence of the concealed metallic objects can be revealed. The technique was thus shown to be a promising detection tool for security applications.

  18. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  19. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing

    2018-04-01

    A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.

  20. Experimental Verification of the Use of Metal Filled Via Hole Fences for Crosstalk Control of Microstrip Lines in LTCC Packages

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.

    2001-01-01

    Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.

  1. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2010-01-01

    shielding fabrics. Contact with a projectile induces electromagnetic forces on the fabric that can cause the projectile to rotate , making it less...other AHPCRC projects in need of optimization techniques. A major focus of this research addresses solving partial differential equation ( PDE ...plat- forms. One such problem is the determination of optimal wing shapes and motions. Work in progress involves coupling the PDE -solver AERO-F and

  2. High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding

    DTIC Science & Technology

    2015-08-01

    organometallic complexes containing Fe2+ cations. [Cp] = cyclopentadiene; [Py] = pyrrole ; [Imid] = imidazole. ΔEmag values calculated with DFT using the...27 Table A-6 Energy difference between high- and low-spin magnetic states in transition metal ion- pyrrole (Py) complexes...2-],52 pyrrole (C4NH5),53 and other heterocyclic ligands.36,54 The cyclopentadienyl ligand, in particular, is ubiquitous in organometallic chemistry

  3. Evaluation of Nanocomposites for Shielding Electromagnetic Interference

    DTIC Science & Technology

    2011-09-01

    ESD Electrostatic Discharge FAA Federal Aviation Administration FRP Fiberglass Reinforced Plastic GCR Galactic Cosmic Radiation GSM Grams...1.6 Summary This thesis presentation is divided into five chapters. Chapter I covers the background of space-based systems along with the present...amount of cosmic junk floating near earth is due to the lack of foresight and planning of early space policy. The race to space failed to implement

  4. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  5. Analysis of a Lunar Base Electrostatic Radiation Shield Concept

    NASA Technical Reports Server (NTRS)

    Buhler, Charles R.

    2004-01-01

    Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.

  6. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.

    PubMed

    Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M

    2008-03-01

    Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose.

  7. H-fractal seismic metamaterial with broadband low-frequency bandgaps

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Yi; Xu, Yang; Yang, Hongwu; Zeng, Zuoxun

    2018-03-01

    The application of metamaterial in civil engineering to achieve isolation of a building by controlling the propagation of seismic waves is a substantial challenge because seismic waves, a superposition of longitudinal and shear waves, are more complex than electromagnetic and acoustic waves. In this paper, we design a broadband seismic metamaterial based on H-shaped fractal pillars and report numerical simulation of band structures for seismic surface waves propagating. Comparative study on the band structures of H-fractal seismic metamaterials with different levels shows that a new level of fractal structure creates new band gap, widens the total band gaps and shifts the same band gap towards lower frequencies. Moreover, the vibration modes for H-fractal seismic metamaterials are computed and analyzed to clarify the mechanism of widening band gaps. A numerical investigation of seismic surface waves propagation on a 2D array of fractal unit cells on the surface of semi-infinite substrate is proposed to show the efficiency of earthquake shielding in multiple complete band gaps.

  8. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    NASA Technical Reports Server (NTRS)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of the regolith materials by about 6%. The findings may be utilized to extend the possibilities of potential candidate materials for lunar habitat structures, will potentially impact the design criteria of future human bases on the moon, and provide some guidelines for future space mission planning with respect to radiation exposure and risks posed on astronauts.

  9. Toward advanced gamma rays radiation resistance and shielding efficiency with phthalonitrile resins and composites

    NASA Astrophysics Data System (ADS)

    Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim

    2018-04-01

    The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.

  10. Graphene shield enhanced photocathodes and methods for making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan Andrew

    Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

  11. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, K.; Zhang, Z. D.; Qian, L.

    2016-02-08

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermalmore » properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.« less

  12. A strip-shield improves the efficiency of a solenoid coil in probes for high-field solid-state NMR of lossy biological samples.

    PubMed

    Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J

    2009-09-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.

  13. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    NASA Astrophysics Data System (ADS)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  14. Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang

    2017-10-01

    The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.

  15. Military Handbook. Grounding, Bonding, and Shielding for Electronic Equipments and Facilities. Volume 2. Applications

    DTIC Science & Technology

    1987-12-29

    EMC, San Francisco CA, 16-18 July 1974, 76-84. 1-13. E. R. Uhlig, "Developmnent of Criteria for Protection ef NIKE -X Power Plant and Facilities...Interference Reduction and Electronic Compatibility, Armour Research Foundation of Illinois Institute of Technology (now IITRI), Chicago IL, October...Measuring Systems Susceptibility," Proceedings of the Eighth Tri-Service Conference on Electromagnetic Compatibility, Armour Research Foundation of

  16. Tensile Characterization of Injection-Molded Fuzzy Glass Fiber/Nylon Composite Material

    DTIC Science & Technology

    2016-05-01

    enhanced reinforcement ( CER ) in a nylon matrix. A majority of the masterbatch CER material research is focused on electromagnetic shielding applications...however, the CER system, with the CNT network fixed to the host fiber, provides a novel approach of minimizing CNT agglomeration. Tensile specimens are...injection molded with varying weight percentages of CER to evaluate effect of the reinforcement on the mechanical properties. Tension testing showed

  17. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  18. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  19. The Lightning Electromagnetic Pulse Coupling Effect Inside the Shielding Enclosure With Penetrating Wire

    NASA Astrophysics Data System (ADS)

    Jiao, Xue; Yang, Bo

    2017-10-01

    To study the lightning electromagnetic pulse (LEMP) coupling and protection problems of shielding enclosure with penetrating wire, we adopt the model with proper size which is close to the practical engineering and the two-step finite-difference time-domain (FDTD) method is used for calculation in this paper. It is shown that the coupling voltage on the circuit lead inside the enclosure increases about 34 dB, when add 1.0 m long penetrating wire at the aperture, comparing with the case without penetrating wire. Meanwhile, the waveform, has the same wave outline as the lightning current source, shows that the penetrating wire brings a large number of low frequency component into the enclosure. The coupling effect in the enclosure will reduce greatly when penetrating wire has electrical connection with the enclosure at the aperture and the coupling voltage increase only about 12 dB than the case without penetrating wire. Moreover, the results show that though the waveguide pipe can reduce the coupling effect brought by the penetrating wire, the exposing part of penetrating wire can increase the coupling when the penetrating wire outside the enclosure is longer than the waveguide pipe and the longer the exposing part is, the stronger the coupling is.

  20. Innovative Research Program: Supershields for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hailey, Charles J.

    2000-01-01

    The supershield project evaluated the importance of novel shield configurations for suppressing neutron induced background in new classes of gamma-ray detectors such as CZT. The basic concept was to use a two-part shield. The outer shield material heavily moderates the incoming neutron spectrum. This moderated neutron beam is then more easily absorbed by the inner material, which is an efficient neutron absorber. This approach is, in principle, more efficient than that in previous attempts to make neutron shields. These previous attempts involved biatomic, monlithic shields (eg. LiH) in which the shield consisted of a single material but with two types of atoms - one for moderating and one for absorbing. The problem with this type of monolithic shield is that moderating neutrons, without the efficient absorption of them, leads to the leakage into the detector of neutrons with a low energy component (approx. 10-100 KeV). These energy neutrons are particularly problematic for many types of detectors. The project was roughly divided into phases. In the first phase we attempted to carefully define the neutron source function incident on any space instrument. This is essential since the design of any shield depends on the shape of the incident neutron spectrum. We found that approximations commonly used in gamma-ray astronomy for photon background is inadequate. In addition, we found that secondary neutrons produced in any passive shield, and dominated by inelastic neutron scattering, are far more important than background due to neutron activation. The second phase of our work involved design of supershield geometries (one and three dimensional) in order to compare different shield configurations and materials for their effectiveness as neutron shields. Moreover we wanted to compare these supershields with previous neutron shields to confirm the performance differences between the supershield (two material) and monolithic (one material) designs and to understand the physics origins of these differences more clearly. The third phase of the supershield program involved the benchmarking of the supershield designs through direct experimental verification. This required fabricating various supershields and exposing them to beams of neutrons to directly characterize their performance. With explicit verification that our modeling procedures can be used with confidence, we are now in a position to design shields for realistic space geometries. Using the supershield modeling capacity developed as part of this program we are attempting to evaluate their utility for a specific proposed mission--the Energetic X-ray Imaging Survey Telescope (EXIST). It is anticipated that this experiment, which is limited by internal background at high energies, might benefit from a neutron shield.

  1. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    PubMed

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  2. Plasma-material interaction in electrothermal and electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Bourham, M. A.; Gilligan, J. G.; Hankins, O. E.

    1993-07-01

    Various material surfaces have been exposed to high heat fluxes from 2 to 80 GW/sq m over 100 microsec duration using the electrothermal launcher, SIRENS. The vapor shield is effective in reducing the heat to the ablating surface, and the energy transmission factor through the vapor shield decreases as the incident heat flux increases. Results show good agreement with code predictions. Visible light emission spectra have been observed both in-bore and from the muzzle flash of the barrel, and from the flash of the source. Measurements of visible emission from the source indicate time averaged temperatures of 1 to 3 eV, and about 1 to 2 eV along the axis of the device, which agree with the theory and experimental measurements of the average heat flux and plasma conductivity.

  3. Dielectric properties of glassy disaccharides for electromagnetic interference shielding application

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, P.; Hawelek, L.; Paluch, M.; Wlodarczyk, A.; Wojnarowska, Z.; Kolano-Burian, A.

    2015-11-01

    Three amorphous disaccharides (sucrose, trehalose, and lactulose) and their mixtures were studied in order to evaluate their ability to absorb a high frequency (>1 MHz) electromagnetic wave. The materials were characterized by a dielectric loss tangent. It was found out that the highest tan(δ) value is observed in pure amorphous sucrose (tan(δ) = 0.17 at f = 1 MHz at T = 293 K). Moreover, the best Tg/tan(δ) ratio is observed in binary mixtures of sucrose and trehalose. A high glass transition temperature is advantageous as it increases operational temperatures of the material. The high tangent delta in microwave frequencies of sugars is connected with the mobility of sugar groups (possibly -CH2OH). The energy of the electromagnetic wave is converted into rotational movements of side groups and in consequence it is dissipated in the form of heat. It was proven that the polar low molecular glasses such as sugars may form dielectric components of composite microwave absorbers.

  4. Standard design for National Ignition Facility x-ray streak and framing cameras.

    PubMed

    Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S

    2010-10-01

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  5. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  6. In-Flight Characterization of the Electromagnetic Environment Inside an Airliner

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Dudley, Kenneth L.; Quach, Cuong C.; Koppen, Sandra V.

    2001-01-01

    In 1995, the NASA Langley Research Center conducted a series of experimental measurements that characterized the electromagnetic environment (EME) inside a Boeing 757 airliner while in flight, Measurements were made of the electromagnetic energy coupled into a commercially configured aircraft as it was flown in close proximity to ground-based radio frequency (RF) transmitters operating at approximately 26, 173. and 430 MHz. The goal of this experiment was to collect data for the verification of analytical predictions of the internal aircraft response to an external stimulus. This paper describes the experiment, presents the data collected by it, and discusses techniques used to compute both the magnitude of the electric field illuminating the aircraft and its direction of propagation relative to a coordinate system fixed to the aircraft. The latter is determined from Global Positioning System (GPS) and aircraft Inertial Reference Unit (IRU) data. The paper concludes with an examination of the shielding effectiveness of the test aircraft. as determined by comparison of' the measured internal EME and computed external EME.

  7. Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents.

    PubMed

    RoyChoudhury, Sohini; Rawat, Vaishali; Jalal, Ahmed Hasnain; Kale, S N; Bhansali, Shekhar

    2016-12-15

    Potential applications of thin film metamaterials are diverse and their realization to offer miniaturized waveguides, antennas and shielding patterns are on anvil. These artificially engineered structures can produce astonishing electromagnetic responses because of their constituents being engineered at much smaller dimensions than the wavelength of the incident electromagnetic wave, hence behaving as artificial materials. Such micro-nano dimensions of thin film metamaterial structures can be customized for various applications due to their exclusive responses to not only electromagnetic, but also to acoustic and thermal waves that surpass the natural materials' properties. In this paper, the recent major advancements in the emerging fields of diagnostics (sensors) and therapeutics involving thin film metamaterials have been reviewed and underlined; discussing their edge over conventional counterpart techniques; concentrating on their design considerations and feasible ways of achieving them. Challenges faced in sensitivity, precision, accuracy and factors that interfere with the degree of performance of the sensors are also dealt with, herein. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Noise Modeling From Conductive Shields Using Kirchhoff Equations.

    PubMed

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-10-09

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.

  9. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  10. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell

    NASA Astrophysics Data System (ADS)

    Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining

    2018-04-01

    The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.

  11. Neutron star mass-radius relation with gravitational field shielding by a scalar field

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Jun; Zhang, Tian-Xi; Guggilla, Padmaja; Dokhanian, Mostafa

    2013-05-01

    The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accordance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g., 40 Msolar as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the theory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.

  12. Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer.

    PubMed

    Baumgart, S

    1982-10-01

    Radiant warmers are a powerful and efficient source of heat serving to warm the cold-stressed infant acutely and to provide uninterrupted maintenance of body temperature despite a multiplicity of nursing, medical, and surgical procedures required to care for the critically ill premature newborn in today's intensive care nursery. A recognized side-effect of radiant warmer beds is the now well-documented increase in insensible water loss through evaporation from an infant's skin. Particularly the very-low-birth-weight, severely premature, and critically ill neonate is subject to this increase in evaporative water loss. The clinician caring for the infant is faced with the difficult problem of fluid and electrolyte balance, which requires vigilant monitoring of all parameters of fluid homeostasis. Compounding these difficulties, other portions of the electromagnetic spectrum (for example, phototherapy) may affect an infant's fluid metabolism by mechanisms that are not well understood. The role of plastic heat shielding in reducing large insensible losses in infants nursed on radiant warmer beds is currently under intense investigation. Apparently, convective air currents and not radiant heat energy may be the cause of the observed increase in insensible water loss in the intensive care nursery. A thin plastic blanket may be effective in reducing evaporative water loss by diminishing an infant's exposure to convective air currents while being nursed on an open radiant warmer bed. A rigid plastic body hood, although effective as a radiant heat shield, is not as effective in preventing exposure to convection in the intensive care nursery and, therefore, is not as effective as the thin plastic blanket in reducing insensible water loss. Care should be exercised in determining the effect of heat shielding on all parameters of heat exchange (convection, evaporation, and radiation) before application is made to the critically ill premature infant nursed on an open radiant warmer bed.

  13. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  14. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  15. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2012-07-01

    To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.

  16. Deterrence Without Escalation:A Case for the Arctic in 2040

    DTIC Science & Technology

    2015-04-08

    electromagnetic pulse (EMP) from a nuclear blast.69 Typical shielding used to protect an asset from an EMP generated by a nuclear blast is...weapons could travel at hypersonic speeds, but the beam must propagate through a plasma field—the same plasma field that causes the ‘radio blackout...Blechman and Stephen S Kaplan, Force Without War: U.S. Armed Forces as a Political Instrument. (Washington, DC: The Brookings Institution, 1978), 4

  17. XM-1 Tank EMP Susceptibility and Survivability Test Program and Plan

    DTIC Science & Technology

    1980-11-01

    electric field vector. The Vertical EMP Electromagnetic interference (EMI) shielding Simulator ( VEMPS ) produces a non-threat- is used on cable...polarized fields in the VEMPS to determine 2.3 Oveiall Program Activity Flow 5 , bulk current waveforms on interior cabling Figure 1 (p. 8) expresses...measured. The vertically polarized VEMPS the ground, it is not readily obvious how the will be used to measure harness sheath cur- currents on the

  18. Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.

  19. Rotating flux-focusing eddy current probe for flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil, The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  20. Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion.

    PubMed

    Malik, Muhammad Arif; Xiao, Shu; Schoenbach, Karl H

    2012-03-30

    Comparative studies revealed that surface plasmas developing along a solid-gas interface are significantly more effective and energy efficient for remediation of toxic pollutants in air than conventional plasmas propagating in air. Scaling of the surface plasma reactors to large volumes by operating them in parallel suffers from a serious problem of adverse effects of the space charges generated at the dielectric surfaces of the neighboring discharge chambers. This study revealed that a conductive foil on the cathode potential placed between the dielectric plates as a shield not only decoupled the discharges, but also increased the electrical power deposited in the reactor by a factor of about forty over the electrical power level obtained without shielding and without loss of efficiency for NO removal. The shield had no negative effect on efficiency, which is verified by the fact that the energy costs for 50% NO removal were about 60 eV/molecule and the energy constant, k(E), was about 0.02 L/J in both the shielded and unshielded cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Superconducting pipes and levitating magnets.

    PubMed

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  2. Superconducting pipes and levitating magnets

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Rizzato, Felipe B.

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L≳a decays, in the axial direction, with a characteristic length ξ≈0.26a . The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  3. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Docket Nos. 03-137 and 13-84; FCC 13-39] Reassessment of Exposure to Radiofrequency Electromagnetic... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will work...

  4. Nanostructured conductive polymeric materials

    NASA Astrophysics Data System (ADS)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry mixing with pure polymer powder followed by compression molding. The EMI shielding material was developed using copper nanowires. CuNW/Polystyrene composites exhibit EMI shielding effectiveness exceeding that of metal microfillers and carbon nanotube/polymer composites and approaching that of coating techniques have been formulated by solution processing and dry mixing.

  5. Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1999-01-01

    Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.

  6. Measurement of energy muons in EAS at energy region larger thean 10(17) eV

    NASA Technical Reports Server (NTRS)

    Matsubara, Y.; Hara, T.; Hayashida, N.; Kamata, K.; Nagano, M.; Ohoka, H.; Tanahasni, G.; Teshima, T.

    1985-01-01

    A measurement of low energy muons in extensive air showers (EAS) (threshold energies are 0.25, 0.5, 0.75 and 1.38 GeV) was carried out. The density under the concrete shielding equivalent to 0.25 GeV at core distance less than 500 m and 0.5 GeV less than 150 m suffers contamination of electromagnetic components. Therefore the thickness of concrete shielding for muon detectors for the giant air shower array is determined to be 0.5 GeV equivalence. Effects of photoproduced muons are found to be negligible in the examined ranges of shower sizes and core distances. The fluctuation of the muon density in 90 sq m is at most 25% between 200 m and 600 m from the core around 10 to the 17th power eV.

  7. A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    NASA Astrophysics Data System (ADS)

    Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.

    2018-02-01

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.

  8. Predicted and measured transmission and diffraction by a metallic mesh coating

    NASA Astrophysics Data System (ADS)

    Halman, Jennifer I.; Ramsey, Keith A.; Thomas, Michael; Griffin, Andrew

    2009-05-01

    Metallic mesh coatings are used on visible and infrared windows and domes to provide shielding from electromagnetic interference (EMI) and as heaters to de-fog or de-ice windows or domes. The periodic metallic mesh structures that provide the EMI shielding and/or resistive electrical paths for the heating elements create a diffraction pattern when optical or infrared beams are incident on the coated windows. Over the years several different mesh geometries have been used to try to reduce the effects of diffraction. We have fabricated several different mesh patterns on small coupons of BK-7 and measured the transmitted power and the diffraction patterns of each one using a CW 1064 nm laser. In this paper we will present some predictions and measurements of the diffraction patterns of several different mesh patterns.

  9. Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi

    NASA Astrophysics Data System (ADS)

    Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.

    2014-11-01

    Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.

  10. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    PubMed

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Molecular Weight Measurement of Biobased Furan Polyamides via Non-Aqueous Potentiometric Titration

    DTIC Science & Technology

    2013-06-01

    electromagnetic fields, all titrations were completed in a chemical hood, which acted as a Faraday cage (a shield used to blocks external static and...while using DMF as a solvent. Additionally, no Faraday cage was used in the experimental setup, so the titrations were conducted inside the chemical...monomer was becoming more soluble in glacial acetic acid and the amount of chlorobenzene had less of an effect on the solution properties (i.e

  12. Department of the Air Force Supporting Data for Fiscal Year 1992/1993 Budget Estimates Submitted to Congress February 1991: Descriptive Summaries, Research, Development, Test and Evaluation

    DTIC Science & Technology

    1991-02-01

    of selected heat shield materials in a plasma arc. - (U) Identify technology requirements for rapid characterization of the geophysical parameters of...NY; Analytical Systems Engineering Corporation, Burlington, MA; Earth Technology Corporation, Seattle, WA; and the Electromagnetic Compatibility...and 1800 nautical miles . The radar system will provide surveillance coverage of the east and west approaches to North America. C. (U) JUSTIFICATION

  13. Robust and Stable Cu Nanowire@Graphene Core-Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding.

    PubMed

    Wu, Shiting; Zou, Mingchu; Li, Zhencheng; Chen, Daqin; Zhang, Hui; Yuan, Yongjun; Pei, Yongmao; Cao, Anyuan

    2018-06-01

    Cu nanowires (CuNWs) are considered as a promising candidate to develop high performance metal aerogels, yet the construction of robust and stable 3D porous structures remains challenging which severely limits their practical applications. Here, graphene-hybridized CuNW (CuNW@G) core-shell aerogels are fabricated by introducing a conformal polymeric coating and in situ transforming it into multilayered graphene seamlessly wrapped around individual CuNWs through a mild thermal annealing process. The existence of the outer graphene shell reinforces the 3D bulk structure and significantly slows down the oxidation process of CuNWs, resulting in improved mechanical property and highly stable electrical conductivity. When applied in electromagnetic interference shielding, the CuNW@G core-shell aerogels exhibit an average effectiveness of ≈52.5 dB over a wide range (from 8.2 to 18 GHz) with negligible degradation under ambient conditions for 40 d. Mechanism analysis reveals that the graphene shell with functional groups enables dual reflections on the core-shell and a multiple dielectric relaxation process, leading to enhanced dielectric loss and energy dissipation within the core-shell aerogels. The flexible core-shell-structured CuNW@G aerogels, with superior mechanical robustness and electrical stability, have potential applications in many areas such as advanced energy devices and functional composites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The monitoring results of electromagnetic radiation of 110-kV high-voltage lines in one urban location in Chongqing P.R. China.

    PubMed

    Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao

    2012-03-01

    To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.

  15. Magnetic shielding structure optimization design for wireless power transmission coil

    NASA Astrophysics Data System (ADS)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  16. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  17. Aligning flaky FeSiAl particles with a two-dimensional rotating magnetic field to improve microwave-absorbing and shielding properties of composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Jun; Duan, Yubing; Li, Xinghao; Zhang, Deyuan

    2018-07-01

    In order to enhance the microwave-absorbing and shielding properties of the composites, the flaky FeSiAl particles embedded in an epoxy polymer were aligned with a two-dimensional rotating magnetic field. The morphologies, electromagnetic (EM) characteristics, and microwave-absorbing and shielding properties of the unaligned and aligned FeSiAl/epoxy composites were investigated. The results showed that after alignment treatment, the flaky FeSiAl particles tend to orient uniformly in the rotating magnetic field, and the permittivity and permeability of the aligned composites were increased in the frequency range of 1-18 GHz compared with that of randomly distributed composites. The calculated microwave-absorbing properties indicated that the peak value of the return loss (RL) of the aligned composites can reach 8.8 dB, compared with 5.8 dB of the unaligned composites of 2.5 mm in thickness (60 wt%); and the bandwidth with RL value more than 6 dB is in a wider frequency range from 1 to 2.8 GHz. And the calculated shielding effectiveness (SE) of the aligned composites is 1.1-3 times higher than that of unaligned one in every thickness, and the maximum SE of the aligned one is 31.8 dB at 18 GHz with a thickness of 2.5 mm.

  18. Magnetic shielding of 3-phase current by a composite material at low frequencies

    NASA Astrophysics Data System (ADS)

    Livesey, K. L.; Camley, R. E.; Celinski, Z.; Maat, S.

    2017-05-01

    Electromagnetic shielding at microwave frequencies (MHz and GHz) can be accomplished by attenuating the waves using ferromagnetic resonance and eddy currents in conductive materials. This method is not as effective at shielding the quasi-static magnetic fields produced by low-frequency (kHz) currents. We explore theoretically the use of composite materials - magnetic nanoparticles embedded in a polymer matrix - as a shielding material surrounding a 3-phase current source. We develop several methods to estimate the permeability of a single magnetic nanoparticle at low frequencies, several hundred kHz, and find that the relative permeability can be as high as 5,000-20,000. We then use two analytic effective medium theories to find the effective permeability of a collection of nanoparticles as a function of the volume filling fraction. The analytic calculations provide upper and lower bounds on the composite permeability, and we use a numerical solution to calculate the effective permeability for specific cases. The field-pattern for the 3-phase current is calculated using a magnetic scalar potential for each of the three wires surrounded by a cylinder with the effective permeability found above. For a cylinder with an inner radius of 1 cm and an outer radius of 1.5 cm and an effective permeability of 50, one finds a reduction factor of about 8 in the field strength outside the cylinder.

  19. Flux focusing eddy current probe

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.

  20. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions.

    PubMed

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth's dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European's Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented.

  1. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xinhua; Zhang Da; Liu, Bob

    2012-07-15

    Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less

  2. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  3. The argument for a unified approach to non-ionizing radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perala, R.A.; Rigden, G.J.; Pfeffer, R.A.

    1993-12-01

    In the next decade military equipment will be required to operate in severe electromagnetic environments. These environments are expected to contain most non-ionizing frequencies (D.C. to GHz), from hostile and/or non-hostile sources, and be severe enough to cause temporary upset or even catastrophic failure of electronic equipment. Over the past thirty years considerable emphasis has been placed on hardening critical systems to one or more of these non-ionizing radiation environments, the most prevalent being the nuclear-induced electromagnetic pulse (EMD). From this technology development there has evolved a hardening philosophy that applies to most of these non-ionizing radiation environments. The philosophy,more » which stresses the application of zonal shields plus penetration protection, can provide low-cost hardening against such diverse non-ionizing radiation as p-static, lightning, electromagnetic interference (EMI), EMP, high intensity radiated fields (HIRF), electromagnetic radiation (EMR), and high power microwaves (HPM). The objective in this paper is to describe the application of this philosophy to Army helicopters. The authors develop a unified specification complete with threat definitions and test methods which illustrates integration of EMP, lightning, and HIRF at the box qualification level. This paper is a summary of the effort documented in a cited reference.« less

  4. An investigation of the direct-drive method of susceptibility testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonn, R.H.

    1992-07-01

    The Naval Surface Weapons Laboratory has constructed a small electrical subsystem for the purpose of evaluating electrical upset from various electromagnetic sources. The subsystem consists of three boxes, two of which are intended to be illuminated by electromagnetic waves. The two illuminated boxes are connected by two unshielded cable bundles. The goal of the Navy test series is to expose the subsystem to electromagnetic illumination from several different types of excitation, document upset levels, and compare the results. Before its arrival at Sandia National Laboratories (SNL) the system was illuminated in a mode stirred chamber and in an anechoic chamber.more » This effort was a continuation of that test program. The Sandia tests involved the test methodology referred to as bulk current injection (BCI). Because this is a poorly-shielded, multiple-aperture system, the method was not expected to compare closely to the other test methods. The test results show that. The BCI test methodology is a useful test technique for a subset of limited aperture systems; the methodology will produce incorrect answers when used improperly on complex systems; the methodology can produce accurate answers on simple systems with a well-controlled electromagnetic topology. This is a preliminary study and the results should be interpreted carefully.« less

  5. A direct method for fabricating tongue-shielding stent.

    PubMed

    Wang, R R; Olmsted, L W

    1995-08-01

    During oral cancer radiotherapy, a tongue-shielding radiation stent guides the patient's upper and lower jaws to a repeatable position, attenuates radiation doses, and protects the tongue and structures adjacent to the irradiated field. Conventionally, a tongue-shielding radiation stent is made of heat-cured polymethyl methacrylate resin in which a low-melting Pb-Bi-Sn alloy is embedded as a shielding layer. Its use involves multiple and lengthy clinical and laboratory procedures. An improved polyvinyl siloxane-metal composite shielding system for radioprotection has recently been developed. This two-component, base and catalyst, putty material offers a shielding effect similar to that of the conventional shielding alloys. Its major advantages are that it is simple to use, requires only one clinical appointment, and affords efficient collaboration between dental and medical teams during cancer treatment. This article describes a simplified direct method of fabricating a tongue-shielding stent with the use of a new polyvinylsiloxane-metal composite in conjunction with impression putty material.

  6. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  7. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  8. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  9. United States Air Force Summer Faculty Research Program. Management Report. Volume 2

    DTIC Science & Technology

    1988-12-01

    Weapons Laboratory 64 Realization of Sublayer Relative Dr. Lane Clark Shielding Order in Electromagnetic Topology 65 Diode Laser Probe of Vibrational Dr...34Tunable Diode Laser Measurements of Air-Broadened Linewidths in the v6 Band of H202," AppI. Opt. 25, 1844 (1986). 18. M. A. H. Smith, G. A. Harvey, G...Varghese and R. K. Hanson, "Tunable Diode Laser Measurements of Spectral Parameters of HCN at Room Temperature," J. Quant. Spectrosc. Radiat. Transfer 31

  10. Conductive Composites Made Less Expensively

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    The use of electrically conductive composite structures for electrostatic dissipation, electromagnetic interference shielding, and ground return planes could save between 30 and 90 percent of the mass of the structure, in comparison to aluminum. One strategy that has been shown to make conducting composites effectively uses intercalated graphite fiber as the reinforcement. Intercalation--the insertion of guest atoms or molecules between the graphene planes--can lower the electrical resistivity of graphite fibers by as much as a factor of 10, without sacrificing mechanical or thermal properties.

  11. The Solar Shield: A Thermally Insulating, Broad-Band, Electromagnetic Window for Satellites

    DTIC Science & Technology

    1986-06-02

    1.2 but is difficult to machine to thicknesses less than about 1/4 in. without breakage. The one disadvantage of the quartz paper is that it is somewhat...flimsy. Additional structural S•.support was provided by fusing one side of the paper to FEP teflon-coated Kapton* in a laminat - ing press. Kapton...loose quartz fibers from escaping. .4.’ A non-outgassing, polyester netting+ was chosen to separate the composite layers from eachother. * DuPont Corp

  12. Engineering Effects of Advanced Composite Materials on Avionics.

    DTIC Science & Technology

    1981-07-01

    facilities. 77 zz~J 319 Electromagnetic-Interference Control EDWARD F. VANCE, SENIOR MEMBER, IEEE Abstract-Tbe use of shield topology concepts to design ...34 and "inside" are interchanged in Fig. 8 and A typical interference- control design for controlling both "Zone 1" and "Zone 2" are interchanged in Fig...P1 ’"EMP engineering and design principles." Bell Telephone Lab A systematic approach to interference control has as its NJ. 1975. foundation

  13. Metal Organic Chemical Vapor Deposition of Oxide Films for Advanced Applications

    DTIC Science & Technology

    2000-06-01

    coatings , photovoltaics, touch sensitive controls, electromagnetic shielding (as found on microwave ovens and stealth fighters), static dissipaters, and so...depositing high quality films. The methods are physical vapor deposition ( PVD ), spin/mist deposition, (CVD), and alternating layer (AL) CVD. PVD ...PZT & SBT, YBa2Cu3O, CeO, InO, TCOs, Varistors Ta2O5 , ZrO, MnO, HfO, CeO, MnO, MgO SAW/microwave Silicon/: Si, SiGe, SiGeC, �. Opto-electronics

  14. Filter line wiring designs in aircraft

    NASA Astrophysics Data System (ADS)

    Rowe, Richard M.

    1990-10-01

    The paper presents a harness design using a filter-line wire technology and appropriate termination methods to help meet high-energy radiated electromagnetic field (HERF) requirements for protection against the adverse effects of EMI on electrical and avionic systems. Filter-line interconnect harnessing systems discussed consist of high-performance wires and cables; when properly wired they suppress conducted and radiated EMI above 100 MHz. Filter-line termination devices include backshell adapters, braid splicers, and shield terminators providing 360-degree low-impedance terminations and enhancing maintainability of the system.

  15. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statera, M.; Balossino, I.; Barion, L.

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  16. A bulk superconducting MgB 2 cylinder for holding transversely polarized targets

    DOE PAGES

    Statera, M.; Balossino, I.; Barion, L.; ...

    2017-11-06

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less

  17. Noise propagation issues in Belle II pixel detector power cable

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.

    2018-04-01

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.

  18. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  19. Application Prospects of Multilayer Film Shields for Space Research Instrumentation

    NASA Astrophysics Data System (ADS)

    Nyunt, P. W.; Vlasik, K. F.; Grachev, V. M.; Dmitrenko, V. V.; Novikov, A. S.; Petrenko, D. V.; Ulin, S. E.; Uteshev, Z. M.; Chernysheva, I. V.; Shustov, A. E.

    We have studied the magnetic properties of multilayer film cylindrical configuration shields (MFS) based on NiFe / Cu. The studied samples were prepared by electrode position. MFS were constituted by alternating layers of NiFe and Cu, deposited on an aluminum cylinder with diameter of 4 cm, length of 13 cm and 0.5 cm thickness. The thickness of each ferromagnetic layer varied from 10 to 150 μm, and the thickness of Cu layers was 5 μm. Five-samples in which the number of ferromagnetic layers varied from 3 to 45 and copper - from 2 to 44 were tested. The best shielding efficiency was achieved at the maximum number of layers and comprised about 102. Permalloy multilayer foil shield at the same total thickness has several times less efficiency in comparison with MFS. The description of a prototype of the charged particles telescope for space application is presented. Results of its testing regarding sensitivity to the constant magnetic field are described.

  20. Radiation shielding materials characterization in the MoMa-Count program and further evolutions

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare

    In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.

  1. Transparent thin shield for radio frequency transmit coils.

    PubMed

    Rivera, Debra S; Schulz, Jessica; Siegert, Thomas; Zuber, Verena; Turner, Robert

    2015-02-01

    To identify a shielding material compatible with optical head-motion tracking for prospective motion correction and which minimizes radio frequency (RF) radiation losses at 7 T without sacrificing line-of-sight to an imaging target. We evaluated a polyamide mesh coated with silver. The thickness of the coating was approximated from the composition ratio provided by the material vendor and validated by an estimate derived from electrical conductivity and light transmission measurements. The performance of the shield is compared to a split-copper shield in the context of a four-channel transmit-only loop array. The mesh contains less than a skin-depth of silver coating (300 MHz) and attenuates light by 15 %. Elements of the array vary less in the presence of the mesh shield as compared to the split-copper shield indicating that the array behaves more symmetrically with the mesh shield. No degradation of transmit efficiency was observed for the mesh as compared to the split-copper shield. We present a shield compatible with future integration of camera-based motion-tracking systems. Based on transmit performance and eddy-current evaluations the mesh shield is appropriate for use at 7 T.

  2. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    PubMed

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  3. Electro shield system applications on set gill net as efforts to preserve shark resources

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, DP; Boesono, H.; Prihantoko, K. E.; Gautama, D. Y.

    2018-05-01

    Sharks are kind of ETP biota (Endangered, Threatened, and Protected), and are generally caught as by catch during fishing operations. In addition, sharks are one of the biota that plays a role in the life cycle in coastal waters. The Electro Shield System (ESS) was a device with an electromagnetic wave source that the shark can detect and make it afraid. ESS can be applied to set gill net operation to prevent the shark from getting caught. The objective of the study was to analyze the ESS on shark catches during set gill net operations. The research method was experimental fishing, conducted in March-May 2017 in Bangka Belitung Islands, Indonesia. Design the study by comparing shark catches during set gill net operation between those without using ESS (control) and using ESS with frequency 55 Hz. The shark catch by using Electro Shield System was 5.26% lower than control (7.80%). T-student analysis (sign 0.05) indicates that there was a significant difference between the set gill net without ESS and using the ESS against shark biota as bycatch. This indicates that the application of ESS in set gill net can reduce the capture of shark as by catch.

  4. Flux-focusing eddy current probe and rotating probe method for flaw detection

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz A.; Fulton, James P.; Nath, Shridhar C.; Simpson, John W.; Namkung, Min

    1994-11-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  5. Fiber-optic temperature profiling for thermal protection system heat shields

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Costa, Joannes M.; Zarnescu, Livia; Hackney, Drew A.; Moslehi, Behzad; Peters, Kara J.

    2016-11-01

    To achieve better designs for spacecraft heat shields for missions requiring atmospheric aero-capture or entry/reentry, reliable thermal protection system (TPS) sensors are needed. Such sensors will provide both risk reduction and heat-shield mass minimization, which will facilitate more missions and enable increased payloads and returns. This paper discusses TPS thermal measurements provided by a temperature monitoring system involving lightweight, electromagnetic interference-immune, high-temperature resistant fiber Bragg grating (FBG) sensors with a thermal mass near that of TPS materials together with fast FBG sensor interrogation. Such fiber-optic sensing technology is highly sensitive and accurate, as well as suitable for high-volume production. Multiple sensing FBGs can be fabricated as arrays on a single fiber for simplified design and reduced cost. Experimental results are provided to demonstrate the temperature monitoring system using multisensor FBG arrays embedded in a small-size super-light ablator (SLA) coupon which was thermally loaded to temperatures in the vicinity of the SLA charring temperature. In addition, a high-temperature FBG array was fabricated and tested for 1000°C operation, and the temperature dependence considered over the full range (cryogenic to high temperature) for which silica fiber FBGs have been subjected.

  6. Flux-focusing eddy current probe and rotating probe method for flaw detection

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    1994-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  7. Graphical Analysis of B-737 Airplane Pathloss Data for GPS and Evaluation of Coupling Mitigation Techniques

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda

    2004-01-01

    The use of Portable Electronic Devices (PEDs) onboard commercial airliners is considered to be desirable for many passengers, However, the possibility of Electromagnetic Interference (EMI) caused by these devices may affect flight safety. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various navigation and communication radios onboard the aircraft. Interference Pathloss (IPL) is defined as the measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas. This paper first focuses on IPL measurements for GPS, taken on an out-of-service United Airlines B-737-200. IPL pattern symmetry is verified by analyzing data obtained on the windows of the Port as well as the Starboard side of the aircraft. Further graphical analysis is performed with the door and exit seams sealed with conductive tape in order to better understand the effects of shielding on IPL patterns. Shielding effects are analyzed from window data for VHF and LOC systems. In addition the shielding benefit of applying electrically conductive film to aircraft windows is evaluated for GPS and TCAS systems.

  8. Design of a bistable electromagnetic coupling mechanism for underactuated manipulators

    NASA Astrophysics Data System (ADS)

    Miyuranga Kaluarachchi, Malaka; Ho, Jee-Hou; Yahya, Samer; Teh, Sze-Hong

    2018-07-01

    Electromagnetic clutches have been widely used in underactuated lightweight manipulator designs as a coupling mechanism due to their advantages of fast activation and electrical controllability. However, an electromagnetic clutch consumes electrical energy continuously during its operation. Furthermore, conventional electromagnetic clutches are not fail-safe in unexpected power failure conditions. These factors have a significant impact on the energy efficiency and the safety of the design, and these are vital aspects for underactuated lightweight manipulators. This paper introduces a bistable electromagnetic coupling mechanism design, with reduced energy consumption and with a fail-safe mechanism. The concept of a bistable electromagnetic mechanism consists of an electromagnet with two permanent magnets. The design has the capability to maintain stable mechanism states, either engaged or disengaged, without a continuous electrical power supply, thus enhancing fail-safety and efficiency. Moreover, the design incorporates the advantages of conventional electromagnetic clutches such as rapid activation and electrical controllability. The experimental results highlight the effectiveness of the proposed mechanism in reducing electric energy consumption. Besides this, a theoretical model is developed and a good correlation is achieved between the theoretical and experimental results. The reduced electric energy consumption and fail-safe design make the bistable electromagnetic mechanism a promising concept for underactuated lightweight manipulators.

  9. Applications of thin carbon coatings and films in injection molding

    NASA Astrophysics Data System (ADS)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (<10 wt. %) due to the dispersion difficulty and exponential increase in viscosity. In this research, the technical feasibility of a new approach to EMI shielding of plastic parts was proven using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. For many years, in-mold coating (IMC) has been commercially applied to Sheet Molding Compound (SMC) compression molded parts, as an environmentally friendly approach to improve its surface quality and provide the required conductivity for electrostatic painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness and 71wt.% to 79wt.% in the nanopaper itself after resin infusion) and high conductivity of the nanopaper. Instead of premixing nanoparticles with IMC coating, nanopapers enable the use of low viscosity IMC without CB coating to impregnate the CNF network in order to reach high electrical conductivity and EMI shielding values. (Abstract shortened by UMI.).

  10. Research of the cold shield in cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  11. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Ji, Y; Kim, K

    Purpose: A diagnostics Multileaf Collimator (MLC) was designed for diagnostic radiography dose reduction. Monte Carlo simulation was used to evaluate efficiency of shielding material for producing leaves of Multileaf collimator. Material & Methods: The general radiography unit (Rex-650R, Listem, Korea) was modeling with Monte Carlo simulation (MCNPX, LANL, USA) and we used SRS-78 program to calculate the energy spectrum of tube voltage (80, 100, 120 kVp). The shielding materials was SKD 11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon (Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum (Mo), and vanadium (V). The density of itmore » was 7.89 g/m3. We simulated leafs diagnostic MLC using SKD 11 with general radiography unit. We calculated efficiency of diagnostic MLC using tally6 card of MCNPX depending on energy. Results: The diagnostic MLC consisted of 25 individual metal shielding leaves on both sides, with dimensions of 10 × 0.5 × 0.5 cm3. The leaves of MLC were controlled by motors positioned on both sides of the MLC. According to energy (tube voltage), the shielding efficiency of MLC in Monte Carlo simulation was 99% (80 kVp), 96% (100 kVp) and 93% (120 kVp). Conclusion: We certified efficiency of diagnostic MLC fabricated from SKD11 alloy tool steel. Based on the results, the diagnostic MLC was designed. We will make the diagnostic MLC for dose reduction of diagnostic radiography.« less

  13. Electromagnetic analysis of the slotted-tube resonator with a circular cross section for MRI applications.

    PubMed

    Benabdallah, Nadia; Benahmed, Nasreddine; Benyoucef, Boumediene; Bouhmidi, Rachid; Khelif, M'Hamed

    2007-08-21

    In this paper we present electromagnetic (EM) analysis of the unloaded slotted-tube resonator (STR) with a circular cross section, using the finite element method (FEM) and method of moments (MoM) in two dimensions. This analysis allows the determination of the primary parameters: [L] and [C] matrices, optimization of the field homogeneity, and simulates the frequency response of S(11) at the RF port of the designed STR. The optimum configuration is presented, taking into account the effect of the thickness of the STR and the effect of the RF shield. As an application, we present the design results of a MRI probe using the STR and operating at 500 MHz (proton imaging at 11.74 T). The resonator has -69.37 dB minimum reflection and an unloaded quality factor (Q(o)) > 500 at 500 MHz.

  14. Phenomenology of microwave coupling, part 1

    NASA Astrophysics Data System (ADS)

    King, R. J.; Breakall, J. K.; Hudson, H. G.; Morrison, J. J.; McGevna, V. G.; Kunz, K. S.; Ludwigsen, A. P.; Gnade, D. K.

    1984-11-01

    Advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity like objects, or the so called back door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling is distinctively different because the wavelength is comparable to the size of the ports of entry. Coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. The initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz) are summarized.

  15. Assessment of Alphamagnetic Spectrometer (AMS) Upper Experiment Structural Configuration Shielding Effectiveness Associated with Change from Cryo-Cooled Magnet to Permanent Magnet

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2012-01-01

    In the spring of 2010, the Alpha Magnetic Spectrometer 2 (AMS-02) underwent a series of system level electromagnetic interference control measurements, followed by thermal vacuum testing. Shortly after completion of the thermal vacuum testing, the project decided to remove the cryogenically cooled superconducting magnet, and replace it with the original permanent magnet design employed in the earlier AMS- 01 assembly. Doing so necessitated several structural changes, as well as removal or modification of numerous electronic and thermal control devices and systems. At this stage, the project was rapidly approaching key milestone dates for hardware completion and delivery for launch, and had little time for additional testing or assessment of any impact to the electromagnetic signature of the AMS-02. Therefore, an analytical assessment of the radiated emissions behavioural changes associated with the system changes was requested.

  16. Cables and crosstalk

    NASA Astrophysics Data System (ADS)

    Paul, Clayton R.

    1991-06-01

    Crosstalk is the unintentional electromagnetic coupling between circuits which are connected by parallel conductors that lie in close proximity to each other. Some examples are wires in cable harnesses or metallic lands on printed-circuit boards (PCB's). This unintended interaction between two or more circuits via their electromagnetic fields can cause interference problems. Signals from one circuit that couple to another circuit appear at the terminals of the devices that are interconnected by the wires. If these signals are of sufficient magnitude or spectral content, they may cause unintended operation of the device or a degradation in its performance. A summary of the standard models used for predicting crosstalk in various types of configurations is presented. The discussion focusses on the relative accuracies, regions of applicability, and computational complexity of the models. A simple explanation of the ability (or inability) of shielded wires and twisted pairs of wires to reduce the crosstalk is also given.

  17. Investigation of the electrical characteristics of electrically conducting yarns and fabrics

    NASA Astrophysics Data System (ADS)

    Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.

    2017-11-01

    Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.

  18. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions

    PubMed Central

    Ambroglini, Filippo; Battiston, Roberto; Burger, William J.

    2016-01-01

    A manned mission to Mars would present an important long-term health risk to the crew members due to the prolonged exposure to the ionizing radiation of galactic cosmic-rays. The radiation levels would largely exceed those encountered in the Apollo missions. An increase in the passive shielding provided by the spacecraft implies a significant increase of the mass. The advent of superconducting magnets in the early 1960s was considered an attractive alternative. The technology allows to generate magnetic fields capable to deflect the cosmic-rays in a manner analogous to the reduction of the particle fluxes in the upper atmosphere due to the Earth’s dipole magnetic field. A series of the three studies have been conducted over the last 5 years, funded successively by European Space Agency (ESA), the NASA Innovative Advanced Concepts (NIAC) program, and the Union European’s Seventh Framework Programme (FP7). The shielding configurations studied are based on high-temperature superconductors, which eliminate the need to operate with liquid helium. The mass estimates of the coils and supporting structure of the engineering designs are based on the current and expected near-future performance of the superconducting materials. In each case, the shield performance, in terms of dose reduction, is provided by a 3-dimensional Monte Carlo simulation, which treats in detail the electromagnetic and hadronic interactions of the galactic-cosmic rays, and the secondary particles they produce in the materials of the shield and spacecraft. A summary of the results of the studies, representing one of the most detailed and comprehensive efforts made in the field, is presented. PMID:27376023

  19. Efficient mapping of agricultural soils using a novel electromagnetic measurement system

    NASA Astrophysics Data System (ADS)

    Trinks, Immo; Pregesbauer, Michael

    2016-04-01

    "Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m depth. Instead of being towed several metres behind the tractor, as common with traditional EMI systems used in precision farming, the novel device is conveniently mounted on the front hitch of a tractor and operated from a terminal in the driver's cabin. A major improvement compared with existing EMI systems is the system's capability to cope with the induced noise from the tractor, through integration of a mechanical shielding mechanism into the sensor housing. Any remaining vehicle induced high-frequency electromagnetic noise is filtered out on-the-fly by the data acquisition software, logging the data and positioning information on a ruggedized small computer. The main purpose of this system is to permit the land owner or farmer the efficient mapping of the electrical soil conductivity across agricultural fields on the scale of the entire acreage. The main objective of the measurements is to obtain detailed information on the long wavelength variability of soil structure, while eliminating short wavelength variations. The calculation of the depth of the agricultural layer, or topsoil thickness, has been implemented by inverting the cumulative response function for all coil configurations. The resulting inverted models of the soil conductivity display the vertical distribution of agriculturally relevant soil parameters and improve the chances to identify different subsoil features. By providing this information on the shallow subsurface in real-time, while passing across the field, permits the agriculturist to variably adjust for instance tillage depth or to control other agricultural implements and machines based to the derived information, rendering the soil cultivation both ecologically as well as economically more efficient. We present the TSM system as well as derived data examples.

  20. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  1. Flux-focusing eddy current probe and method for flaw detection

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor)

    1993-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material is presented. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.

  2. Engineering design constraints of the lunar surface environment

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  3. Engineering design constraints of the lunar surface environment

    NASA Astrophysics Data System (ADS)

    Morrison, D. A.

    1992-02-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  4. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    NASA Astrophysics Data System (ADS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  5. Fly-by-Light Advanced Systems Hardware (FLASH) program

    NASA Astrophysics Data System (ADS)

    Bedoya, Carlos A.

    1995-05-01

    Fiber optics are immune to electromagnetic emissions and have the potential to eliminate this concern especially in flight critical applications if they can be developed to the same level of technology as current systems using wire to carry the signals. As aircraft become more and more dependent of digital signals to control all systems, the Electromagnetic Environment (EME) will become more and more a concern for the safe long term operation. The International Severe HIRF electromagnetic environment (EME) is less than 2000 Volts per meter below 400 MHz and reaches a maximum of 6,850 Volts per meter in the 4-6 GHz range. The normal assumption is that a metal or composite aircraft skin with appropriate seals provides 20 dB attenuation of the external environment. This reduces peak levels at the avionics boxes to less than 200 Volts per meter below 400 MHz and a maximum of 685 Volts per meter in the 406 GHz range. MIL-STD-461D imposed an additional box level requirement to 200 Volts per meter from 10 KHz to 40 GHz. This requirement equals or surpasses the attenuated HIRF environment over significant portions of the spectrum and implies that the aircraft must be designed to achieve and maintain this value throughout its service life. Although wires can be shielded and designed to achieve these requirements, it is a more expensive process, adds the weight of shielding and requires maintenance of the shielding integrity at all times. The very light weight and high bandwidth of fiber optics also offer the potential of eliminating the number of connections and weight savings in aircraft. For example on a one to one replacement of wire by fiber, it is estimated that fiber would weight about 1/20 the weight of wire. Current wire buses used for duplex communications in aircraft applications have a bandwidth of about 1 MHz while equivalent buses using fiber optics have a bandwidth of 20 MHz. For other applications such as video and avionics interfaces, fiber buses in the hundreds of MHz are available. Applications of fiber optic buses would then result in the reduction of wires and connections because of reduction in the number of buses needed for information transfer due to the fact that a large number of different signals can be sent across one fiber by multiplexing each signal. The Advanced Research Projects Agency (ARPA) Technology Reinvestment Project (TRP) Fly-by-Light Advanced Systems Hardware (FLASH) program addresses the development of Fly-by-Light Technology in order to apply the benefits of fiber optics to military and commercial aircraft.

  6. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  7. Effect of tail plasma sheet conditions on the penetration of the convection electric field in the inner magnetosphere: RCM simulations with self-consistent magnetic field

    NASA Astrophysics Data System (ADS)

    Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.

    2009-12-01

    Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of plasma sheet penetration to the development of the storm-time ring current.

  8. Study on the electrical behavior of MWCNTs in GF/Epoxy composites.

    PubMed

    Yan, Zhao; Lu, Yuan; Yuexin, Duan

    2010-08-01

    The multi-wall nanotubes (MWCNTs) were divisionalized equably by the fabric of glass in composites. Then the electrical properties such as permittivity, conductance and electromagnetic interference (EMI) shielding effectiveness (SE) of MWCNTs in GF/EP composite were studied. The effect of the content and dispersion of MWCNTs were researched in this work. Firstly the permittivity of MWCNTs/GF/EP composites were studied respectively by keeping layers of glass fabric and increasing content of MWCNTs or keeping content of MWCNTs and changing layers of glass fabric in electromagnetic wave band (5.85-18 GHz). Then the conductance of MWCNTs/GF/EP composites with different MWCNTs contents was tested. Furthermore, the EMI SE of composites with different MWCNTs contents in electromagnetic wave band (5.85-18 GHz) were studied. In addition, the morphologies of MWCNTs/GF/EP composites with the different MWCNTs weight percent were observed. The results show that the real part of permittivity of composites can be improved highest up to 75 and the imaginary part increase maximum up to 80. However there is no disciplinarian about effect of layers of glass fabric on dielectric property. The MWCNTs/GF/EP composite can be changed from the insulator to the semiconductor along with increasing the weight percent of MWCNTs. In electromagnetic wave band 5.85-18 GHz, the values of SE are increasing with increasing content of the MWCNTs.

  9. A High Power Helicon Antenna Design for DIII-D

    DOE PAGES

    Nagy, A.; deGrassie, J.; Moeller, C.; ...

    2017-08-02

    A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less

  10. A High Power Helicon Antenna Design for DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, A.; deGrassie, J.; Moeller, C.

    A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less

  11. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.

    PubMed

    Kappe, C Oliver

    2013-07-16

    In the past few years, the use of microwave energy to heat chemical reactions has become an increasingly popular theme in the scientific community. This nonclassical heating technique has slowly progressed from a laboratory curiosity to an established method commonly used both in academia and in industry. Because of its efficiency, microwave heating dramatically reduces reaction times (from days and hours to minutes and seconds) and improves product purities or material properties among other advantages. Since the early days of microwave chemistry, researchers have observed rate-accelerations and, in some cases, altered product distributions as compared with reactions carried out using classical oil-bath heating. As a result, researchers have speculated that so-called specific or nonthermal microwave effects could be responsible for these differences. Much of the debate has centered on the question of whether the electromagnetic field can exert a direct influence on a chemical transformation outside of the simple macroscopic change in bulk reaction temperature. In 2009, our group developed a relatively simple "trick" that allows us to rapidly evaluate whether an observed effect seen in a microwave-assisted reaction results from a purely thermal phenomenon, or involves specific or nonthermal microwave effects. We use a microwave reaction vessel made from silicon carbide (SiC) ceramic. Because of its high microwave absorptivity, the vessel shields its contents from the electromagnetic field. As a result, we can easily mimic a conventionally heated autoclave experiment inside a microwave reactor under carefully controlled reaction conditions. The switch from an almost microwave transparent glass (Pyrex) to a strongly microwave absorbing SiC reaction vial under otherwise identical reaction conditions (temperature profiles, pressure, stirring speed) then allows us to carefully evaluate the influence of the electromagnetic field on the particular chemical transformation. Over the past five years we have subjected a wide variety of chemical transformations, including organic reactions, preparations of inorganic nanoparticles, and the hydrolysis of proteins, to the "SiC test." In nearly all of the studied examples, we obtained identical results from reactions carried out in Pyrex vials and those carried out in SiC vials. The data obtained from these investigations confirm that in the overwhelming majority of cases a bulk temperature phenomenon drives the enhancements in microwave chemistry and that the electromagnetic field has no direct influence on the reaction pathway.

  12. Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.; hide

    2009-01-01

    Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.

  13. Radiation shielding evaluation of the BNCT treatment room at THOR: a TORT-coupled MCNP Monte Carlo simulation study.

    PubMed

    Chen, A Y; Liu, Y-W H; Sheu, R J

    2008-01-01

    This study investigates the radiation shielding design of the treatment room for boron neutron capture therapy at Tsing Hua Open-pool Reactor using "TORT-coupled MCNP" method. With this method, the computational efficiency is improved significantly by two to three orders of magnitude compared to the analog Monte Carlo MCNP calculation. This makes the calculation feasible using a single CPU in less than 1 day. Further optimization of the photon weight windows leads to additional 50-75% improvement in the overall computational efficiency.

  14. Importance of acoustic shielding in sonochemistry.

    PubMed

    van Iersel, Maikel M; Benes, Nieck E; Keurentjes, Jos T F

    2008-04-01

    It is well known that sonochemistry is less efficient at high acoustic intensities. Many authors have attributed this effect to decoupling losses and shielding of the acoustic wave. In this study we investigate both phenomena for a 20 kHz ultrasound field with an intensity ranging from 40 to 150 W/cm2. Visualization of the bubble cloud has demonstrated that the void fraction below the ultrasound horn increases more than proportional with increasing power input. Nevertheless, the energy coupling between the horn and the liquid remains constant; this implies that decoupling losses are not reinforced for larger bubble clouds. On the contrary, microphone measurements have shown that due to the larger bubble cloud a substantial part of the supplied energy is lost at high power inputs. In striving towards more efficient sonochemistry, reduction of shielding appears as one of the major challenges.

  15. Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations

    NASA Astrophysics Data System (ADS)

    Pryet, A.; d'Ozouville, N.; Violette, S.; Deffontaines, B.; Auken, E.

    2012-12-01

    Many volcanic islands face freshwater stress and the situation may worsen with climate change and sea level rise. In this context, an optimum management of freshwater resources becomes crucial, but is often impeded by the lack of data. With the aim of investigating the hydrogeological settings of southern San Cristóbal Island (Galapagos), we conducted a helicopter-borne, transient electromagnetic survey with the SkyTEM system. It provided unprecedented insights into the 3-D resistivity structure of this extinct basaltic shield. Combined with remote sensing and fieldwork, it allowed the definition of the first hydrogeological conceptual model of the island. Springs are fed by a series of perched aquifers overlying a regional basal aquifer subject to seawater intrusion. Dykes, evidenced by alignments of eruptive cones at the surface, correspond to sharp sub-vertical contrasts in resistivity in the subsurface, and impound groundwater in a summit channel. Combined with geomorphological observations, airborne electromagnetics are shown to be a useful for hydrogeological exploratory studies in complex, poorly known environments. They allow optimal development of land-based geophysical surveys and drilling campaigns.

  16. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  17. Summing coincidence correction for γ-ray measurements using the HPGe detector with a low background shielding system

    NASA Astrophysics Data System (ADS)

    He, L.-C.; Diao, L.-J.; Sun, B.-H.; Zhu, L.-H.; Zhao, J.-W.; Wang, M.; Wang, K.

    2018-02-01

    A Monte Carlo method based on the GEANT4 toolkit has been developed to correct the full-energy peak (FEP) efficiencies of a high purity germanium (HPGe) detector equipped with a low background shielding system, and moreover evaluated using summing peaks in a numerical way. It is found that the FEP efficiencies of 60Co, 133Ba and 152Eu can be improved up to 18% by taking the calculated true summing coincidence factors (TSCFs) correction into account. Counts of summing coincidence γ peaks in the spectrum of 152Eu can be well reproduced using the corrected efficiency curve within an accuracy of 3%.

  18. Technique for Configuring an Actively Cooled Thermal Shield in a Flight System

    NASA Technical Reports Server (NTRS)

    Barkfknecht, Peter; Mustafi, Shuvo

    2011-01-01

    Broad area cooling shields are a mass-efficient alternative to conductively cooled thermal radiation shielding. The shield would actively intercept a large portion of incident thermal radiation and transport the heat away using cryogenic helium gas. The design concept consists of a conductive and conformable surface that maximizes heat transfer and formability. Broad Area Cooled (BAC) shields could potentially provide considerable mass savings for spaceflight applications by eliminating the need for a rigid thermal radiation shield for cryogen tanks. The BAC consists of a network of capillary tubes that are thermally connected to a conductive shield material. Chilled helium gas is circulated through the network and transports unwanted heat away from the cryogen tanks. The cryogenic helium gas is pumped and chilled simultaneously using a specialized pulse-tube cryocooler, which further improves the mass efficiency of the system. By reducing the thermal environment temperature from 300 to 100 K, the radiative heat load on a cryogen tank could be reduced by an order of magnitude. For a cryogenic liquid propellant scenario of oxygen and hydrogen, the boiloff of hydrogen would be significantly reduced and completely eliminated for oxygen. A major challenge in implementing this technology on large tanks is that the BAC system must be easily scalable from lab demonstrations to full-scale missions. Also, the BAC shield must be conformable to complex shapes like spheres without losing the ability to maintain constant temperature throughout. The initial design maximizes thermal conductivity between the capillary tube and the conductive radiation shielding by using thin, corrugated aluminum foil with the tube running transverse to the folds. This configuration has the added benefit of enabling the foil to stretch and contract longitudinally. This allows the BAC to conform to the complex curvature of a cryogen tank, which is key to its success. To demonstrate a BAC shield system with minimal impact to current cryogen tank designs, the shielding must be applied after the final assembly of the tank and supporting structure. One method is to pre-fabricate the shield in long strips. A spool of corrugated aluminum foil with a thermally sunk aluminum capillary running through the center could then be simply wound around the cryogen tanks and encapsulated within the multi-layer insulation (MLI) blanket. Then, on orbit, the BAC would intercept thermal radiation coming in through the MLI and transport it away from the cryogen tanks. An optimization of the design could be done to take into account mass savings from thinner MLI blankets, eliminating solid thermal shields, and ultimately, a reduction in the required cryogen tank size.

  19. Development of a metal detector for smartphones and its use in the teaching laboratory

    NASA Astrophysics Data System (ADS)

    Sobral, G. A.

    2018-07-01

    In this article, we describe how to develop an inductive metal detector that can be integrated to any Android or iOS smartphone with a standard audio port at low cost. The results indicate the metal detector can be used in the physics teaching laboratory as a practical application of principles of electromagnetism. It allows one to differentiate ferromagnetic samples from the diamagnetic and paramagnetic ones and can also be used to investigate the direction of alternating magnetic fields and to demonstrate the Faraday’s cage shielding effect.

  20. Summary of Methods for Measuring Electrical Properties of Geological Strata to Estimate Electromagnetic Shielding Effectiveness

    DTIC Science & Technology

    1988-04-01

    commercially for conventional surface resistivity measure- ments. Lead or copper wire wrapped around an insulating cable is used for the downhole...3 x 106 -- Igneous rocks, basic Augite porphyry Kola Peninsula 9.5-12.6 105-107 Dry Basalt Berestovetskoe 15.6 5 x 10 5 Dry Basalt Kutai 10.3 5 x...acidic Granite Azerbaidjan 3.0 x 107 -- Granite Ubinskoe 0.36 x 109 3.2 x 1018 Granite Kola Peninsula 0.16 x 105 0.3 x 1016 Granite porphyry 4.5 x 10 5

  1. An instrument for spatial conductivity measurements of high Tc superconducting (HTSC) materials

    NASA Technical Reports Server (NTRS)

    Vansant, T.

    1991-01-01

    High T(sub c) Superconducting (HTSC) thin films are suggested for use in a number of aerospace applications such as an IR bolometer and as electromagnetic shielding. As part of its flight assurance role, the Materials Branch of the Goddard Space Flight Center has initiated development of an instrument capable of measuring variations in conductivity for flat samples using an eddy current testing device and an X-Y positioning table. This instrument was used to examine bulk HTSC samples. System changes that would enable characterization of thin film materials are discussed.

  2. IEEE 1990 International Symposium on Electromagnetic Compatibility, Washington, DC, Aug. 21-23, 1990, Record

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in EM shielding effectiveness, system-level EMC, EMP effects, circuit-level EMI testing, EMI control, analysis techniques for system-level EMC, EMP protective measures, EMI test methods, electrostatic-discharge testing, printed circuit-board design for EMC, and EM environment effects. Also discussed are EMI measurement procedures, EM spectrum-management issues for the 21st century, antenna and propagation effects on EMI testing, EMI control in cables, socioeconomic aspects of EMC, systemwide EMI controls, and EM radiation and coupling.

  3. Gamma ray shielding properties of PbO-Li2O-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2017-07-01

    The mass attenuation coefficients have been measured in (0.6-x) PbO-x Li2O-0.40 B2O3 (where 0≤ x≤0.25 mol%) glasses for photon energies of 356, 662, 1173 and 1332 keV in a narrow beam geometry with an overall scatter acceptance angle of 2.31°. The experimental results are found to be within 3% of their theoretical values. These coefficients were then used to obtain the values of mean free path, effective atomic number and electron density. The shielding properties of these glasses have also been compared among themselves in terms of their mean free path and radiation protection efficiency. The shielding properties prepared glasses have also been compared with standard concretes as well as with the standard shielding glasses. It is found that the prepared glasses are the better shielding substitute to the conventional concretes as well as other standard shielding glasses. The Pb3B4O9 has been found to be the most effective shield.

  4. Radio for hidden-photon dark matter detection

    DOE PAGES

    Chaudhuri, Saptarshi; Graham, Peter W.; Irwin, Kent; ...

    2015-10-08

    We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that the observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Ourmore » “straw man” setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of a single resonator set by 1/ν. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. As a result, we find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher.« less

  5. Engineering novel synthetic strategy to develop mesocarbon microbeads for multi-functional applications

    NASA Astrophysics Data System (ADS)

    Chaudhary, Anisha; Teotia, Satish; Kumar, Rajeev; Ramesha, K.; Dhakate, Sanjay R.; Kumari, Saroj

    2018-04-01

    To assess the challenge of affordable technology, present synthetic strategies can be extended to new low-cost synthesis and processing methods that have potential to tailor the properties of the materials. Here we report, a novel method for the synthesis of mesocarbon microbeads (MCMB) through a pre-processing involved pyrolysis technique. The resulting MCMB is compressed into a product and effects of heat treatment temperature on different properties of MCMB is studied. The use of MCMB for the electromagnetic interference (EMI) shielding is new and hence, the effect of heat treatment temperature on EMI shielding effectiveness is studied in X-band. It is observed that EMI shielding effectiveness increases to ‑39.6 dB on increasing the heat treatment temperature. The high conductivity of MCMB plate heat treated upto 2500 °C contributes to highly conducting networks. Additionally, to investigate the electrochemical performance of MCMB as an anode material for lithium ion batteries, 2500 °C heat treated MCMB powder is used to fabricate the electrode. The MCMB electrode exhibits high discharge capacity of 345 mAh g‑1 with a stable capacity for over 50 cycles and good rate capability. Thus, MCMB synthesized by this novel approach can be used for the development of high performance anode materials for Li-ion batteries.

  6. Advances in the evaluation of wind-induced undercatch using CFD-based simulations of snow gauge performance

    NASA Astrophysics Data System (ADS)

    Colli, Matteo; Lanza, Luca; Rasmussen, Roy; Thériault, Julie

    2016-04-01

    Despite its importance, accurate measurements of precipitation remains a challenge. Measurement errors for solid precipitation, which are often ignored for automated systems, frequently range from 20% to 70% due to undercatch in windy conditions. While solid precipitation measurements have been the subject of many studies, there have been only a limited number of numerical modeling efforts to estimate the collection efficiency of solid precipitation gauges when exposed to the wind, in both shielded and unshielded configurations. The available models use CFD simulations of the airflow pattern generated by the aerodynamic response of the gauge/shield geometry to perform the Lagrangian tracking of solid precipitation particles (Thériault et al., 2012; Colli et al. 2016a and 2016b). Validation of the results against field observations yields similarities in the overall behavior, but the model output only approximately reproduces the dependence of the experimental collection efficiency on wind speed. We present recent developments of such a modelling approach including various gauge/shield configurations, the influence of the drag coefficient calculation on the model performance, and the role of the particle size distribution in explaining the scatter of the collection efficiency observed at any particular wind speed (Colli et al. 2015). Comparison with observations at the Marshall (CO) field test site is used to validate results of the various modelling schemes and to support the analysis of the microphysical characteristics of ice crystals. References: Colli, M., Rasmussen, R.M., Thèriault, J.M., Lanza, L.G., Baker, B.C. and J. Kochendorfer (2015). An improved trajectory model to evaluate the collection performance of snow gauges. J.Appl.Meteor.Climatol., 54(8), pages 1826-1836. Colli, M., Lanza, L.G., Rasmussen, R.M. and J.M. Thèriault (2016a). The collection efficiency of shielded and unshielded precipitation gauges. Part I: CFD airflow modelling. J. of Hydrometeorol., 17(1), pages 231-243. Colli, M., Lanza, L.G., Rasmussen, R.M. and J.M. Thèriault (2016b). The collection efficiency of shielded and unshielded precipitation gauges. Part II: modelling particle trajectories. J. of Hydrometeorol., 17(1), 245-255. Thériault, J. M., R. Rasmussen, K. Ikeda, and S. Landolt, (2012). Dependence of snow gauge collection efficiency on snowflake characteristics. J. Appl. Meteor. Climatol., 51, 745-762.

  7. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Smilek, J.; Rubes, O.

    2017-05-01

    The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.

  8. Resistence seam welding thin copper foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollar, D.L. Jr.

    1991-02-01

    Use of flat flexible circuits in the electronics industry is expanding. The term flexible circuits'' is defined here as copper foil which has been bonded to an insulating film such as Kapton film. The foil is photo processed to produce individual circuit paths similar to printed circuit boards. Another insulating film is laminated over the conductors to complete the flexible circuit. Flexible circuits, like multiwire cables, are susceptible to electromagnetic radiation (EMR) interference. On multiwire cables the interference problem is mitigated by adding a woven wire braid shielding over the conductors. Shielding on flexible circuits is accomplished by enclosing themore » circuits in a copper foil envelope. However, the copper foil must be electrically sealed around the flexcircuit to be effective. Ultimately, a resistance seam welding process and appropriate equipment were developed which would provide the required electrical seal between two layers of 2-oz (0.0028-inch thick) copper foil on a 1.1-inch wide, 30-inch long, 0.040-inch thick flexible circuit. 4 refs., 19 figs.« less

  9. Noise propagation issues in Belle II pixel detector power cable

    DOE PAGES

    Iglesias, M.; Arteche, F.; Echeverria, I.; ...

    2018-04-26

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  10. Noise propagation issues in Belle II pixel detector power cable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iglesias, M.; Arteche, F.; Echeverria, I.

    The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less

  11. Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.

    2012-01-01

    A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.

  12. Charge shielding in the In-situ Storage Image Sensor for a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Stefanov, K. D.; Bailey, D.; Banda, Y.; Buttar, C.; Cheplakov, A.; Cussans, D.; Damerell, C.; Devetak, E.; Fopma, J.; Foster, B.; Gao, R.; Gillman, A.; Goldstein, J.; Greenshaw, T.; Grimes, M.; Halsall, R.; Harder, K.; Hawes, B.; Hayrapetyan, K.; Heath, H.; Hillert, S.; Jackson, D.; Pinto Jayawardena, T.; Jeffery, B.; John, J.; Johnson, E.; Kundu, N.; Laing, A.; Lastovicka, T.; Lau, W.; Li, Y.; Lintern, A.; Lynch, C.; Mandry, S.; Martin, V.; Murray, P.; Nichols, A.; Nomerotski, A.; Page, R.; Parkes, C.; Perry, C.; O'Shea, V.; Sopczak, A.; Tabassam, H.; Thomas, S.; Tikkanen, T.; Velthuis, J.; Walsh, R.; Woolliscroft, T.; Worm, S.

    2009-08-01

    The Linear Collider Flavour Identification (LCFI) collaboration has successfully developed the first prototype of a novel particle detector, the In-situ Storage Image Sensor (ISIS). This device ideally suits the challenging requirements for the vertex detector at the future International Linear Collider (ILC), combining the charge storing capabilities of the Charge-Coupled Devices (CCD) with readout commonly used in CMOS imagers. The ISIS avoids the need for high-speed readout and offers low power operation combined with low noise, high immunity to electromagnetic interference and increased radiation hardness compared to typical CCDs. The ISIS is one of the most promising detector technologies for vertexing at the ILC. In this paper we describe the measurements on the charge-shielding properties of the p-well, which is used to protect the storage register from parasitic charge collection and is at the core of device's operation. We show that the p-well can suppress the parasitic charge collection by almost two orders of magnitude, satisfying the requirements for the application.

  13. Application of adaptive filters in denoising magnetocardiogram signals

    NASA Astrophysics Data System (ADS)

    Khan, Pathan Fayaz; Patel, Rajesh; Sengottuvel, S.; Saipriya, S.; Swain, Pragyna Parimita; Gireesan, K.

    2017-05-01

    Magnetocardiography (MCG) is the measurement of weak magnetic fields from the heart using Superconducting QUantum Interference Devices (SQUID). Though the measurements are performed inside magnetically shielded rooms (MSR) to reduce external electromagnetic disturbances, interferences which are caused by sources inside the shielded room could not be attenuated. The work presented here reports the application of adaptive filters to denoise MCG signals. Two adaptive noise cancellation approaches namely least mean squared (LMS) algorithm and recursive least squared (RLS) algorithm are applied to denoise MCG signals and the results are compared. It is found that both the algorithms effectively remove noisy wiggles from MCG traces; significantly improving the quality of the cardiac features in MCG traces. The calculated signal-to-noise ratio (SNR) for the denoised MCG traces is found to be slightly higher in the LMS algorithm as compared to the RLS algorithm. The results encourage the use of adaptive techniques to suppress noise due to power line frequency and its harmonics which occur frequently in biomedical measurements.

  14. An Approach to the Lightning Overvoltage Protection of Medium Voltage Lines in Severe Lightning Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omidiora, M. A.; Lehtonen, M.

    2008-05-08

    This paper deals with the effect of shield wires on lightning overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of lightning protection in Finnish distribution networks where lightning is most severe. The true index of lightning severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple lightning strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to lightning strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less

  15. Large panel design for containment air baffle

    DOEpatents

    Orr, Richard S.

    1992-01-01

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.

  16. Large panel design for containment air baffle

    DOEpatents

    Orr, R.S.

    1992-12-08

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.

  17. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai

    2015-10-15

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less

  18. Eddy Current Method for Fatigue Testing

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.

  19. The Use and Management of the Electromagnetic Spectrum, Part I. President's Task Force on Communications Policy. Staff Paper Seven, Part I.

    ERIC Educational Resources Information Center

    Rostow, Eugene V.

    A staff paper to the President's Task Force on Communications Policy analyses the use of the electromagnetic spectrum for communications and suggests improvements. The evolution of spectrum use and its present federal management are described together with the problem of achieving efficient use in the areas of electromagnetic congestion. Criticism…

  20. Shielding analyses: the rabbit vs the turtle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadhead, B.L.

    1996-12-31

    This paper compares solutions using Monte Carlo and discrete- ordinates methods applied to two actual shielding situations in order to make some general observations concerning the efficiency and advantages/disadvantages of the two approaches. The discrete- ordinates solutions are performed using two-dimensional geometries, while the Monte Carlo approaches utilize three-dimensional geometries with both multigroup and point cross-section data.

  1. Transmission characteristic of graphene/TiO2 paper measured at Ka-band

    NASA Astrophysics Data System (ADS)

    Agusu, La; Mitsudo, Seitaro; Ahmad, La Ode; Herdianto, Fujii, Yutaka; Ishikawa, Yuya; Furuya, Takahashi; Ramadhan, La Ode Ahmad Nur

    2017-01-01

    The commercial telecommunication system in future would explore the electromagnetic spectrum with higher frequency than used now, because it requires higher speed of transmission data. Using the millimeter waves (mmW) with frequency ranging from 30 to 300 GHz, such requirement could be fulfilled. The upcoming 5G cellular technology is expected to use frequency 30 GHz or higher. Then materials with a specific characteristic at the mmW range are interesting to be explored and investigated. Here, we report the synthesis process of graphene/TiO2 deposited on paper and their transmission characteristics to the electromagnetic energy at frequency 27-40 GHz (Ka-Band). The reduced graphene oxide (rGO) was synthesized by a modified Hummers method with introduction of microwave irradiation in the process. rGO and TiO2 were mixed in ethanol solution and deposited on the paper by a spraying technique. Transmission coefficient of electromagnetic wave energy at Ka-Band was measured by using the millimeter vector network analyzer. Conductivity of rGO is 1.89 Scm-1 and for the graphene/TiO2 with TiO2 content is up to 50%, conductivity is down to Scm-1 Graphene/TiO2 layer with thickness of 60).lm and TiO2 loading up to 25% can has the transmission coefficient of -4 dB at the middle frequency of 31 GHz and bandwidth of 2.2 GHz. This can be useful as the electromagnetic interference shielding material at Ka-band.

  2. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  3. Evaluation of root-knot nematode disease control and plant growth promotion potential of biofertilizer Ning shield on Trichosanthes kirilowii in the field.

    PubMed

    Jiang, Chun-Hao; Xie, Ping; Li, Ke; Xie, Yue-Sheng; Chen, Liu-Jun; Wang, Jin-Suo; Xu, Quan; Guo, Jian-Hua

    Biofertilizer Ning shield was composed of different strains of plant growth promotion bacteria. In this study, the plant growth promotion and root-knot nematode disease control potential on Trichosanthes kirilowii in the field were evaluated. The application of Ning shield significantly reduced the diseases severity caused by Meloidogyne incognita, the biocontrol efficacy could reached up to 51.08%. Ning shield could also promote the growth of T. kirilowii in the field by increasing seedling emergence, height and the root weight. The results showed that the Ning shield could enhance the production yield up to 36.26%. Ning shield could also promote the plant growth by increasing the contents of available nitrogen, phosphorus, potassium and organic matter, and increasing the contents of leaf chlorophyll and carotenoid pigment. Moreover, Ning shield could efficiently enhance the medicinal compositions of Trichosanthes, referring to the polysaccharides and trichosanthin. Therefore, Ning shield is a promising biofertilizer, which can offer beneficial effects to T. kirilowii growers, including the plant growth promotion, the biological control of root-knot disease and enhancement of the yield and the medicinal quality. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Plasmonic metamaterials with tuneable optical properties

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly

    2008-03-01

    Negative refraction in metamaterials has recently attracted significant attention due to its possible numerous applications in high-resolution imaging and photolithography with the so-called ``perfect lenses,'' for electromagnetic shielding (invisibility cloak), optical signal manipulation, etc. Among various realizations of negative index materials, plasmonic nanostructures play a prominent role as they allow negative refraction properties to be engineered in the visible and near infrared spectral ranges. The coupling of light to plasmonic modes, that are collective electronic excitations in metallic nanostructures, provides the possibility to confine the electromagnetic field on the sub-wavelength scale and manipulate it with high precision to achieve the desired mode dispersion and, thus, reflection, absorption and transmission properties of the nanostructures. In this talk we will discuss various pathways to control dispersion of the electromagnetic waves in plasmonic metamaterials, including plasmon polaritonic crystals and plasmonic nanorod arrays, and the approaches to active tuneability of their optical properties using optical and electric control signals. Both approaches take advantage of the very high sensitivity of surface plasmon mode dispersion on the refractive index of the dielectric adjacent to metallic nanostructure. Hybridization of plasmonic nanostructures with molecular species exhibiting nonlinear optical response allows the development of metamaterials with high effective nonlinear susceptibility due to the electromagnetic field enhancement related to plasmonic excitations. Signal and control light are then coupled to plasmonic modes that strongly interact via nonlinearity introduced by the hybridization. Concurrently, the use of electro-optically active dielectrics incorporated into plasmonic nanostructures provides the route to control optical signals electronically. Plasmonic metamaterials with tuneable optical properties can be used to control negative refraction and electromagnetic field propagation in various applications in nanophotonics, optoelectronics and optical communications.

  5. Shield materials recommended for space power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kaszubinski, L. J.

    1973-01-01

    Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.

  6. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy

    NASA Astrophysics Data System (ADS)

    Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil

    2017-10-01

    Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.

  7. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  8. Characterization of Meta-Materials Using Computational Electromagnetic Methods

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Shin, Joon

    2005-01-01

    An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.

  9. Recent Development of Nanomaterial-Doped Conductive Polymers

    NASA Astrophysics Data System (ADS)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  10. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  11. An optically transparent metasurface for broadband microwave antireflection

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zhang, Cheng; Cheng, Qiang; Yang, Jin; Cui, Tie Jun

    2018-02-01

    Metamaterial absorbers and diffusers provide powerful routes to decrease the backward reflection significantly with advantages of ultrathin profile and customized bandwidth. Simultaneous control of the absorption and scattering behaviors of the metamaterials which helps to improve the suppression capabilities of backward reflection, however, still remains a challenge. Aiming at this goal, we propose a metasurface constituted by two kinds of elements in a pseudorandom arrangement. By the use of indium tin oxide with moderate sheet resistance in the meta-atoms, enhanced absorption of energy can be achieved in a broad spectrum when interacted with illuminated waves. In the meanwhile, electromagnetic diffusion will be invoked from the destructive interference among the elements, giving rise to significant reduction of specular reflection as a result. Excellent agreements are observed between simulation and experiment with pronounced reflection suppression from 6.8 GHz to 19.4 GHz. In addition, the optical transparence of the patterns and substrates makes the proposed metasurface a promising candidate for future applications like photovoltaic solar cells and electromagnetic shielding glasses.

  12. Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility

    NASA Astrophysics Data System (ADS)

    Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)

  13. Microscreen radiation shield for thermoelectric generator

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.; McBride, James R.

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  14. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  15. Carbon Nanotubes: Present and Future Commercial Applications

    NASA Astrophysics Data System (ADS)

    De Volder, Michael F. L.; Tawfick, Sameh H.; Baughman, Ray H.; Hart, A. John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  16. NOTE: Cell-phone interference with pocket dosimeters

    NASA Astrophysics Data System (ADS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M.; Ayyangar, Komanduri M.; Raman, Natarajan V.; Enke, Charles A.

    2005-05-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.

  17. DARE Mission Design: Low RFI Observations from a Low-Altitude Frozen Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Plice, Laura; Galal, Ken; Burns, Jack O.

    2017-01-01

    The Dark Ages Radio Explorer (DARE) seeks to study the cosmic Dark Ages approximately 80 to 420 million years after the Big Bang. Observations require truly quiet radio conditions, shielded from Sun and Earth electromagnetic (EM) emissions, on the far side of the Moon. DAREs science orbit is a frozen orbit with respect to lunar gravitational perturbations. The altitude and orientation of the orbit remain nearly fixed indefinitely, maximizing science time without the need for maintenance. DAREs observation targets avoid the galactic center and enable investigation of the universes first stars and galaxies.

  18. MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; Andringa, S.; Assis, P.

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. Here, the combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  19. Carbon nanotubes: present and future commercial applications.

    PubMed

    De Volder, Michael F L; Tawfick, Sameh H; Baughman, Ray H; Hart, A John

    2013-02-01

    Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

  20. Progress study of Micro Carbon Coils

    NASA Astrophysics Data System (ADS)

    Wang, Haiquan; Yang, Shaoming; Chen, Xiuqin

    2017-12-01

    As a kind of novel bio-mimetic carbon fibers, with diversities of high functions, carbon microcoils (CMC) have the outstanding properties of high specific strength, low-density, large specific surface area, heat resistance, corrosion resistance, chemical stability, conductive ability and thermal conductivity. Due to their special three-dimensional spiral structure, they have the chiral characteristics and a high flexibility. Carbon microcoils has become a research hotspot, especially the preparation of polymer-based carbon microcoils composite materials and they have wide more application such as flexible sensors, electromagnetic shielding materials, hydrogen storage materials, health care products and so on.

  1. MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Martins, V. Barbosa; Brogueira, P.; Carolino, N.; Cazon, L.; Cerda, M.; Cernicchiaro, G.; Colalillo, R.; Conceição, R.; Cunha, O.; de Almeida, R. M.; de Souza, V.; Diogo, F.; Dobrigkeit, C.; Espadanal, J.; Espirito-Santo, C.; Ferreira, M.; Ferreira, P.; Fonte, P.; Giaccari, U.; Gonçalves, P.; Guarino, F.; Lippmann, O. C.; Lopes, L.; Luz, R.; Maurizio, D.; Marujo, F.; Mazur, P.; Mendes, L.; Pereira, A.; Pimenta, Mario; Prado, R. R.; R̆ídký, J.; Sarmento, R.; Scarso, C.; Shellard, R.; Souza, J.; Tomé, B.; Trávníc̆ek, P.; Vícha, J.; Wolters, H.; Zas, E.

    2018-04-01

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  2. MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement

    DOE PAGES

    Abreu, P.; Andringa, S.; Assis, P.; ...

    2018-04-24

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. Here, the combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  3. Adjusting Permittivity by Blending Varying Ratios of SWNTs

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Stephenson, Jason J.; Higginbotham, Amanda

    2012-01-01

    A new composite material of singlewalled carbon nanotubes (SWNTs) displays radio frequency (0 to 1 GHz) permittivity properties that can be adjusted based upon the nanotube composition. When varying ratios of raw to functionalized SWNTs are blended into the silicone elastomer matrix at a total loading of 0.5 percent by weight, a target real permittivity value can be obtained between 70 and 3. This has particular use for designing materials for microwave lenses, microstrips, filters, resonators, high-strength/low-weight electromagnetic interference (EMI) shielding, antennas, waveguides, and low-loss magneto-dielectric products for applications like radome construction.

  4. Practicing Reiki does not appear to routinely produce high-intensity electromagnetic fields from the heart or hands of Reiki practitioners.

    PubMed

    Baldwin, Ann Linda; Rand, William Lee; Schwartz, Gary E

    2013-06-01

    The study objective was to determine whether Reiki practice increases the electromagnetic field strength from the heart and hands of Reiki practitioners. This study repeated experiments performed 20 years ago that detected exceptionally high-strength electromagnetic fields (100 nT) from the hands of several energy healers. The equipment used was far more sensitive than in the original studies. Using a Magnes 2500 WH SQUID, the electromagnetic field from the hands and heart of each of 3 Reiki masters was measured when they were (1) not practicing Reiki, (2) sending Reiki to a distant person, and (3) sending Reiki to a person in the room. Similar measurements were made on 4 Reiki-naïve volunteers before and after they received a Reiki training/attunement enabling them to self-administer Reiki. The study setting was the Scripps Institute, San Diego, CA. Magnetic field intensity of hands and heart recorded over 5-minute sessions with corresponding frequency spectra. For all subjects, under all conditions, sensors closest to the heart and the hands produced spikes of 2 pT corresponding to the heartbeat. Recordings from 2 Masters and 1 volunteer showed a low-intensity sine wave oscillation of 0.25-0.3 Hz (intensity 0.1-0.5 pT) whether or not they were practicing Reiki. This oscillation probably reflected respiratory sinus arrhythmia, judged by comparison with recent previous studies. These signals were not detected in the original studies. In the current study, no electromagnetic field intensities greater than 3 pT were observed in any of the recordings. Practicing Reiki does not appear to routinely produce high-intensity electromagnetic fields from the heart or hands. Alternatively, it is possible that energy healing is stimulated by tuning into an external environmental radiation, such as the Schumann resonance, which was blocked in the present study by the strong magnetic shielding surrounding the SQUID.

  5. Pilot-scale electron cyclotron resonance-metal organic chemical vapor deposition system for the preparation of large-area fluorine-doped SnO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Bup Ju; Hudaya, Chairul; Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791

    2016-05-15

    The authors report the surface morphology, optical, electrical, thermal and humidity impacts, and electromagnetic interference properties of fluorine-doped tin oxide (SnO{sub 2}:F or “FTO”) thin films on a flexible polyethylene terephthalate (PET) substrate fabricated by a pilot-scale electron cyclotron resonance–metal organic chemical vapor deposition (PS ECR-MOCVD). The characteristics of large area FTO thin films were compared with a commercially available transparent conductive electrode made of tin-doped indium oxide (ITO), prepared with an identical film and PET thickness of 125 nm and 188 μm, respectively. The results revealed that the as-prepared FTO thin films exhibited comparable performances with the incumbent ITO films, includingmore » a high optical transmittance of 97% (substrate-subtracted), low electrical resistivity of about 5 × 10{sup −3} Ω cm, improved electrical and optical performances due to the external thermal and humidity impact, and an excellent shielding effectiveness of electromagnetic interference of nearly 2.3 dB. These excellent performances of the FTO thin films were strongly attributed to the design of the PS ECR-MOCVD, which enabled a uniform plasma environment resulting from a proper mixture of electromagnetic profiles and microwave power.« less

  6. Phenomenology of microwave coupling. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, R.J.; Breakall, J.K.; Hudson, H.G.

    Recent advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity-like objects, or the so-called back-door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling (from 1 GHz to above 40 GHz) is distinctively different because the wavelength is comparablemore » to the size of the ports of entry (apertures, seams, cracks, protruding connectors, etc.). These ports of entry and the interior configuration of a vulnerable system are no longer below cutoff, and can permit significant penetration of the microwave energy into susceptible electronic systems. In fact, these coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. This report summarizes the initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz). These studies were limited to 2.5 GHz because the limitations of the Electromagnetic Transient Range Facility.« less

  7. Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications.

    PubMed

    Dar, M Abdullah; Majid, Kowsar; Hanief Najar, Mohd; Kotnala, R K; Shah, Jyoti; Dhawan, S K; Farukh, M

    2017-04-19

    This work reports the exploitation of nanocrystalline Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite for potential application by designing quasi-spherical shaped polythiophene (PTH) composites via in situ emulsion polymerization. The structural, electronic, dielectric, magnetic, and electromagnetic interference (EMI) shielding properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites were investigated. Our results suggest that these properties could be optimized by modulating the concentration of x (composition) in the polymer matrix. Higher values of ε' and ε'' were obtained on composite formation, and could be due to the heterogeneity developed in the material. An enhancement in the value of saturation magnetization (123 emu g -1 for x = 0.04) and Curie temperature was obtained with Ce concentration, which is useful for high density recording purposes. A low value of saturation magnetization was obtained for the PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composite (36 emu g -1 for x = 0.04). This could be attributed to the non-magnetic nature of the polymer. A total shielding effectiveness (SE T = SE A + SE R ) up to 34 dB (≈99.9% attenuation) was recorded for PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites (x = 0.04) in a frequency range of 8.2-12.4 GHz (X-band), which surpasses the shielding criteria of SE T > 30 dB for commercial purposes. Such a material with high SE identifies its potential for making electromagnetic shields. The effect of Ce substitution on the microstructure, dielectric, impedance and magnetic properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite composites was also investigated. X-ray diffraction analysis confirmed cubic spinel phase formation, and the broad reflection peaks indicated the formation of smaller sized particles. The smaller energy band gap (2.53 eV) of the composite indicated that this material could be used for photocatalysis in the visible region. Dielectric and impedance measurements were carried out in a frequency range of 8.2-12.4 GHz. Dielectric properties were improved considerably by the substitution of Ce 3+ ions in PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites. Impedance spectroscopy was used to study the effect of grain and grain boundaries on the electrical properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites. Cole-Cole plots showed the formation of single semi-circles for all samples in the measured frequency range. This showed that the composite material was composed of good conducting grains and poorly conducting grain boundaries.

  8. Optimization of Photovoltaic Performance Through the Integration of Electrodynamic Dust Shield Layers

    NASA Technical Reports Server (NTRS)

    Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos

    2009-01-01

    The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.

  9. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  10. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  11. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2018-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  12. FAST TRACK COMMUNICATION: An electromagnetically induced grating by microwave modulation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik

    2010-08-01

    We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of 87Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field.

  13. Fairfield Plume Measurement and Analysis on the NASA-300M and NASA-300MS

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    NASA is developing a 10- to 15-kW Hall thruster system to support future NASA missions. This activity is funded under the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project. As a part of the development process, the NASA-300M, a 20-kW Hall thruster, was modified to incorporate the magnetic shielding concept and named the NASA-300MS. This activity was undertaken to assess the viability of using the magnetic shielding concept on a high-power Hall thruster to greatly reduce discharge channel erosion. This paper reports on the study to characterize the far-field plumes of the NASA-300M and NASA-300MS. Diagnostics deployed included a polarlyswept Faraday probe, a Wien filter (ExB probe), a retarding potential analyzer, and a Langmuir probe. During the study, a new, more accurate, integration method for analyzing Wien filter probe data was implemented and effect of secondary electron emission on the Faraday probe data was treated. Comparison of the diagnostic results from the two thrusters showed that the magnetically shielded version performed with 2 percent higher voltage utilization efficiency, 2 percent lower plume divergence efficiency, and 2 percent lower mass utilization efficiency compared to the baseline version. The net change in efficiency is within the aggregate measurement uncertainty so the overall performance is roughly equal for the two versions of the thruster. Anode efficiency calculated from thrust stand measurement corroborates this finding.

  14. MPACT Subgroup Self-Shielding Efficiency Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The nextmore » improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.« less

  15. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo; De Luca, Valeria; Tognolatti, Piero; Bardati, Fernando; Snow, Brent; Stauffer, Paul

    2011-06-01

    Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection.

  16. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  17. Preliminary Development of a Multifunctional Hot Structure Heat Shield

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Daryabeigi, Kamran; Samareh, Jamshid A.; Armand, Sasan C.; Perino, Scott V

    2014-01-01

    Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.

  18. Effective radiation reduction in Space Station and missions beyond the magnetosphere

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas M.; Stassinopoulos, E. G.

    1989-01-01

    This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).

  19. Quiet Cruise Efficient Short Take-off and Landing Subsonic Transport System

    NASA Technical Reports Server (NTRS)

    Kawai, Ron

    2008-01-01

    This NASA funded study conceived a revolutionary airplane concept to enable future traffic growth by using regional air space. This requires a very quiet airplane with STOL capability. Starting with a Blended Wing Body that is cruise efficient with inherent low noise characteristics from forward noise shielding and void of aft downward noise reflections, integration of embedded distributed propulsion enables incorporation of the revolutionary concept for jet noise shielding. Embedded distributed propulsion also enables incorporation of a fan bleed internally blown flap for quiet powered lift. The powered lift provides STOL capability for operation at regional airports with rapid take-off and descent to further reduce flyover noise. This study focused on configuring the total engine noise shielding STOL concept with a BWB airplane using the Boeing Phantom Works WingMOD multidisciplinary optimization code to define a planform that is pitch controllable. The configuration was then sized and mission data developed to enable NASA to assess the flyover and sideline noise. The foundational technologies needed are identified including military dual use benefits.

  20. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  1. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  2. Ultrashort electromagnetic pulse control of intersubband quantum well transitions

    PubMed Central

    2012-01-01

    We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956

  3. Ultrashort electromagnetic pulse control of intersubband quantum well transitions.

    PubMed

    Paspalakis, Emmanuel; Boviatsis, John

    2012-08-23

    : We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.

  4. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method

    NASA Astrophysics Data System (ADS)

    Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed

    2017-02-01

    Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.

  5. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  6. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel J.; Hintze, Paul E.; Sibille, Laurent

    2011-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Three regolith processing and manufacturing methods will be discussed: 1) oxygen & metal extraction ISRU processes produce glassy melts enriched in alumina and titania, processed to obtain variable density, high melting point and heat-resistance; 2) compression and sintering of the regolith yield low density materials; 3) in-situ derived high-temperature polymers are created to bind regolith particles together, with a lower energy budget.

  7. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel; Hintze, Paul; Sibille, Laurent

    2012-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.

  8. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order.

    PubMed

    Van Pelt, Wesley R; Drzyzga, Michael

    2007-02-01

    Lead and plastic are commonly used to shield beta radiation. Radiation protection literature is ubiquitous in advising the placement of plastic first to absorb all the beta particles before any lead shielding is used. This advice is based on the well established theory that radiative losses (bremsstrahlung production) are more prevalent in higher atomic number (Z) materials than in low Z materials. Using 32P beta radiation, we measured bremsstrahlung photons transmitted through lead and plastic (Lucite) shielding in different test configurations to determine the relative efficacy of lead alone, plastic alone, and the positional order of lead and plastic. With the source (32P) and detector held at a constant separation distance, we inserted lead and/or plastic absorbers and measured the reduction in bremsstrahlung radiation level measured by the detector. With these test conditions, analysis of measured bremsstrahlung radiation in various thicknesses and configurations of lead and plastic shielding shows the following: placing plastic first vs. lead first reduces the transmitted radiation level only marginally (10% to 40%); 2 mm of additional lead is sufficient to correct the "mistake" of placing the lead first; and for equal thicknesses or weights of lead and plastic, lead is a more efficient radiation shield than plastic.

  9. Sign language in the CT suite: a new approach in communicating between radiologists and radiographers.

    PubMed

    Wang, Edward H; Sampson, Matthew J

    2016-09-01

    When performing CT-guided procedures or angiographic procedures, radiologists performing procedures need to communicate with radiographers at a workstation behind radiation shielding glass. As shielding renders verbal communication impossible, we have developed a set of standardised hand signals for use at our department to help us achieve clear and efficient communication between radiologists and radiographers while performing CT-guided or angiographic procedures.

  10. Methodology for worker neutron exposure evaluation in the PDCF facility design.

    PubMed

    Scherpelz, R I; Traub, R J; Pryor, K H

    2004-01-01

    A project headed by Washington Group International is meant to design the Pit Disassembly and Conversion Facility (PDCF) to convert the plutonium pits from excessed nuclear weapons into plutonium oxide for ultimate disposition. Battelle staff are performing the shielding calculations that will determine appropriate shielding so that the facility workers will not exceed target exposure levels. The target exposure levels for workers in the facility are 5 mSv y(-1) for the whole body and 100 mSv y(-1) for the extremity, which presents a significant challenge to the designers of a facility that will process tons of radioactive material. The design effort depended on shielding calculations to determine appropriate thickness and composition for glove box walls, and concrete wall thicknesses for storage vaults. Pacific Northwest National Laboratory (PNNL) staff used ORIGEN-S and SOURCES to generate gamma and neutron source terms, and Monte Carlo (computer code for) neutron photon (transport) (MCNP-4C) to calculate the radiation transport in the facility. The shielding calculations were performed by a team of four scientists, so it was necessary to develop a consistent methodology. There was also a requirement for the study to be cost-effective, so efficient methods of evaluation were required. The calculations were subject to rigorous scrutiny by internal and external reviewers, so acceptability was a major feature of the methodology. Some of the issues addressed in the development of the methodology included selecting appropriate dose factors, developing a method for handling extremity doses, adopting an efficient method for evaluating effective dose equivalent in a non-uniform radiation field, modelling the reinforcing steel in concrete, and modularising the geometry descriptions for efficiency. The relative importance of the neutron dose equivalent compared with the gamma dose equivalent varied substantially depending on the specific shielding conditions and lessons were learned from this effect. This paper addresses these issues and the resulting methodology.

  11. A superconducting homopolar motor and generator—new approaches

    NASA Astrophysics Data System (ADS)

    Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D. B. T.; Guina, Ante

    2016-03-01

    Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor.

  12. A Broadband High Dynamic Range Digital Receiving System for Electromagnetic Signals

    DTIC Science & Technology

    2010-08-26

    dB. [0014] In Steinbrecher (United States Patent No. 7,250,920), an air interface metasurface is described that efficiently captures incident...broadband electromagnetic energy and provides a method for segmenting the total metasurface capture area into a plurality of smaller capture areas...such that the sum of the capture areas is equal to the total capture area of the metasurface . The segmentation of the electromagnetic capture area is

  13. Using the MCNP Taylor series perturbation feature (efficiently) for shielding problems

    NASA Astrophysics Data System (ADS)

    Favorite, Jeffrey

    2017-09-01

    The Taylor series or differential operator perturbation method, implemented in MCNP and invoked using the PERT card, can be used for efficient parameter studies in shielding problems. This paper shows how only two PERT cards are needed to generate an entire parameter study, including statistical uncertainty estimates (an additional three PERT cards can be used to give exact statistical uncertainties). One realistic example problem involves a detailed helium-3 neutron detector model and its efficiency as a function of the density of its high-density polyethylene moderator. The MCNP differential operator perturbation capability is extremely accurate for this problem. A second problem involves the density of the polyethylene reflector of the BeRP ball and is an example of first-order sensitivity analysis using the PERT capability. A third problem is an analytic verification of the PERT capability.

  14. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  15. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  16. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the wiring on the back of the panel. Each step increases the potential for occurrence of latent defects, loss of process control, and attrition of components. An EMCSA panel includes an integral cover made from a transparent material. The silicone cover supplants the individual cover glasses on the cells and serves as an additional unitary structural support that offers the advantage, relative to glass, of the robust, forgiving nature of the silcone material. The cover contains pockets that hold the solar cells in place during the lamination process. The cover is coated with indium tin oxide to make its surface electrically conductive, so that it serves as a contiguous, electrically grounded shield over the entire panel surface. The cells are mounted in proximity to metallic printed wiring. The painted-wiring layer comprises metal-film traces on a sheet of Kapton (or equivalent) polyimide. The traces include contact pads on one side of the sheet for interconnecting the cells. Return leads are on the opposite side of the sheet, positioned to form the return currents substantially as mirror images of, and in proximity to, the cell sheet currents, thereby minimizing magnetic moments. The printed-wiring arrangement mimics the back-wiring arrangement of conventional solar arrays, but the current-loop areas and the resulting magnetic moments are much smaller because the return-current paths are much closer to the solar-cell sheet currents. The contact pads are prepared with solder fo electrical and mechanical bonding to the cells. The pocketed cover/shield, the solar cells, the printed-wiring layer, an electrical bonding agent, a mechanical-bonding agent, a composite structural front-side face sheet, an aluminum honeycomb core, and a composite back-side face sheet are all assembled, then contact pads are soldered to the cells and the agents are cured in a single lamination process.

  17. A Fast Code for Jupiter Atmospheric Entry Analysis

    NASA Technical Reports Server (NTRS)

    Yauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq

    1999-01-01

    A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry. The calculation required 3.5 sec of CPU time on a work station, or three to four orders of magnitude less than for previous Jovian entry heat shields. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 13.7% too high. The forebody's mass loss was overpredicted by 5.3% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was satisfactory in view of the code's fast running time and the methods' approximations.

  18. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  19. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  20. Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.

    An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.

Top