Energy Efficient Building Management | Climate Neutral Research Campuses |
NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may
Priority directions of the improvement of energy management at the enterprise
NASA Astrophysics Data System (ADS)
Dyakova, Galina; Izmaylova, Svetlana; Mottaeva, Angela; Karanina, Elena
2017-10-01
The relevance of article is caused by the fact that at the industrial enterprises pay little attention to the matters of energy saving or to the management of energy efficiency. The authors of the article defined that the potential of the increase in energy efficiency as well as the improvement of quality of strategic management at the enterprise, is connected with investment into the human capital. For the improvement of system of energy management, the key indicators of energy efficiency at the individual level are defined, the algorithm of the development of key indicators by means of which the energy efficiency of the human capital will be measured is developed, actions for support to the developed transitional strategy of power management are offered, positive results of formation of the human capital directed to increase in energy efficiency are designated.
2016-10-28
assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Government Through Leadership in Environmental Management Systems, dated April 21, 2000. This... to maximize cost efficient energy management: (a) The GSA Federal Supply Schedule Products Guide...) Executive Order 13123, Greening the Government Through Efficient Energy Management, dated June 8, 1999...
Specification of Energy Assessment Methodologies to Satisfy ISO 50001 Energy Management Standard
NASA Astrophysics Data System (ADS)
Kanneganti, Harish
Energy management has become more crucial for industrial sector as a way to lower their cost of production and in reducing their carbon footprint. Environmental regulations also force the industrial sector to increase the efficiency of their energy usage. Hence industrial sector started relying on energy management consultancies for improvements in energy efficiency. With the development of ISO 50001 standard, the entire energy management took a new dimension involving top level management and getting their commitment on energy efficiency. One of the key requirements of ISO 50001 is to demonstrate continual improvement in their (industry) energy efficiency. The major aim of this work is to develop an energy assessment methodology and reporting format to tailor the needs of ISO 50001. The developed methodology integrates the energy reduction aspect of an energy assessment with the requirements of sections 4.4.3 (Energy Review) to 4.4.6 (Objectives, Targets and Action Plans) in ISO 50001 and thus helping the facilities in easy implementation of ISO 50001.
O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.
2004-07-31
This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.
NASA Astrophysics Data System (ADS)
Li, Siwei; Li, Jun; Liu, Zhuochu; Wang, Min; Yue, Liang
2017-05-01
After the access of household distributed photovoltaic, conditions of high permeability generally occur, which cut off the connection between distributed power supply and major network rapidly and use energy storage device to realize electrical energy storage. The above operations cannot be adequate for the power grid health after distributed power supply access any more from the perspective of economy and rationality. This paper uses the integration between device and device, integration between device and system and integration between system and system of household microgrid and household energy efficiency management, to design household microgrid building program and operation strategy containing household energy efficiency management, to achieve efficient integration of household energy efficiency management and household microgrid, to effectively solve problems of high permeability of household distributed power supply and so on.
75 FR 34657 - Energy Efficiency and Sustainable Design Standards for New Federal Buildings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Efficiency and Sustainable Design Standards for New Federal Buildings AGENCY: Office of Energy Efficiency and....S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management... June 11, 2010. Cathy Zoi, Assistant Secretary, Energy Efficiency and Renewable Energy. [FR Doc. 2010...
ERIC Educational Resources Information Center
Kennedy, Mike
2007-01-01
Many environmental advocates say education institutions can do a much better job of conserving resources and using energy more efficiently. Before administrators and facility managers can be convinced that better energy management is beneficial, they have to grasp what energy efficiency entails. This article discusses the benefits that schools can…
1998 federal energy and water management award winners
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-28
Energy is a luxury that no one can afford to waste, and many Federal Government agencies are becoming increasingly aware of the importance of using energy wisely. Thoughtful use of energy resources is important, not only to meet agency goals, but because energy efficiency helps improve air quality. Sound facility management offers huge savings that affect the agency`s bottom line, the environment, and workplace quality. In these fiscally-modest times, pursuing sound energy management programs can present additional challenges for energy and facility managers. The correct path to take is not always the easiest. Hard work, innovation, and vision are characteristicmore » of those who pursue energy efficiency. That is why the Department of energy, Federal Energy Management Program (FEMP) is proud to salute the winners of the 1998 Federal Energy and Water Management Award. The 1998 winners represent the kind of 21st century thinking that will help achieve widespread Federal energy efficiency. In one year, the winners, through a combination of public and private partnerships, saved more than $222 million and 10.5 trillion Btu by actively identifying and implementing energy efficiency, water conservation, and renewable energy projects. Through their dedication, hard work, ingenuity, and success, the award winners have also inspired others to increase their own efforts to save energy and water and to more aggressively pursue the use of renewable energy sources. The Federal Energy and Water Management Awards recognize the winners` contributions and ability to inspire others to take action.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less
Building Energy Asset Score for Real Estate Managers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for real estate managers.
Fan, Jinlong; Pan, Zhihua; Zhao, Ju; Zheng, Dawei; Tuo, Debao; Zhao, Peiyi
2004-04-01
The degradation of ecological environment in the agriculture-pasture ecotone in northern China has been paid more attentions. Based on our many years' research and under the guide of energy and material flow theory, this paper put forward an ecological management model, with a hill as the basic cell and according to the natural, social and economic characters of Houshan dryland farming area inside the north agriculture-pasture ecotone. The input and output of three models, i.e., the traditional along-slope-tillage model, the artificial grassland model and the ecological management model, were observed and recorded in detail in 1999. Energy and material flow analysis based on field test showed that compared with traditional model, ecological management model could increase solar use efficiency by 8.3%, energy output by 8.7%, energy conversion efficiency by 19.4%, N output by 26.5%, N conversion efficiency by 57.1%, P output by 12.1%, P conversion efficiency by 45.0%, and water use efficiency by 17.7%. Among the models, artificial grassland model had the lowest solar use efficiency, energy output and energy conversion efficiency; while the ecological management model had the most outputs and benefits, was the best model with high economic effect, and increased economic benefits by 16.1%, compared with the traditional model.
ERIC Educational Resources Information Center
Dudik, C. E. Jane
2017-01-01
Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... submittals for consistency with the requirements of Office of Management and Budget's (OMB) Cost Principles... classes (Basic Financial Assistance and Cost Principles--see the Acquisition Career Management Program... not provided from the National Environmental Policy Act (NEPA) or the Office of Management and Budget...
Firm performance and the role of environmental management.
Lundgren, Tommy; Zhou, Wenchao
2017-12-01
This paper analyzes the interactions between three dimensions of firm performance - productivity, energy efficiency, and environmental performance - and especially sheds light on the role of environmental management. In this context, environmental management is investments to reduce environmental impact, which may also affect firm competitiveness, in terms of change in productivity, and spur more (or less) efficient use of energy. We apply data envelopment analysis (DEA) technique to calculate the Malmquist firm performance indexes, and a panel vector auto-regression (VAR) methodology is utilized to investigate the dynamic and causal relationship between the three dimensions of firm performance and environmental investment. Main results show that energy efficiency and environmental performance are integrated, and energy efficiency and productivity positively reinforce each other, signifying the cost saving property of more efficient use of energy. Hence, increasing energy efficiency, as advocated in many of today's energy policies, could capture multiple benefits. The results also show that improved environmental performance and environmental investments constrain next period productivity, a result that would be in contrast with the Porter hypothesis and strategic corporate social responsibility; both concepts conveying the notion that pro-environmental management can boost productivity and competitiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effectiveness of energy management system on energy efficiency in the building
NASA Astrophysics Data System (ADS)
Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.
2017-10-01
Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.
NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad
2012-12-31
The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.« less
48 CFR 23.103 - Sustainable acquisitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...
48 CFR 23.103 - Sustainable acquisitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...
Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Chun-Yi
By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.« less
Sustainability through Dynamic Energy Management - Continuum Magazine |
NREL Sustainability through Dynamic Energy Management Sustainability through Dynamic Energy Management Integrating behavior change with advanced building systems is the new model in energy efficiency , it's necessary to integrate dynamic energy management with occupant behavior change. As plans were
Cyber physical systems based on cloud computing and internet of things for energy efficiency
NASA Astrophysics Data System (ADS)
Suciu, George; Butca, Cristina; Suciu, Victor; Cretu, Alexandru; Fratu, Octavian
2016-12-01
Cyber Physical Systems (CPS) and energy efficiency play a major role in the context of industry expansion. Management practices for improving efficiency in the field of energy consumption became a priority of many major industries who are inefficient in terms of exploitation costs. The effort of adopting energy management means in an organization is quite challenging due to the lack of resources and expertise. One major problem consists in the lack of knowledge for energy management and practices. This paper aims to present authors' concept in creating a Cyber Physical Energy System (CPES) that will change organizations' way of consuming energy, by making them aware of their use. The presented concept will consider the security of the whole system and the easy integration with the existing electric network infrastructure.
NASA Astrophysics Data System (ADS)
Nkosi, S. B.; Pretorius, J. H. C.
2017-07-01
The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.
NASA Astrophysics Data System (ADS)
Bao, Dechun; Luo, Lichuan; Zhang, Zhaohua; Ren, Tianling
2017-09-01
Recently, triboelectric nanogenerators (TENGs), as a collection technology with characteristics of high reliability, high energy density and low cost, has attracted more and more attention. However, the energy coming from TENGs needs to be stored in a storage unit effectively due to its unstable ac output. The traditional energy storage circuit has an extremely low energy storage efficiency for TENGs because of their high internal impedance. This paper presents a new power management circuit used to optimize the energy using efficiency of TENGs, and realize large load capacity. The power management circuit mainly includes rectification storage circuit and DC-DC management circuit. A rotating TENG with maximal energy output of 106 mW at 170 rpm based on PCB is used for the experimental verification. Experimental results show that the power energy transforming to the storage capacitor reach up to 53 mW and the energy using efficiency is calculated as 50%. When different loading resistances range from 0.82 to 34.5 k {{Ω }} are connected to the storage capacitor in parallel, the power energy stored in the storage capacitor is all about 52.5 mW. Getting through the circuit, the power energy coming from the TENGs can be used to drive numerous conventional electronics, such as wearable watches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James
Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less
Contracting for Efficiency. A Best Practices Guide for Energy-Efficient Product Procurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Saralyn; Payne, Christopher
2016-04-01
The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.
Contracting for Efficiency: A Best Practices Guide for Energy Efficient Product Procurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Saralyn; Payne, Christopher
The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.
48 CFR 1323.204 - Procurement exemptions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...
48 CFR 1323.204 - Procurement exemptions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...
48 CFR 1323.204 - Procurement exemptions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...
48 CFR 1323.204 - Procurement exemptions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...
48 CFR 1323.204 - Procurement exemptions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 1323.204 Procurement exemptions. The designee authorized to exempt the procurement of an ENERGY STAR or Federal Energy Management...
75 FR 39678 - Meeting of Energy Services Companies and the Federal Energy Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... DEPARTMENT OF ENERGY Meeting of Energy Services Companies and the Federal Energy Management... Management Program (FEMP) within the Office of Energy Efficiency and Renewable Energy on the use of high-end... conducted in an informal, conference style. Each participant will be allowed to make a prepared general...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Safety and Drug-Free Work Place 970.2307 Contracting for Environmentally Preferable and Energy-Efficient... Environmentally Preferable and Energy-Efficient Products and Services. 970.2307 Section 970.2307 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND...
48 CFR 23.103 - Sustainable acquisitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.103 Sustainable acquisitions. (a... the products are— (1) Energy-efficient (ENERGY STAR® or Federal Energy Management Program (FEMP...
48 CFR 23.103 - Sustainable acquisitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.103 Sustainable acquisitions. (a... the products are— (1) Energy-efficient (ENERGY STAR ® or Federal Energy Management Program (FEMP...
Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores
Kim, Youngmin; Lee, Chan-Gun
2017-01-01
In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth
2013-11-01
Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.
2013-08-01
Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.
77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... agencies to use this methodology to determine fleet inventory targets and to prepare fleet management plans.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program (EE... DOE receives will be made available on the Federal Energy Management Program's Federal Fleet...
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE..., and encouraging the safe operation of vehicles by— (a) Controlling pollution; (b) Managing energy and water use in Government facilities efficiently; (c) Using renewable energy and renewable energy...
Fotopoulou, Eleni; Zafeiropoulos, Anastasios; Terroso-Sáenz, Fernando; Şimşek, Umutcan; González-Vidal, Aurora; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio
2017-09-07
Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research.
Fotopoulou, Eleni; Tsiolis, George; Gouvas, Panagiotis; Liapis, Paris; Fensel, Anna; Skarmeta, Antonio
2017-01-01
Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants’ behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants’ behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants’ lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research. PMID:28880227
10 CFR 905.16 - What are the requirements for the minimum investment report alternative?
Code of Federal Regulations, 2013 CFR
2013-01-01
... report alternative? 905.16 Section 905.16 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT...; renewable energy; efficiency and alternative energy-related research and development; low-income energy... collected for and spent on DSM, renewable energy, efficiency or alternative energy-related research and...
10 CFR 905.16 - What are the requirements for the minimum investment report alternative?
Code of Federal Regulations, 2014 CFR
2014-01-01
... report alternative? 905.16 Section 905.16 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT...; renewable energy; efficiency and alternative energy-related research and development; low-income energy... collected for and spent on DSM, renewable energy, efficiency or alternative energy-related research and...
10 CFR 905.16 - What are the requirements for the minimum investment report alternative?
Code of Federal Regulations, 2011 CFR
2011-01-01
... report alternative? 905.16 Section 905.16 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT...; renewable energy; efficiency and alternative energy-related research and development; low-income energy... collected for and spent on DSM, renewable energy, efficiency or alternative energy-related research and...
10 CFR 905.16 - What are the requirements for the minimum investment report alternative?
Code of Federal Regulations, 2012 CFR
2012-01-01
... report alternative? 905.16 Section 905.16 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT...; renewable energy; efficiency and alternative energy-related research and development; low-income energy... collected for and spent on DSM, renewable energy, efficiency or alternative energy-related research and...
Rocha, Paula; Siddiqui, Afzal; Stadler, Michael
2014-12-09
In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less
Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, J.; Hallett, K.; DeWolfe, J.
2012-01-01
Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less
NASA Astrophysics Data System (ADS)
Wang, Bin; Xu, Jun; Cao, Binggang; Zhou, Xuan
2015-05-01
This paper proposes a novel topology of multimode hybrid energy storage system (HESS) and its energy management strategy for electric vehicles (EVs). Compared to the conventional HESS, the proposed multimode HESS has more operating modes and thus it could in further enhance the efficiency of the system. The rule-based control strategy and the power-balancing strategy are developed for the energy management strategy to realize mode selection and power distribution. Generally, the DC-DC converter will operate at peak efficiency to convey the energy from the batteries to the UCs. Otherwise, the pure battery mode or the pure ultracapacitors (UCs) mode will be utilized without the DC-DC converter. To extend the battery life, the UCs have the highest priority to recycle the energy and the batteries are isolated from being recharged directly during regenerative braking. Simulations and experiments are established to validate the proposed multimode HESS and its energy management strategy. The results reveal that the energy losses in the DC-DC converter, the total energy consumption and the overall system efficiency of the proposed multimode HESS are improved compared to the conventional HESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, A.
2001-05-16
Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems;more » water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.« less
NASA Astrophysics Data System (ADS)
Rasmeni, Zelda; Pan, Xiaowei
2017-07-01
The Quick-E-Scan methodology is a simple and quick method that is used to achieve operational energy efficiency as opposed to detailed energy audits, which therefore offers a no cost or less cost solutions for energy management programs with a limited budget. The quick-E-scan methodology was used to assesses a steel foundry plant based in Benoni through dividing the foundry into production sections which entailed a review of the current processes and usage patterns of energy within the plant and a detailed analysis of options available for improvement and profitable areas in which energy saving measures may be implemented for an increase energy efficiency which can be presented to management of the company.
Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia
NASA Astrophysics Data System (ADS)
Roy, Anish Kumar
To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In addition, it links theory with practice by offering a strategy that can effectively address critical issues arising from the energy-development-policy nexus of the sustainable energy development debate.
Use of GIS-based Site-specific Nitrogen Management for Improving Energy Efficiency
USDA-ARS?s Scientific Manuscript database
To our knowledge, geographical information system (GIS)-based site-specific nitrogen management (SSNM) techniques have not been used to assess agricultural energy costs and efficiency. This chapter uses SSNM case studies for corn (Zea mays L.) grown in Missouri and cotton (Gossypium hirsutum L.) gro...
48 CFR 970.2305 - Workplace substance abuse programs-management and operating contracts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free...
Disaster Resiliency and Recovery Example Project: Galena, Alaska |
Emergency Management Agency (FEMA) to identify energy-efficient rebuilding solutions, including measures to potential for water and energy efficiency measures, as well as appropriate on site renewable energy
High efficiency motor selection handbook
NASA Astrophysics Data System (ADS)
McCoy, Gilbert A.; Litman, Todd; Douglass, John G.
1990-10-01
Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.
Should mandatory energy reporting be eliminated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendall, R.
1981-08-01
Energy users report problems with the Industrial Reporting Program (IRP), a joint voluntary energy-efficiency program which began in 1975. Since energy-intensive industries were already organizing voluntary reporting, the new program required unnecessary expenditures. The Reagan administration's plan to eliminate the program by not funding it is opposed by many energy managers who want the data collected to help them with their management programs. Their interest is primarily in a data base because energy costs provide adequate incentives to conserve. They also want interaction (preferably voluntary) between industry and goverment on efficiency-improvement opportunities. (DCK)
Energy Management Control Systems: Tools for Energy Savings and Environmental Protection
NASA Technical Reports Server (NTRS)
Zsebik, Albin; Zala, Laszlo F.
2002-01-01
The change in the price of energy has encouraged the increase of energy efficiency. This report will discuss a tool to promote energy efficiency in intelligent buildings, energy management control systems (EMCS). In addition to the online control of energy production, supply, and consumption, the function of the EMCS is to support short- and long-term planning of the system operation as well as to collect, store, and regularly evaluate operation data. The strategies behind planning and implementing the EMCS as well as the manipulating the resulting data are discussed in this report.
Prediction-based Dynamic Energy Management in Wireless Sensor Networks
Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei
2007-01-01
Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.
LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-08-12
U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) emerging technology case study showcasing LED lighting to improve energy efficiency in parking areas at the NAVFAC Engineering Services Center.
NREL Leads Energy Systems Integration - Continuum Magazine | NREL
performance data to manage and optimize campus energy use. Integrated Solutions for a Complex Energy World 03 Integrated Solutions for a Complex Energy World Energy systems integration optimizes the design and efficient data centers in the world. Sustainability through Dynamic Energy Management Sustainability through
Energy monitoring based on human activity in the workplace
NASA Astrophysics Data System (ADS)
Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.
2014-04-01
Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.
Newly emerging resource efficiency manager programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, S.; Howell, C.
1997-12-31
Many facilities in the northwest such as K--12 schools, community colleges, and military installations are implementing resource-efficiency awareness programs. These programs are generally referred to as resource efficiency manager (REM) or resource conservation manager (RCM) programs. Resource efficiency management is a systems approach to managing a facility`s energy, water, and solid waste. Its aim is to reduce utility budgets by focusing on behavioral changes, maintenance and operation procedures, resource accounting, education and training, and a comprehensive awareness campaign that involves everyone in the organization.
Mobil`s Energy Management Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeneborn, F.C.
1997-06-01
Mobil`s Facilities Management Network sponsored a cross-divisional team to reduce energy costs. This team developed an Energy Management Plan to reduce energy costs by $25 million annually throughout all Mobil divisions over the next five years (total of $125 million committed savings). The core of this plan is the belief that energy costs are controllable and should be managed with the expertise that Mobil manages other parts of the business. Areas of focus are economic procurement, efficient consumption, and expertise sharing.
Storying energy consumption: Collective video storytelling in energy efficiency social marketing.
Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine
2018-05-01
Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gohlke, Oliver
2009-11-01
Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.
Market leadership by example: Government sector energy efficiency in developing countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel
2002-05-20
Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generatemore » broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.« less
Energy Efficiency in Small Server Rooms: Field Surveys and Findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Iris; Greenberg, Steve; Mahdavi, Roozbeh
Fifty-seven percent of US servers are housed in server closets, server rooms, and localized data centers, in what are commonly referred to as small server rooms, which comprise 99percent of all server spaces in the US. While many mid-tier and enterprise-class data centers are owned by large corporations that consider energy efficiency a goal to minimize business operating costs, small server rooms typically are not similarly motivated. They are characterized by decentralized ownership and management and come in many configurations, which creates a unique set of efficiency challenges. To develop energy efficiency strategies for these spaces, we surveyed 30 smallmore » server rooms across eight institutions, and selected four of them for detailed assessments. The four rooms had Power Usage Effectiveness (PUE) values ranging from 1.5 to 2.1. Energy saving opportunities ranged from no- to low-cost measures such as raising cooling set points and better airflow management, to more involved but cost-effective measures including server consolidation and virtualization, and dedicated cooling with economizers. We found that inefficiencies mainly resulted from organizational rather than technical issues. Because of the inherent space and resource limitations, the most effective measure is to operate servers through energy-efficient cloud-based services or well-managed larger data centers, rather than server rooms. Backup power requirement, and IT and cooling efficiency should be evaluated to minimize energy waste in the server space. Utility programs are instrumental in raising awareness and spreading technical knowledge on server operation, and the implementation of energy efficiency measures in small server rooms.« less
76 FR 22685 - Interagency Management Task Force Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-22
... Force Public Meeting AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy (DOE... meetings of the Interagency Energy Management Task Force (Task Force) in 2011. FEMP intends to hold recurring public meetings of the Task Force. Interested parties can check http://www.femp.energy.gov/news...
Creating Jobs through Energy Efficiency Using Wisconsin's Successful Focus on Energy Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhtar, Masood; Corrigan, Edward; Reitter, Thomas
2012-03-30
The purpose of this project was to provide administrative and technical support for the completion of energy efficiency projects that reduce energy intensity and create or save Wisconsin industrial jobs. All projects have been completed. Details in the attached reports include project management, job development, and energy savings for each project.
Advanced building energy management system demonstration for Department of Defense buildings.
O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong
2013-08-01
This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.
Put the Heat on Cutting Energy Costs.
ERIC Educational Resources Information Center
Steller, Arthur W.; Pell, Carroll J.
1985-01-01
The school board establishes a commitment to efficient energy management through its policies and budget priorities. Such a policy should include a statement of purpose, assign accountability for improving energy efficiency, and ensure that mandated standards are maintained. To permanently prevent energy waste, a gradual change to a comprehensive…
Energy management and cooperation in microgrids
NASA Astrophysics Data System (ADS)
Rahbar, Katayoun
Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management, which are of low complexity and work given arbitrary realizations of renewable energy generation/load demand. On the other hand, for self-interested microgrids, the partially cooperative energy management is formulated and a distributed algorithm is proposed to optimize the energy cooperation such that energy costs of individual microgrids reduce simultaneously over the case without energy cooperation while limited information is shared among the microgrids and the central controller.
The Efficient Windows Collaborative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petermann, Nils
2006-03-31
The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekov, Alex; Thompson, Lisa; McKane, Aimee
This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and thatmore » facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekov, Alex; Thompson, Lisa; McKane, Aimee
2009-05-11
This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiencymore » measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.« less
48 CFR 970.2305-2 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 970.2305-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-2 Applicability. (a) All management and...
48 CFR 970.2305-2 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 970.2305-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-2 Applicability. (a) All management and...
48 CFR 970.2305-2 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 970.2305-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-2 Applicability. (a) All management and...
48 CFR 970.2305-2 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 970.2305-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-2 Applicability. (a) All management and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erhart, Steven C.; Spencer, Charles G.
The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP), while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. The mission of the Y-12 Energy Management program is to incorporate energy-efficient technologies site-wide and to position Y-12more » to meet NNSA energy requirement needs through 2025 and beyond. This plan addresses: Greenhouse Gas Reduction and Comprehensive Greenhouse Gas Inventory; Buildings, ESPC Initiative Schedule, and Regional and Local Planning; Fleet Management; Water Use Efficiency and Management; Pollution Prevention and Waste Reduction; Sustainable Acquisition; Electronic Stewardship and Data Centers; Renewable Energy; Climate Change; and Budget and Funding.« less
NASA Astrophysics Data System (ADS)
Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat
2017-10-01
The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.
Solar micro-power system for self-powered wireless sensor nodes
NASA Astrophysics Data System (ADS)
He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei
2008-10-01
In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hult, Erin; Granderson, Jessica; Mathew, Paul
While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hourmore » onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [Docket BOEM-2011-0095] Request for...) AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Request for information. SUMMARY..., each designed to efficiently issue renewable energy leases to those who value them most and are best...
Basic Energy Conservation and Management--Part 2: HVAC
ERIC Educational Resources Information Center
Krueger, Glenn
2012-01-01
Reducing school district energy expenditures has become a universal goal, and new technologies have brought greater energy efficiencies to the school environment. In Part 1 of this two-part series, the author discussed the steps required to establish an energy conservation and management program with an emphasis on lighting. In this article, he…
NASA Astrophysics Data System (ADS)
Shah, Vaishnavi R.
The general significance of the topic stems from the fact that energy consumption by the industrial manufacturing sector in the U.S. accounted for one third of total consumption in 2016 and is expected to grow more than 25% by 2040; small and medium sized manufacturing (SMM) facilities are collectively responsible for a large portion of this consumption. Increasing the energy efficiency of SMM facilities means less energy is used, or energy is used in a more efficiency manner, decreasing the amount of natural resources consumed, reducing emissions, and lowering operating costs - potentially resulting in greater profits and a stronger economy. Based on experience with the Industrial Assessment Center program and data presented in the literature, a typical SMM facility has between 10 and 30% wasted energy. This wasted energy presents an opportunity for significant savings that could be achieved through systematic energy management. However, formal energy management systems (EnMS), such as ISO 50001, have not yet been widely adopted by SMMs. This is in large part due to numerous barriers faced by SMMs. A significant part of a successful implementation of an EnMS involves data collection and analysis tools such as submetering technology and energy information systems. This dissertation research seeks to provide SMMs with the ability to break through some of the barriers associated with implementation of EnMSs and submetering technology in order to improve their energy management. This research first makes the connection between the past quality movement and the current energy efficiency movement. Four absolutes to energy management are presented which are used to create an EnMS hierarchy, which describes the stages in an organization's energy management system maturity. An energy management maturity grid, modeled after Crosby's quality management maturity grid, is presented as a tool for SMMs to self-assess the state of their current EnMS. Finally, a methodology is presented to assist an SMM in implementing a formal EnMS in a way that is funded through the energy savings it identifies. This ensures a financially sustainable EnMS which can adapt to an organization's needs over time. This methodology is validated through a conceptual example.
Development of a Simplified Sustainable Facilities Guide
2003-04-18
Government Through Efficient Energy Management , June 3, 1999 EO 13148 Greening the Government Through Leadership in Environmental Management ...architects, engineers, and project managers . - The United States Green Building Council (USGBC) has created the " Leadership in Energy and...SIMPLIFIED SUSTAINABLE FACILITIES GUIDE THESIS Presented to the Faculty Department of Systems and Engineering Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... and green building initiatives for transit facilities and equipment. 3. For transit asset management... efficiency or reduces energy consumption/green house gas emissions. Proposers are encouraged to provide... to: 1. Improve energy efficiency or reduce energy consumption/green house gas emissions. Proposers...
NASA Astrophysics Data System (ADS)
Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Rajemi, Mohamad Farizal
2016-08-01
Energy demand and consumption in buildings will rise rapidly in the near future because of several social economics factors and this situation occurs not only in developed countries but also in developing countries such as Malaysia. There is demand towards building with energy efficiency features at this time, however most of the current buildings types are still being constructed with conventional designs, thus contribute to inefficient of energy consumption during the operation stage of the building. This paper presents the concept and the application of Value Management (VM) approach and its potential to improve consideration of energy efficiency within pre-construction process. Based on the relevant literatures, VM has provides an efficient and effective delivery system to fulfill the objectives and client's requirements. Generally in this paper, VM is discussed and scrutinized with reference to previous studies to see how these concepts contribute to better optimize the energy consumption in a building by seeking the best value energy efficiency through the design and construction process. This paper will not draw any conclusion but rather a preliminary research to propose the most energy efficiency measures to reliably accomplish a function that will meet the client's needs, desires and expectations. For further research in future, simple quantitative industry survey and VM workshops will be conducted to validate and further improve the research.
Maximize Energy Efficiency in Buildings | Climate Neutral Research Campuses
Buildings on a research campus, especially laboratory buildings, often represent the most cost-effective plans, campuses can evaluate the following: Energy Management Building Management New Buildings Design
Energy Smart Colorado, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitchell, John M.; Palmer, Adam L.
2014-03-31
Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energy’s Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions tomore » their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.« less
2014-09-01
peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a
NASA Astrophysics Data System (ADS)
Gosman, Nathaniel
For energy utilities faced with expanded jurisdictional energy efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial sector, performance incentive programs can be an effective means to maximize the reliability of planned energy savings. Performance incentive programs balance the objectives of high participation rates with persistent energy savings by: (1) providing financial incentives and resources to minimize constraints to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective to reduce at least 66 per cent of new electricity demand with DSM by 2020, the utility is faced with a higher level of DSM risk, or uncertainties that impact the costeffective acquisition of planned energy savings. For industrial DSM incentive programs, DSM risk can be broken down into project development and project performance risks. Development risk represents the project ramp-up phase and is the risk that planned energy savings do not materialize due to low customer response to program incentives. Performance risk represents the operational phase and is the risk that planned energy savings do not persist over the effective measure life. DSM project development and performance risks are, in turn, a result of industrial economic, technological and organizational conditions, or DSM risk factors. In the BC large industrial sector, and characteristic of large industrial sectors in general, these DSM risk factors include: (1) capital constraints to investment in energy efficiency, (2) commodity price volatility, (3) limited internal staffing resources to deploy towards energy efficiency, (4) variable load, process-based energy saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over time (energy performance). This research assessed the capacity of alternative performance incentive program models to manage DSM risk in BC. Three performance incentive program models were assessed and compared to BC Hydro's current large industrial DSM incentive program, Power Smart Partners -- Transmission Project Incentives, itself a performance incentive-based program. Together, the selected program models represent a continuum of program design and implementation in terms of the schedule and level of incentives provided, the duration and rigour of measurement and verification (M&V), energy efficiency measures targeted and involvement of the private sector. A multi criteria assessment framework was developed to rank the capacity of each program model to manage BC large industrial DSM risk factors. DSM risk management rankings were then compared to program costeffectiveness, targeted energy savings potential in BC and survey results from BC industrial firms on the program models. The findings indicate that the reliability of DSM energy savings in the BC large industrial sector can be maximized through performance incentive program models that: (1) offer incentives jointly for capital and low-cost operations and maintenance (O&M) measures, (2) allow flexible lead times for project development, (3) utilize rigorous M&V methods capable of measuring variable load, process-based energy savings, (4) use moderate contract lengths that align with effective measure life, and (5) integrate energy management software tools capable of providing energy performance feedback to customers to maximize the persistence of energy savings. While this study focuses exclusively on the BC large industrial sector, the findings of this research have applicability to all energy utilities serving large, energy intensive industrial sectors.
Traffic-Adaptive, Flow-Specific Medium Access for Wireless Networks
2009-09-01
hybrid, contention and non-contention schemes are shown to be special cases. This work also compares the energy efficiency of centralized and distributed...solutions and proposes an energy efficient version of traffic-adaptive CWS-MAC that includes an adaptive sleep cycle coordinated through the use of...preamble sampling. A preamble sampling probability parameter is introduced to manage the trade-off between energy efficiency and throughput and delay
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.
Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua
2011-01-01
Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay. PMID:22319385
School Cents...The Energy Behavior Management Guide
ERIC Educational Resources Information Center
Pierce, Sue
2011-01-01
Saving energy in schools through behavior is all about believing that it is possible and that it can be done. Schools can play a valuable role in teaching students about becoming energy efficient and in leading their communities to become more efficient, too. In the process, one positively impacts the environment, teaches social responsibility,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Craig
Project to assess 46 low-income multifamily residences owned and managed by THRHA in up to 14 southeast Alaska communities. The Objective of project was to identify efficiency measures to reduce energy costs by 30% for low-income multifamily housing by; 1. Decreasing energy demand by increasing multifamily housing energy efficiency; 2. Reducing household energy consumption through energy conservation education and installation of energy upgrades; and 3. Projecting energy savings based on fossil fuel reduction to environmentally and economically benefit Tribal southeast communities
Energy conservation for housing: A workbook
NASA Astrophysics Data System (ADS)
1982-05-01
Multifamily housing project managers can reduce their energy costs from 30 to 60 percent by capitalizing on a variety of energy conservation opportunities (ECO's) identified in HUD research on the physical condition of public housing stock. This workbook prepares managers for this planning and for making individualized energy audits. It provides all the materials they need to proceed, including analysis sheets for calculating costs - benefit and payback periods for each of the 50 ECO's described. The ECO's listed all into four general categories: architectural improvements to the energy design of the building envelope; heating system ECO's to increase energy efficiency; secondary ECO's related to the domestic water supply, air conditioning systems, and central laundry equipment; and electric system ECO's reducing utility surcharges and increasing light bulb efficiency.
ERIC Educational Resources Information Center
Grene, Hanna
2011-01-01
It is no secret that school budgets are growing smaller, forcing districts to make tough financial choices. Building operating costs drain a massive portion of most districts' budgets. As such, energy efficiency is a powerful tool to cut short- and long-term operating costs, and reductions in energy use. The U.S. Environmental Protection Agency's…
Energy-Saving Opportunities for Manufacturing Enterprises (International English Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This fact sheet provides information about the Industrial Technologies Program Save Energy Now energy audit process, software tools, training, energy management standards, and energy efficient technologies to help U.S. companies identify energy cost savings.
Nanooptics for high efficient photon managment
NASA Astrophysics Data System (ADS)
Wyrowski, Frank; Schimmel, Hagen
2005-09-01
Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.
Formation of power management strategy at the industrial enterprises
NASA Astrophysics Data System (ADS)
Akimova, Elena
2017-10-01
The article is dedicated to energy efficiency problems. The main recommendations about the development of the system of strategic power management at the industrial enterprise offered in the research include a number of the principles, aimed at the increase of the importance of human resources in information-and-analytical and innovative functions of power management. According to the results of the current situation analyses, the author suggests using some specific indicators of human resources, as they can contribute to the energy efficiency formation. The system of standardization is considered to be the basis for the implementation of strategic power management at the enterprises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masanet, Eric; Therkelsen, Peter; Worrell, Ernst
The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component,more » process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less
48 CFR 223.7302 - Authorities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY... Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic Performance. ...
48 CFR 223.7302 - Authorities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY... Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic Performance. ...
101 things to do to reduce energy in every home and business. [Advertising supplement to Newsday
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This advertising supplement to Newsday features the following articles: Three Levels of Conservation; Nassau and Energy; Suffolk and Conservation; Energy Conservation and Land Use Planning; The Energy Efficient Community Program; NYSERDA Promotes Energy Efficiency and Conservation; The New York State Energy Conservation Plan; Architecture and Energy Conservation; The Engineer's Role in Energy Conservation; Energy Management Programs; a Model Energy-Efficient Home; and Choosing a Contractor. A feature also is Homeowners Energy Check List: 101 Ways to Save Money by Saving Energy. This checklist is included separately with the news supplement also. Many advertisements provide information on where to obtain energy conservationmore » equipment, specifically, solar energy systems equipment. (MCW)« less
A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.
Ogundile, Olayinka O; Alfa, Attahiru S
2017-05-10
Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks.
A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks
Ogundile, Olayinka O.; Alfa, Attahiru S.
2017-01-01
Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks. PMID:28489054
Standard Energy Efficiency Data Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheifetz, D. Magnus
2014-07-15
The SEED platform is expected to be a building energy performance data management tool that provides federal, state and local governments, building owners and operators with an easy, flexible and cost-effective method to collect information about groups of buildings, oversee compliance with energy disclosure laws and demonstrate the economic and environmental benefits of energy efficiency. It will allow users to leverage a local application to manage data disclosure and large data sets without the IT investment of developing custom applications. The first users of SEED will be agencies that need to collect, store, and report/share large data sets generated bymore » benchmarking, energy auditing, retro-commissioning or retrofitting of many buildings. Similarly, building owners and operators will use SEED to manage their own energy data in a common format and centralized location. SEED users will also control the disclosure of their information for compliance requirements, recognition programs such as ENERGY STAR, or data sharing with the Buildings Performance Database and/or other third parties at their discretion.« less
Airflow energy harvesting with high wind velocities for industrial applications
NASA Astrophysics Data System (ADS)
Chew, Z. J.; Tuddenham, S. B.; Zhu, M.
2016-11-01
An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.
Energy balance in olive oil farms: comparison of organic and conventional farming systems.
NASA Astrophysics Data System (ADS)
Moreno, Marta M.; Meco, Ramón; Moreno, Carmen
2013-04-01
The viability of an agricultural production system not only depends on the crop yields, but especially on the efficient use of available resources. However, the current agricultural systems depend heavily on non-renewable energy consumption in the form of fertilizers, fossil fuels, pesticides and machinery. In developed countries, the economic profitability of different productive systems is dependent on the granting of subsidies of diverse origin that affect both production factors (or inputs) and the final product (or output). Leaving such external aids, energy balance analysis reveals the real and most efficient form of management for each agroclimatic region, and is also directly related to the economic activity and the environmental state. In this work we compare the energy balance resulting from organic and conventional olive oil farms under the semi-arid conditions of Central Spain. The results indicate that the mean energy supplied to the organic farms was sensitively lower (about 30%) in comparison with the conventional management, and these differences were more pronounced for the biggest farms (> 15 ha). Mean energy outputs were about 20% lower in the organic system, although organic small farms (< 15 ha) resulted more productive than the conventional small ones. However, these lower outputs were compensated by the major market value obtained from the organic products. Chemical fertilizers and pesticides reached about 60% of the total energy inputs in conventional farming; in the organic farms, however, this ratio scarcely reached 25%. Human labor item only represented a very small amount of the total energy input in both cases (less than 1%). As conclusions, both management systems were efficient from an energy point of view. The value of the organic production should be focused on the environmental benefits it provides, which are not usually considered in the conventional management on not valuing the damage it produces to the environment. Organic farming would improve the energy efficiency in these environmental conditions, offering a sustainable production with minimal inputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, M.; Bonnema, E.; Pless, S.
2012-08-01
This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.
MRI, Battelle and Bechtel to Manage National Renewable Energy Lab
Research Institute (MRI), Battelle Memorial Institute and Bechtel Corp. "We believe this new team had won the competition to manage and operate NREL for the next five years. The contract signing next five years, depending on congressional appropriations for renewable energy and energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKane, Aimee; Scheihing, Paul; Williams, Robert
2007-07-01
More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are knownmore » and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly, andhas no assurance of persistence, since champions may leave the company orbe reassigned after project completion.This paper presents an alternatescenario that builds on the body of expert knowledge concerning energymanagement best practices and the experience of industrial champions toengage industry in continuous energy efficiency improvement at thefacility rather than the individual level. Under this scenario,standardized methodologies for applying and validating energy managementbest practices in industrial facilities will be developed through aconsensus process involving both plant personnel and specializedconsultants and suppliers. The resulting protocols will describe aprocess or framework for conducting an energy savings assessment andverifying the results that will be transparent to policymakers, managers,and the financial community, and validated by a third-party organization.Additionally, a global dialogue is being initiated by the United NationsIndustrial Development Organization (UNIDO) concerning the development ofan international industrial energy management standard that would be ISOcompatible. The proposed scenario will combine the resulting standardwith the best practice protocols for specific energy systems (i.e.,steam, process heating, compressed air, pumping systems, etc.) to formthe foundation of a third party, performance-based certification programfor the overall industrial facility that is compatible with existingmanagement systems, including ISO 9001:2000, 14001:2004 and 6 Sigma. Thelong term goal of this voluntary, industry designed certification programis to develop a transparent, globally accepted system for validatingenergy efficiency projects and management practices. This system wouldcreate a verified record of energy savings with potential market valuethat could be recognized among sectors and countries.« less
Performance Efficiency of a Crash Energy Management System
DOT National Transportation Integrated Search
2007-03-13
Previous work has led to the development of a crash energy : management (CEM) system designed to distribute crush : throughout unoccupied areas of a passenger train in a collision : event. This CEM system is comprised of crush zones at the : front an...
Energy monitoring system based on human activity in the workplace
NASA Astrophysics Data System (ADS)
Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq
2015-05-01
Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.
Energy Materials Coordinating Committee (EMaCC), Fiscal year 1992. Annual technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The DOE EMaCC serves to coordinate the department`s materials programs and to further effective use of materials expertise within the department. This document presents summaries of budgets and of research projects, arranged according to the offices of energy efficiency and renewable energy, energy research, environmental restoration and waste management, nuclear energy, civilian radioactive waste management, defense, and fossil energy. A directory and a keyword index are included.
energy efficiency technologies and managing the commercial building energy assessment trainings that NREL detection and diagnostics for commercial buildings Commercial building energy audits and photovoltaic system
Defense-Wide Research and Development Near Term Energy-Efficient Technologies Projects
2011-02-18
Continuous Building Commissioning USACE 6.80 5. Energy Enterprise Management USACE 1.94 6. Solid Waste Gasification USACE 2.92 7. Anaerobic...Building Commissioning – USACE, four contracts; • Energy Enterprise Management – USACE, one contract; • Solid Waste Gasification – USACE, four...Energy Supply and Distribution These include waste-to-energy and waste-to-fuel technology research and demonstrations, landfill gas use, biomass and
ERIC Educational Resources Information Center
Ravage, Barbara
2011-01-01
As colleges push for increased efficiencies, facilities departments nationwide are turning more and more to high-tech approaches. Nowhere has this trend been more visible than in the realm of energy consumption, where managers hope to extract significant cost savings. Technology is helping facilities managers achieve significant efficiencies,…
Unlocking energy efficiency in small commercial buildings through mechanical contractors
Granderson, Jessica; Hult, Erin; Fernandes, Samuel; ...
2017-03-01
Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less
Unlocking energy efficiency in small commercial buildings through mechanical contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granderson, Jessica; Hult, Erin; Fernandes, Samuel
Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less
2009-06-01
energy demand is projected to outgrow afford- able supplies even after accounting for the impact of anticipated energy efficiency and management ... management . The purpose of that change would be to facilitate development of a suite of ultra-low- energy solutions that would approach NZE usage by...enabling real-time op- timization of power supply, demand, and storage management for Army facilities, emplacements, or fixed installations of any
Mikkelson, Daniel; Chang, Chih -Wei; Cetiner, Sacit M.; ...
2015-10-01
Here, the U.S. Department of Energy (DOE) supports research and development (R&D) that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet grid demand and industrial thermal energy needs [1]. One hybridization approach being investigated by the DOE Offices of Nuclear Energy (NE) and the DOE Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources to better manage overall energy use for the combined electricity, industrial manufacturing, and transportation sectors.
48 CFR 970.2303 - Hazardous materials identification and material safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970...
48 CFR 970.2303 - Hazardous materials identification and material safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970...
48 CFR 970.2303 - Hazardous materials identification and material safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970...
48 CFR 970.2303 - Hazardous materials identification and material safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970...
48 CFR 970.2303 - Hazardous materials identification and material safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, B.K.; Hughes, K.R.; Danko, S.L.
1994-07-01
This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promotemore » the adoption, implementation, and enforcement of energy-efficient building energy codes.« less
NASA Technical Reports Server (NTRS)
Zell, E.; Engel-Cox, J.
2005-01-01
Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.
A novel minimum cost maximum power algorithm for future smart home energy management.
Singaravelan, A; Kowsalya, M
2017-11-01
With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 923.002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE... Federal Environmental, Energy and Transportation Management, require contracts for the operation of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 923.002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE... Federal Environmental, Energy and Transportation Management, require contracts for the operation of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 923.002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE... Federal Environmental, Energy and Transportation Management, require contracts for the operation of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 923.002 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE... Federal Environmental, Energy and Transportation Management, require contracts for the operation of...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic...
Nissan Showcases the Results of an Energy-Wise Corporate Culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-06-11
The corporate leadership at Nissan cultivates a culture of energy efficiency, encouraging employees to practice good energy management at work and in every part of their lives. Read about Nissan's energy-conscience culture.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (d) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic...
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (d) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic...
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... Environmental, Energy, and Transportation Management. (d) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and Economic Performance. (e) Environmental Protection Agency (EPA...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... Federal Environmental, Energy, and Transportation Management. (d) The Energy Policy Act of 2005, Public Law 109-58. (e) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy...
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND... Federal Environmental, Energy, and Transportation Management. (d) The Energy Policy Act of 2005, Public Law 109-58. (e) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy...
Center For Advanced Energy Studies Overview
Blackman, Harold; Curnutt, Byron; Harker, Caitlin; Hamilton, Melinda; Butt, Darryl; Imel, George; Tokuhiro, Akira; Harris, Jason; Hill, David
2017-12-09
A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce.
7 CFR 1710.406 - Eligible activities and investments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Off Grid Renewable energy systems; (ii) Fuel cells; (3) Demand side management (DSM) investments... meter; (8) Re-lamping to more energy efficient lighting; and (9) Fuel Switching as in: (i) The replacement of existing fuel consuming equipment using a particular fuel with more efficient fuel consuming...
48 CFR 970.2304 - Use of recovered materials and biobased products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2304...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brush, Adrian; Masanet, Eric; Worrell, Ernst
The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented atmore » the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masanet, Eric; Masanet, Eric; Worrell, Ernst
2008-01-01
The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implementedmore » at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.« less
Electric load management and energy conservation
NASA Technical Reports Server (NTRS)
Kheir, N. A.
1976-01-01
Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.
10 CFR 436.43 - Procurement planning.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Procurement planning. 436.43 Section 436.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Agency Procurement of Energy Efficient Products § 436.43 Procurement planning. (a) Agencies should consider the...
Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency.
VandeHaar, M J; Armentano, L E; Weigel, K; Spurlock, D M; Tempelman, R J; Veerkamp, R
2016-06-01
Feed efficiency, as defined by the fraction of feed energy or dry matter captured in products, has more than doubled for the US dairy industry in the past 100 yr. This increased feed efficiency was the result of increased milk production per cow achieved through genetic selection, nutrition, and management with the desired goal being greater profitability. With increased milk production per cow, more feed is consumed per cow, but a greater portion of the feed is partitioned toward milk instead of maintenance and body growth. This dilution of maintenance has been the overwhelming driver of enhanced feed efficiency in the past, but its effect diminishes with each successive increment in production relative to body size and therefore will be less important in the future. Instead, we must also focus on new ways to enhance digestive and metabolic efficiency. One way to examine variation in efficiency among animals is residual feed intake (RFI), a measure of efficiency that is independent of the dilution of maintenance. Cows that convert feed gross energy to net energy more efficiently or have lower maintenance requirements than expected based on body weight use less feed than expected and thus have negative RFI. Cows with low RFI likely digest and metabolize nutrients more efficiently and should have overall greater efficiency and profitability if they are also healthy, fertile, and produce at a high multiple of maintenance. Genomic technologies will help to identify these animals for selection programs. Nutrition and management also will continue to play a major role in farm-level feed efficiency. Management practices such as grouping and total mixed ration feeding have improved rumen function and therefore efficiency, but they have also decreased our attention on individual cow needs. Nutritional grouping is key to helping each cow reach its genetic potential. Perhaps new computer-driven technologies, combined with genomics, will enable us to optimize management for each individual cow within a herd, or to optimize animal selection to match management environments. In the future, availability of feed resources may shift as competition for land increases. New approaches combining genetic, nutrition, and other management practices will help optimize feed efficiency, profitability, and environmental sustainability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allan; Mills, Evan; Vine, Edward.
The promotion of technologies and services for insurance loss reduction and loss prevention is as old as the fields of insurance and risk management. This report addresses a new category of risk management opportunity involving technologies and procedures that use energy more efficiently or supply renewable energy. While the economic benefits of these measures are of interest to energy consumers seeking to reduce their energy expenditures, we have found that they also offer a novel and largely untapped pathway for achieving traditional risk management objectives. Most of the technologies described in this report were supported by government- sponsored RD Dmore » programs over many years of effort. These technologies have many benefits, including insurance loss reduction and prevention. The insurance and risk management communities could take advantage of these technologies, either independently or in cost-sharing partnerships with existing R D programs. In this report, we present a compilation of energy-efficiency and renewable energy projects (e.g., energy-efficient halogen torchiere replacements) and techniques (e.g., infrared cameras to detect fire hazards) that are currently being investigated at the U.S. Department of Energy's national laboratories and which the insurance and risk management communities could encourage their customers to use to address their short-term and long-term needs. Once the loss-prevention benefits of these technologies and techniques (many of which are not yet available in the marketplace) are sufficiently demonstrated, insurers can promote their use through informational programs and perhaps financial incentives (e.g., risk-adjusted insurance premium schemes) through the insurance regulatory and rate-making processes. We identified 78 technologies and techniques being investigated by nine national laboratories which can help to reduce insurance losses and manage risks, especially those associated with power failures, fire and wind damage, and home or workplace indoor air quality hazards. All help to reduce insurance losses in one or more of the following categories: boiler and machinery, builder's risk, business interruption, commercial property insurance, completed operations liability, comprehensive general liability, contractors liability, environmental liability, product liability, professional liability, service interruption, workers' compensation, health/life insurance, and homeowners insurance. We identify examples of existing collaborations between the national laboratories and the insurance industry, and indicate research activities being conducted by the insurance and risk management communities that would benefit from the work of the national laboratories. We also describe some of the risk factors associated with energy-efficient and renewable energy technologies. For the future, significant progress could be made through interdisciplinary collaborative applied research (i.e., integrating the actuarial sciences with the physical or engineering sciences). This collaboration could be sponsored jointly by the U.S. Department of Energy and the insurance and risk management communities (as well as working through the insurance regulatory and rate-making processes).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allan; Mills, Evan; Vine, Edward
The promotion of technologies and services for insurance loss reduction and loss prevention is as old as the fields of insurance and risk management. This report addresses a new category of risk management opportunity involving technologies and procedures that use energy more efficiently or supply renewable energy. While the economic benefits of these measures are of interest to energy consumers seeking to reduce their energy expenditures, we have found that they also offer a novel and largely untapped pathway for achieving traditional risk management objectives. Most of the technologies described in this report were supported by government- sponsored RD&D programsmore » over many years of effort. These technologies have many benefits, including insurance loss reduction and prevention. The insurance and risk management communities could take advantage of these technologies, either independently or in cost-sharing partnerships with existing R&D programs. In this report, we present a compilation of energy-efficiency and renewable energy projects (e.g., energy-efficient halogen torchiere replacements) and techniques (e.g., infrared cameras to detect fire hazards) that are currently being investigated at the U.S. Department of Energy's national laboratories and which the insurance and risk management communities could encourage their customers to use to address their short-term and long-term needs. Once the loss-prevention benefits of these technologies and techniques (many of which are not yet available in the marketplace) are sufficiently demonstrated, insurers can promote their use through informational programs and perhaps financial incentives (e.g., risk-adjusted insurance premium schemes) through the insurance regulatory and rate-making processes. We identified 78 technologies and techniques being investigated by nine national laboratories which can help to reduce insurance losses and manage risks, especially those associated with power failures, fire and wind damage, and home or workplace indoor air quality hazards. All help to reduce insurance losses in one or more of the following categories: boiler and machinery, builder's risk, business interruption, commercial property insurance, completed operations liability, comprehensive general liability, contractors liability, environmental liability, product liability, professional liability, service interruption, workers' compensation, health/life insurance, and homeowners insurance. We identify examples of existing collaborations between the national laboratories and the insurance industry, and indicate research activities being conducted by the insurance and risk management communities that would benefit from the work of the national laboratories. We also describe some of the risk factors associated with energy-efficient and renewable energy technologies. For the future, significant progress could be made through interdisciplinary collaborative applied research (i.e., integrating the actuarial sciences with the "physical" or "engineering" sciences). This collaboration could be sponsored jointly by the U.S. Department of Energy and the insurance and risk management communities (as well as working through the insurance regulatory and rate-making processes).« less
Energy Education Incentives: Evaluating the Impact of Consumer Energy Kits
ERIC Educational Resources Information Center
Kirby, Sarah D.; Guin, Autumn; Langham, Laura
2015-01-01
Measuring the energy and environmental impact of residential energy education efforts is difficult. The E-Conservation residential energy management program uses consumer energy kits to document the impact of energy-efficient improvements. The consumer energy kit provides an incentive for individuals attending energy education workshop, helps…
ERIC Educational Resources Information Center
Kennedy, Mike
2003-01-01
Describes how facilities-management systems use technology to help schools and universities operate their buildings more efficiently, reduce energy consumption, manage inventory more accurately, keep track of supplies and maintenance schedules, and save money. (EV)
41 CFR 102-74.100 - What are conservation programs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT... programs are programs that improve energy and water efficiency and promote the use of solar and other...
41 CFR 102-74.100 - What are conservation programs?
Code of Federal Regulations, 2011 CFR
2011-01-01
... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT... programs are programs that improve energy and water efficiency and promote the use of solar and other...
A New Curriculum: Energy Outsourcing Brings Cost and Efficiency Benefits.
ERIC Educational Resources Information Center
Dickerman, Robert N.
2002-01-01
Considers the value of colleges and universities upgrading their energy infrastructure and using outsourcing energy management functions to save money and gain greater control of energy operations without substantial investments in staff and resources. (GR)
Code of Federal Regulations, 2013 CFR
2013-10-01
... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009, Federal Leadership in Environmental, Energy, and...
Ragossnig, A M; Wartha, C; Pomberger, R
2009-11-01
A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.
A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks
Jiang, Peng; Xu, Yiming; Liu, Jun
2017-01-01
For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes’ being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network’s best service quality and lifetime. PMID:28106837
A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks.
Jiang, Peng; Xu, Yiming; Liu, Jun
2017-01-19
For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes' being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network's best service quality and lifetime.
Anaerobic digestion of food waste: A review focusing on process stability.
Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di
2018-01-01
Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy efficient industrial technology in Europe: A compendium
NASA Astrophysics Data System (ADS)
Fassbender, A. G.; McGee, M. J.
1982-05-01
Energy efficient industrial technologies currently in use in Europe are described. Gas-fired equipment in West Germany, France, and the United Kingdom is emphasized. Some of these technologies are unique and some are currently available in the United States. Load management, cogeneration, heat recovery, and various industrial processes are discussed.
Energy-saving management modelling and optimization for lead-acid battery formation process
NASA Astrophysics Data System (ADS)
Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.
2017-11-01
In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.
Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin
2014-10-01
Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.
Energy and operation management of a microgrid using particle swarm optimization
NASA Astrophysics Data System (ADS)
Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan
2016-05-01
This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.402 Authorities. (a) The... Federal Environmental, Energy, and Transportation Management. (d) The Energy Policy Act of 2005, Public...
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials and Biobased Products 23.402 Authorities. (a) The... Federal Environmental, Energy, and Transportation Management. (d) The Energy Policy Act of 2005, Public...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 970.2301-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy... http://www.hss.energy.gov/pp/epp. Contractors operating DOE facilities shall comply with the...
Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency Release 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This Operations and Maintenance (O&M) Best Practices Guide was developed under the direction of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government’s implementation of sound, cost effective energy management and investment practices to enhance the nation’s energy security and environmental stewardship.
48 CFR 23.903 - Contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contractor Compliance With Environmental Management Systems 23.903 Contract clause...
48 CFR 23.903 - Contract clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Contractor Compliance With Environmental Management Systems 23.903 Contract clause...
NASA Astrophysics Data System (ADS)
Faquir, Sanaa; Yahyaouy, Ali; Tairi, Hamid; Sabor, Jalal
2018-05-01
This paper presents the implementation of a fuzzy logic controller to manage the flow of energy in an extended hybrid renewable energy system employed to satisfy the load for a wide isolated site at the city of Essaouira in Morocco. To achieve Efficient energy management, the system is combining two important renewable energies: solar and wind. Lithium Ion batteries were also used as storage devices to store the excess of energy provided by the renewable sources or to supply the system with the required energy when the energy delivered by the input sources is not enough to satisfy the load demand. To manage the energy in the system, a controller based on fuzzy logic was implemented. Real data taken from previous research and meteorological sites was used to test the controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2001-12-01
This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2002-03-01
This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less
Energy-Efficient BOP-Based Beacon Transmission Scheduling in Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Eui-Jik; Youm, Sungkwan; Choi, Hyo-Hyun
Many applications in wireless sensor networks (WSNs) require the energy efficiency and scalability. Although IEEE 802.15.4/Zigbee which is being considered as general technology for WSNs enables the low duty-cycling with time synchronization of all the nodes in network, it still suffer from its low scalability due to the beacon frame collision. Recently, various algorithms to resolve this problem are proposed. However, their manners to implement are somewhat ambiguous and the degradation of energy/communication efficiency is serious by the additional overhead. This paper describes an Energy-efficient BOP-based Beacon transmission Scheduling (EBBS) algorithm. EBBS is the centralized approach, in which a resource-sufficient node called as Topology Management Center (TMC) allocates the time slots to transmit a beacon frame to the nodes and manages the active/sleep schedules of them. We also propose EBBS with Adaptive BOPL (EBBS-AB), to adjust the duration to transmit beacon frames in every beacon interval, adaptively. Simulation results show that by using the proposed algorithm, the energy efficiency and the throughput of whole network can be significantly improved. EBBS-AB is also more effective for the network performance when the nodes are uniformly deployed on the sensor field rather than the case of random topologies.
Neighborhood Energy/Economic Development project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to themore » creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.« less
A survey on human behavior towards energy efficiency for office worker in malaysia
NASA Astrophysics Data System (ADS)
Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.
2014-04-01
Green environment has become an important topic around the world. This campaign can be realized if everybody understands and shares similar objectives on managing energy in an efficient way. This paper will present and analyse the survey on energy usage by office workers in Malaysia. The survey will focus on the workers in government sector. In social science surveys, it is important to support the tested data for a project. For issues related to human behaviour we must compare with real situations to verify the tested data and the results in energy monitoring system. The energy monitoring system will improve energy usage efficiency for the basic human activities in different situations and environments.
A Survey of Methods for Analyzing and Improving GPU Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S
2014-01-01
Recent years have witnessed a phenomenal growth in the computational capabilities and applications of GPUs. However, this trend has also led to dramatic increase in their power consumption. This paper surveys research works on analyzing and improving energy efficiency of GPUs. It also provides a classification of these techniques on the basis of their main research idea. Further, it attempts to synthesize research works which compare energy efficiency of GPUs with other computing systems, e.g. FPGAs and CPUs. The aim of this survey is to provide researchers with knowledge of state-of-the-art in GPU power management and motivate them to architectmore » highly energy-efficient GPUs of tomorrow.« less
Research of home energy management system based on technology of PLC and ZigBee
NASA Astrophysics Data System (ADS)
Wei, Qi; Shen, Jiaojiao
2015-12-01
In view of the problem of saving effectively energy and energy management in home, this paper designs a home energy intelligent control system based on power line carrier communication and wireless ZigBee sensor networks. The system is based on ARM controller, power line carrier communication and wireless ZigBee sensor network as the terminal communication mode, and realizes the centralized and intelligent control of home appliances. Through the combination of these two technologies, the advantages of the two technologies complement each other, and provide a feasible plan for the construction of energy-efficient, intelligent home energy management system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... goals and support their respective missions, agencies shall prioritize actions based on a full... exclude direct emissions from excluded vehicles and equipment and from electric power produced and sold... equipment; (v) implementing best management practices for energy-efficient management of servers and Federal...
Streamlining Building Efficiency Evaluation with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, Supriya; Wang, Nora; Gonzalez, Juan
2016-08-26
Building Energy Asset Score (Asset Score), developed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE), is a tool to help building owners and managers assess the efficiency of a building's energy-related systems and encourage investment in cost-effective improvements. The Asset Score uses an EnergyPlus model to provide a quick assessment of building energy performance with minimum user inputs of building characteristics and identifies upgrade opportunities. Even with a reduced set of user inputs, data collection remains a challenge for wide-spread adoption, especially when evaluating a large number of buildings. To address this, Asset Scoremore » Preview was developed to allow users to enter as few as seven building characteristics to quickly assess their buildings before a more in-depth analysis. A streamlined assessment from Preview to full Asset Score provides an easy entry point and also enables users who manage a large number of buildings to screen and prioritize buildings that can benefit most from a more detailed evaluation and possible energy efficiency upgrades without intensive data collection.« less
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 970.2305-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-1 General. (a) The Department of Energy...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 970.2305-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-1 General. (a) The Department of Energy...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 970.2305-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-1 General. (a) The Department of Energy...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 970.2305-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-1 General. (a) The Department of Energy...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 970.2305-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-1 General. (a) The Department of Energy...
48 CFR 970.2305-2 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 970.2305-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy... operating contracts awarded under the authority of the Atomic Energy Act of 1954, as amended, are required...
48 CFR 223.7302 - Authorities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Minimizing the Use of Materials Containing... Federal Environmental, Energy, and Transportation Management. (b) Executive Order 13514 of October 5, 2009...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Federal Compliance With Right-To-Know Laws and Pollution Prevention Requirements 23... January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (d...
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.102 Authorities. (a) Executive Order 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Sustainable Acquisition Policy 23.102 Authorities. (a) Executive Order 13423 of January 24, 2007, Strengthening Federal Environmental, Energy, and Transportation Management. (b...
City of San Antonio, Texas Better Buildings Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Liza C.; Hammer, Mary C.
2014-06-30
The San Antonio Better Buildings Program is a unified single-point-of-service energy efficiency delivery mechanism targeting residential, commercial, institutional, industrial and public buildings. This comprehensive and replicable energy efficiency program is designed to be an effective demand side management initiative to provide a seamless process for program participants to have turn-key access to expert analysis, support and incentives to improve the performance of their in-place energy using systems, while reducing electrical energy use and demand.
Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M
2017-12-05
Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.
Moharana, Akshaya Kumar
2017-01-01
Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand. PMID:29206159
High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System
NASA Technical Reports Server (NTRS)
Bubenheim, David; Meiners, Dennis
2016-01-01
Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.
High-Efficiency Food Production in a Renewable Energy Based Micro-Grid
NASA Technical Reports Server (NTRS)
Bubenheim, David L.
2017-01-01
Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA.Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40 and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well-being in remote communities today and tomorrow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiike, S.; Okazaki, Y.
This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.
Energy management study: A proposed case of government building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal
Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount ofmore » energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.« less
Energy management study: A proposed case of government building
NASA Astrophysics Data System (ADS)
Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal
2015-05-01
Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.
NASA Astrophysics Data System (ADS)
Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo
2017-10-01
Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.
NASA Astrophysics Data System (ADS)
Mottaeva, Angela
2017-10-01
Article is devoted to the consideration of the existing approaches to energy saving. According to the author’s opinion,the system approach is not enough for the achievement of the goal of the increase in energy efficiency and economy of energy, which is quite relevant for the world scientific community today, when the mankind has reached the certain power and ecological threshold. The author reasons the need of programme-and-target approach to energy saving and the increase in energy efficiency of buildings. The problems of the energy saving in current conditions are revealed. The provisional algorithm of the programme-and-target approach to energy efficiency. The expected results from introduction of the programme-and-target approach are presented in the article.
48 CFR 970.2301 - Sustainable acquisition.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition...
48 CFR 970.2301 - Sustainable acquisition.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition. ...
48 CFR 970.2301 - Sustainable acquisition.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition. ...
48 CFR 970.2301 - Sustainable acquisition.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition. ...
48 CFR 970.2301 - Sustainable acquisition.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition. ...
Energy intensity modeling for wastewater treatment technologies.
Molinos-Senante, María; Sala-Garrido, Ramón; Iftimi, Adina
2018-07-15
Wastewater treatment plants (WWTPs) are energy intensive facilities; therefore increased pressure has been placed on managers and policy makers to reduce the facilities' energy use. Several studies were conducted to compare the energy intensity (EI) of WWTPs, which showed large dispersion in EI among the facilities. In the present study, the degree EI influenced WWTPs was tested using a set of technical variables by modeling the EI of a 305 WWTP sample grouped into five secondary treatment technologies. Results indicated the following two major findings: i) WWTPs using conventional activated sludge, extended aeration, trickling biofilters, and biodisks exhibited significant economies of scale in energy use; and ii) pollutant removal efficiency demonstrated low impacts on WWTP EI. The methodology and results of this study are of value to policy makers in planning new WWTPs and developing management plans to improve energy efficiency of wastewater treatment. Copyright © 2018. Published by Elsevier B.V.
Simulation of demand-response power management in smart city
NASA Astrophysics Data System (ADS)
Kadam, Kshitija
Smart Grids manage energy efficiently through intelligent monitoring and control of all the components connected to the electrical grid. Advanced digital technology, combined with sensors and power electronics, can greatly improve transmission line efficiency. This thesis proposed a model of a deregulated grid which supplied power to diverse set of consumers and allowed them to participate in decision making process through two-way communication. The deregulated market encourages competition at the generation and distribution levels through communication with the central system operator. A software platform was developed and executed to manage the communication, as well for energy management of the overall system. It also demonstrated self-healing property of the system in case a fault occurs, resulting in an outage. The system not only recovered from the fault but managed to do so in a short time with no/minimum human involvement.
Larsen, Tove A
2015-12-15
CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sustainable-energy managment practices in an energy economy
NASA Astrophysics Data System (ADS)
Darkwa, K.
2001-10-01
The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.
Pulsating electrolyte flow in a full vanadium redox battery
NASA Astrophysics Data System (ADS)
Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.
2015-10-01
Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.
Energy efficient engine high-pressure turbine detailed design report
NASA Technical Reports Server (NTRS)
Thulin, R. D.; Howe, D. C.; Singer, I. D.
1982-01-01
The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.
Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey
2015-03-27
This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costsmore » for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for understanding, managing, and developing energy resources by identifying training, distribution of information materials, and community meeting needs and opportunities« less
Energy Management for Automatic Monitoring Stations in Arctic Regions
NASA Astrophysics Data System (ADS)
Pimentel, Demian
Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.
Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.
This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industrymore » experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.« less
ERIC Educational Resources Information Center
Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.
The intent of this seminar presentation was to demonstrate that with proper care in selecting and managing energy analysis programs, or in choosing commercial services to accomplish the same purposes, universities and colleges may derive significant benefits from efficient and economical use and management of their facilities. The workbook begins…
Water Management Planning: A Case Study at Blue Grass Army Depot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solana, Amy E.; Mcmordie, Katherine
2006-04-03
Executive Order 13123, Greening the Government Through Efficient Energy Management, mandates an aggressive policy for reducing potable water consumption at federal facilities. Implementation guid¬ance from the U.S. Department of Energy (DOE) set a requirement for each federal agency to “reduce potable water usage by implementing life cycle, cost-effective water efficiency programs that include a water management plan, and not less than four Federal Energy Management Program (FEMP) Best Manage¬ment Practices (BMPs).” The objective of this plan is to gain full compliance with Executive Order 13123 and associated DOE implementation guidance on behalf of Blue Grass Army Depot (BGAD), Richmond, Kentucky.more » In accordance with this plan, BGAD must: • Incorporate the plan as a component of the Installation energy conservation plan • Investigate the water savings potential and life-cycle cost effectiveness of the Operations and Maintenance (O&M) and retrofit/replacement options associated with the ten FEMP BMPs • Put into practice all applicable O&M options • Identify retrofit/replacement options appropriate for implementation (based upon calculation of the simple payback periods) • Establish a schedule for implementation of applicable and cost-effective retrofit/replacement options.« less
NASA Astrophysics Data System (ADS)
Iskin, Ibrahim
Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.
NREL: International Activities - Bilateral Partnerships
development and use of renewable energy and energy efficiency technologies: Algeria Angola Argentina Australia sufficiently accurate information for national-level strategic energy planning. China NREL manages renewable energy cooperation with China under the U.S.-China Renewable Energy Partnership program. This program was
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-12-01
While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management,more » energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.« less
Smart Energy Management of Multiple Full Cell Powered Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOhammad S. Alam
2007-04-23
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Khawaja, M. Sami; Rushton, Josh
Evaluating an energy efficiency program requires assessing the total energy and demand saved through all of the energy efficiency measures provided by the program. For large programs, the direct assessment of savings for each participant would be cost-prohibitive. Even if a program is small enough that a full census could be managed, such an undertaking would almost always be an inefficient use of evaluation resources. The bulk of this chapter describes methods for minimizing and quantifying sampling error. Measurement error and regression error are discussed in various contexts in other chapters.
48 CFR 970.2303-2-70 - General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 970.2303-2-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-2-70 General. (a) The Department of Energy...
48 CFR 970.2303-2-70 - General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 970.2303-2-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-2-70 General. (a) The Department of Energy...
48 CFR 970.2303-2-70 - General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 970.2303-2-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-2-70 General. (a) The Department of Energy...
48 CFR 970.2303-2-70 - General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 970.2303-2-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-2-70 General. (a) The Department of Energy...
48 CFR 970.2303-2-70 - General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 970.2303-2-70 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-2-70 General. (a) The Department of Energy...
NASA Astrophysics Data System (ADS)
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-11
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
A Model School Facility for Energy (with Related Video)
ERIC Educational Resources Information Center
Spangler, Seth; Crutchfield, Dave
2011-01-01
Energy modeling can be a powerful tool for managing energy-reduction concepts for an institution. Different types of energy models are developed at various stages of a project to provide data that can verify or disprove suggested energy-efficiency measures. Education institutions should understand what an energy model can do and, more important,…
No Cost – Low Cost Compressed Air System Optimization in Industry
NASA Astrophysics Data System (ADS)
Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.
2018-04-01
Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.
Development of a performance-based industrial energy efficiency indicator for corn refining plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G. A.; Decision and Information Sciences; USEPA
2006-07-31
Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. Thismore » report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.« less
Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China
NASA Astrophysics Data System (ADS)
Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin
2017-11-01
Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Gregory P.; Dean, Jesse D.; Dixon, Douglas R.
2007-05-25
This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centolella, P.A.
1998-07-01
Most of the economic efficiency benefits of electric restructuring--consumer choice based on price and risk preferences, efficient capacity utilization, capacity expansion that reflects marketability, and innovative products--depend upon consumer access to information and opportunities to respond to time- and location-specific prices and customized products. Information and communications technologies from back-room data management centers to intelligent consumer gateways will play an essential role in marketing energy services in a retail access environment. This paper describes the role of information and communications technology in electric industry restructuring and retailing of energy services. It includes a survey of economic analyses on the likelymore » variability in competitive generation prices and consumer responses if such prices are effectively communicated. The paper describes the potential benefits and cost savings associated with flexible consumer responses to price variability. It identifies consumer loads and preferences. Finally, the paper describes the building blocks of information systems being developed to facilitate price-responsive energy management and provide a range of other energy services. Intelligent gateways, analytical tools for facility load prediction and optimizing energy management responses, and electronic commerce applications are discussed.« less
Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip
2010-05-15
The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.
A two-hop based adaptive routing protocol for real-time wireless sensor networks.
Rachamalla, Sandhya; Kancherla, Anitha Sheela
2016-01-01
One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-07-08
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680
Modernised Portuguese schools - From IAQ and thermal comfort towards energy efficiency plans
NASA Astrophysics Data System (ADS)
Pereira, Luisa Maria Dias
A major rehabilitation and refurbishment programme of secondary school buildings has been carried out in the last few years in Portugal, led by the state-owned company Parque Escolar E.P.E. (PE), known as Secondary School Buildings Modernisation Programme. This programme took into consideration renewable energy systems, mostly solar panels for domestic hot water (DHW) production. Nevertheless, with the introduction of HVAC systems in buildings that were previously naturally ventilated, an increase on energy consumption has been verified. During the first occupancy phase of new and refurbished buildings, energy and indoor climate quality (ICQ) audits are important strategies to improve the buildings’ energy use. In new buildings, the most common errors are due to poor operation and management. Schools energy management programmes often result in a list of energy efficiency measures that do not necessarily reflect occupants’ conditions or satisfaction. They are more directed to management control and comparison with benchmarks of energy use/m2 or cost/student to assess energy efficiency. In all cases, monitoring and consumption patterns are mandatory. In this context, this thesis aims at developing energy efficiency plans (EEP) for modernised Portuguese school buildings. The framework of the thesis starts with the development of an international overview of the recent research and development in the field of energy consumption in schools [searching for statistical benchmarks that could contribute to an accurate school building indicator (SBI)]. Then, based on a database provided by Parque Escolar, an energy consumption assessment of Portuguese school buildings is presented, between the pre and post intervention phases. Drawing on this procedure, eight representative modernised secondary schools were selected, geographically and climatically distributed. After, an energy audit and indoor environment quality (IEQ) monitoring is performed in this schools selection. The continuous monitoring period varied between schools, from a minimum of 48h monitoring up to three weeks, during the mid-season [spring - autumn period (excluding summer vacation) in 2013]. Air exchange rates (AER), more specifically infiltration rates, are quantified aiming at determining the current airtightness condition of the refurbished schools. A subjective IEQ assessment is also performed, focusing on occupants’ feedback, providing insight on the potential linkages between energy use and occupants’ satisfaction and comfort. The thesis builds on the current EEP panorama and practice, which is based only on cost/energy control, extending it to address the equilibrium between IEQ evaluation and occupants’ perceived conditions/preferences. This approach is applied in two schools - selected based on the previous study on energy and IEQ conditions of the eight schools. The EEP methodology starts by deepening the knowledge of each school, mostly focusing on crossing the schools occupancy schedule with systems operation [(mainly those controlled by the building management system (BMS)]. An analysis on recently updated legislation is also performed (in particular fresh air flow rates requirements). It is shown that some potential energy savings can be achieved and that IEQ conditions can be improved at very low or even negligible costs. Other considerations, namely addressing the thermal energy production systems of the schools (e.g., boilers scheduling), the lighting systems (e.g., lighting circuits) and non-controlled plug loads, are also mentioned. Based upon all these findings, a handbook of good practice is drafted for secondary school buildings in Portugal. This EEP is accompanied by a list of Energy Efficiency Measures (EEM). It is proposed that this document is headed by a School - Energy Performance Certificate (S-EPC) based on the billed energy consumption. This document suggests the establishment of the figure of the Energy Manager.
Analysis on effects of energy efficiency regulations & standards for industrial boilers in China
NASA Astrophysics Data System (ADS)
Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng
2017-11-01
The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest
A socio-technical approach to improving retail energy efficiency behaviours.
Christina, Sian; Waterson, Patrick; Dainty, Andrew; Daniels, Kevin
2015-03-01
In recent years, the UK retail sector has made a significant contribution to societal responses on carbon reduction. We provide a novel and timely examination of environmental sustainability from a systems perspective, exploring how energy-related technologies and strategies are incorporated into organisational life. We use a longitudinal case study approach, looking at behavioural energy efficiency from within one of the UK's leading retailers. Our data covers a two-year period, with qualitative data from a total of 131 participants gathered using phased interviews and focus groups. We introduce an adapted socio-technical framework approach in order to describe an existing organisational behavioural strategy to support retail energy efficiency. Our findings point to crucial socio-technical and goal-setting factors which both impede and/or enable energy efficient behaviours, these include: tensions linked to store level perception of energy management goals; an emphasis on the importance of technology for underpinning change processes; and, the need for feedback and incentives to support the completion of energy-related tasks. We also describe the evolution of a practical operational intervention designed to address issues raised in our findings. Our study provides fresh insights into how sustainable workplace behaviours can be achieved and sustained over time. Secondly, we discuss in detail a set of issues arising from goal conflict in the workplace; these include the development of a practical energy management strategy to facilitate secondary organisational goals through job redesign. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Ozone-Depleting Substances 23.801 Authorities. (a) Title VI of the Clean Air Act... Environmental, Energy, and Transportation Management. (d) Executive Order 13514 of October 5, 2009, Federal...
48 CFR 970.2305-3 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 970.2305-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-3 Definitions. Terms and words relating to...
48 CFR 970.2304-2 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-2 Section 970.2304-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2304-2 Contract clause. Link...
48 CFR 970.2305-3 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 970.2305-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-3 Definitions. Terms and words relating to...
48 CFR 970.2301-2 - Contract clauses.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-2 Section 970.2301-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301-2 Contract clauses. (a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Ozone-Depleting Substances 23.801 Authorities. (a) Title VI of the Clean Air Act... Environmental, Energy, and Transportation Management. (d) Executive Order 13514 of October 5, 2009, Federal...
48 CFR 970.2301-2 - Contract clauses.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-2 Section 970.2301-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301-2 Contract clauses. (a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 970.2304-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2304-1 General. Link to an amendment published...
48 CFR 970.2305-3 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 970.2305-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-3 Definitions. Terms and words relating to...
48 CFR 970.2305-3 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 970.2305-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-3 Definitions. Terms and words relating to...
48 CFR 970.2301-2 - Contract clauses.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-2 Section 970.2301-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301-2 Contract clauses. (a...
48 CFR 970.2307-2 - Contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-2 Section 970.2307-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2307-2 Contract clause. Link...
48 CFR 970.2305-3 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Definitions. 970.2305-3 Section 970.2305-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy...
48 CFR 970.2301-2 - Contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-2 Section 970.2301-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301-2 Contract clauses. (a...
ENERGY CONSERVATION AND PRODUCTION AT WASTE CLEANUP SITES (ISSUE PAPER)
Saving energy used by hazardous waste cleanup remediation systems should interest those people working on waste cleanup sites. Presidential Executive Order 13123, "Greening the Government Through Efficient Energy Management", states that each agency shall strive to expand the us...
48 CFR 970.2303-3 - Contract clauses.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-3 Section 970.2303-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-3 Contract clauses. (a...
48 CFR 970.2303-3 - Contract clauses.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-3 Section 970.2303-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-3 Contract clauses. (a...
48 CFR 970.2303-3 - Contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-3 Section 970.2303-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-3 Contract clauses. (a...
48 CFR 970.2303-3 - Contract clauses.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-3 Section 970.2303-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-3 Contract clauses. (a...
48 CFR 970.2303-3 - Contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-3 Section 970.2303-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2303-3 Contract clauses. (a...
Time-Varying Value of Energy Efficiency in Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie; Eckman, Tom; Schwartz, Lisa C.
Quantifying the time-varying value of energy efficiency is necessary to properly account for all of its benefits and costs and to identify and implement efficiency resources that contribute to a low-cost, reliable electric system. Historically, most quantification of the benefits of efficiency has focused largely on the economic value of annual energy reduction. Due to the lack of statistically representative metered end-use load shape data in Michigan (i.e., the hourly or seasonal timing of electricity savings), the ability to confidently characterize the time-varying value of energy efficiency savings in the state, especially for weather-sensitive measures such as central air conditioning,more » is limited. Still, electric utilities in Michigan can take advantage of opportunities to incorporate the time-varying value of efficiency into their planning. For example, end-use load research and hourly valuation of efficiency savings can be used for a variety of electricity planning functions, including load forecasting, demand-side management and evaluation, capacity planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service (KEMA 2012). In addition, accurately calculating the time-varying value of efficiency may help energy efficiency program administrators prioritize existing offerings, set incentive or rebate levels that reflect the full value of efficiency, and design new programs.« less
Commentary: Environmental nanophotonics and energy
NASA Astrophysics Data System (ADS)
Smith, Geoff B.
2011-01-01
The reasons nanophotonics is proving central to meeting the need for large gains in energy efficiency and renewable energy supply are analyzed. It enables optimum management and use of environmental energy flows at low cost and on a sufficient scale by providing spectral, directional and temporal control in tune with radiant flows from the sun, and the local atmosphere. Benefits and problems involved in large scale manufacture and deployment are discussed including how managing and avoiding safety issues in some nanosystems will occur, a process long established in nature.
Code of Federal Regulations, 2010 CFR
2010-01-01
... safety, and efficient operation management and maintenance; such as energy utilities, water supply and... production or protect farmers and rural residents from water damage. (3) Agricultural water management... supplies by management and control of vegetation along waterways and in drainage basins. (4) Soil...
48 CFR 970.2301-2 - Contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation Management, in such contracts. (b) Insert the clause at 970.5223-6, Sustainable and Environmentally Preferable Purchasing Practices, or its Alternate I in contracts for the management and operation... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency...
Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review.
Jawad, Haider Mahmood; Nordin, Rosdiadee; Gharghan, Sadik Kamel; Jawad, Aqeel Mahmood; Ismail, Mahamod
2017-08-03
Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark A. Johnson
2012-06-29
Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.
Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Goel, Supriya; Makhmalbaf, Atefe
The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in amore » way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.« less
EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks
Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman
2014-01-01
Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639
Cutting the cost of hospital HVAC.
Ruddell, Steve
2011-09-01
Steve Ruddell, head of global marketing, Motors & Generators, at ABB, emphasises the importance of a good motor management and maintenance policy in getting the best performance from, and reducing the energy consumption of, hospitals' HVAC systems, also explaining why investing in energy-efficient, low voltage drives, and high efficiency electric motors, to control such equipment, can pay major dividends for estates and facilities teams.
Principles of light energy management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, N.
1994-12-31
A review is presented on methods to minimize the effects of excess energy associated with lighting systems for plant growth. Information on lamp efficiencies and methods for separating and collecting unwanted heat is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Slaa, J.W.; Sathaye, J.
2010-12-15
Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing themore » costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.« less
Electron linac for medical isotope production with improved energy efficiency and isotope recovery
Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John
2015-09-08
A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.
NASA Astrophysics Data System (ADS)
Orlov, Alexandr K.
2017-10-01
The article deals with the application of sustainable construction concept within implementation of megaprojects of tourist clusters development using energy saving technologies. The concept of sustainable construction includes the elements of green construction, energy management as well as aspects of the economic efficiency of construction projects implementation. The methodical approach to the implementation of megaprojects for the creation of tourist clusters in Russia based on the concept of energy efficiency and sustainable construction is proved. The conceptual approach to the evaluation of the ecological, social and economic components of the integral indicator of the effectiveness of the megaproject for the development of the tourist cluster is provided. The algorithm for estimation of the efficiency of innovative solutions in green construction is considered.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-15
... Buildings) is available at: http://www1.eere.energy.gov/femp/pdfs/draft_EISA_project_guidance.pdf DATES... at: http://www1.eere.energy.gov/femp/pdfs/draft_EISA_project_guidance.pdf . DOE will accept comments...
10 CFR 706.2 - Basis and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY SECURITY POLICIES AND PRACTICES RELATING TO LABOR-MANAGEMENT RELATIONS General § 706.2 Basis and... objectives for labor-management relations in the DOE program, namely: (a) Wholehearted acceptance by... efficient management expected from DOE contractors; (e) Minimum interference with the traditional rights and...
NASA Astrophysics Data System (ADS)
Faitar, C.; Novac, I.
2017-08-01
Today, the concept of energy efficiency or energy optimization in ships has become one of the main problems of engineers in the whole world. To increase the fiability of a crude oil super tanker ship it means, among other things, to improve the energy performance and optimize the fuel consumption of ship through the development of engines and propulsion system or using alternative energies. Also, the importance of having an effective and reliable Power Management System (PMS) in a vessel operating system means to reduce operational costs and maintain power system of machine parts working in minimum stress in all operating conditions. Studying the Energy Efficiency Design Index and Energy Efficiency Operational Indicator for a crude oil super tanker ship, it allows us to study the reconfiguration of ship power system introducing new generation systems.
The NASA Energy Conservation Program
NASA Technical Reports Server (NTRS)
Gaffney, G. P.
1977-01-01
Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.
A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System
NASA Astrophysics Data System (ADS)
Altin, Necmi; Eyimaya, Süleyman Emre
2018-03-01
From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.
Energy Efficiency I: Automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Peter M.
Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.
NASA Astrophysics Data System (ADS)
Amin, Majdi Talal
Currently, there is no integrated dynamic simulation program for an energy efficient greenhouse coupled with an aquaponic system. This research is intended to promote the thermal management of greenhouses in order to provide sustainable food production with the lowest possible energy use and material waste. A brief introduction of greenhouses, passive houses, energy efficiency, renewable energy systems, and their applications are included for ready reference. An experimental working scaled-down energy-efficient greenhouse was built to verify and calibrate the results of a dynamic simulation model made using TRNSYS software. However, TRNSYS requires the aid of Google SketchUp to develop 3D building geometry. The simulation model was built following the passive house standard as closely as possible. The new simulation model was then utilized to design an actual greenhouse with Aquaponics. It was demonstrated that the passive house standard can be applied to improve upon conventional greenhouse performance, and that it is adaptable to different climates. The energy-efficient greenhouse provides the required thermal environment for fish and plant growth, while eliminating the need for conventional cooling and heating systems.
Energy sustainability: consumption, efficiency, and ...
One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le
Jensen, Thorben; Chappin, Émile J L
2017-07-15
Feedback devices can be used to inform households about their energy-consumption behavior. This may persuade them to practice energy conservation. The use of feedback devices can also-via word of mouth-spread among households and thereby support the spread of the incentivized behavior, e.g. energy-efficient heating behavior. This study investigates how to manage the impact of these environmental innovations via marketing. Marketing activities can support the diffusion of devices. This study aims to identify the most effective strategies of marketing feedback devices. We did this by adapting an agent-based model to simulate the roll-out of a novel feedback technology and heating behavior within households in a virtual city. The most promising marketing strategies were simulated and their impacts were analyzed. We found it particularly effective to lend out feedback devices to consumers, followed by leveraging the social influence of well-connected individuals, and giving away the first few feedback devices for free. Making households aware of the possibility of purchasing feedback devices was found to be least effective. However, making households aware proved to be most cost-efficient. This study shows that actively managing the roll-out of feedback devices can increase their impacts on energy-conservation both effectively and cost-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the energy footprint of I/O management in Exascale HPC systems
Dorier, Matthieu; Yildiz, Orcun; Ibrahim, Shadi; ...
2016-03-21
The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. But, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. Tomore » accomplish this, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. This proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches.« less
Carbon and energy balances for cellulosic biofuel crops in U.S. Midwest
NASA Astrophysics Data System (ADS)
Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.
2012-04-01
Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and energy balance implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and energy balances of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and energy balances for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and energy balances and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C balance) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system intermediate (5.2 GJ ha-1). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output: input ratios of 10 to 16 for conventional and no-till food production, respectively, and from 7 to 11 for conventional and no-till fuel production. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production, and large differences in efficiencies attributable to management.
Energy analysis and agriculture: an application to US Corn Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smil, V.; Nachman, P.; Long, T.V. II
1983-01-01
Changes in farming technology have increased the amount and cost of energy used in crop production, raising the question of whether energy efficiency in agriculture has remained constant, decreased, or increased. Despite some studies to the contrary, the authors assert that all essential energy used, both directly and indirectly, in US corn farming has remained constant in relation to crop production during the past two decades. Using a detailed process of energy analysis that takes into account various management and technological changes, they trace and quantify the energy cost of corn production from 1945-1947 and forecast its changes through 1984.more » They conclude that the energy efficiency of corn farming has not declined, and find that future technological and process improvements, led by conservation measures, will likely increase its energy efficiency in the 1980s. 39 references, 33 figures, 88 tables.« less
McParland, S; Lewis, E; Kennedy, E; Moore, S G; McCarthy, B; O'Donovan, M; Butler, S T; Pryce, J E; Berry, D P
2014-09-01
Interest is increasing in the feed intake complex of individual dairy cows, both for management and animal breeding. However, energy intake data on an individual-cow basis are not routinely available. The objective of the present study was to quantify the ability of routinely undertaken mid-infrared (MIR) spectroscopy analysis of individual cow milk samples to predict individual cow energy intake and efficiency. Feed efficiency in the present study was described by residual feed intake (RFI), which is the difference between actual energy intake and energy used (e.g., milk production, maintenance, and body tissue anabolism) or supplied from body tissue mobilization. A total of 1,535 records for energy intake, RFI, and milk MIR spectral data were available from an Irish research herd across 36 different test days from 535 lactations on 378 cows. Partial least squares regression analyses were used to relate the milk MIR spectral data to either energy intake or efficiency. The coefficient of correlation (REX) of models to predict RFI across lactation ranged from 0.48 to 0.60 in an external validation data set; the predictive ability was, however, strongest (REX=0.65) in early lactation (<60 d in milk). The inclusion of milk yield as a predictor variable improved the accuracy of predicting energy intake across lactation (REX=0.70). The correlation between measured RFI and measured energy balance across lactation was 0.85, whereas the correlation between RFI and energy balance, both predicted from the MIR spectrum, was 0.65. Milk MIR spectral data are routinely generated for individual cows throughout lactation and, therefore, the prediction equations developed in the present study can be immediately (and retrospectively where MIR spectral data have been stored) applied to predict energy intake and efficiency to aid in management and breeding decisions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
48 CFR 970.2305-4 - Solicitation provision and contract clause.
Code of Federal Regulations, 2010 CFR
2010-10-01
... contract clause. 970.2305-4 Section 970.2305-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-4...
48 CFR 970.2305-4 - Solicitation provision and contract clause.
Code of Federal Regulations, 2013 CFR
2013-10-01
... contract clause. 970.2305-4 Section 970.2305-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-4...
48 CFR 970.2305-4 - Solicitation provision and contract clause.
Code of Federal Regulations, 2012 CFR
2012-10-01
... contract clause. 970.2305-4 Section 970.2305-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-4...
48 CFR 970.2305-4 - Solicitation provision and contract clause.
Code of Federal Regulations, 2014 CFR
2014-10-01
... contract clause. 970.2305-4 Section 970.2305-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-4...
48 CFR 970.2305-4 - Solicitation provision and contract clause.
Code of Federal Regulations, 2011 CFR
2011-10-01
... contract clause. 970.2305-4 Section 970.2305-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2305-4...
Energy Sourcebook for Educational Facilities.
ERIC Educational Resources Information Center
Council of Educational Facility Planners, Columbus, OH.
The Council of Educational Facility Planners, International (CEFP/I) has assembled an authoritative and comprehensive sourcebook for the design and management of energy efficient educational facilities. Information that bridges the gap between scientific energy theory/research/technology and the needs of the educational community is published in…
77 FR 65374 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Proposed Agency Information... collection of information that DOE is developing for submission to the Office of Management and Budget... collection of information is necessary for the proper performance of the functions of the agency, including...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-05-02
All programs with the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) are required to undertake rigorous, objective peer review of their funded projects on a yearly basis in order to ensure and enhance the management, relevance, effectiveness, and productivity of those projects.
Green farming systems for the Southeast USA using manure-to-energy conversion platforms
USDA-ARS?s Scientific Manuscript database
Livestock operations in the Southeastern USA are faced with implementing holistic solutions to address effective manure treatment through efficient energy management and safeguarding of supporting natural resources. By integrating waste-to-energy conversion platforms, future green farming systems ca...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, J.W.
1992-02-18
This report consists of the testimony by J. William Currie, Manager, Energy Systems Modernization Office, Battelle, Pacific Northwest Laboratories before The Senate Committee on Governmental Affairs, Washington, DC on February 18, 1992. He states ``It is a pleasure to have the opportunity to talk with this distinguished committee about energy conservation technologies and policies, especially as they relate to federal energy use and the commercialization of energy-efficiency technologies. Clearly, using energy more efficiently offers the potential for tremendous cost savings and environmental benefits in the United States and throughout the rest of the world. The challenge, especially with regard tomore » the federal sector, is to lay the foundation for ensuring that the citizens of our nation realize the maximum savings and environmental benefit over the long run. This is the primary focus of my comments today.``« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, J.W.
1992-02-18
This report consists of the testimony by J. William Currie, Manager, Energy Systems Modernization Office, Battelle, Pacific Northwest Laboratories before The Senate Committee on Governmental Affairs, Washington, DC on February 18, 1992. He states It is a pleasure to have the opportunity to talk with this distinguished committee about energy conservation technologies and policies, especially as they relate to federal energy use and the commercialization of energy-efficiency technologies. Clearly, using energy more efficiently offers the potential for tremendous cost savings and environmental benefits in the United States and throughout the rest of the world. The challenge, especially with regard tomore » the federal sector, is to lay the foundation for ensuring that the citizens of our nation realize the maximum savings and environmental benefit over the long run. This is the primary focus of my comments today.''« less
Mapping the energy footprint of produced water management in New Mexico
NASA Astrophysics Data System (ADS)
Zemlick, Katie; Kalhor, Elmira; Thomson, Bruce M.; Chermak, Janie M.; Sullivan Graham, Enid J.; Tidwell, Vincent C.
2018-02-01
Hydraulic fracturing (HF) and horizontal drilling have revolutionized the fossil fuel industry by enabling production from unconventional oil and gas (UOG) reserves. However, UOG development requires large volumes of water, and subsequent oil and gas production from both conventional and unconventional wells generate large volumes of produced water (PW). While PW is usually considered a waste product, its reuse may lessen demand for freshwater supplies, reduce costs for transportation and disposal, and reduce the risks for injection-induced seismicity. Whether this water is disposed of or treated and reused, both methods require significant amounts of energy. The objective of this study was to identify the primary energy demands of alternative water management strategies, and to characterize and quantify their geographic variability in four oil and gas producing basins in New Mexico using a single year of production. Results illustrate the importance of each component of each produced water management strategy in determining its total energy footprint. Based on 2015 production and water use data, the energy to extract fresh groundwater for hydraulic fracturing (34 GWh-th yr-1.) exceeds the energy that would be required if the same volume of PW were treated chemically (19 GWh-th yr-1.). In addition, the energy required to transport fresh water and dispose of PW (167 GWh-th yr-1.) is far greater than that required to move treated PW (8 GWh-th yr-1.) to a point of reuse. Furthermore, transportation distances, which contribute significantly to the total energy footprint of a given management strategy, are underestimated by nearly 50% state-wide. This indicates that reuse may be an even more energy efficient way to manage PW, even with energy-intensive treatment strategies like electrocoagulation. Reuse of PW for HF is not only more energy efficient than conventional management techniques, it also reduces both demand for scarce fresh water resources and use of disposal wells. By evaluating components of each management strategy individually, this work illustrates how the energy footprint of regional PW management can be reduced. The advent of UOG recovery in the last decade highlights the need to understand existing water management in the industry, identify opportunities and strategies for improvement, and recognize that these dynamics are likely to change into the future.
Rigamonti, L; Grosso, M; Giugliano, M
2009-02-01
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... Management. The life-cycle cost guidance and required discount rates and energy price projections are... Supplement to The National Institute of Standards and Technology Handbook 135: ``Energy Price Indices and... DEPARTMENT OF ENERGY 10 CFR Part 433 [Docket No. EERE-2011-BT-STD-0055] RIN 1904-AC60 Energy...
ERIC Educational Resources Information Center
American School & University, 1996
1996-01-01
Describes innovative strategies that schools and universities are using to save money and reshape operations. Focuses on ideas in energy efficiency and facilities improvement, direct purchasing, energy management, retrofitting buildings, ceiling insulation upgrades, automation systems, electric demand programs, facilities programs, warranty…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nancy Carlisle: NREL
This publication is one of a series of case studies of energy-efficient modern laboratories; it was prepared for "Laboratories for the 21st Century," a joint program of the Environmental Protection Agency and the U.S. DOE Federal Energy Management Program
Mulliniks, J T; Rius, A G; Edwards, M A; Edwards, S R; Hobbs, J D; Nave, R L G
2015-06-01
Despite overall increased production in the last century, it is critical that grazing production systems focus on improving beef and dairy efficiency to meet current and future global food demands. For livestock producers, production efficiency is essential to maintain long-term profitability and sustainability. This continued viability of production systems using pasture- and range-based grazing systems requires more rapid adoption of innovative management practices and selection tools that increase profitability by optimizing grazing management and increasing reproductive performance. Understanding the genetic variation in cow herds will provide the ability to select cows that require less energy for maintenance, which can potentially reduce total energy utilization or energy required for production, consequently improving production efficiency and profitability. In the United States, pasture- and range-based grazing systems vary tremendously across various unique environments that differ in climate, topography, and forage production. This variation in environmental conditions contributes to the challenges of developing or targeting specific genetic components and grazing systems that lead to increased production efficiency. However, across these various environments and grazing management systems, grazable forage remains the least expensive nutrient source to maintain productivity of the cow herd. Beef and dairy cattle can capitalize on their ability to utilize these feed resources that are not usable for other production industries. Therefore, lower-cost alternatives to feeding harvested and stored feedstuffs have the opportunity to provide to livestock producers a sustainable and efficient forage production system. However, increasing production efficiency within a given production environment would vary according to genetic potential (i.e., growth and milk potential), how that genetic potential fits the respective production environment, and how the grazing management fits within those genetic parameters. Therefore, matching cow type or genetic potential to the production environment is and will be more important as cost of production increases.
Energy-efficient sensing in wireless sensor networks using compressed sensing.
Razzaque, Mohammad Abdur; Dobson, Simon
2014-02-12
Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Zhang, Zhao
With each CMOS technology generation, leakage energy consumption has been dramatically increasing and hence, managing leakage power consumption of large last-level caches (LLCs) has become a critical issue in modern processor design. In this paper, we present EnCache, a novel software-based technique which uses dynamic profiling-based cache reconfiguration for saving cache leakage energy. EnCache uses a simple hardware component called profiling cache, which dynamically predicts energy efficiency of an application for 32 possible cache configurations. Using these estimates, system software reconfigures the cache to the most energy efficient configuration. EnCache uses dynamic cache reconfiguration and hence, it does not requiremore » offline profiling or tuning the parameter for each application. Furthermore, EnCache optimizes directly for the overall memory subsystem (LLC and main memory) energy efficiency instead of the LLC energy efficiency alone. The experiments performed with an x86-64 simulator and workloads from SPEC2006 suite confirm that EnCache provides larger energy saving than a conventional energy saving scheme. For single core and dual-core system configurations, the average savings in memory subsystem energy over a shared baseline configuration are 30.0% and 27.3%, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Martin, Nathan; Worrell, Ernst
2003-09-01
Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findingsmore » suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, R.E.
In large facilities, successful energy management cannot be measured by a few projects, no matter how significant the energy savings. Large facilities today are comprised of extensive energy consuming systems. For every energy project developed, two more projects remain to be discovered. The successful energy manager is one who has completed ten projects, or twenty, or thirty, and is still finding more projects to do. Nothing is assumed to be as efficient as possible, and no part of any system is ignored. The successful energy manager is willing to take risks, not of being fired, but to use imagination, studymore » engineering theory, exercise common sense, develop concept designs, calculate savings, sell projects to management, control designers, study equipment performance, pre-select contractors, manage the contractor efforts, solve inherent problems along the way, and then optimize the project after acceptance when the designers and contractors all walk off. Once the successful energy manager establishes his credibility, his problem becomes finding enough time to get the projects rolling as he dreams them up. He sees what others do not. As they say in the North, only the lead dog sees new scenery.« less
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-01-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m−3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. PMID:26656252
NASA Astrophysics Data System (ADS)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
A Framework to Survey the Energy Efficiency of Installed Motor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee
2013-08-01
While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impactsmore » of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.« less
Building Efficiency Evaluation and Uncertainty Analysis with DOE's Asset Score Preview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-12
Building Energy Asset Score Tool, developed by the U.S. Department of Energy (DOE), is a program to encourage energy efficiency improvement by helping building owners and managers assess a building's energy-related systems independent of operations and maintenance. Asset Score Tool uses a simplified EnergyPlus model to provide an assessment of building systems, through minimum user inputs of basic building characteristics. Asset Score Preview is a newly developed option that allows users to assess their building's systems and the potential value of a more in-depth analysis via an even more simplified approach. This methodology provides a preliminary approach to estimating amore » building's energy efficiency and potential for improvement. This paper provides an overview of the methodology used for the development of Asset Score Preview and the scoring methodology.« less
Energy efficiency of substance and energy recovery of selected waste fractions.
Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian
2011-04-01
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield. Copyright © 2010 Elsevier Ltd. All rights reserved.
Energy efficiency of substance and energy recovery of selected waste fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fricke, Klaus, E-mail: klaus.fricke@tu-bs.de; Bahr, Tobias, E-mail: t.bahr@tu-bs.de; Bidlingmaier, Werner, E-mail: werner.bidlingmaier@uni-weimar.de
In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard tomore » the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.« less
The Role of Awards Programs in Stimulating Energy Efficient Behavior: A Study of Award Winners
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Christa; Malone, Elizabeth L.
The value of formal awards programs may be principally in gaining wider recognition for achievements in energy efficiency. But how do these programs contribute to the goal that is presumably behind this value, i.e., stimulating further energy efficient behavior, beyond publicizing the awards ceremonies and describing the projects via websites, posters, and the like? Interviews with 22 individuals and teams of award winners under the Department of Energy Federal Energy Management Program (DOE FEMP) yield insights on the roles that awards programs can play in stimulating energy efficient behavior, especially with regard to institutional dimensions of such behavior. Award winnersmore » identified institutional facilitators and barriers in their projects and programs as well as factors in their implementation processes, thus providing information that can guide other efforts. Although only one of the interviewees affirmed that winning an award was a motivating factor, awards do validate often-hard-won achievements through recognition and, in some cases, additional resources, thus stimulating both the winners themselves and those who see the achievements to further energy-saving activities. Finally, award winners’ responses demonstrated the importance of behavioral and institutional change in energy efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, Rois; Hendron, Bob; Pless, Shanti
Small buildings have been left behind in the energy efficiency marketplace because financial and technical resources have flowed to larger commercial buildings. DOE's Building Technologies Office works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in existing and new commercial buildings (DOE 2013). BTO recognizes the SBSP sector'spotential for significant energy savings and the need for investments in resources that are tailored to this sector's unique needs. The industry research and recommendations described in this report identify potential approaches and strategic priorities that BTO could explore over the next 3-5 years that willmore » support the implementation of high-potential energy efficiency opportunities for thisimportant sector. DOE is uniquely positioned to provide national leadership, objective information, and innovative tools, technologies, and services to support cost-effective energy savings in the fragmented and complex SBSP sector. Properly deployed, the DOE effort could enhance and complement current energy efficiency approaches. Small portfolios are loosely and qualitatively defined asportfolios of buildings that include only a small number of small buildings. This distinction is important because the report targets portfolio owners and managers who generally do not have staff and other resources to track energy use and pursue energy efficiency solutions.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2306 Suspension of payments, termination of contract, and debarment and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2306 Suspension of payments, termination of contract, and debarment and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2306 Suspension of payments, termination of contract, and debarment and...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2306 Suspension of payments, termination of contract, and debarment and...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2306 Suspension of payments, termination of contract, and debarment and...
Energy efficiency in waste-to-energy and its relevance with regard to climate control.
Ragossnig, Arne M; Wartha, Christian; Kirchner, Andreas
2008-02-01
This article focuses on systematically highlighting the ways to optimize waste-to-energy plants in terms of their energy efficiency as an indicator of the positive effect with regard to climate control. Potentials for increasing energy efficiency are identified and grouped into categories. The measures mentioned are illustrated by real-world examples. As an example, district cooling as a means for increasing energy efficiency in the district heating network of Vienna is described. Furthermore a scenario analysis shows the relevance of energy efficiency in waste management scenarios based on thermal treatment of waste with regard to climate control. The description is based on a model that comprises all relevant processes from the collection and transportation up to the thermal treatment of waste. The model has been applied for household-like commercial waste. The alternatives compared are a combined heat and power incinerator, which is being introduced in many places as an industrial utility boiler or in metropolitan areas where there is a demand for district heating and a classical municipal solid waste incinerator producing solely electrical power. For comparative purposes a direct landfilling scenario has been included in the scenario analysis. It is shown that the energy efficiency of thermal treatment facilities is crucial to the quantity of greenhouse gases emitted.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Technical Reports Server (NTRS)
Cull, R. C.; Eltimsahy, A. H.
1982-01-01
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
Investigation of energy management strategies for photovoltaic systems - An analysis technique
NASA Astrophysics Data System (ADS)
Cull, R. C.; Eltimsahy, A. H.
Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.
From Policy to Compliance: Federal Energy Efficient Product Procurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMates, Laurèn; Scodel, Anna
Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resourcesmore » available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater than $25,000. In 2010, ASE estimated a compliance rate of 46% in 2010, up from an estimate of 12% in 2008. Our work updates and expands on ASE’s 2010 analysis to gauge agency compliance with EEPP requirements.« less
NASA Astrophysics Data System (ADS)
Balaji, Bharathan
Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide scale deployment of such energy saving software, they need to be portable across multiple buildings. However, buildings consist of heterogeneous equipment and use inconsistent naming schema, and developers need extensive domain knowledge to map sensor information to a standard format. To enable portability, we present an active learning algorithm that automates mapping building sensor metadata to a standard naming schema.
NASA Astrophysics Data System (ADS)
Cominola, A.; Spang, E. S.; Giuliani, M.; Castelletti, A.; Loge, F. J.; Lund, J. R.
2016-12-01
Demand side management strategies are key to meet future water and energy demands in urban contexts, promote water and energy efficiency in the residential sector, provide customized services and communications to consumers, and reduce utilities' costs. Smart metering technologies allow gathering high temporal and spatial resolution water and energy consumption data and support the development of data-driven models of consumers' behavior. Modelling and predicting resource consumption behavior is essential to inform demand management. Yet, analyzing big, smart metered, databases requires proper data mining and modelling techniques, in order to extract useful information supporting decision makers to spot end uses towards which water and energy efficiency or conservation efforts should be prioritized. In this study, we consider the following research questions: (i) how is it possible to extract representative consumers' personalities out of big smart metered water and energy data? (ii) are residential water and energy consumption profiles interconnected? (iii) Can we design customized water and energy demand management strategies based on the knowledge of water- energy demand profiles and other user-specific psychographic information? To address the above research questions, we contribute a data-driven approach to identify and model routines in water and energy consumers' behavior. We propose a novel customer segmentation procedure based on data-mining techniques. Our procedure consists of three steps: (i) extraction of typical water-energy consumption profiles for each household, (ii) profiles clustering based on their similarity, and (iii) evaluation of the influence of candidate explanatory variables on the identified clusters. The approach is tested onto a dataset of smart metered water and energy consumption data from over 1000 households in South California. Our methodology allows identifying heterogeneous groups of consumers from the studied sample, as well as characterizing them with respect to consumption profiles features and socio- demographic information. Results show how such better understanding of the considered users' community allows spotting potentially interesting areas for water and energy demand management interventions.
Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo
2008-01-01
For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully. PMID:27873956
Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo
2008-12-03
For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODE plus . It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODE plus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.
Design of New Power Management Circuit for Light Energy Harvesting System
Jafer, Issa; Stack, Paul; MacNamee, Kevin
2016-01-01
Nowadays, it can be observed that Wireless Sensors Networks (WSN) are taking increasingly vital roles in many applications, such as building energy monitoring and control, which is the focus of the work in this paper. However, the main challenging issue with adopting WSN technology is the use of power sources such as batteries, which have a limited lifetime. A smart solution that could tackle this problem is using Energy Harvesting technology. The work in this paper will be focused on proposing a new power management design through harvesting indoor light intensity. The new approach is inspired by the use of the Fractional Open Circuit Voltage based Maximum Power Point tracking (MPPT) concept for sub mw Photo Voltaic (PV) cells. The new design adopts two main features: First, it minimizes the power consumed by the power management section; and second, it maximizes the MPPT-converted output voltage and consequently improves the efficiency of the power conversion in the sub mw power level. The new experimentally-tested design showed an improvement of 81% in the efficiency of MPPT conversion using 0.5 mW input power in comparison with the other presented solutions that showed less efficiency with higher input power. PMID:26907300
Modular, Reconfigurable, High-Energy Systems Stepping Stones
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Mankins, John C.
2005-01-01
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors
Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun
2016-01-01
Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722
Blanco, Jesús; García, Andrés; Morenas, Javier de Las
2018-06-09
Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.
Water loss control using pressure management: life-cycle energy and air emission effects.
Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard
2013-10-01
Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.
Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review
Jawad, Haider Mahmood; Nordin, Rosdiadee; Gharghan, Sadik Kamel; Jawad, Aqeel Mahmood
2017-01-01
Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data. PMID:28771214
The Path to Savings: Understanding the Federal Purchase of Energy-Consuming Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Margaret; Fujita, K. Sydny
Energy efficiency has been a federal procurement policy objective since at least 1992, with the origin of the Energy Efficient Product Procurement (EEPP) program within the larger Federal Energy Management Program (FEMP). Today, the EEPP program’s mandate is based on requirements that 95% of new contract actions, task orders, and delivery orders for products and services be energy and water efficient, as laid out in Executive Order 13514 in 2009. Facilitating full compliance with EO 13514 presents a significant strategic planning challenge to the FEMP EEPP program, given the size of the federal government, the range of missions of itsmore » many agencies, the mix of management approaches for its buildings, and the diverse set of roughly 80 energy efficient products which has been established through preceding legislation and executive orders. The goal of this report is to aid the program in prioritizing its resources by providing an overview of how the purchase of energy-consuming products occurs in today’s evolving federal procurement system, as well as identify likely intervention points and compliance review mechanisms. Through a synthesis of the literature on U.S. federal sector procurement and two dozen primary interviews, the report particularly focuses on the importance of price in determining the actor(s) responsible for any given purchase of an energy-consuming product. This identification is important, as the relevant actors are trained and reviewed in different ways that the FEMP EEPP program can prioritize for targeting, based on the decision criteria such as the potential energy savings associated with the actor’s purchases or the administrative ease of the intervention.« less
Long-term Energy and Emissions Savings Potential in New York City Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Vatsal; Lee, John; Klein, Yehuda
2012-09-30
The New York State Energy Research and Development Authority (NYSERDA) partnered with the Brookhaven National Laboratory (BNL) and the City University of New York (CUNY) to develop an integrated methodology that is capable of quantifying the impact of energy efficiency and load management options in buildings, including CUNY’s campus buildings, housing projects, hospitals, and hotels, while capturing the synergies and offsets in a complex and integrated energy-environmental system. The results of this work serve as a guideline in implementing urban energy efficiency and other forms of urban environmental improvement through cost-effective planning at the institutional and local level.
Rapid Building Assessment Project
2014-05-01
ongoing management of commercial energy efficiency. No other company offers all of these proven services on a seamless, integrated Software -as-a- Service ...FirstFuel has added a suite of additional Software -as-a- Service analytics capabilities to support the entire energy efficiency lifecycle, including...the client side. In this document, we refer to the service side software as “BUILDER” and the client software as “BuilderRED,” following the Army
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
Advanced Commercial Buildings Initiative Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Sydney G.
The Southface Advanced Commercial Buildings Initiative has developed solutions to overcome market barriers to energy reductions in small commercial buildings by building on the success of four local and Southeast regional energy efficiency deployment programs. These programs address a variety of small commercial building types, efficiency levels, owners, facility manager skills and needs for financing. The deployment programs also reach critical private sector, utility, nonprofit and government submarkets, and have strong potential to be replicated at scale. During the grant period, 200 small commercial buildings participated in Southface-sponsored energy upgrade programs, saving 166,736,703 kBtu of source energy.
Coordinating the Design and Management of Heterogeneous Datacenter Resources
ERIC Educational Resources Information Center
Guevara, Marisabel
2014-01-01
Heterogeneous design presents an opportunity to improve energy efficiency but raises a challenge in management. Whereas prior work separates the two, we coordinate heterogeneous design and management. We present a market-based resource allocation mechanism that navigates the performance and power trade-offs of heterogeneous architectures. Given…
Not Too Hot, Not Too Cold - Continuum Magazine | NREL
management technologies increase vehicle energy efficiency and performance while reducing costs. Mythological automobiles. Issues with thermal management cause some of these limitations. A photo of a white disk submerged sector petroleum consumption. Manufacturers and operators alike are looking to new thermal management
Programming models for energy-aware systems
NASA Astrophysics Data System (ADS)
Zhu, Haitao
Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real-world Java programs.
ERIC Educational Resources Information Center
Flynn, Emily
2011-01-01
Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…
Starostina, Vlada; Damgaard, Anders; Eriksen, Marie K; Christensen, Thomas H
2018-04-01
The current waste management system, handling around 500,000 t of household, commercial, and institutional waste annually in the Irkutsk region, Siberia, is based on landfilling in an old landfill with no controls of leachate and gas. Life-cycle assessment modelling of the current system shows that it is a major load on the environment, while the simulation of seven alternative systems results in large savings in many impact categories. With respect to climate change, it is estimated that a saving of about 1200 kg CO 2 equivalents is possible per year, per inhabitant, which is a significant reduction in greenhouse gas emissions. The best alternatives involve efficient energy recovery from waste and recycling by source separation for commercial and institutional waste, the major waste type in the Irkutsk region. Recycling of household waste seems less attractive, and it is therefore recommended only to consider this option after experience has been gained with the commercial and institutional waste. Sensitivity analysis shows that recovery of energy - in particular electricity, heat, and steam - from waste is crucial to the environmental performance of the waste management system. This relates to the efficiencies of energy recovery as well as what the recovered energy substitutes, that is, the 'dirtier' the off-set energy, the higher the environmental savings for the waste management system. Since recovered energy may be utilised by only a few energy grids or industrial users, it is recommended to perform additional local assessments of the integration of the waste energy into existing systems and facilities.
Energy management and recovery
NASA Technical Reports Server (NTRS)
Lawing, Pierce L.
1989-01-01
Energy management is treated by first exploring the energy requirements for a cryogenic tunnel. The requirement is defined as a function of Mach number, Reynolds number, temperature, and tunnel size. A simple program and correlation is described which allow calculation of the energy required. Usage of energy is also addressed in terms of tunnel control and research operation. The potential of a new wet expander is outlined in terms of cost saved by reliquefying a portion of the exhaust. The expander is described as a potentially more efficient way of recovering a fraction of the cold nitrogen gas normally exhausted to the atmosphere from a cryogenic tunnel. The role of tunnel insulation systems is explored in terms of requirements, safety, cost, maintenance, and efficiency. A detailed description of two external insulation systems is given. One is a rigid foam with a fiber glass and epoxy shell. The other is composed of glass fiber mats with a flexible outer vapor barrier; this system is nitrogen purged. The two systems are compared with the purged system being judged superior.
Energy-water nexus for mass cultivation of algae.
Murphy, Cynthia Folsom; Allen, David T
2011-07-01
Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Green Purchasing Requirements 323.7100 Policy. (a) The HHS guidelines and procedures for “green... Program Managers, are responsible for establishing the necessary local procedures and appropriate training...
Thermal Management and Reliability of Power Electronics and Electric Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant
2016-09-19
Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.« less
Facilitating adaptive management in a government program: A household energy efficiency case study.
Curtis, Jim; Graham, Alex; Ghafoori, Eraj; Pyke, Susan; Kaufman, Stefan; Boulet, Mark
2017-02-01
Interim evaluations of government programs can sometimes reveal lower than expected outcomes, leading to the question of how adjustments can be made while the program is still underway. Although adaptive management frameworks can provide a practical roadmap to address this question, a lack of successful learnings and poor implementation have hampered the progress and wider application of adaptive management. Using a case study involving an energy efficiency government program targeting low-income households, this article provides supporting evidence on how adaptive management can be facilitated and applied. Factors such as proactive and responsive leadership, establishing a research-practice interface, and recognizing the skills, expertise, and contributions of multiple stakeholders guided adjustments to the program, and later paved the way for longer-term organizational learning that impacted how other programs are delivered. Implications for knowledge and practice, and a discussion of the challenges faced in the program, advance current thinking in adaptive management. Copyright © 2016 Elsevier Ltd. All rights reserved.
An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.
Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U
2015-03-06
An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.
An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability
Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.
2015-01-01
An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863
Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Elizabeth
This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companiesmore » interact and use their machines to reduce energy consumption.« less
Energy consumption and load profiling at major airports. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J.
1998-12-01
This report describes the results of energy audits at three major US airports. These studies developed load profiles and quantified energy usage at these airports while identifying procedures and electrotechnologies that could reduce their power consumption. The major power consumers at the airports studied included central plants, runway and taxiway lighting, fuel farms, terminals, people mover systems, and hangar facilities. Several major findings emerged during the study. The amount of energy efficient equipment installed at an airport is directly related to the age of the facility. Newer facilities had more energy efficient equipment while older facilities had much of themore » original electric and natural gas equipment still in operation. As redesign, remodeling, and/or replacement projects proceed, responsible design engineers are selecting more energy efficient equipment to replace original devices. The use of computer-controlled energy management systems varies. At airports, the primary purpose of these systems is to monitor and control the lighting and environmental air conditioning and heating of the facility. Of the facilities studied, one used computer management extensively, one used it only marginally, and one had no computer controlled management devices. At all of the facilities studied, natural gas is used to provide heat and hot water. Natural gas consumption is at its highest in the months of November, December, January, and February. The Central Plant contains most of the inductive load at an airport and is also a major contributor to power consumption inefficiency. Power factor correction equipment was used at one facility but was not installed at the other two facilities due to high power factor and/or lack of need.« less
Selective optical contacting for solar spectrum management
NASA Astrophysics Data System (ADS)
Yang, Jianfeng; Chen, Weijian; Wang, Bo; Zhang, Zhilong; Huang, Shujuan; Shrestha, Santosh; Wen, Xiaoming; Patterson, Robert; Conibeer, Gavin
2017-02-01
Solar spectrum management using up/down conversion is an important method to improve the photovoltaic energy conversion efficiency. It asks for a monochromatic luminescence absorption at the band edge of the photovoltaic device to reduce both the sub-band-gap and over-band-gap energy losses. Here, we demonstrate an energy selective optical contacting concept to improve the luminescence transfer efficiency for spectrum management. By increasing both the luminescence emission and re-absorption ability through photonic resonance, an efficient photon transfer channel could be established between the luminescence emitter and the photovoltaic component in a near-field region. This concept is not only able to compensate the insufficient band edge absorption ability of the photovoltaic device, but also to break the far-field limitation of luminescence radiation. The energy selection on the optical spectrum naturally imposed by the mode resonance is also helpful to improve the monochromaticity of the luminescence yield. In this paper, a photonic crystal cavity is used to realize the optical contacting concept between a thin silicon film and spectrum converter. The optical power and photon flux transferred between different components are calculated analytically using the electromagnetic Green's function. The corresponding radiative dipole moment is estimated by the fluctuation-dissipation theorem. The example shows an over 80 times enhancement in the luminescence absorbance by the silicon layer, illustrating the great potential of this concept to be applied on nano-structured photovoltaic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brad Oberg
2010-12-31
Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performancemore » homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.« less
Energy manager design for microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan; Marnay, Chris
2005-01-01
On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatchmore » decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.« less
Audit Report on "The Department's Management of the ENERGY STAR Program"
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-01
The American Recovery and Reinvestment Act (Recovery Act) authorized about $300 million in consumer rebate incentives for purchases of products rated under the 'ENERGY STAR' Program. ENERGY STAR, a voluntary labeling program established in 1992, provides consumers with energy efficiency data for a range of products so that they can make informed purchase judgments. The overall goal of the program is to encourage consumers to choose energy efficient products, advancing the nationwide goal of reducing energy consumption. The U.S. Environmental Protection Agency (EPA) managed the ENERGY STAR Program on a stand-alone basis until 1996 when it joined forces with themore » Department of Energy (Department). A Memorandum of Cooperation expanded the ENERGY STAR product categories, giving the Department responsibility for overseeing eight product categories such as windows, dishwashers, clothes washers, and refrigerators, while EPA retained responsibility for electronic product categories and heating, ventilating, and cooling equipment. Each agency is responsible for setting product efficiency specifications for those items under its control and for ensuring the proper use of the ENERGY STAR label in the marketplace. In August 2007, the EPA Office of Inspector General issued an audit report identifying significant control weaknesses in EPA's management of ENERGY STAR. The Department, concerned by the findings at EPA and eager to improve its own program, developed an approach to verify adherence to product specifications, ensure proper use of the ENERGY STAR label in the marketplace, and improve the establishment of product specifications. As evidenced by the commitment of $300 million in Recovery Act funds, the ENERGY STAR Program plays an important role in the U.S. efforts to reduce energy consumption. We initiated this audit to determine whether the Department had implemented the actions it announced in 2007 to strengthen the Program. The Department had not implemented planned improvements in the ENERGY STAR Program. Our audit revealed that officials had not: (1) Developed a formal quality assurance program to help ensure that product specifications were adhered to; (2) Effectively monitored the use of the ENERGY STAR label to ensure that only qualifying products were labeled as compliant; and (3) Formalized procedures for establishing and revising product specifications and for documenting decisions regarding those specifications. In our judgment, the delay in the Department's planned improvements in its management of the ENERGY STAR Program could reduce consumer confidence in the integrity of the ENERGY STAR label. Such loss of credibility could reduce energy savings, increase consumer risk, and diminish the value of the recent infusion of $300 million for ENERGY STAR rebates under the Recovery Act.« less
Status and prospect of NDT technology for nuclear energy industry in Korea
NASA Astrophysics Data System (ADS)
Lee, Joon Hyun
2016-02-01
Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.
Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart
2017-11-01
When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
How can we tackle energy efficiency in IoT based smart buildings?
Moreno, M Victoria; Úbeda, Benito; Skarmeta, Antonio F; Zamora, Miguel A
2014-05-30
Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.
How can We Tackle Energy Efficiency in IoT Based Smart Buildings?
Moreno, M. Victoria; Úbeda, Benito; Skarmeta, Antonio F.; Zamora, Miguel A.
2014-01-01
Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario. PMID:24887040
Certification and brand identity for energy efficiency in competitive energy services markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prindle, W.R.; Wiser, R.
Resource commitments for energy efficiency from electricity companies are disappearing rapidly as the regulated Integrated Resource Planning and Demand-Side Management paradigms that fostered them give way to competitive power markets in a restructuring electricity industry. While free-market advocates claim that energy efficiency needs will be taken care of by competitive energy service providers, there is no assurance that efficiency will compete effectively with the panoply of other energy-related (and non-energy-related) services that are beginning to appear in early market offerings. This paper reports the results of a feasibility study for a certification and brand identity program for energy efficiency gearedmore » to competitive power markets. Funded by the Energy Foundation, this study involved a survey and personal interviews with stakeholders, plus a workshop to further the discussion. Stakeholders include independent power marketers and energy service companies, utility affiliate power marketers and energy service companies, government agencies, trade associations, non-profit organizations, equipment manufacturers, and consultants. The paper summarizes the study's findings on such key issues as: Whether a brand identity concept has a critical mass of interest and support; how qualification and certification could work in such a program; how a brand identity could be positioned in the market; how an efficiency brand identity could co-brand with renewable power branding programs and other green marketing efforts; and the resources and components needed to make such a program work on a national scale.« less
An Energy Efficient MAC Protocol for Multi-Hop Swallowable Body Sensor Networks
Lin, Lin; Yang, Chengfeng; Wong, Kai Juan; Yan, Hao; Shen, Junwen; Phee, Soo Jay
2014-01-01
Swallowable body sensor networks (BSNs) are composed of sensors which are swallowed by patients and send the collected data to the outside coordinator. These sensors are energy constraint and the batteries are difficult to be replaced. The medium access control (MAC) protocol plays an important role in energy management. This paper investigates an energy efficient MAC protocol design for swallowable BSNs. Multi-hop communication is analyzed and proved more energy efficient than single-hop communication within the human body when the circuitry power is low. Based on this result, a centrally controlled time slotting schedule is proposed. The major workload is shifted from the sensors to the coordinator. The coordinator collects the path-loss map and calculates the schedules, including routing, slot assignment and transmission power. Sensor nodes follow the schedules to send data in a multi-hop way. The proposed protocol is compared with the IEEE 802.15.6 protocol in terms of energy consumption. The results show that it is more energy efficient than IEEE 802.15.6 for swallowable BSN scenarios. PMID:25330049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua B.; Ramaswami, Anu
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Sperling, Joshua B.; Ramaswami, Anu
2017-11-03
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Commercial Building Energy Asset Score
DOE Office of Scientific and Technical Information (OSTI.GOV)
This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less
Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.
The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home.more » New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.« less
NASA Astrophysics Data System (ADS)
Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly
2017-10-01
The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.
MinT: Middleware for Cooperative Interaction of Things
Jeon, Soobin; Jung, Inbum
2017-01-01
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices. PMID:28632182
MinT: Middleware for Cooperative Interaction of Things.
Jeon, Soobin; Jung, Inbum
2017-06-20
This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices easily construct a local or global network, and share their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These enable integrated sensing device operations, efficient resource management, and active interconnection between peripheral IoT devices. In addition, MinT provides a high-level API to develop IoT devices easily for IoT device developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to Californium, which is a middleware for efficient interaction in IoT environments with powerful performance, an average response time decrease of 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.
An RF energy harvesting power management circuit for appropriate duty-cycled operation
NASA Astrophysics Data System (ADS)
Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya
2015-04-01
In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.
Managing for Productive Schools: The Principal's Role in Contemporary Education.
ERIC Educational Resources Information Center
Stronge, James H.
1990-01-01
There is little evidence that student learning would be enhanced if principals were to ignore their broad-based management responsibilities in favor of a more narrowly focused orientation toward instruction. Principals must have a global view of the educational enterprise and direct their energies toward effective and efficient school management,…
NREL Manages Program to Transform Mexico's Power Sector | Integrated Energy
. Through 21CPP, NREL is helping Mexico with: Long-range planning of the power system for transmission , generation, and integration of renewable energy How best to operate the electric grid as Mexico increases the deep energy efficiency and smart grid solutions. Impact Mexico is on the brink of a major energy reform
DMS Advanced Applications for Accommodating High Penetrations of DERs and Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Annabelle; Veda, Santosh; Maitra, Arindam
Efficient and effective management of the electric distribution system requires an integrated approach to allow various systems to work in harmony, including distribution management systems (DMS), distributed energy resources (DERs), distributed energy resources management systems, and microgrids. This study highlights some outcomes from a recent project sponsored by the US Department of Energy, Office of Electricity Delivery and Energy Reliability, including information about (i) the architecture of these integrated systems and (ii) expanded functions of two example DMS applications to accommodate DERs: volt-var optimisation and fault location, isolation, and service restoration. In addition, the relevant DER group functions necessary tomore » support communications between the DMS and a microgrid controller in grid-tied mode are identified.« less
Research on Factors Influencing Individual's Behavior of Energy Management
NASA Astrophysics Data System (ADS)
Fan, Yanfeng
With the rapid rise of distributed generation, Internet of Things, and mobile Internet, both U.S. and European smart home manufacturers have developed energy management solutions for individual usage. These applications help people manage their energy consumption more efficiently. Domestic manufacturers have also launched similar products. This paper focuses on the factors influencing Energy Management Behaviour (EMB) at the individual level. By reviewing academic literature, conducting surveys in Beijing, Shanghai and Guangzhou, the author builds an integrated behavioural energy management model of the Chinese energy consumers. This paper takes the vague term of EMB and redefines it as a function of two separate behavioural concepts: Energy Management Intention (EMI), and the traditional Energy Saving Intention (ESI). Secondly, the author conducts statistical analyses on these two behavioural concepts. EMI is the main driver behind an individual's EMB. EMI is affected by Behavioural Attitudes, Subjective Norms, and Perceived Behavioural Control (PBC). Among these three key factors, PBC exerts the strongest influence. This implies that the promotion of the energy management concept is mainly driven by good application user experience (UX). The traditional ESI also demonstrates positive influence on EMB, but its impact is weaker than the impacts arising under EMI's three factors. In other words, the government and manufacturers may not be able to change an individual's energy management behaviour if they rely solely on their traditional promotion strategies. In addition, the study finds that the government may achieve better promotional results by launching subsidies to the manufacturers of these kinds of applications and smart appliances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Goldman, Charles; Hoffman, Ian
2012-09-11
We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less
Zhang, Hui; Toudert, Johann
2018-01-01
Abstract In a few years only, solar cells using hybrid organic–inorganic lead halide perovskites as optical absorber have reached record photovoltaic energy conversion efficiencies above 20%. To reach and overcome such values, it is required to tailor both the electrical and optical properties of the device. For a given efficient device, optical optimization overtakes electrical one. Here, we provide a synthetic review of recent works reporting or proposing so-called optical management approaches for improving the efficiency of perovskite solar cells, including the use of anti-reflection coatings at the front substrate surface, the design of optical cavities integrated within the device, the incorporation of plasmonic or dielectric nanostructures into the different layers of the device and the structuration of its internal interfaces. We finally give as outlooks some insights into the less-explored management of the perovskite fluorescence and its potential for enhancing the cell efficiency. PMID:29868146
Energy and water quality management systems for water utility's operations: a review.
Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G
2015-04-15
Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE... Planning and Community Right-to-Know Act of 1986 (EPCRA) and the Pollution Prevention Act of 1990 (PPA... toxic chemical releases and waste management activities to the Environmental Protection Agency (EPA) and...
The conservation nexus: valuing interdependent water and energy savings in Arizona.
Bartos, Matthew D; Chester, Mikhail V
2014-02-18
Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally.
Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use
Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.
2017-01-01
Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health. PMID:29230199
2013-04-01
products for energy generation, including solar, wind , and gas turbines , energy storage, power conversion, grid integration, and software for...potential security advantages over centralized systems • DER promote fuel diversity (e.g., biomass, landfill gas, flare gas, wind , solar) and...therefore reduce overall energy price volatility • Renewable DER such as wind and solar photovoltaics provide emissions-free energy • DER offer a quicker
Arctic Energy Technology Development Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney
2008-12-31
The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less
Environmental performance of household waste management in Europe - An example of 7 countries.
Andreasi Bassi, Susanna; Christensen, Thomas H; Damgaard, Anders
2017-11-01
An attributional life cycle assessment (LCA) of the management of 1ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies. The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering the benefits of recycling of materials and recovering and utilization of energy. Environmental benefits come from paper recycling and, to a lesser extent, the recycling of metals and glass. Waste-to-energy plants can lead to an environmental load (as in France) or a saving (Germany and Denmark), depending mainly on the composition of the energy being substituted. Sensitivity analysis and a data quality assessment identified a range of critical parameters, suggesting from where better data should be obtained. The study concluded that household waste management is environmentally the best in European countries with a minimum reliance on landfilling, also induced by the implementation of the Waste Hierarchy, though environmental performance does not correlate clearly with the rate of material recycling. From an environmental point of view, this calls for a change in the waste management paradigm, with less focus on where the waste is routed and more of a focus on the quality and utilization of recovered materials and energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.A.
1989-01-01
The one year internship required for partial fulfillment of the Doctor of Engineering Degree was completed at the Governor's Energy Management Center in Austin, Texas. The intern worked for the State Agencies Department of the Energy Management Center. The intern was involved in a variety of projects, but the primary projects requiring the greatest time were the involvement with the design reviews for energy efficiency of new prisons being constructed in Texas, conducting energy management audits at 18 major state universities, and the technical and administrative assistance to the State Cogeneration Council. Other project involvement included managing the preliminary engineeringmore » design of the cogeneration facility at Austin State Hospital, responsibility for applying for a $1.4 million dollar crude oil refund on the behalf of all state agencies in Texas, and assisting in the planning and coordination of the $48 million Revolving Loan Program for the state of Texas. The internship taught many things about management and communications. The experience also provided a better understanding of how the state and federal government operate. The greatest contribution of the internship experience was the improvement of the intern's written and oral communication skills.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-10
... Management. The life-cycle cost guidance and required discount rates and energy price projections are... Supplement to The National Institute of Standards and Technology Handbook 135: ``Energy Price Indices and...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0...
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Executive Order 13148 of April 21, 2000, Greening the Government through Leadership in Environmental Management. (e) Executive Order 13101 of September 14, 1998, Greening the Government through Waste Prevention... through Efficient Energy Management. (g) Farm Security and Rural Investment Act of 2002 (FSRIA) (7 U.S.C...
48 CFR 970.2307-1 - Motor vehicle fleet operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency... that the Federal motor vehicle fleet will serve as an example and provide a leadership role in the... management contracts which include Federal motor vehicle fleet operations. Section 506 of Executive Order...
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-01-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-26
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
NASA Astrophysics Data System (ADS)
Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min
2016-04-01
Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant
Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant
Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.« less
U.S. Department of Energy, Office of Legacy Management Program Update, April-June 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-04-01
Welcome to the April-June 2009 issue of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Program Update. This publication is designed to provide a status of activities within LM. The Legacy Management goals are: (1) Protect human health and the environment through effective and efficient long-term surveillance and maintenance - This goal highlights DOE's responsibility to ensure long-term protection of people, the environment, and the integrity of engineered remedies and monitoring systems. (2) Preserve, protect, and make accessible legacy records and information - This goal recognizes LM's commitment to successfully manage records, information, and archives of legacymore » sites under its authority. (3) Support an effective and efficient work force structured to accomplish Departmental missions and assure continuity of contractor worker pension and medical benefits - This goal recognizes DOE's commitment to its contracted work force and the consistent management of pension and health benefits. As sites continue to close, DOE faces the challenges of managing pension plan and health benefits liability. (4) Manage legacy land and assets, emphasizing protective real and personal property reuse and disposition - This goal recognizes a DOE need for local collaborative management of legacy assets, including coordinating land use planning, personal property disposition to community reuse organizations, and protecting heritage resources (natural, cultural, and historical). (5) Improve program effectiveness through sound management - This goal recognizes that LM's goals cannot be attained efficiently unless the federal and contractor work force is motivated to meet requirements and work toward continuous performance improvement.« less
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to perform purchasing and accounting tasks efficiently and effectively. The first section is an introduction to the module. The next three…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Worrell, Ernst; Ruth, Michael
2003-07-01
Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less
Cimpan, Ciprian; Rothmann, Marianne; Hamelin, Lorie; Wenzel, Henrik
2015-07-01
Municipal solid waste (MSW) management remains a challenge, even in Europe where several countries now possess capacity to treat all arising MSW, while others still rely on unsustainable disposal pathways. In the former, strategies to reach higher recycling levels are affecting existing waste-to-energy (WtE) treatment infrastructure, by inducing additional overcapacity and this in turn rebounds as pressure on the waste and recyclable materials markets. This study addresses such situations by documenting the effects, in terms of resource recovery, global warming potential (GWP) and cumulative energy demand (CED), of a transition from a self-sufficient waste management system based on minimal separate collection and efficient WtE, towards a system with extended separate collection of recyclable materials and biowaste. In doing so, it tackles key questions: (1) whether recycling and biological treatment are environmentally better compared to highly efficient WtE, and (2) what are the implications of overcapacity-related cascading effects, namely waste import, when included in the comparison of alternative waste management systems. System changes, such as the implementation of kerbside separate collection of recyclable materials were found to significantly increase material recovery, besides leading to substantial GWP and CED savings in comparison to the WtE-based system. Bio-waste separate collection contributed with additional savings when co-digested with manure, and even more significantly when considering future renewable energy background systems reflecting the benefits induced by the flexible use of biogas. Given the current liberalization of trade in combustible waste in Europe, waste landfilling was identified as a short-to-medium-term European-wide waste management marginal reacting to overcapacity effects induced by the implementation of increased recycling strategies. When waste import and, consequently, avoided landfilling were included in the system boundary, additional savings of up to 700 kg CO2 eq. and 16 GJ eq. of primary energy per tonne of imported waste were established. Conditions, such as energy recovery efficiency, and thresholds beyond which import-related savings potentially turn into GWP burdens were also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, Jr., Charles R.
2016-12-01
In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less
Analysis and design of energy monitoring platform for smart city
NASA Astrophysics Data System (ADS)
Wang, Hong-xia
2016-09-01
The development and utilization of energy has greatly promoted the development and progress of human society. It is the basic material foundation for human survival. City running is bound to consume energy inevitably, but it also brings a lot of waste discharge. In order to speed up the process of smart city, improve the efficiency of energy saving and emission reduction work, maintain the green and livable environment, a comprehensive management platform of energy monitoring for government departments is constructed based on cloud computing technology and 3-tier architecture in this paper. It is assumed that the system will provide scientific guidance for the environment management and decision making in smart city.
Consonni, Stefano; Viganò, Federico
2011-01-01
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). Copyright © 2011 Elsevier Ltd. All rights reserved.
Modern Efficiencies for Healthy Schools
ERIC Educational Resources Information Center
VanOort, Adam
2012-01-01
Facility managers everywhere are tasked with improving energy efficiency to control costs. Those strides cannot be achieved at the expense of system performance and reliability, or the comfort of the people within those properties. There are few places where this is truer than in schools and universities. K-12 schools and university lecture spaces…
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2007-01-01
The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.
Energy consumption quota management of Wanda commercial buildings in China
NASA Astrophysics Data System (ADS)
Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.
2016-08-01
There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.
TAS::89 0927::TAS RECOVERY - The Lean Green Energy Controller Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeter, John; Wang, Gene; Moss, David
Achieving efficiency improvements and providing demand-response programs have been identified as key elements of our national energy initiative. The residential market is the largest, yet most difficult, segment to engage in efforts to meet these objectives. This project developed Energy Management System that engages the consumer and enables Smart Grid services, applications, and business processes to address this need. Our innovative solution provides smart controller providing dynamic optimization of energy consumption for the residential energy consumer. Our solution extends the technical platform to include a cloud based Internet of Things (IoT) aggregation of data sensors and actuators the go beyondmore » energy management and extend to life style services provided through compelling mobile and console based user experiences.« less
City-scale analysis of water-related energy identifies more cost-effective solutions.
Lam, Ka Leung; Kenway, Steven J; Lant, Paul A
2017-02-01
Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This would create opportunities where the same capital investment could achieve far greater energy savings and greenhouse gas emissions abatement. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-01-01
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes. PMID:27649170
Cooperative Game-Based Energy Efficiency Management over Ultra-Dense Wireless Cellular Networks.
Li, Ming; Chen, Pengpeng; Gao, Shouwan
2016-09-13
Ultra-dense wireless cellular networks have been envisioned as a promising technique for handling the explosive increase of wireless traffic volume. With the extensive deployment of small cells in wireless cellular networks, the network spectral efficiency (SE) is improved with the use of limited frequency. However, the mutual inter-tier and intra-tier interference between or among small cells and macro cells becomes serious. On the other hand, more chances for potential cooperation among different cells are introduced. Energy efficiency (EE) has become one of the most important problems for future wireless networks. This paper proposes a cooperative bargaining game-based method for comprehensive EE management in an ultra-dense wireless cellular network, which highlights the complicated interference influence on energy-saving challenges and the power-coordination process among small cells and macro cells. Especially, a unified EE utility with the consideration of the interference mitigation is proposed to jointly address the SE, the deployment efficiency (DE), and the EE. In particular, closed-form power-coordination solutions for the optimal EE are derived to show the convergence property of the algorithm. Moreover, a simplified algorithm is presented to reduce the complexity of the signaling overhead, which is significant for ultra-dense small cells. Finally, numerical simulations are provided to illustrate the efficiency of the proposed cooperative bargaining game-based and simplified schemes.
75 FR 39008 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... ADDRESSES as soon as possible. ADDRESSES: Written comments may be sent to Jeffery Dowd, Solar Decathlon... goals as required by the Government Performance and Results Act (GPRA), and the Office of Management and... Assistant Secretary-Business Administration (DAS-BA), Office of Energy Efficiency and Renewable Energy. [FR...
Energy Supplement. Supplement to School Planning and Management.
ERIC Educational Resources Information Center
Schoff, Larry
2001-01-01
Presents the following articles on energy efficiency and American public schools: "High Performance Schools Reduce Costs and Improve Student and Staff Environment" (Larry Schoff); "ASHRAE's Standard 90.1: Educating the Engineer" (Mack and Melanie Wallace"; and "Performance Contracting: Meeting the Challenge of Deferred Maintenance in America's…
Improving the energy efficiency of telecommunication networks
NASA Astrophysics Data System (ADS)
Lange, Christoph; Gladisch, Andreas
2011-05-01
The energy consumption of telecommunication networks has gained increasing interest throughout the recent past: Besides its environmental implications it has been identified to be a major contributor to operational expenditures of network operators. Targeting at sustainable telecommunication networks, thus, it is important to find appropriate strategies for improving their energy efficiency before the background of rapidly increasing traffic volumes. Besides the obvious benefits of increasing energy efficiency of network elements by leveraging technology progress, load-adaptive network operation is a very promising option, i.e. using network resources only to an extent and for the time they are actually needed. In contrast, current network operation takes almost no advantage of the strongly time-variant behaviour of the network traffic load. Mechanisms for energy-aware load-adaptive network operation can be subdivided in techniques based on local autonomous or per-link decisions and in techniques relying on coordinated decisions incorporating information from several links. For the transformation from current network structures and operation paradigms towards energy-efficient and sustainable networks it will be essential to use energy-optimized network elements as well as including the overall energy consumption in network design and planning phases together with the energy-aware load-adaptive operation. In load-adaptive operation it will be important to establish the optimum balance between local and overarching power management concepts in telecommunication networks.
Self-Powered WSN for Distributed Data Center Monitoring
Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide
2016-01-01
Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation. PMID:26729135
Self-Powered WSN for Distributed Data Center Monitoring.
Brunelli, Davide; Passerone, Roberto; Rizzon, Luca; Rossi, Maurizio; Sartori, Davide
2016-01-02
Monitoring environmental parameters in data centers is gathering nowadays increasing attention from industry, due to the need of high energy efficiency of cloud services. We present the design and the characterization of an energy neutral embedded wireless system, prototyped to monitor perpetually environmental parameters in servers and racks. It is powered by an energy harvesting module based on Thermoelectric Generators, which converts the heat dissipation from the servers. Starting from the empirical characterization of the energy harvester, we present a power conditioning circuit optimized for the specific application. The whole system has been enhanced with several sensors. An ultra-low-power micro-controller stacked over the energy harvesting provides an efficient power management. Performance have been assessed and compared with the analytical model for validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it
Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian
2011-02-25
Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars andmore » driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.« less
High-efficiency integrated piezoelectric energy harvesting systems
NASA Astrophysics Data System (ADS)
Hande, Abhiman; Shah, Pradeep
2010-04-01
This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.
Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...
2018-03-22
The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, Azzam; Jagode, Heike; Vaccaro, Phil
The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karali, Nihan; Park, Won Young; McNeil, Michael A.
Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO 2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in themore » future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO 2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically feasible in the U.S. iron and steel sector with the current cost structure. In contrast, some of the demonstration technologies are adapted in the mid-term and their penetration levels increase as the prices go down with learning curve. We also observe large penetration of 225kg pulverized coal injection with the presence of learning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy
2001-08-06
This case study is the latest in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. The case studies document the activities, savings, and lessons learned on these projects.
NREL Partners with California to Accelerate Advanced Energy Communities |
, heating, and or cooling Smart energy management systems for residential, commercial and industrial the residences, commercial and industrial buildings. Visit the NREL website to learn about how NREL's efficiency of both residential and commercial buildings, communities, and districts. -Linh Truong Mission
Innovation & Risk Management Result in Energy and Life-Cycle Savings.
ERIC Educational Resources Information Center
Anstrand, David E.; Singh, J. B.
1999-01-01
Examines a Pennsylvania school's successful planning, design, and bidding process for acquiring a geothermal heat pump (GHP)system whose subsequent efficiency became award-winning for environmental excellence. Charts and statistical tables describe the GHP's energy savings. Concluding comments review the lessons learned from the process. (GR)
Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Greg; Hunt, W. D.; Pugh, Ray
2011-08-31
This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energymore » Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.« less
A Survey of Architectural Techniques For Improving Cache Power Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
Modern processors are using increasingly larger sized on-chip caches. Also, with each CMOS technology generation, there has been a significant increase in their leakage energy consumption. For this reason, cache power management has become a crucial research issue in modern processor design. To address this challenge and also meet the goals of sustainable computing, researchers have proposed several techniques for improving energy efficiency of cache architectures. This paper surveys recent architectural techniques for improving cache power efficiency and also presents a classification of these techniques based on their characteristics. For providing an application perspective, this paper also reviews several real-worldmore » processor chips that employ cache energy saving techniques. The aim of this survey is to enable engineers and researchers to get insights into the techniques for improving cache power efficiency and motivate them to invent novel solutions for enabling low-power operation of caches.« less
NASA Astrophysics Data System (ADS)
Meintz, Andrew Lee
This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.
NASA Astrophysics Data System (ADS)
Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama
2014-04-01
In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.
NASA Astrophysics Data System (ADS)
Chen, Jianhua; Sun, Liang; Guo, Huiting
2017-11-01
Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.
Power management of direct-view LED backlight for liquid crystal display
NASA Astrophysics Data System (ADS)
Lee, Xuan-Hao; Lin, Che-Chu; Chang, Yu-Yu; Chen, He-Xiang; Sun, Ching-Cherng
2013-03-01
In this paper, we present a study of management of power in function of luminous efficacy of white LED as well as the efficiency enhancement of the direct-view backlight with photon recycling. A cavity efficiency as high as 90.7% is demonstrated for a direct-view backlight with photon recycling. In the future, with a 90% backlight cavity, luminous efficacy of 200 lm/W for white LEDs, and a transmission efficiency of 10% for the liquid crystal panel, the required power of LEDs could be only 16 W. Up to 85% energy saving could be achieved in comparison to the power of the current liquid crystal display.
Energy efficiency in U.K. shopping centres
NASA Astrophysics Data System (ADS)
Mangiarotti, Michela
Energy efficiency in shopping centres means providing comfortable internal environment and services to the occupants with minimum energy use in a cost-effective and environmentally sensitive manner. This research considers the interaction of three factors affecting the energy efficiency of shopping centres: i) performance of the building fabric and services ii) management of the building in terms of operation, control, maintenance and replacement of the building fabric and services, and company's energy policy iii) occupants' expectation for comfort and awareness of energy efficiency. The aim of the investigation is to determine the role of the above factors in the energy consumption and carbon emissions of shopping centres and the scope for reducing this energy usage by changing one or all the three factors. The study also attempts to prioritize the changes in the above factors that are more cost-effective at reducing that energy consumption and identify the benefits and main economic and legal drivers for energy efficiency in shopping centres. To achieve these targets, three case studies have been analysed. Using energy data from bills, the performance of the selected case studies has been assessed to establish trends and current energy consumption and carbon emissions of shopping centres and their related causes. A regression analysis has attempted to break down the energy consumption of the landlords' area by end-use to identify the main sources of energy usage and consequently introduce cost-effective measures for saving energy. A monitoring and occupants' survey in both landlords' and tenants' areas have been carried out at the same time to compare the objective data of the environmental conditions with the subjective impressions of shoppers and shopkeepers. In particular, the monitoring aimed at assessing the internal environment to identify possible causes of discomfort and opportunities for introducing energy saving measures. The survey looked at determining the occupants' expectation for comfort and awareness of energy efficiency in shopping centres. The results show the complexity of prioritizing the three factors affecting energy efficiency in shopping centres, highlighting the relationships between those factors, and the role of different actors, involved in the life of shopping centres, in the energy and environmental performance of these buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Best Practices Manual was written as a part of the promotional effort for EnergySmart Schools, provided by the US Department of Energy, to educate school districts around the country about energy efficiency and renewable energy. Written specifically for architects and engineers, The Best Practices Manual is designed to help those who are responsible for designing or retrofitting schools, as well as their project managers. This manual will help design staff make informed decisions about energy and environmental issues important to the school systems and communities.
NASA Astrophysics Data System (ADS)
Choi, Young Kwan; Lee, Jae Hyeong
2015-09-01
In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
The research and application of the power big data
NASA Astrophysics Data System (ADS)
Zhang, Suxiang; Zhang, Dong; Zhang, Yaping; Cao, Jinping; Xu, Huiming
2017-01-01
Facing the increasing environment crisis, how to improve energy efficiency is the important problem. Power big data is main support tool to realize demand side management and response. With the promotion of smart power consumption, distributed clean energy and electric vehicles etc get wide application; meanwhile, the continuous development of the Internet of things technology, more applications access the endings in the grid power link, which leads to that a large number of electric terminal equipment, new energy access smart grid, and it will produce massive heterogeneous and multi-state electricity data. These data produce the power grid enterprise's precious wealth, as the power big data. How to transform it into valuable knowledge and effective operation becomes an important problem, it needs to interoperate in the smart grid. In this paper, we had researched the various applications of power big data and integrate the cloud computing and big data technology, which include electricity consumption online monitoring, the short-term power load forecasting and the analysis of the energy efficiency. Based on Hadoop, HBase and Hive etc., we realize the ETL and OLAP functions; and we also adopt the parallel computing framework to achieve the power load forecasting algorithms and propose a parallel locally weighted linear regression model; we study on energy efficiency rating model to comprehensive evaluate the level of energy consumption of electricity users, which allows users to understand their real-time energy consumption situation, adjust their electricity behavior to reduce energy consumption, it provides decision-making basis for the user. With an intelligent industrial park as example, this paper complete electricity management. Therefore, in the future, power big data will provide decision-making support tools for energy conservation and emissions reduction.
Retail Building Guide for Entrance Energy Efficiency Measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, J.; Kung, F.
2012-03-01
This booklet is based on the findings of an infiltration analysis for supermarkets and large retail buildings without refrigerated cases. It enables retail building managers and engineers to calculate the energy savings potential for vestibule additions for supermarkets; and bay door operation changes in large retail stores without refrigerated cases. Retail managers can use initial estimates to decide whether to engage vendors or contractors of vestibules for pricing or site-specific analyses, or to decide whether to test bay door operation changes in pilot stores, respectively.
DMS Advanced Applications for Accommodating High Penetrations of DERs and Microgrids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Annabelle; Veda, Santosh; Maitra, Arindam
Efficient and effective management of the electrical distribution system requires an integrated system approach for Distribution Management Systems (DMS), Distributed Energy Resources (DERs), Distributed Energy Resources Management System (DERMS), and microgrids to work in harmony. This paper highlights some of the outcomes from a U.S. Department of Energy (DOE), Office of Electricity (OE) project, including 1) Architecture of these integrated systems, and 2) Expanded functions of two example DMS applications, Volt-VAR optimization (VVO) and Fault Location, Isolation and Service Restoration (FLISR), to accommodate DER. For these two example applications, the relevant DER Group Functions necessary to support communication between DMSmore » and Microgrid Controller (MC) in grid-tied mode are identified.« less
Chinese hotel general managers' perspectives on energy-saving practices
NASA Astrophysics Data System (ADS)
Zhu, Yidan
As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.
NASA Astrophysics Data System (ADS)
Pukite, I.; Grekis, A.; Geipele, I.; Zeltins, N.
2017-08-01
In March 2016, the Latvian government approved a new support program for increasing energy efficiency in residential apartment buildings. For the support of renovation of apartment buildings in the period from 2016 to 2023, 166 470 588 EUR will be available. Different persons, such as energy auditors, designers, architects, project managers and builders, will be involved in the process of planning, development and implementation of building renovation. At the development stage of the building renovation project, special attention should be devoted to the first stage - energy audit and technical project development. The problem arises due to the fact that each of these individuals, during the development of technical building documentation, does not work as a completely unified system. The implementation of construction project planning and organisational management system is one of the most important factors to guarantee that the quality of building renovation project is ensured in accordance with the laws and regulatory standards. The paper studies mutual cooperation, professionalism and the role of information feedback of personnel involved in the planning stage of building renovation, which is an essential prerequisite for the renovation process in order to achieve high quality of work and reduce the energy performance indicator. The present research includes the analysis of different technical solutions and their impact on energy efficiency. Mutual harmonisation of technical specifications is also investigated.
FORESEE™ User-Centric Energy Automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
FORESEE™ is a home energy management system (HEMS) that provides a user centric energy automation solution for residential building occupants. Built upon advanced control and machine learning algorithms, FORESEE intelligently manages the home appliances and distributed energy resources (DERs) such as photovoltaics and battery storage in a home. Unlike existing HEMS in the market, FORESEE provides a tailored home automation solution for individual occupants by learning and adapting to their preferences on cost, comfort, convenience and carbon. FORESEE improves not only the energy efficiency of the home but also its capability to provide grid services such as demand response. Highlymore » reliable demand response services are likely to be incentivized by utility companies, making FORESEE economically viable for most homes.« less
Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.
Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran
2016-01-01
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802
Energy Efficiency Building Systems Regional Innovation Cluster Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, Martha
The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with amore » focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Gowans, Dakers; Telarico, Chad
The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.
Contract Service for School Maintenance
ERIC Educational Resources Information Center
Modern Schools, 1976
1976-01-01
Preventive maintenance can extend useful equipment life in a school building and keep systems running more efficiently. Points to consider before selecting a comprehensive energy management package are listed. (Author/MLF)
An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.
Kim, Sungchan; Yang, Hoeseok
2017-08-24
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.
An Energy-Aware Runtime Management of Multi-Core Sensory Swarms
Kim, Sungchan
2017-01-01
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094
Wireless Sensors and Networks for Advanced Energy Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J.E.
Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modelingmore » investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.« less
Rozgic, Dejan; Markovic, Dejan
2017-08-01
In order to use thermoelectric energy harvesters (TEHs) as a truly autonomous energy source for size-limited sensing applications, it is essential to improve the power conversion efficiency and energy density. This study presents a thin-film, array-based TEH with a surface area of 0.83 cm 2 . The TEH autonomously supplies a power management IC fabricated in a 65-nm CMOS technology. The IC utilizes a single-inductor topology with integrated analog maximum power point tracking (MPPT), resulting in a 68% peak end-to-end efficiency (92% converter efficiency) and less than 20-ms MPPT. In an in-vivo test, a 645-μW regulated output power (effective 3.5 K of temperature gradient) was harvested from a rat implanted with our TEH, demonstrating true energy independence in a real environment while showing a 7.9 × improvement in regulated power density compared to the state-of-the-art. The system showed autonomous operation down to 65-mV TEH input.
Environmental sustainability of bioethanol produced from sweet sorghum stem on saline-alkali land.
Wang, Mingxin; Pan, Xinxing; Xia, Xunfeng; Xi, Beidou; Wang, Lijun
2015-01-01
Life cycle assessment was conducted to evaluate the energy efficiency and environmental impacts of a bioethanol production system that uses sweet sorghum stem on saline-alkali land as feedstock. The system comprises a plant cultivation unit, a feedstock transport unit, and a bioethanol conversion unit, with 1000L of bioethanol as a functional unit. The net energy ratio is 3.84, and the net energy gain is 17.21MJ/L. Agrochemical production consumes 76.58% of the life cycle fossil energy. The category with the most significant impact on the environment is eutrophication, followed by acidification, fresh water aquatic ecotoxicity, human toxicity, and global warming. Allocation method, waste recycling approach, and soil salinity significantly influence the results. Using vinasse to produce pellet fuel for steam generation significantly improves energy efficiency and decreases negative environmental impacts. Promoting reasonable management practices to alleviate saline stress and increasing agrochemical utilization efficiency can further improve environmental sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drackley, J K; Cardoso, F C
2014-05-01
The 6 to 8-week period centered on parturition, known as the transition or periparturient period, is critical to welfare and profitability of individual cows. Fertility of high-producing cows is compromised by difficult transitions. Deficiencies in either nutritional or non-nutritional management increase risk for periparturient metabolic disorders and infectious diseases, which decrease subsequent fertility. A primary factor impeding fertility is the extent of negative energy balance (NEB) early postpartum, which may inhibit timing of first ovulation, return to cyclicity, and oocyte quality. In particular, pronounced NEB during the first 10 days to 2 weeks (the time of greatest occurrence of health problems) is critical for later reproductive efficiency. Avoiding over-conditioning and preventing cows from over-consuming energy relative to their requirements in late gestation result in higher dry matter intake (DMI) and less NEB after calving. A pooled statistical analysis of previous studies in our group showed that days to pregnancy are decreased (by 10 days) by controlling energy intake to near requirements of cows before calving compared with allowing cows to over-consume energy. To control energy intake, total mixed rations (TMR) must be well balanced for metabolizable protein, minerals and vitamins yet limit total DM consumed, and cows must uniformly consume the TMR without sorting. Dietary management to maintain blood calcium and rumen health around and after calving also are important. Opportunities may exist to further improve energy status in fresh cows. Recent research to manipulate the glucogenic to lipogenic balance and the essential fatty acid content of tissues are intriguing. High-producing cows that adapt successfully to lactation can have high reproductive efficiency, and nutritional management of the transition period both pre- and post-calving must facilitate that adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminsky, J.; Tschanz, J.F.
In order to adress barriers to community energy-conservation efforts, DOE has established the Comprehensive Community Energy Management (CCEM) program. The role of CCEM is to provide direction and technical support for energy-conservation efforts at the local level. The program to date has included project efforts to develop combinations and variations of community energy planning and management tools applicable to communities of diverse characteristics. This paper describes the salient features of some of the tools and relates them to the testing program soon to begin in several pilot-study communities. Two methodologies that arose within such an actual planning context are takenmore » from DOE-sponsored projects in Clarksburg, West Virginia and the proposed new capital city for Alaska. Energy management in smaller communities and/or communities with limited funding and manpower resources has received special attention. One project of this type developed in general methodology that emphasizes efficient ways for small communities to reach agreement on local energy problems and potential solutions; by this guidance, the community is led to understand where it should concentrate its efforts in subsequent management activities. Another project concerns rapid growth of either a new or an existing community that could easily outstrip the management resources available locally. This methodology strives to enable the community to seize the opportunity for energy conservation through integrating the design of its energy systems and its development pattern. The last methodology creates applicable tools for comprehensive community energy planning. (MCW)« less
Comparing Life-Cycle Carbon and Energy Impacts for Biofuel, Wood Product, and Forest Management
Bruce Lippke; Richard Gustafson; Richard Venditti; Philip Steele; Timothy A. Volk; Elaine Oneil; Leonard Johnson; Maureen E. Puettmann; Kenneth Skog
2012-01-01
The different uses of wood result in a hierarchy of carbon and energy impacts that can be characterized by their efficiency in displacing carbon emissions and/or in displacing fossil energy imports, both being current national objectives. When waste wood is used for biofuels (forest or mill residuals and thinnings) fossil fuels and their emissions are reduced without...
Improved Planning and Programming for Energy Efficient New Army Facilities
1988-10-01
setpoints to occupant comfort must be considered carefully. Cutting off the HVAC system to the bedrooms during the day produced only small savings...functions of a building and minimizing the energy usage through optimization . It includes thermostats, time switches, programmable con- trollers...microprocessor systems, computers, and sensing devices that are linked with control and power components to manage energy use. This system optimizes load
ERIC Educational Resources Information Center
US Department of Energy, 2004
2004-01-01
Operations and maintenance (O&M) offers not only strategies for maintaining facilities, but also opportunities for reducing energy costs and increasing energy efficiency at existing schools, regardless of age. This Guidebook provides detailed and practical guidance on how K-12 school districts can plan and implement enhancements to their current…
Modular High-Energy Systems for Solar Power Satellites
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.
2006-01-01
Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Tim; Slezak, Lee; Johnson, Chris
2008-12-31
The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selectionsmore » and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, R.; Hendron, B.; Bonnema, E.
2014-08-01
The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi,more » to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.« less
Integrated thermal and energy management of plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard
2012-10-01
In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.
| 303-384-7528 Paul is the principal engineer for the Commercial Buildings Research Group and has been at the NREL for 19 years. Prior to this role, he was the group manager for the Commercial Buildings articles related to energy efficiency and zero-energy commercial buildings. Among his many awards, Paul has
Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project
NASA Technical Reports Server (NTRS)
Caraccio, Anne
2015-01-01
As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
... services and manage networked resources for client devices such as desktop and laptop computers. These... include desktop or laptop computers, which are not primarily accessed via network connections. DOE seeks... Determination of Computer Servers as a Covered Consumer Product AGENCY: Office of Energy Efficiency and...
Roy, Abhishek; Klinefelter, Alicia; Yahya, Farah B; Chen, Xing; Gonzalez-Guerrero, Luisa Patricia; Lukas, Christopher J; Kamakshi, Divya Akella; Boley, James; Craig, Kyle; Faisal, Muhammad; Oh, Seunghyun; Roberts, Nathan E; Shakhsheer, Yousef; Shrivastava, Aatmesh; Vasudevan, Dilip P; Wentzloff, David D; Calhoun, Benton H
2015-12-01
This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 μW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 μA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 μW, while the integrated radio consumes 4.18 μW when transmitting at 187.5 kbps for a total of 6.45 μW.
Plug-Load Control and Behavioral Change Research in GSA Office Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, I.; Cutler, D.; Sheppy, M.
2012-10-01
The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less
Ultralow-power electronics for biomedical applications.
Chandrakasan, Anantha P; Verma, Naveen; Daly, Denis C
2008-01-01
The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.
Evaluating Realized Impacts of DOE/EERE R&D Programs. Standard impact evaluation method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruegg, Rosalie; O'Connor, Alan C.; Loomis, Ross J.
2014-08-01
This document provides guidance for evaluators who conduct impact assessments of research and development (R&D) programs for the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE). It is also targeted at EERE program staff responsible for initiating and managing commissioned impact studies. The guide specifies how to estimate economic benefits and costs, energy saved and installed or generated, environmental impacts, energy security impacts, and knowledge impacts of R&D investments in advanced energy technologies.
Matos, C; Briga-Sá, A; Bentes, I; Faria, D; Pereira, S
2017-05-15
Nowadays, water and energy consumption is intensifying every year in most of the countries. This perpetual increase will not be supportable in the long run, making urgently to manage these resources on a sustainable way. Domestic consumptions of water and electric energy usually are related and it's important to study that relation, identifying opportunities for use efficient improvement. In fact, without an understanding of water-energy relations, there are water efficiency measures that may lead to unintentional costs in the energy efficiency field. In order to take full advantage of combined effect between water and energy water management methodologies, it is necessary to collect data to ensure that the efforts are directed through the most effective paths. This paper presents a study based in the characterization, measurement and analysis of water and electricity consumption in a single family house (2months period) in order to find an interdependent relationship between consumptions at the end user level. The study was carried out on about 200 baths, divided in four different scenarios where the influence of two variables was tested: the flow reducer valve and the bath temperature. Data showed that the presence of flow reducer valve decreased electric energy consumption and water consumption, but increased the bath duration. Setting a lower temperature in water-heater, decreased electric consumption, water consumption and bath duration. Analysing the influence of the flow reducer valve and 60°C temperature simultaneously, it was concluded that it had a significant influence on electric energy consumption and on the baths duration but had no influence on water consumption. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence
2011-01-01
Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
Aerodynamics/ACEE: Aircraft energy efficiency
NASA Technical Reports Server (NTRS)
1981-01-01
An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.
Energy-Efficient Systems Eliminate Icing Danger for UAVs
NASA Technical Reports Server (NTRS)
2010-01-01
Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.
Firm behavior, environmental externalities and public policy
NASA Astrophysics Data System (ADS)
Curtis, Earnest Markell, IV
This dissertation consists of three essays which examine environmental policy, employer mandates and energy consumption. The essays explore how firms respond to government policies such as environmental regulation and employer mandates. Understanding how firms adjust to government policies is crucial to law makers attempting to design optimal policies that maximize net benefits to society. The first essay, titled Who Loses under Power Plant Cap-and-Trade Programs tests how a major cap-and-trade program, known as the NOx Budget Trading Program (NBP), affected labor markets in the region where it was implemented. The cap-and-trade program dramatically decreased levels of NOx emissions and added substantial costs to energy producers. Using a triple-differences approach that takes advantage of the geographic and time variation of the program as well as variation in industry energy-intensity levels, I examine how employment dynamics changed in manufacturing industries whose production process requires high levels of energy. After accounting for a variety of flexible state, county and industry trends, I find that employment in the manufacturing sector dropped by 1.7% as a result of the NBP. Young workers experienced the largest employment declines and earnings of newly hired workers fell after the regulation began. Employment declines are shown to have occurred primarily through decreased hiring rates rather than increased separation rates, thus mitigating the impact on incumbent workers. The second essay, titled Evaluating Workplace Mandates with Flows versus Stocks: An Application to California Paid Family Leave uses an underexploited data set to examine the impact of the California Paid Family Leave program on employment outcomes for young women. Most papers on mandated benefits examine labor outcomes by looking at earnings and employment levels of all workers. Examining these levels will be imprecise if the impacts of the program develop over time and firms are wary to immediately adjust employment and wages for existing workers. Using Quarterly Workforce Indicator data, we are able to measure the impact on hires, new hire earnings, separations and extended leaves among young women. Earnings for young female new hires fell in California relative to other workers, but changed little relative to country-wide comparison groups. We find strong evidence that separations (of at least three months) among young women and the number and shares of young female new hires increased. Many young women that separate (leave the payroll) eventually return to the same firm. Increased separation and hiring rates among young women in the labor market ("churning") may reflect both increased time spent with children and greater job mobility (i.e., reduced job lock) as the result of mandated paid family leave across the labor market. The third essay, Evidence of an Energy Management Gap in U.S. Manufacturing: Spillovers from Firm Management Practices to Energy Efficiency, merge a well-cited survey of firm management practices into confidential plant level U.S. Census manufacturing data to examine whether generic, i.e. non-energy specific, firm management practices, "spillover" to enhance energy efficiency in the United States. For U.S. manufacturing plants we find this relationship to be more nuanced than prior research on UK plants. Most management techniques are shown to have beneficial spillovers to energy efficiency, but an emphasis on generic targets, conditional on other management practices, results in spillovers that increase energy intensity. Our specification controls for industry specific effects at a detailed 6-digit NAICS level and finds the relationship between management and energy use to be strongest for firms in energy intensive industries. We interpret the empirical result that generic management practices do not necessarily spillover to improved energy performance as evidence of an "energy management gap."
NASA Astrophysics Data System (ADS)
Xu, Jun
Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the load, maximize its profit, and manage risks. In this topic, a mid-term power portfolio optimization problem with risk management is presented. Key instruments are considered, risk terms based on semi-variances of spot market transactions are introduced, and penalties on load obligation violations are added to the objective function to improve algorithm convergence and constraint satisfaction. To overcome the inseparability of the resulting problem, a surrogate optimization framework is developed enabling a decomposition and coordination approach. Numerical testing results show that our method effectively provides decisions for various instruments to maximize profit, manage risks, and is computationally efficient.
Microbial fuel cells as power supply of a low-power temperature sensor
NASA Astrophysics Data System (ADS)
Khaled, Firas; Ondel, Olivier; Allard, Bruno
2016-02-01
Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.
Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum
2014-12-02
Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.
NASA Astrophysics Data System (ADS)
Acomi, N.; Acomi, O. C.
2016-08-01
Marine pollution is one of the main concerns of our society. In order to reduce air pollution produced by ships, the International Maritime Organization has developed technical, operational and management measures. Part of the operational measures refers to CO2 emissions that contribute to the energy efficiency of the vessel. The difficulty in assessing the energy efficiency of the vessel rests with the diversity of voyage parameters, including quantity of cargo, distance and type of fuel in use. Assessing the energy efficiency of the vessel is thus not a matter of determining the absolute value of the CO2, but of providing a meaningful construct to enable tracking performance trends over time, for the same ship, a fleet of ships or across the industry. This concept is the Energy Efficiency Operational Index, EEOI. The purpose of this study is to analyse the influence of a well predicted voyage on the EEOI value. The method used consists in a comparative analysis of two situations regarding berthing prospects: the real passage plan and an early prediction that supposes the vessel to arrive on time as required. The results of the study represent a monitoring tool for the ship owners to assess the EEOI from the early stage of designing the berthing prospects.
Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kermeli, Katerina; Worrell, Ernst; Masanet, Eric
2011-12-01
The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and materialmore » costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.« less
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzhauser, Andy; Jones, Chris; Faust, Jeremy
2013-12-30
The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operationmore » in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance Training Center, a program that was developed and funded by the Energy Alliance and housed at Cincinnati State Technical and Community College. Nearly 100 residential and commercial contractors currently participate in the Energy Alliance’s two major programs, which have together served over 2,800 residential and 100 commercial customers. Additionally, the Energy Alliance established loan programs for homeowners, nonprofits and commercial businesses. The GC-HELP program was established to provide up to ten year low interest, unsecured loans to homeowners to cover the energy efficiency products they purchased through the Energy Alliance approved contractor base. To date the Energy Alliance has financed over $1 million in energy efficiency loans for homeowners, without any loans written off. The nonprofit business community is offered five year, fixed-interest rate loans through the Building Communities Loan Fund of $250,000. Additionally, the Energy Alliance has developed GC-PACE, a commercial financing tool that enables buildings owners to finance their energy upgrades through voluntary property assessments deploying low-interest extended-term capital from the bond market. The Energy Alliance and its partners are actively evaluating additional market-based financing solutions.« less
Gur, Ilan
2018-01-16
An overview presentation about ARPA-E's AMPED program. AMPED projects seek to develop advanced sensing, control, and power management technologies that redefine the way we think about battery management. Energy storage can significantly improve U.S. energy independence, efficiency, and security by enabling a new generation of electric vehicles. While rapid progress is being made in new battery materials and storage technologies, few innovations have emerged in the management of advanced battery systems. AMPED aims to unlock enormous untapped potential in the performance, safety, and lifetime of today's commercial battery systems exclusively through system-level innovations, and is thus distinct from existing efforts to enhance underlying battery materials and architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satchwell, Andrew; Cappers, Peter; Goldman, Charles
2011-03-22
Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers inmore » aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.« less
NASA Astrophysics Data System (ADS)
Chowdhury, Md Mukul
With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.
NASA Astrophysics Data System (ADS)
Vaysman, Ya I.; Surkov, AA; Surkova, Yu I.; Kychkin, AV
2017-06-01
The article is devoted to the use of renewable energy sources and the assessment of the feasibility of their use in the climatic conditions of the Western Urals. A simulation model that calculates the efficiency of a combined power installations (CPI) was (RES) developed. The CPI consists of the geothermal heat pump (GHP) and the vacuum solar collector (VCS) and is based on the research model. This model allows solving a wide range of problems in the field of energy and resource efficiency, and can be applied to other objects using RES. Based on the research recommendations for optimizing the management and the application of CPI were given. The optimization system will give a positive effect in the energy and resource consumption of low-rise residential buildings projects.
2013-05-01
flare gas, wind , solar) and can reduce overall energy price volatility; • Renewable DER such as wind and solar PV cells provide emissions-free energy...infrastructure which uses both Ethernet and Wireless media. Ethernet is easily extendable and supports multiple protocols, accommodating a broad range of...by faults or switching events. Remote resources are also integrated into the microgrid network using wireless network currently existing in the Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRocher, Andy; Barrnett, Michael
2014-03-14
The results of the Renewable Energy and Energy Efficiency Feasibility Study of Stockbridge Munsee Community’s Health and Wellness Center (HWC) indicate that a variety of renewable energy options and energy conservation measures (ECMs) exist for the facility. A requirement of the Request for Proposal for this study was to assess renewable energy options that could offset 30 to 100 percent of the HWC’s energy use. This study identifies that a geothermal system is the most cost effective renewable energy option available to decrease the HWC’s energy consumption by 30 to 100 percent. Currently the HWC performs in the lowest 8more » percent of buildings in its building category, as scored in the EPA portfolio manager benchmarking tool. Multiple ECM opportunities have been identified with paybacks of less than five years to yield an estimated 25-percent decrease in annual energyconsumption. The ECMs within this payback period are estimated to save $26,800 per year with an implementation cost of just $4,650 (0.2 year payback). For the Mohican Family Center document: The results of the Renewable Energy and Energy Efficiency Feasibility Study of Stockbridge Munsee Community’s Mohican Family Center (MFC) indicate that a variety of renewable energy options and energy conservation measures (ECMs) exist for the facility. A requirement of the Request for Proposal for this study was to assess renewable energy options that could offset 30 to 100 percent of the MFC’s energy use. This study identifies that a geothermal system is the most cost effective renewable energy option available to decrease the MFC’s energy consumption by 30 to 100 percent. Currently the MFC performs better than 80 percent of buildings in its building category, as scored in the EPA portfolio manager benchmarking tool. Multiple ECM opportunities have been identified with short term paybacks to yield an estimated 13-percent decrease in energy consumption. The ECMs within this payback period are estimated to save $3,100 per year with an implementation cost of under $20,000.« less
An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards
NASA Astrophysics Data System (ADS)
Lessans, Mark D.
Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.
Time-varying value of electric energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie A.; Eckman, Tom; Goldman, Charles
Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planningmore » functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range in value of all the components of avoided costs across the locations studied. -Of the five energy efficiency measures studied, those targeting residential air conditioning in summer-peaking electric systems have the most significant added value when the total time-varying value is considered. -The increased use of rooftop solar systems, storage, and demand response, and the addition of electric vehicles and other major new electricity-consuming end uses are anticipated to significantly alter the load shape of many utility systems in the future. Data used to estimate the impact of energy efficiency measures on electric system peak demands will need to be updated periodically to accurately reflect the value of savings as system load shapes change. -Publicly available components of electric system costs avoided through energy efficiency are not uniform across states and utilities. Inclusion or exclusion of these components and differences in their value affect estimates of the time-varying value of energy efficiency. -Publicly available data on end-use load and energy savings shapes are limited, are concentrated regionally, and should be expanded.« less