Science.gov

Sample records for efficient extreme ultra-violet

  1. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  2. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Nijdam, S.; Kroesen, G. M. W.

    2014-07-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 1016 m-3. This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 1016 m-3. After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds.

  3. Radiation hardness of AlxGa1-xN photodetectors exposed to Extreme UltraViolet (EUV) light beam

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel E.; John, Joachim; Barkusky, Frank; Duboz, Jean Yves; Lorenz, Anne; Cheng, Kai; Derluyn, Joff; Germain, Marianne; De Moor, Piet; Minoglou, Kyriaki; Bayer, Armin; Mann, Klaus; Hochedez, Jean-Francois; Giordanengo, Boris; Borghs, Gustaaf; Mertens, Robert

    2009-05-01

    We report on the results of fabrication and optoelectrical characterization of Gallium Nitride (GaN) based Extreme UltraViolet (EUV) photodetectors. Our devices were Schottky photodiodes with a finger-shaped rectifying contact, allowing better penetration of light into the active region. GaN layers were epitaxially grown on Silicon (111) by Metal- Organic-Chemical Vapor Deposition (MOCVD). Spectral responsivity measurements in the Near UltraViolet (NUV) wavelength range (200-400 nm) were performed to verify the solar blindness of the photodetectors. After that the devices were exposed to the EUV focused beam of 13.5 nm wavelength using table-top EUV setup. Radiation hardness was tested up to a dose of 3.3Â.1019 photons/cm2. Stability of the quantum efficiency was compared to the one measured in the same way for a commercially available silicon based photodiode. Superior behavior of GaN devices was observed at the wavelength of 13.5 nm.

  4. Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares (Invited Review)

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.

    2015-12-01

    The extreme ultra-violet (EUV) portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature- and density-sensitive line ratios, Doppler-shifted emission lines, nonthermal broadening, abundance measurements, differential emission measure profiles, continuum temperatures and energetics, among others. In this article I review some of the recent advances that have been made using these techniques to infer physical properties of heated plasma at footpoint and ribbon locations during the initial stages of solar flares. I primarily focus on studies that have utilised spectroscopic EUV data from Hinode/EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory/EUV Variability Experiment (SDO/EVE), and I also provide some historical background and a summary of future spectroscopic instrumentation.

  5. True covariance simulation of the EUVE (extreme ultra violet explorer) update filter

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, R. R.

    1990-01-01

    This paper presents a covariance analysis of the performance and sensitivity of the attitude determination Extended Kalman Filter (EKF) used by the onboard computer (OBC) of the Extreme Ultra Violet Explorer (EUVE) spacecraft. The linearized dynamics and measurement equations of the error states are used in formulating the 'truth model' describing the order of the systems involved. The 'design model' used by the OBC EKF is then obtained by reducing the order of the truth model. The covariance matrix of the EKF which uses the reduced order model is not the correct covariance of the EKF estimation error. A 'true covariance analysis' has to be carried out in order to evaluate the correct accuracy of the OBC generated estimates. The results of such analysis are presented which indicate both the performance and the sensitivity of the OBC EKF.

  6. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  7. Optical proximity correction for extreme ultra-violet mask with pellicle

    NASA Astrophysics Data System (ADS)

    Mo, Soo-Yeon; Kim, In-Seon; Oh, Hye-Keun

    2015-10-01

    Extreme ultraviolet (EUV) lithography is considered as one of the viable solutions for production of the next generation integrated devices. EUV mask defect control becomes more critical issue in order to sustain the quality of wafer fabrication process. Since pellicle is the essential component to prevent patterning deformations caused by particle defects on EUV mask[1-2], EUV OPC (optical proximity correction) that takes into account for pellicle effects on imaging quality is required for achieving better pattern fidelity and critical dimension control. In this study, image blurring effect induced by the EUV mask pellicle on mask pattern structures was investigated and it was found that the localized short-range OPC using commercial software performed as desired considering transmission intensity loss due to pellicle. For experiment, edge placement error differences of the same 2D logic patterns with 16 nm half pitch with and without pellicle were compared. Finally, a method was suggested how patterning throughput loss caused by the transmission loss can be compensated by EUV OPC, which may allow pellicle transmission even below 90%.

  8. Observations of solar coronal holes using radio (GMRT & GRH), extreme ultra-violet (SOHO-EIT) and X-ray (GOES-SXI) imaging instruments

    NASA Astrophysics Data System (ADS)

    Madsen, F. R. H.; Ramesh, R.; Ananthakrishnan, S.; Subramanian, P.; Cecatto, J. R.; Sawant, H. S.

    Solar observations with the Giant Metrewave Radio Telescope GMRT on 06 04 2005 at 150 MHz show evidence for a radio counterpart to a Coronal Hole CH observed as a depression in the radio brightness distribution on the solar disk In this work we compare the structural details of the radio CH using the GMRT observations and the Extreme Ultra Violet EUV and Soft X-Ray SXR images obtained with the SoHO EIT and GOES SXI respectively We also study the density temperature inside the same CH using 115 MHz data from the Gauribidanur Radioheliograph GRH We present and discuss our results for the radio counterpart to this CH focusing on the comparison of its position and size as determined from EUV and SXR with the parameters determined from the GMRT map and on the determination of plasma parameters from the GRH map

  9. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  10. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  11. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    SciTech Connect

    Kawaguchi, Yoshizo; Sasaki, Fumio; Mochizuki, Hiroyuki; Ishitsuka, Tomoaki; Tomie, Toshihisa; Ootsuka, Teruhisa; Watanabe, Shuji; Shimoi, Yukihiro; Yamao, Takeshi; Hotta, Shu

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  12. New Sub-nanometer Spectral Estimates of the 0-5 nm Solar Soft X-Ray Irradiance at Mars Using the Extreme UltraViolet Monitor (EUVM) Onboard MAVEN

    NASA Astrophysics Data System (ADS)

    Thiemann, E.; Eparvier, F. G.; Chamberlin, P. C.; Woods, T. N.; Peterson, W. K.; Mitchell, D. L.; Xu, S.; Liemohn, M. W.

    2015-12-01

    The Extreme UltraViolet Monitor (EUVM) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) probe at Mars characterizes the solar extreme ultraviolet (EUV) and soft x-ray (SXR) input into the Martian atmosphere. EUVM measures solar irradiance at 0-7 nm, 17-22 nm and 121.6 nm at a nominal 1 second cadence. These bands were selected to capture variability originating at different heights in the solar atmosphere; and are used to drive the Flare Irradiance Solar Model at Mars (FISM-M) that is a model of the solar spectrum from 0.1-190 nm with 1 nm resolution and produced routinely as the EUVM Level 3 data product. The 0-5 nm range of the solar spectrum is of particular aeronomic interest because the primary species of the Mars upper atmosphere have Auger transitions in this range. When an Auger transition is excited by incident SXR radiation, secondary electrons are emitted with sufficient energy to further ionize the atmosphere. Because these transitions are highly structured, sub-nm resolution of the solar spectrum is needed in the 0-5 nm range to fully constrain the solar input and more accurately characterize the energetics of the upper atmosphere. At Earth, .1 nm resolution estimates of the solar 0-5 nm range are produced by the X-ray Photometer System (XPS) onboard the SOlar Radiation and Climate Experiment (SORCE) satellite by combining broad-band SXR measurements with solar flare temperature measurements to drive an atomic physics based forward model of solar coronal emissions. This spectrum has been validated with other models as well as with photo-electron and day glow measurements at Earth. Similar to XPS, the EUVM 0-7 nm and 17-22 nm bands can be used to produce an XPS-like model at Mars, but with reduced precision due to differences in the available bands. We present first results of this technique applied to a set of solar flares observed by MAVEN EUVM and Earth assets. In addition to comparing EUVM and Earth-asset derived 0-5 nm solar spectra to

  13. The Swift Ultra-Violet/Optical Telescope

    NASA Astrophysics Data System (ADS)

    Roming, P. W. A.; Hunsberger, S. D.; Nousek, J. A.; Mason, K. O.; Breeveld, A. A.

    2003-05-01

    The Ultra-Violet/Optical Telescope (UVOT) aboard the Swift Gamma-ray Burst Observatory provides the Swift mission with the capability of detecting the early UV/optical photons of GRB afterglows. The UVOT is a Ritchey-Chrétien telescope with MCP intensified CCD detectors that can operate in either a photon-timing mode or an imaging mode while providing sub-arcsecond resolution. A filter wheel houses sensitive broadband UV and visual filters for determining photometric redshifts. The filter wheel also accommodates UV and visual grisms for performing low-resolution spectroscopy. We present an overview of the instrument as well as a summary of the calibration results. We also discuss some of the science to be accomplished with the UVOT. This work is sponsored at Penn State by NASA's Office of Space Science through contract NAS5-00136, and at MSSL by funding from PPARC.

  14. The Swift Ultra-Violet/Optical Telescope

    NASA Astrophysics Data System (ADS)

    Roming, Peter; Hunsberger, Sally; Nousek, John; Ivanushkina, Mariya; Mason, Keith; Breeveld, Alice; Gehrels, Neil

    2004-05-01

    The Ultra-Violet/Optical Telescope (UVOT) is one of three telescopes on board the Swift Gamma-Ray Burst Mission. It supplies the Swift mission with the ability to detect the early UV and optical photons of GRB afterglows. The UVOT is of a modified Ritchey-Chrétien design with MCP intensified CCD detectors that provide sub-arcsecond resolution while operating in both a photon-timing and an imaging mode. A filter wheel accommodates broadband UV and visual filters for determining photometric redshifts in the range of 1.5 < z < 4.4. The filter wheel also houses UV and visual grisms for low-resolution spectroscopy. The UVOT will help answer questions about GRBs such as: how many times has reionization occurred in the Universe; what is the nature of dark bursts; what is the initial Lorentz factor of the fireball; and are there subclasses or new classes of GRBs? This work is sponsored at Penn State by NASA's Office of Space Science through contract NAS5-00136, and at MSSL by funding from PPARC.

  15. The Swift Ultra-Violet/Optical Telescope (UVOT)

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Hunsberger, S. D.; Nousek, John A.; Ivanushkina, Mariya; Mason, Keith O.; Breeveld, Alice A.

    2004-09-01

    The Ultra-Violet/Optical Telescope (UVOT), one of three telescopes to fly on the Swift Gamma-ray Burst Observatory, is capable of detecting the early UV/optical photons and performing long-term UV/optical observations of GRB afterglows. The UVOT is a Ritchey-Chretien telescope with MCP intensified CCD detectors which operate in either a photon-timing or an imaging mode while providing sub-arcsecond resolution. A filter wheel accommodates broadband UV and visual filters for photometric studies including determination of photometric redshifts. UV and visual grisms for low-resolution spectroscopy are also housed in the filter wheel. We present a brief overview of the UVOT, calibration results, and science to be carried out.

  16. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser.

    PubMed

    Muir, A C; Sones, C L; Mailis, S; Eason, R W; Jungk, T; Hoffman, A; Soergel, E

    2008-02-18

    The inversion of ferroelectric domains in lithium niobate by a scanning focused ultra-violet laser beam (lambda = 244 nm) is demonstrated. The resulting domain patterns are interrogated using piezoresponse force microscopy and by chemical etching in hydrofluoric acid. Direct ultra-violet laser poling was observed in un-doped congruent, iron doped congruent and titanium in-diffused congruent lithium niobate single crystals. A model is proposed to explain the mechanism of domain inversion.

  17. Investigation of ultra violet (UV) resistance for high strength fibers

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Dingwall, Brenda; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T.

    Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra® fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.

  18. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk

    PubMed Central

    Lai, Wee Loong; Goh, Kheng Lim

    2015-01-01

    The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material’s toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration. PMID:26378587

  19. Ultra-violet light-emitting diode calibration system for timing large area scintillation detectors

    NASA Astrophysics Data System (ADS)

    Naumov, P. Yu; Runtso, M. F.; Naumov, P. P.; Maklyaev, E. F.; Kaplin, V. A.; Fomin, V. S.; Razzhivin, I. S.; Melikyan, Yu A.

    2017-01-01

    Timing large area plastic scintillation detectors are developing for the space gamma-ray telescopes now. For the in-flight calibration of these detectors the use of ultra-violet light-emitting diode, irradiating the 1 m long detector module at the center of its lateral side is suggested. The results of the measurements show the possibility of this calibration system implementation as for amplitude as for timing properties monitoring.

  20. Fabrication and characterization of p-ZnO:(P,N)/n-ZnO:Al homojunction ultra-violet (UV) light emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Rafiudeen, Amiruddin; Reddy, T. Srinivasa; Cheemadan, Shaheer; Kumar, M. C. Santhosh

    2015-10-01

    ZnO possess distinctive characteristics such as low cost, wide band gap (3.36 eV) and large exciton binding energy (60meV). As the band gap lies in ultra violet (UV) region, ZnO is considered as a novel material for the fabrication of ultra violet light emitting diodes (UV-LEDs). However, ZnO being intrinsic n-type semiconductor the key challenge lies in realization of stable and reproducible p-type ZnO. In the present research dual acceptor group-V elements such as P and N are simultaneously doped in ZnO films to obtain the p-type characteristics. The deposition is made by programmable spray pyrolysis technique upon glass substrates at 697K. The optimum doping concentration of P and N were found to be 0.75 at% which exhibits hole concentration of 4.48 x 10^18 cm-3 and resistivity value of 9.6 Ω.cm. The deposited p-ZnO were found to be stable for a period over six months. Highly conducting n-type ZnO films is made by doping aluminum (3 at%) which exhibits higher electron concentration of 1.52 x 10^19 cm-3 with lower electrical resistivity of 3.51 x 10-2 Ω.cm. The structural, morphological, optical and electrical properties of the deposited n-ZnO and p-ZnO thin films are investigated. An efficient p-n homojunction has been fabricated using the optimum p-ZnO:(P,N) and n-ZnO:Al layers. The current-voltage (I-V) characteristics show typical rectifying characteristics of p-n junction with a low turn on voltage. Electroluminescence (EL) studies reveals the fabricated p-n homojunction diodes exhibits strong emission features in ultra-violet (UV) region around 378 nm.

  1. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  2. An analysis on effecting factors of ultra-violet imaging appliance in corona discharge

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Yang, Ning; Yuan, Shuai; Bi, Jiangang

    2014-11-01

    In this paper, the operating principle of daylight UV imagers was introduced first, emphasizing the SBUV(solar blind UV) technology, which utilizes the fact that ultra violet between 240nm~280nm is being absorbed by the ozone so that signals detected on earth in this spectral range originate on earth. And then several influencing factors were explained, including observation distance, observing angle, imager gain settings and environmental conditions. Experimental data measured in the UHV(ultra high-voltage) DC converter station in Changzhi, Shanxi, China were analyzed using SRA(single regression analysis) method, and mathematical equations with acceptable deviation were calculated, with simulating curves plotted. The results show that environmental conditions including humidity and temperature, observation distance and imager gain settings all contribute to the measuring result, exhibiting as exponential function and convex function respectively. Concluded from the above analysis and calculation, observing conditions of a clear observing angle at the same observation distance with mediate gain settings on days of low humidity were recommended. This conclusion may guide further ultra-violet imaging appliance in high-voltage electrical devices corona discharge sensing.

  3. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  4. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.

    PubMed

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K; Sharma, Ramesh C

    2013-08-01

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ~5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  5. A novel vacuum ultra violet lamp for metastable rare gas experiments.

    PubMed

    Daerr, Heiner; Kohler, Markus; Sahling, Peter; Tippenhauer, Sandra; Arabi-Hashemi, Ariyan; Becker, Christoph; Sengstock, Klaus; Kalinowski, Martin B

    2011-07-01

    We report on a new design of a vacuum ultra violet (VUV) lamp for direct optical excitation of high laying atomic states, e.g., for excitation of metastable rare gas atoms. The lamp can be directly mounted to ultra-high vacuum vessels (p ≤ 10(-10)mbar). It is driven by a 2.45 GHz microwave source. For optimum operation, it requires powers of ~20 W. The VUV light is transmitted through a magnesium fluoride window, which is known to have a decreasing transmittance for VUV photons with time. In our special setup, after a run-time of the VUV lamp of 550 h the detected signal continuously decreased to 25% of its initial value. This corresponds to a lifetime increase of two orders of magnitude compared to previous setups or commercial lamps.

  6. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR

    NASA Astrophysics Data System (ADS)

    Joshi, Deepti; Kumar, Deepak; Maini, Anil K.; Sharma, Ramesh C.

    This review has been written to highlight the threat of biological warfare agents, their types and detection. Bacterial biological agent Bacillus anthracis (bacteria causing the disease anthrax) which is most likely to be employed in biological warfare is being discussed in detail. Standoff detection of biological warfare agents in aerosol form using Ultra violet-Laser Induced Fluorescence (UV-LIF) spectroscopy method has been studied. Range-resolved detection and identification of biological aerosols by both nano-second and non-linear femto-second LIDAR is also discussed. Calculated received fluorescence signal for a cloud of typical biological agent Bacillus globigii (Simulants of B. anthracis) at a location of ˜5.0 km at different concentrations in presence of solar background radiation has been described. Overview of current research efforts in internationally available working UV-LIF LIDAR systems are also mentioned briefly.

  7. Effects of ultra violet radiation on the soluble proteins of human hair.

    PubMed

    Fedorkova, M V; Smolina, N V; Mikhalchik, E V; Balabushevich, N G; Ibragimova, G A; Gadzhigoroeva, A G; Dmitrieva, E I; Dobretsov, G E

    2014-11-01

    Exposure of hair fibers from healthy volunteers to Ultra Violet Radiation (UVR) under laboratory conditions enhanced protein elution from the hair tresses into a buffer solution (pH 10.5). At the same time the UVR decreased the intensity of tryptophan fluorescence in the eluted proteins. After mechanical homogenization of these hair samples, the increase of soluble protein was registered for UVR treated hair as well as the rise in sulfhydryl group content of these proteins. Analysis of soluble proteins from hair samples homogenized before and after protein elution has shown that mainly proteins rich in sulfhydryl groups were eluted and as a result sulfhydryl content of proteins in hair shaft decreased. The hypothesis concerning the effects of environmental factors on the properties of hair shaft proteins was examined, the proximal and distal parts of normal hair (0-5 cm and 15-20 cm from hair root) were compared. In the distal parts there was a higher quantity of soluble proteins registered after homogenization, with decreased sulfhydryl group content and tryptophan fluorescence. It could be supposed that this difference results from the steady rupture of cystine in sulfur bridges and tryptophan under exposure to environmental factors (mainly, UVR), followed by elution of the resulting peptides.

  8. Effect of Montmorillonite Modification on Ultra Violet Radiation Cured Nanocomposite Filled with Glycidyl Methacrylate Modified Kenaf

    NASA Astrophysics Data System (ADS)

    Rozyanty, A. R.; Rozman, H. D.; Zhafer, S. F.; Musa, L.; Zuliahani, A.

    2016-06-01

    In this study nanocomposite cured by ultra violet radiation, were produced using modified montmorillonite (MMT) as reinforcing agent, chemically modified kenaf bast fiber as filler and unsaturated polyester as the matrix. Kenaf bast fiber was chemically modified with glycidyl methacrylate (GMA) whilst MMT were modified with cetyl trimethyl ammonium bromide (CTAB) and glycidyl methacrylate (GMA). Fixed 12 percent of GMA modified kenaf bast fiber with different percentage (i.e., 1, 3 and 5) of unmodified and modified MMT loading was used to produce the composite. The performed of GMA reaction with hydroxyl group of cellulose in kenaf bast fiber was evaluated using Fourier Transform infrared (FTIR) spectroscopy. GMA-MMT filled composite showed higher mechanical properties than MMT and CTAB-MMT filled composite. However, the increase of MMT, CTAB-MMT and GMA- MMT loading resulted in the reduction of mechanical properties. Scanning electron microscopy (SEM) analysis showed the evidence of compatibility enhancement between MMT and kenaf bast fiber with unsaturated polyester matrix.

  9. Sub-50 nm metrology on extreme ultra violet chemically amplified resist—A systematic assessment

    SciTech Connect

    Maas, D. J. Herfst, R.; Veldhoven, E. van; Fliervoet, T.; Meessen, J.; Vaenkatesan, V.; Sadeghian, H.

    2015-10-15

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.

  10. Sub-50 nm metrology on extreme ultra violet chemically amplified resist--A systematic assessment.

    PubMed

    Maas, D J; Fliervoet, T; Herfst, R; van Veldhoven, E; Meessen, J; Vaenkatesan, V; Sadeghian, H

    2015-10-01

    With lithographic patterning dimensions decreasing well below 50 nm, it is of high importance to understand metrology at such small scales. This paper presents results obtained from dense arrays of contact holes (CHs) with various Critical Dimension (CD) between 15 and 50 nm, as patterned in a chemically amplified resist using an ASML EUV scanner and measured at ASML and TNO. To determine the differences between various (local) CD metrology techniques, we conducted an experiment using optical scatterometry, CD-Scanning Electron Microscopy (CD-SEM), Helium ion Microscopy (HIM), and Atomic Force Microscopy (AFM). CD-SEM requires advanced beam scan strategies to mitigate sample charging; the other tools did not need that. We discuss the observed main similarities and differences between the various techniques. To this end, we assessed the spatial frequency content in the raw images for SEM, HIM, and AFM. HIM and AFM resolve the highest spatial frequencies, which are attributed to the more localized probe-sample interaction for these techniques. Furthermore, the SEM, HIM, and AFM waveforms are analyzed in detail. All techniques show good mutual correlation, albeit the reported CD values systematically differ significantly. HIM systematically reports a 25% higher CD uniformity number than CD-SEM for the same arrays of CHs, probably because HIM has a higher resolution than the CD-SEM used in this assessment. A significant speed boost for HIM and AFM is required before these techniques are to serve the demanding industrial metrology applications like optical critical dimension and CD-SEM do nowadays.

  11. A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Koch, T. Scott; Oates, Samantha R.; Porterfield, Blair L.; Bayless, Amanda J.; Breeveld, Alice A.; Gronwall, Caryl; Kuin, N. P. M.; Page, Mat J.; de Pasquale, Massimiliano; Siegel, Michael H.; Swenson, Craig A.; Tobler, Jennifer M.

    2017-02-01

    We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB afterglow catalog. The second catalog is constructed from a database containing over 120,000 independent UVOT observations of 538 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi, and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs discovered from 2005 January 17 to 2010 December 25. Using photometric information in three UV bands, three optical bands, and a “white” or open filter, the data are optimally coadded to maximize the number of detections and normalized to one band to provide a detailed light curve. The catalog provides positional, temporal, and photometric information for each burst, as well as Swift Burst Alert Telescope and X-ray Telescope (XRT) GRB parameters. Temporal slopes are provided for each UVOT filter. The temporal slope per filter of almost half the GRBs are fit with a single power law, but one to three breaks are required in the remaining bursts. Morphological comparisons with the X-ray reveal that ∼ 75 % of the UVOT light curves are similar to one of the four morphologies identified by Evans et al. (2009). The remaining ∼ 25 % have a newly identified morphology. For many bursts, redshift- and extinction-corrected UV/optical spectral slopes are also provided at 2 × 103, 2 × 104, and 2 × 105 s.

  12. Urinary Concentrations of Benzophenone-Type Ultra Violet Light Filters and Semen Quality

    PubMed Central

    Buck Louis, Germaine M.; Chen, Zhen; Kim, Sungduk; Sapra, Katherine J.; Bae, Jisuk; Kannan, Kurunthachalam

    2015-01-01

    Objective To assess benzophenone-type ultra violet (UV) filter concentrations, chemicals used in sunscreen and personal care products, and semen endpoints. Design Cohort. Setting 16 counties in Michigan and Texas Participants 413 men provided semen and urine samples, 2005–2009. Five UV filters were quantified (ng/mL) in urine using liquid chromatography-triple-quadrupole mass spectrometry: BP-1 (2,4-dihydroxybenzophenone), BP-2 (2,2′,4,4′-tetrahydroxybenzophenone), BP-3 (2-hydroxy-4-methoxybenzophenone), BP-8 (2,2′-dihydroxy-4-methoxybenzophenone), and 4-OH-BP (4-hydroxybenzophenone). Using linear regression, beta coefficients (β) and 95% confidence intervals (CIs) for each chemical dichotomized at the 75th percentile and Box-Cox transformed semen endpoint were estimated, after adjusting for age, BMI, cotinine, season, and site. Interventions None. Main Outcome Measures 35 semen endpoints. Results BP-2 was associated with diminished sperm concentration (β=−0.74; 95% CI −1.41, −0.08), straight (β=−4.57; 95% CI −8.95, −0.18) and linear movement (β=−3.15; 95% CI −6.01, −0.30), more immature (β=0.38; 95% CI 0.15, 0.62) sperm, and a decreased percentage of other tail abnormalities (β=−0.16; 95% CI −0.31, −0.01). BP-8 was associated with decreased hypo-osmotic swelling (β=−2.57; 95% CI −4.86, −0.29) and higher acrosome area (β=1.14; 95% CI 0.01, 2.26). No associations were observed for BP-1, BP-3 or 4OH-BP. Conclusion The findings suggest that specific UV filters may be associated with some aspects of semen endpoints, but await future corroboration. PMID:26253817

  13. Measuring SO2 ship emissions with an ultra-violet imaging camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.

    2013-11-01

    Over the last few years fast-sampling ultra-violet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical fluxes ~1-10 kg s-1) and natural sources (e.g. volcanoes; typical fluxes ~10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and fluxes. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and fluxes of SO2 (typical fluxes ~0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the fluxes and path concentrations can be retrieved in real-time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and fluxes determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (>10 Hz) from a single camera. Typical accuracies ranged from 10-30% in path concentration and 10-40% in flux estimation. Despite the ease of use and ability to determine SO2 fluxes from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes.

  14. Is ultra-violet radiation the main force shaping molecular evolution of varicella-zoster virus?

    PubMed Central

    2011-01-01

    Background Varicella (chickenpox) exhibits a characteristic epidemiological pattern which is associated with climate. In general, primary infections in tropical regions are comparatively less frequent among children than in temperate regions. This peculiarity regarding varicella-zoster virus (VZV) infection among certain age groups in tropical regions results in increased susceptibility during adulthood in these regions. Moreover, this disease shows a cyclic behavior in which the number of cases increases significantly during winter and spring. This observation further supports the participation of environmental factors in global epidemiology of chickenpox. However, the underlying mechanisms responsible for this distinctive disease behavior are not understood completely. In a recent publication, Philip S. Rice has put forward an interesting hypothesis suggesting that ultra-violet (UV) radiation is the major environmental factor driving the molecular evolution of VZV. Discussion While we welcomed the attempt to explain the mechanisms controlling VZV transmission and distribution, we argue that Rice's hypothesis takes lightly the circulation of the so called "temperate VZV genotypes" in tropical regions and, to certain degree, overlooks the predominance of such lineages in certain non-temperate areas. Here, we further discuss and present new information about the overwhelming dominance of temperate VZV genotypes in Mexico regardless of geographical location and climate. Summary UV radiation does not satisfactorily explain the distribution of VZV genotypes in different tropical and temperate regions of Mexico. Additionally, the cyclic behavior of varicella does not shown significant differences between regions with different climates in the country. More studies should be conducted to identify the factors directly involved in viral spreading. A better understanding of the modes of transmissions exploited by VZV and their effect on viral fitness is likely to facilitate

  15. Two Types of Aurora on Mars as Observed by MAVEN's Imaging UltraViolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Deighan, J.; Jain, S.; Stiepen, A.; Stewart, I. F.; Larson, D. E.; Mitchell, D. L.; Mazelle, C. X.; Lee, C.; Lillis, R. J.; Evans, J. S.; Brain, D. A.; Stevens, M. H.; McClintock, W. E.; Chaffin, M.; Crismani, M. M. J.; Holsclaw, G. M.; Lefèvre, F.; Lo, D.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.

    2015-12-01

    The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning much of Mars' northern hemisphere coincident with a solar energetic particle outburst. IUVS observed northerly latitudes during late December 2014, detecting auroral emission in virtually all nightside observations for ~5 days spanning virtually all geographic longitudes. The vertical profile showed emission down to ~70 km altitude (1 microbar), deeper than confirmed at any other planet. The onset and duration of emission coincide with the observed arrival of solar energetic particles up to 200 keV precipitating directly and deeply into the atmosphere. Preliminary modeling of the precipitation, energy deposition and spectral line emission yields good matches to the observations. These observations represent a new class of planetary auroras produced in the Martian middle atmosphere. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit aurora more globally than Earth. Second, we confirm the existence of small patches of discrete aurora near crustal magnetic fields in Mars' southern hemisphere, as observed previously by SPICAM on Mars Express (Bertaux et al., Nature, 435, 790-794 (2005)). IUVS observed southern latitudes in July and August 2015, detecting discrete auroral emission in ~1% of suitable observations. Limb scans resolved both vertically and along-slit indicate this type of auroral emission was patchy on the scale of ~40 km, and located at higher altitudes ~140 km. The higher altitudes imply a lower energy of precipitating particles. The mix of spectral emissions also differed signficiantly from the discrete aurora, indicating different excitation and quenching processes. We will discuss the observed properties of the aurora and associated charged particle precipitation, as well as the broader implications of this high

  16. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol

  17. Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission

    SciTech Connect

    Zhu, Di; Song, Le; Zhang, Xiong; Kajiyama, Hiroshi

    2014-02-14

    In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

  18. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-03-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties.

  19. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    PubMed Central

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  20. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.

    PubMed

    McCurdy, R J; Atwell, T; Cole, M D

    2001-12-01

    A method has been developed for the analysis of arson accelerants in fire scene debris by vapour phase ultra-violet (UV) spectroscopy. The method is rapid, inexpensive, simple to use and is sufficiently sensitive and discriminating to be of use for the analysis of crime scene samples. Application to casework samples is described. On occasion, the method offers additional information to that which can be obtained by gas chromatography-flame ionisation detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) and represents a useful adjunct to these techniques. In addition, the method offers advantages where the use of GC-MS analysis of arson accelerants in fire scene debris is not a practical proposition.

  1. Driving Extreme Efficiency to Market

    NASA Astrophysics Data System (ADS)

    Garbesi, Karina

    2014-03-01

    The rapid development of extremely energy efficient appliances and equipment is essential to curtail catastrophic climate disruption. This will require the on-going development of products that apply all best-practices and that take advantage of the synergies of hybridization and building integration. Beyond that, it requires the development of new disruptive technologies and concepts. To facilitate these goals, in 2011 the Lawrence Berkeley National Laboratory and the U.S. Department of Energy launched the Max Tech and Beyond Design Competition for Ultra-Low-Energy-Use Appliances and Equipment. Now in its third year, the competition supports faculty-lead student design teams at U.S. universities to develop and test new technology prototypes. This talk describes what the competition and the Max Tech Program are doing to drive such rapid technology progress and to facilitate the entry to the market of successful Max Tech prototypes. The talk also initiates a discussion of physicists' unique role in driving that technology progress faster and farther. Emerging Technologies, Building Technologies Office, U.S. Department of Energy.

  2. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    SciTech Connect

    Marneffe, J.-F. de Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R.; Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M.; Goodyear, A.; Cooke, M.

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  3. Durable silver mirror with ultra-violet thru far infra-red reflection

    DOEpatents

    Wolfe, Jesse D.

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  4. Specific ultra-violet absorbance as an indicator measurement of merucry sources in an Adirondack River basin

    USGS Publications Warehouse

    Burns, Douglas A.; Aiken, George R.; Bradley, Paul M.; Journey, Celeste; Schelker, Jakob

    2013-01-01

    The Adirondack region of New York has been identified as a hot spot where high methylmercury concentrations are found in surface waters and biota, yet mercury (Hg) concentrations vary widely in this region. We collected stream and groundwater samples for Hg and organic carbon analyses across the upper Hudson River, a 493 km2 basin in the central Adirondacks to evaluate and model the sources of variation in filtered total Hg (FTHg) concentrations. Variability in FTHg concentrations during the growing seasons (May-Oct) of 2007-2009 in Fishing Brook, a 66-km2 sub-basin, was better explained by specific ultra-violet absorbance at 254 nm (SUVA254), a measure of organic carbon aromaticity, than by dissolved organic carbon (DOC) concentrations, a commonly used Hg indicator. SUVA254 was a stronger predictor of FTHg concentrations during the growing season than during the dormant season. Multiple linear regression models that included SUVA254 values and DOC concentrations could explain 75 % of the variation in FTHg concentrations on an annual basis and 84 % during the growing season. A multiple linear regression landscape modeling approach applied to 27 synoptic sites across the upper Hudson basin found that higher SUVA254 values are associated with gentler slopes, and greater riparian area, and lower SUVA254 values are associated with an increasing influence of open water. We hypothesize that the strong Hg?SUVA254 relation in this basin reflects distinct patterns of FTHg and SUVA254 that are characteristic of source areas that control the mobilization of Hg to surface waters, and that the seasonal influence of these source areas varies in this heterogeneous basin landscape.

  5. Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications

    SciTech Connect

    Hodgson, A.T.; Sullivan, D.P.; Fisk, W.J.

    2006-02-01

    Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.

  6. [Effect of extremely low frequency electromagnetic radiation and ultra-violet radiation on aggregation of thymocytes and erythrocytes].

    PubMed

    Roshchupkin, D I; Kramarenko, G G; Anosov, A K

    1996-01-01

    Electromagnetic radiation of superhigh frequencies (46.12 and 46.19 GHz, 0.3-1 mV/cm2) at an incident dose of about 12 kJ/m2 enhances the ability of isolated rabbit thymocytes for aggregation interaction with homologous erythrocytes. In the case of 46.19 GHz frequency, the stimulatory effect disappears as radiation dose in increased. A radiation of 46.12 GHz stimulates thymocytes also at high radiation doses. Superhigh-frequency radiation enhances the sensitivity of thymocytes to the damaging effect of UV radiation.

  7. A preliminary estimate of the EUVE cumulative distribution of exposure time on the unit sphere. [Extreme Ultra-Violet Explorer

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1984-01-01

    A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.

  8. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    SciTech Connect

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro; Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro; Ishihara, Tsuguo; Izumi, Hirokazu

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  9. Coherent ultra-violet to near-infrared generation in silica ridge waveguides

    NASA Astrophysics Data System (ADS)

    Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.

    2017-01-01

    Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology.

  10. Coherent ultra-violet to near-infrared generation in silica ridge waveguides

    PubMed Central

    Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.

    2017-01-01

    Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233

  11. III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet

    NASA Astrophysics Data System (ADS)

    Sellés, J.; Crepel, V.; Roland, I.; El Kurdi, M.; Checoury, X.; Boucaud, P.; Mexis, M.; Leroux, M.; Damilano, B.; Rennesson, S.; Semond, F.; Gayral, B.; Brimont, C.; Guillet, T.

    2016-12-01

    We present a series of microdisk lasers realized within the same GaN-on-Si photonic platform scheme, and operating at room temperature under pulsed optical pumping over a broad spectral range extending over λ = 275 nm-470 nm. The III-nitride microdisks embed either binary GaN/AlN multiple quantum wells (MQWs) for UV operation, or ternary InGaN/GaN MQWs for violet and blue operation. This demonstrates the versatility of this nitride-on-silicon platform, and the realization on this platform of efficient active layers for lasing action over a 200 nm broad UV to visible spectral range. We probe the lasing threshold carrier density over the whole spectral range and found that it is similar whatever the emission wavelength for these Q > 1000 microdisk resonators with a constant material quality until quantum confined Stark effect takes over. The threshold is also found independent of microdisk diameters from 3 to 12 μm, with a β factor intermediate between the one of vertical cavity lasers and the one of small modal volume "thresholdless" lasers.

  12. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    PubMed

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides.

  13. Formation and Fragmentation of Radical Peptide Anions: Insights from Vacuum Ultra Violet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS3 scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H]2-) non-radical ions and open-shell ([M-3H]2-•) radical ions. These latter ions are generated by electron photodetachment from [M-3H]3- precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides.

  14. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  15. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  16. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  17. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-01

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (˜1020 cm-3). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  18. ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis

    NASA Astrophysics Data System (ADS)

    Jha, Shrawan Kumar; Luan, Chunyan; To, Chap Hang; Kutsay, Oleksandr; Kováč, Jaroslav; Zapien, Juan Antonio; Bello, Igor; Lee, Shuit-Tong

    2012-11-01

    Pure ultra-violet (UV) (378 nm) electroluminescence (EL) from zinc oxide (ZnO)-nanorod-array/p-gallium nitride (GaN) light emitting devices (LEDs) is demonstrated at low bias-voltages (˜4.3 V). Devices were prepared merely by solution-synthesis, without any involvement of sophisticated material growth techniques or preparation methods. Three different luminescence characterization techniques, i.e., photo-luminescence, cathodo-luminescence, and EL, provided insight into the nature of the UV emission mechanism in solution-synthesized LEDs. Bias dependent EL behaviour revealed blue-shift of EL peaks and increased peak sharpness, with increasing the operating voltage. Accelerated bias stress tests showed very stable and repeatable electrical and EL performance of the solution-synthesized nanorod LEDs.

  19. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  20. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  1. Comparison of vacuum ultra-violet emission of Ar/CF4 and Ar/CF3I capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Zotovich, A.; Proshina, O.; el Otell, Z.; Lopaev, D.; Rakhimova, T.; Rakhimov, A.; de Marneffe, J.-F.; Baklanov, M. R.

    2016-10-01

    Spectra in the vacuum-ultra violet range (VUV, 30 nm-200 nm) as well as in the ultra-violet(UV) and visible ranges (UV+vis, 200 nm-800 nm) were measured from Ar/CF3I and Ar/CF4 discharges. The discharges were generated in an industrial 300 mm capacitively coupled plasma source with 27 MHz radio-frequency power. It was seen that the measured spectra were strongly modified. This is mainly due to absorption, especially by CF3I, and Ar self-trapping along the line of sight, towards the detector and in the plasma itself. The estimated unabsorbed VUV spectra were revealed from the spectra of mixtures with low fluorocarbon gas content by means of normalization with unabsorbed I* emission, at 206 nm, and CF2\\ast band (1B1(0,v‧,0){{\\to}1} A1(0,{{\\text{v}}\\prime \\prime} ,0)) emission between 230 nm and 430 nm. Absolute fluences of UV CF2\\ast emission were derived using hybrid 1-dimensional (1D) particle-in-cell (PIC) Monte-Carlo (MC) model calculations. Absolute calibration of the VUV emission was performed using these calculated values from the model, which has never been done previously for real etch conditions in an industrial chamber. It was seen that the argon resonant lines play a significant role in the VUV spectra. These lines are dominant in the case of etching recipes close to the standard ones. The restored unabsorbed spectra confirm that replacement of conventional CF4 etchant gas with CF3I in low-k etching recipes leads to an increase in the overall VUV emission intensity. However, emission from Ar exhibited the most intense peaks. Damage to low-k SiCOH glasses by the estimated VUV was calculated for blanket samples with pristine k-value of 2.2. The calculations were then compared with Fourier transform infrared (FTIR) data for samples exposed to the similar experimental conditions in the same reactor. It was shown that Ar emission plays the most significant role in VUV-induced damage.

  2. Warm dark matter via ultra-violet freeze-in: reheating temperature and non-thermal distribution for fermionic Higgs portal dark matter

    SciTech Connect

    McDonald, John

    2016-08-17

    Warm dark matter (WDM) of order keV mass may be able to resolve the disagreement between structure formation in cold dark matter simulations and observations. The detailed properties of WDM will depend upon its energy distribution, in particular how it deviates from the thermal distribution usually assumed in WDM simulations. Here we focus on WDM production via the Ultra-Violet (UV) freeze-in mechanism, for the case of fermionic Higgs portal dark matter ψ produced via the portal interaction ψ-barψH{sup †}H/Λ. We introduce a new method to simplify the computation of the non-thermal energy distribution of dark matter from freeze-in. We show that the non-thermal energy distribution from UV freeze-in is hotter than the corresponding thermal distribution and has the form of a Bose-Einstein distribution with a non-thermal normalization. The resulting range of dark matter fermion mass consistent with observations is 5–7 keV. The reheating temperature must satisfy T{sub R}≳120 GeV in order to account for the observed dark matter density when m{sub ψ}≈5 keV, where the lower bound on T{sub R} corresponds to the limit where the fermion mass is entirely due to electroweak symmetry breaking via the portal interaction. The corresponding bound on the interaction scale is Λ≳6.0×10{sup 9} GeV.

  3. Thermoluminescence properties of Mn-doped CaYAl3O7 phosphor irradiated with ultra-violet, mega-voltage and gamma radiation

    NASA Astrophysics Data System (ADS)

    Pathak, Pushpraj; Selot, Anupam; Kurchania, Rajnish

    2014-06-01

    Low temperature combustion synthesis was employed for the preparation of CaYAl3O7(Mn2+) phosphor. X-Ray diffraction (XRD) patterns were recorded to confirm the phase formation. Estimated particle size was found to be ~19.9 nm by using the Debye Scherrer's formula. FTIR study confirms the formation of CaYAl3O7 compound, escape of nitrates and other organic products. Thermoluminescence (TL) glow curves of the prepared phosphor were recorded after exposing the sample with Ultra-violet (UV), 6-Mega-voltage (MV), 16-MV and Co-60(Cobalt-60, 1.25-MeV average gamma energy) radiation. Trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor(s) of main peak, centered around 186 °C in the sample irradiated with UV source for 20 min, were determined using glow curve shape (Chen's) method. It has been observed that the TL peak intensity increases with increasing the exposure from UV source. Also with increases the energy of incident radiation a decrease in TL peak intensity were observed. This could be due to higher penetration power and less absorbance of incident beam in the phosphor material. Analysis suggests that possibility of utilizing this phosphor in futuristic low and high energy dosimetric applications as well as in solid state lighting devices.

  4. Potentiating antilymphoma efficacy of chemotherapy using a liposome for integration of CD20 targeting, ultra-violet irradiation polymerizing, and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Li, Huafei; Zhao, He; Zhang, Weiwei; Chen, Yan; Yue, Zhanyi; Lu, Qiong; Wan, Yuxiang; Tian, Xiaoyu; Deng, Anmei

    2014-08-01

    Unlike most malignancies, chemotherapy but not surgery plays the most important role in treating non-Hodgkin lymphoma (NHL). Currently, liposomes have been widely used to encapsulate chemotherapeutic drugs in treating solid tumors. However, higher in vivo stability owns a much more important position for excellent antitumor efficacy in treating hematological malignancies. In this study, we finely fabricated a rituximab Fab fragment-decorated liposome based on 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), which can form intermolecular cross-linking through the diacetylenic group by ultra-violet (UV) irradiation. Our experimental results demonstrated that after the UV irradiation, the liposomes exhibit better serum stability and slower drug release with a decreased mean diameter of approximately 285 nm. The cellular uptake of adriamycin (ADR) by this Fab-navigated liposome was about four times of free drugs. Cytotoxicity assays against CD20+ lymphoma cells showed that the half maximal (50%) inhibitory concentration (IC50) of ADR-loaded immunoliposome was only one fourth of free ADR at the same condition. In vivo studies were evaluated in lymphoma-bearing SCID mice. With the high serum stability, finely regulated structure, active targeting strategy via antigen-antibody reaction and passive targeting strategy via enhanced permeability and retention (EPR) effect, our liposome exhibits durable and potent antitumor activities both in the disseminated and localized human NHL xeno-transplant models.

  5. Warm dark matter via ultra-violet freeze-in: reheating temperature and non-thermal distribution for fermionic Higgs portal dark matter

    NASA Astrophysics Data System (ADS)

    McDonald, John

    2016-08-01

    Warm dark matter (WDM) of order keV mass may be able to resolve the disagreement between structure formation in cold dark matter simulations and observations. The detailed properties of WDM will depend upon its energy distribution, in particular how it deviates from the thermal distribution usually assumed in WDM simulations. Here we focus on WDM production via the Ultra-Violet (UV) freeze-in mechanism, for the case of fermionic Higgs portal dark matter ψ produced via the portal interaction bar psiψH†H/Λ. We introduce a new method to simplify the computation of the non-thermal energy distribution of dark matter from freeze-in. We show that the non-thermal energy distribution from UV freeze-in is hotter than the corresponding thermal distribution and has the form of a Bose-Einstein distribution with a non-thermal normalization. The resulting range of dark matter fermion mass consistent with observations is 5-7 keV. The reheating temperature must satisfy TR gtrsim 120 GeV in order to account for the observed dark matter density when mψ ≈ 5 keV, where the lower bound on TR corresponds to the limit where the fermion mass is entirely due to electroweak symmetry breaking via the portal interaction. The corresponding bound on the interaction scale is Λ gtrsim 6.0 × 109 GeV.

  6. Electro-spraying and ultra-violet light curing of polydimethylsiloxane to fabricate thin films for low-voltage dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Kovacs, Gabor; Töpper, Tino; Osmani, Bekim; Leung, Vanessa Y. F.; Müller, Bert

    2016-04-01

    Currently, dielectric elastomer actuators (DEA) are mainly based on micrometer-thin polymer films and require operating voltages of several hundred volts. In medical applications, however, voltages as low as a few tens of volts are required. To this end, we prepared nanometer-thin dielectric elastomer layers. It is demonstrated that alternating current, electro-spray deposition allows for the fabrication of homogenous, flat, nanometer-thin polydimethylsiloxane (PDMS) films. The growth of the PDMS with average number molecular weights ranging from 800 to 62,700 g/mol, at a constant flow rate of 267 nL/s, was in situ monitored by means of spectroscopic ellipsometry. The Cauchy layer model used for data interpretation may only be applied to flat PDMS layers. Thus, in the present study the droplet morphology was also determined by atomic force microscopy. Spectroscopic ellipsometry does allow for the qualitative determination of the thin film morphology. However, for high molecular weight polymers the precise measurement during deposition is challenging. Independent of the molecular weight, the roughness of the deposited PDMS films considerably smoothens during the ultra-violet radiation treatment. After curing, the electro-sprayed nanometer-thin PDMS films are homogeneous enough to qualify for the fabrication of low-voltage DEA.

  7. A Hot Companion to a Blue Straggler in NGC 188 as Revealed by the Ultra-Violet Imaging Telescope (UVIT) on ASTROSAT

    NASA Astrophysics Data System (ADS)

    Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.; Kameswara Rao, N.; Postma, J.; Côté, Patrick; Hutchings, J. B.; Ghosh, S. K.; George, K.; Girish, V.; Mohan, R.; Murthy, J.; Sankarasubramanian, K.; Stalin, C. S.; Sutaria, F.; Mondal, C.; Sahu, S.

    2016-12-01

    We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER, WISE, and several ground-based facilities. The resulting SED spans a wavelength range of 0.15 μm to 7.8 μm. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ˜1.1-1.2 M ⊙. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ˜ 0.6 R ⊙ and L ˜30 L ⊙. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.

  8. Simultaneous Determination of Six Benzodiazepines in Spiked Soft Drinks by High Performance Liquid Chromatography with Ultra Violet Detection (HPLC-UV).

    PubMed

    Soltaninejad, Kambiz; Karimi, Mohammad; Nateghi, Alireza; Daraei, Bahram

    2016-01-01

    A high performance liquid chromatographic method with ultra violet detection for simultaneous analysis of six benzodiazepines (BZDs) (chlordiazepoxide, diazepam, clonazepam, midazolam , flurazpam, and lorazepam) has been developed for forensic screening of adulterated non-alcoholic drinks. Samples were analyzed after a simple procedure for preparation using pH adjustment and filtering. Isocratic elution on a C18 column (250mm × 4.6 mm, 5μm) in the temperature 45ºC with a mobile phase consisting of 15mM phosphate buffer: methanol (50:50 v/v) at a flow rate 1.4 mL/min has been done. The column eluent was monitored with a UV detector at 245 nm. This allowed a rapid detection and identification as well as quantization of the eluting peaks. Calibration curves for all drugs in the range of 0.5- 10 µg/ mL that all the linear regression and has more than 0.996. Recovery rates for the BZDs were in the range 93.7- 108.7%. The limits of detection were calculated between 0.01- 0.02 µg/ mL. Also, the limits of quantification were 0.03- 0.05 µg/mL. Within-day and between -day coefficient of variation for all BZDs at all concentrations in the range of 0.45 - 7.69 % was calculated. The procedure can provide a simple, sensitive and fast method for the screening of six BZDs in adulterated soft drinks in forensic analysis.

  9. Simultaneous Determination of Six Benzodiazepines in Spiked Soft Drinks by High Performance Liquid Chromatography with Ultra Violet Detection (HPLC-UV)

    PubMed Central

    Soltaninejad, Kambiz; Karimi, Mohammad; Nateghi, Alireza; Daraei, Bahram

    2016-01-01

    A high performance liquid chromatographic method with ultra violet detection for simultaneous analysis of six benzodiazepines (BZDs) (chlordiazepoxide, diazepam, clonazepam, midazolam , flurazpam, and lorazepam) has been developed for forensic screening of adulterated non-alcoholic drinks. Samples were analyzed after a simple procedure for preparation using pH adjustment and filtering. Isocratic elution on a C18 column (250mm × 4.6 mm, 5μm) in the temperature 45ºC with a mobile phase consisting of 15mM phosphate buffer: methanol (50:50 v/v) at a flow rate 1.4 mL/min has been done. The column eluent was monitored with a UV detector at 245 nm. This allowed a rapid detection and identification as well as quantization of the eluting peaks. Calibration curves for all drugs in the range of 0.5- 10 µg/ mL that all the linear regression and has more than 0.996. Recovery rates for the BZDs were in the range 93.7- 108.7%. The limits of detection were calculated between 0.01- 0.02 µg/ mL. Also, the limits of quantification were 0.03- 0.05 µg/mL. Within-day and between -day coefficient of variation for all BZDs at all concentrations in the range of 0.45 - 7.69 % was calculated. The procedure can provide a simple, sensitive and fast method for the screening of six BZDs in adulterated soft drinks in forensic analysis. PMID:27642316

  10. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa

    PubMed Central

    2014-01-01

    Background Pigmentation has a long history of investigation in evolutionary biology. In Drosophila melanogaster, latitudinal and altitudinal clines have been found but their underlying causes remain unclear. Moreover, most studies were conducted on cosmopolitan populations which have a relatively low level of genetic structure and diversity compared to sub-Saharan African populations. We investigated: 1) the correlation between pigmentation traits within and between the thorax and the fourth abdominal segment, and 2) their associations with different geographical and ecological variables, using 710 lines belonging to 30 sub-Saharan and cosmopolitan populations. Results Pigmentation clines substantially differed between sub-Saharan and cosmopolitan populations. While positive correlations with latitude have previously been described in Europe, India and Australia, in agreement with Bogert's rule or the thermal melanism hypothesis, we found a significant negative correlation in Africa. This correlation persisted even after correction for altitude, which in its turn showed a positive correlation with pigmentation independently from latitude. More importantly, we found that thoracic pigmentation reaches its maximal values in this species in high-altitude populations of Ethiopia (1,600-3,100 m). Ethiopian flies have a diffuse wide thoracic trident making the mesonotum and the head almost black, a phenotype that is absent from all other sub-Saharan or cosmopolitan populations including high-altitude flies from Peru (~3,400 m). Ecological analyses indicated that the variable most predictive of pigmentation in Africa, especially for the thorax, was ultra-violet (UV) intensity, consistent with the so-called Gloger's rule invoking a role of melanin in UV protection. Conclusion Our data suggest that different environmental factors may shape clinal variation in tropical and temperate regions, and may lead to the evolution of different degrees of melanism in different high

  11. Effects of nitrogen substitution in amorphous carbon films on electronic structure and surface reactivity studied with x-ray and ultra-violet photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Murata, Yuma; Nakayama, Rempei; Ichihara, Fumihiko; Ono, Hiroshi; Choo, Cheow-Keong; Tanaka, Katsumi

    2017-03-01

    We investigated the effects of incorporating a low percentage of nitrogen on the local and the electronic structures of amorphous carbon (a-C) using X-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy (UPS). Nitrogen-doped amorphous carbon films (a-CNx) with varying nitrogen contents were prepared by a thermal decomposition method using a mixture of CH4 + NH3 under atmosphere. A slight shift of the C 1s core-level spectrum toward the higher binding energy side was detected in a-CNx as a function of nitrogen content, whereas a shift of the Fermi level (EF) cannot be confirmed from the UPS results. This was interpreted as a chemical shift between carbon and nitrogen atoms rather than as a shift of the EF. The C 1s peak shifts can be explained by the presence of two kinds of C-N local structures and the charge transferred bulk C-C components by nitrogen atoms. The two kinds of deconvoluted C 1s components could be well correlated with the two N 1s components. Two localized states were detected below the EF in UPS spectra of a-CNx, which could be assigned to defect bands. These defects played a significant role in the surface reactivity, and were stabilized in a-CNx. The adsorption and reaction of NO were carried out on a-CNx as well as a-C films. It was found that both defect sites and O2- species were responsible on a-C, while O2- species were selectively active for NO adsorption on a-CNx. We concluded that nitrogen doping reduces defect density to stabilize the surface of a-C, while at the same time inducing the selective adsorption capability of NO.

  12. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-01-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274

  13. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.

    PubMed

    Babaee, Saeed; Beiraghi, Asadollah

    2010-03-03

    An analytical method based on the cloud point extraction combined with high performance liquid chromatography is used for the extraction, separation and determination of four explosives; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN). These compounds are extracted by using of Triton X-114 and cetyl-trimethyl ammonium bromide (CTAB). After extraction, the samples were analyzed using a HPLC-UV system. The parameters affecting extraction efficiency (such as Triton X-114 and CTAB concentrations, amount of Na(2)SO(4), temperature, incubation and centrifuge times) were evaluated and optimized. Under the optimum conditions, the preconcentration factor was 40 and the improvement factors of 34, 29, 61 and 42 with detection limits of 0.09, 0.14, 0.08 and 0.40 (microg L(-1)) were obtained for HMX, RDX, TNT and PETN, respectively. The proposed method was successfully applied to the determination of these compounds in water samples and showed recovery percentages of 97-102% with RSD values of 2.13-4.92%.

  14. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  15. Fabrication of 380 nm ultra violet light emitting diodes on nano-patterned n-type GaN substrate.

    PubMed

    Baek, Kwang Sun; Sadasivam, Karthikeyan Giri; Lee, Young Gon; Song, Young Ho; Jeong, Tak; Kim, Seung Hwan; Kim, Jae Kwan; Kim, Seung Hwan; Jeon, Seong-Ran; Lee, June Key

    2011-08-01

    380 nm ultraviolet (UV) light emitting diodes (LEDs) were grown on patterned n-type GaN substrate (PNS) with silicon dioxide (SiO2) nano pattern to improve the light output efficiency. Wet etched self assembled indium tin oxide (ITO) nano clusters serves as dry etching mask for converting the SiO2 layer grown on n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. Three different diameter of ITO such as 200, 250 and 300 nm were used for SiO2 nano pattern fabrication. PNS is obtained by n-GaN regrowth on SiO2 nano patterns and UV LEDs were grown on PNS template by MOCVD. Enhanced light output intensity was observed by employing SiO2 nano patterns on n-GaN. Among different PNS UV LEDs, LED grown on PNS with 300 nm ITO diameter showed enhancement in light output intensity by 2.1 times compared to the reference LED without PNS.

  16. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes.

    PubMed

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-08

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  17. Direct measurement of Ar diffusion profiles in a gem-quality Madagascar K-feldspar using the ultra-violet laser ablation microprobe (UVLAMP)

    NASA Astrophysics Data System (ADS)

    Wartho, Jo-Anne; Kelley, Simon P.; Brooker, Richard A.; Carroll, Mike R.; Villa, Igor M.; Lee, Martin R.

    1999-06-01

    Controversy surrounding the mechanisms and controls on argon diffusion in K-feldspar has led us to undertake direct diffusion measurements on a crystal with simple microtextures, over a range of temperatures. Measurements of argon diffusion profiles in a gem-quality iron-rich orthoclase heated in a cold seal apparatus, have been undertaken in situ using an ultra-violet laser ablation microprobe (UVLAMP) technique. The results agree very closely with the previously determined bulk values for Benson Mines orthoclase (activation energy ( E)=43.8±1 kcal mol -1) and vacuum furnace cycle-heating studies of K-feldspars ( E=46±6 kcal mol -1). However, instead of defining a single activation energy ( E) and diffusion coefficient ( Do), the data yield two sets of parameters: a low-temperature (550-720°C) array with an E of 47.2±2.5 kcal mol -1 (198.2±10.5 kJ mol -1) and a Do of 0.0374 +0.1123-0.0281 cm 2 s -1, and a high-temperature (725-1019°C) array with an E of 63.8±3.4 kcal mol -1 (268.0±14.3 kJ mol -1) and a Do of 55.0 +225.5-44.2 cm 2 s -1. The new results closely reproduce two sets of apparent activation energies previously measured in cycle-heating studies of Madagascar K-feldspar (40±3 and 57±3 kcal mol -1). Previous interpretations of the two arrays have included multiple domains with variable activation energies and fast track diffusion. However, the UV depth profile analyses indicate simple diffusion to the grain surface and importantly, diffusion radii calculated by combining the UVLAMP and cycle-heating data, are the same as the physical grain sizes used in the experiments, around 1 mm. Vacuum furnace stepped heating experiments on slowly cooled K-feldspars have been interpreted as showing diffusion radii of around 6 μm and indicate complex populations of sub-grains. This study indicates that Madagascar K-feldspar and thus probably all gem-quality K-feldspars act as single diffusion domains and that short-circuit (or pipe) diffusion was not an

  18. Extremely efficient Zevatron in rotating AGN magnetospheres

    NASA Astrophysics Data System (ADS)

    Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N.

    2014-12-01

    A novel model of particle acceleration in the magnetospheres of rotating active galactic nuclei (AGN) is constructed. The particle energies may be boosted up to 1021 eV in a two-step mechanism: in the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. In the second stage, the electrostatic energy is transferred to particle kinetic energy via Landau damping made possible by rapid `Langmuir collapse'. The time-scale for parametric pumping of Langmuir waves turns out to be small compared to the kinematic time-scale, indicating high efficiency of the first process. The second process of `Langmuir collapse' - the creation of caverns or low-density regions - also happens rapidly for the characteristic parameters of the AGN magnetosphere. The Langmuir collapse creates appropriate conditions for transferring electric energy to boost up already high particle energies to much higher values. It is further shown that various energy loss mechanism are relatively weak, and do not impose any significant constraints on maximum achievable energies.

  19. Depth-resolved ultra-violet spectroscopic photo current-voltage measurements for the analysis of AlGaN/GaN high electron mobility transistor epilayer deposited on Si

    SciTech Connect

    Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo

    2014-10-27

    We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.

  20. Detailed gas and diesel vehicle emissions: PTR-MS measurements of real-time VOC profiles and comprehensive characterization of primary emissions for IVOC, SVOC, and LVOC by gas chromatography with vacuum ultra-violet ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Frodin, B.; Zhao, Y.; Franklin, J. P.; Cross, E. S.; Saleh, R.; Saliba, G.; Lambe, A. T.; Sardar, S.; Maldonado, H.; Russell, L. M.; Kroll, J. H.; Robinson, A. L.; Goldstein, A. H.

    2015-12-01

    Over the past fifteen years US vehicle emissions standards have dramatically improved, with the goal of reducing urban air pollution. Recent studies demonstrate secondary organic aerosol (SOA) to be the dominant contributor to urban organic aerosol, but controversy remains regarding the contributions of different vehicle types to SOA. Increased potency for SOA formation from non methane hydrocarbons (NMHC) from newer vehicles that meet tighter emission standards has also been observed. Both speciation and temporal resolution of vehicular emissions are critical for predicting SOA formation. The relative importance of diesel and gasoline emissions to SOA formation depends critically on speciation. Experiments were conducted at the California Air Resources Board Haagen-Smit Laboratory to better understand SOA formation for low, ultra-low, super ultra-low and partial zero emission vehicles (LEV, ULEV, SULEV, PZEV). Exhaust was sampled on filters and adsorbent tubes to measure intermediate-, semi-, and low-volatility NMHC (IVOC, SVOC, LVOC). A proton-transfer-reaction mass spectrometer (PTR-MS) measured volatile organics (VOC) emissions with high time-resolution. Analysis of filters and adsorbent tubes using gas chromatography with vacuum-ultra-violet ionization mass spectrometry provided unprecedented characterization of emissions according to degree of branching, number of cyclic rings, aromaticity, and molecular weight. ULEV vehicles show the composition distributions of primary particulate emissions peak for compounds in the SVOC range. PZEV vehicle emissions peak in the IVOC range. Diesel vehicles have up to ten times higher emissions than gasoline vehicles; their distributions have significant IVOC levels and peak in the SVOC/LVOC range. Our measurements are used to predict potential SOA formation by vehicle standard class and the relative SOA formation for diesel and gasoline vehicles. PTR-MS measurement show VOC emissions after cold start occur almost entirely

  1. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    SciTech Connect

    Zhang, Weihuan; Zhang, Yuepin Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

  2. Ultra-Violet Induced Insulator Flashover

    SciTech Connect

    Javedani, J B; Houck, T L; Kelly, B T; Lahowe, D A; Shirk, M D; Goerz, D A

    2008-05-21

    Insulators are critical components in high-energy, pulsed power systems. It is known that the vacuum surface of the insulator will flashover when illuminated by ultraviolet (UV) radiation depending on the insulator material, insulator cone angle, applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx} 2 MW/cm{sup 2}, 30 ns FWHM,), a vacuum chamber (low 1.0E-6 torr), and dc high voltage power supply (<60 kV) was assembled for insulator testing to measure the UV dose during a flashover event. Five in-house developed and calibrated fast D-Dot probes (>12 GHz, bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of flashover with respect to UV arrival. A commercial energy meter were used to measure the UV fluence for each pulse. Four insulator materials High Density Polyethylene, Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex with side-angles of 0, {+-}30, and {+-}45 degrees, 1.0 cm thick samples, were tested with a maximum UV fluence of 75 mJ/cm{sup 2} and at varying electrode charge (10 kV to 60 kV). This information clarified/corrected earlier published studies. A new phenomenon was observed related to the UV power level on flashover that as the UV pulse intensity was increased, the UV fluence on the insulator prior to flashover was also increased. This effect would bias the data towards higher minimum flashover fluence.

  3. UltraViolet freeze-in

    NASA Astrophysics Data System (ADS)

    Elahi, Fatemeh; Kolda, Christopher; Unwin, James

    2015-03-01

    If dark matter is thermally decoupled from the visible sector, the observed relic density can potentially be obtained via freeze-in production of dark matter. Typically in such models it is assumed that the dark matter is connected to the thermal bath through feeble renormalisable interactions. Here, rather, we consider the case in which the hidden and visible sectors are coupled only via non-renormalisable operators. This is arguably a more generic realisation of the dark matter freeze-in scenario, as it does not require the introduction of diminutive renormalisable couplings. We examine general aspects of freeze-in via non-renormalisable operators in a number of toy models and present several motivated implementations in the context of Beyond the Standard Model (BSM) physics. Specifically, we study models related to the Peccei-Quinn mechanism and Z ' portals.

  4. Present Status and Future of EUV (Extreme Ultra Violet) Light Source Research 5.Discharge Produced Plasma Light Sources 5.2Technical Issues Regarding the Practical Application and Future Prospects of a Discharge Produced Plasma Sources for Lithography

    NASA Astrophysics Data System (ADS)

    Sato, Hiroto

    Some important issues for the practical application of a discharge-basedEUV source for lithography are described. Innovative ideas taking into consideration both plasma physics and technological elements such as pulse power, materials, and heat management are required for the solution of key issues. Engineering approaches are described with the development plan of the EUVA. It is necessary to consider the factors relating to the issue as a whole in research and development in order to produce a clean, high power and high quality photon.

  5. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  6. Extreme ultraviolet quantum detection efficiency of rubidium bromide opaque photocathodes

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Gaines, Geoffrey A.

    1990-01-01

    Measurements are presented of the quantum detection efficiency (QDE) of three samples of RbBr photocathode layers over the 44-150-A wavelength range. The QDE of RbBr-coated microchannel plate (MCP) was measured using a back-to-back Z-stack MCP configuration in a detector with a wedge and strip position-sensitive anode, of the type described by Siegmund et al. (1984). To assess the stability of RbBr layer, the RbBr photocathode was exposed to air at about 30 percent humidity for 20 hr. It was found that the QDE values for the aged cathode were within the QDE measurement errors of the original values. A simple QDE model was developed, and it was found that its predictions are in accord with the QDE measurements.

  7. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  8. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  9. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    SciTech Connect

    Chiang, Patrick

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  10. [Current laboratory methods to evaluate the efficiency of immunization against dangerous and extremely dangerous infections].

    PubMed

    Bogacheva, N V; Darmov, I V; Elagin, G D; Kriuchkov, A V; Tikhvinskaia, O V

    2011-06-01

    By taking into account the leading role of specific cellular immunity in the development of protection against the majority of dangerous and extremely dangerous infections of bacterial, viral, and rickettsial nature, the study of the above immunity should be considered as most important on estimating the body's immunological rearrangement when vaccines against respective infections are administered. The battery of the test used to date for the analysis of specific cellular immunity is mainly restricted to skin tests that have disadvantages. This paper reviews the currently available laboratory methods for in vitro studies of a specific cellular immune response as a criterion for evaluating the efficiency of immunization.

  11. An Efficient Method for Traffic Sign Recognition Based on Extreme Learning Machine.

    PubMed

    Huang, Zhiyong; Yu, Yuanlong; Gu, Jason; Liu, Huaping

    2017-04-01

    This paper proposes a computationally efficient method for traffic sign recognition (TSR). This proposed method consists of two modules: 1) extraction of histogram of oriented gradient variant (HOGv) feature and 2) a single classifier trained by extreme learning machine (ELM) algorithm. The presented HOGv feature keeps a good balance between redundancy and local details such that it can represent distinctive shapes better. The classifier is a single-hidden-layer feedforward network. Based on ELM algorithm, the connection between input and hidden layers realizes the random feature mapping while only the weights between hidden and output layers are trained. As a result, layer-by-layer tuning is not required. Meanwhile, the norm of output weights is included in the cost function. Therefore, the ELM-based classifier can achieve an optimal and generalized solution for multiclass TSR. Furthermore, it can balance the recognition accuracy and computational cost. Three datasets, including the German TSR benchmark dataset, the Belgium traffic sign classification dataset and the revised mapping and assessing the state of traffic infrastructure (revised MASTIF) dataset, are used to evaluate this proposed method. Experimental results have shown that this proposed method obtains not only high recognition accuracy but also extremely high computational efficiency in both training and recognition processes in these three datasets.

  12. Extremely efficient and deterministic approach to generating optimal ordering of diffusion MRI measurements

    PubMed Central

    Koay, Cheng Guan; Hurley, Samuel A.; Meyerand, M. Elizabeth

    2011-01-01

    Purpose: Diffusion MRI measurements are typically acquired sequentially with unit gradient directions that are distributed uniformly on the unit sphere. The ordering of the gradient directions has significant effect on the quality of dMRI-derived quantities. Even though several methods have been proposed to generate optimal orderings of gradient directions, these methods are not widely used in clinical studies because of the two major problems. The first problem is that the existing methods for generating highly uniform and antipodally symmetric gradient directions are inefficient. The second problem is that the existing methods for generating optimal orderings of gradient directions are also highly inefficient. In this work, the authors propose two extremely efficient and deterministic methods to solve these two problems. Methods: The method for generating nearly uniform point set on the unit sphere (with antipodal symmetry) is based upon the notion that the spacing between two consecutive points on the same latitude should be equal to the spacing between two consecutive latitudes. The method for generating optimal ordering of diffusion gradient directions is based on the idea that each subset of incremental sample size, which is derived from the prescribed and full set of gradient directions, must be as uniform as possible in terms of the modified electrostatic energy designed for antipodally symmetric point set. Results: The proposed method outperformed the state-of-the-art method in terms of computational efficiency by about six orders of magnitude. Conclusions: Two extremely efficient and deterministic methods have been developed for solving the problem of optimal ordering of diffusion gradient directions. The proposed strategy is also applicable to optimal view-ordering in three-dimensional radial MRI. PMID:21928652

  13. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  14. UVPROM dosimetry, microdosimetry and applications to SEU and extreme value theory

    NASA Astrophysics Data System (ADS)

    Scheick, Leif Zebediah

    A new method is described for characterizing a device in terms of the statistical distribution of first failures. The method is based on the erasure of a commercial Ultra- Violet erasable Programmable Read Only Memory (UVPROM). The method of readout would be used on a spacecraft or in other restrictive radiation environments. The measurement of the charge remaining on the floating gate is used to determine absorbed dose. The method of determining dose does not require the detector to be destroyed or erased nor does it effect the ability for taking further measurements. This is compared to extreme value theory applied to the statistical distributions that apply to this device. This technique predicts the threshold of Single Event Effects (SEE), like anomalous changes in erasure time in programmable devices due to high microdose energy-deposition events. This technique also allows for advanced non-destructive, screening of a single microelectronic devices for predictable response in a stressful, i.e. radiation, environments.

  15. Extending the path for efficient extreme ultraviolet sources for advanced nanolithography

    SciTech Connect

    Sizyuk, Tatyana; Hassanein, Ahmed

    2015-09-15

    Developing efficient light sources for extreme ultraviolet (EUV) lithography is one of the most important problems of high volume manufacturing (HVM) of the next generation computer chips. Critical components of this technology are continued to face challenges in the demanding performance for HVM. Current investigations of EUV and beyond EUV (BEUV) community are focused on the dual-pulse laser produced plasma (LPP) using droplets of mass-limited targets. Two main objectives as well as challenges in the optimization of these light sources are related to enhancement of the conversion efficiency (CE) of the source and increase components lifetime of the collector optical system. These require significant experimental and computer simulation efforts. These requirements call for fine detail analysis of various plasma physics processes involved in laser target interactions and their effects on source optimization. We continued to enhance our comprehensive HEIGHTS simulation package and upgrade our CMUXE laboratories to study and optimize the efficiency of LPP sources. Integrated modeling and experimental research were done to both benchmark simulation results and to make projections and realistic predictions of the development path for powerful EUVL devices for HVM requirements. We continued the detail analysis of dual-pulse laser systems using various laser wavelengths and delay times between the two pulses. We showed that the efficiency of EUV sources can be improved utilizing the higher harmonics of Nd:YAG laser for the prepulse and the first harmonics for the main pulse, while still having lower efficiency than the combination involving CO{sub 2} laser in the range of parameters studied in this case. The differences in optimization process as well as in the source characteristics for two combinations of laser wavelengths were analyzed based on details of atomic and hydrodynamics processes during the evolving plasma plumes.

  16. Extending the path for efficient extreme ultraviolet sources for advanced nanolithography

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2015-09-01

    Developing efficient light sources for extreme ultraviolet (EUV) lithography is one of the most important problems of high volume manufacturing (HVM) of the next generation computer chips. Critical components of this technology are continued to face challenges in the demanding performance for HVM. Current investigations of EUV and beyond EUV (BEUV) community are focused on the dual-pulse laser produced plasma (LPP) using droplets of mass-limited targets. Two main objectives as well as challenges in the optimization of these light sources are related to enhancement of the conversion efficiency (CE) of the source and increase components lifetime of the collector optical system. These require significant experimental and computer simulation efforts. These requirements call for fine detail analysis of various plasma physics processes involved in laser target interactions and their effects on source optimization. We continued to enhance our comprehensive HEIGHTS simulation package and upgrade our CMUXE laboratories to study and optimize the efficiency of LPP sources. Integrated modeling and experimental research were done to both benchmark simulation results and to make projections and realistic predictions of the development path for powerful EUVL devices for HVM requirements. We continued the detail analysis of dual-pulse laser systems using various laser wavelengths and delay times between the two pulses. We showed that the efficiency of EUV sources can be improved utilizing the higher harmonics of Nd:YAG laser for the prepulse and the first harmonics for the main pulse, while still having lower efficiency than the combination involving CO2 laser in the range of parameters studied in this case. The differences in optimization process as well as in the source characteristics for two combinations of laser wavelengths were analyzed based on details of atomic and hydrodynamics processes during the evolving plasma plumes.

  17. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14 }W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5% ± 1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48 nm (La-α) and 2.88 nm (He-α) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.× nm sources.

  18. Load control and the provision of the efficiency of steam boilers equipped with an extremal governor

    NASA Astrophysics Data System (ADS)

    Sabanin, V. P.; Kormilitsyn, V. I.; Kostyk, V. I.; Smirnov, N. I.; Koroteev, A. V.; Repin, A. I.

    2014-12-01

    This paper presents an analysis of main problems of controlling small- and medium-size steam boilers. Noted are deficiencies of current normative and technical documents, as well as those of the traditional concept of the process of fuel firing, the methods for and algorithms of boiler control. There is established an approach to creation of such control systems in which a boiler is treated, as to control and load channels, as a nonlinear linked controlled objects. To control load and efficiency of a boiler, an universal schematic diagram is suggested that allows for the possibility of implementation in modern controllers of both known methods and a new method using an extremal governor, which would provide minimum fuel consumption at given thermal load of a boiler.

  19. Extremely Large EUV Late Phase of Solar Flares

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Wang, Yuming; Zhang, Jie; Cheng, Xin; Liu, Rui; Shen, Chenglong

    2015-04-01

    The second peak in the Fe XVI 33.5 nm line irradiance observed during solar flares by Extreme ultraviolet Variability Experiment (EVE) is known as Extreme UltraViolet (EUV) late phase. Our previous paper found that the main emissions in the late phase are originated from large-scale loop arcades that are closely connected to but different from the post flare loops (PFLs), and we also proposed that a long cooling process without additional heating could explain the late phase. In this paper, we define the extremely large late phase because it not only has a bigger peak in the warm 33.5 irradiance profile, but also releases more EUV radiative energy than the main phase. Through detailedly inspecting the EUV images from three point-of-view, it is found that, besides the later phase loop arcades, the more contribution of the extremely large late phase is from a hot structure that fails to erupt. This hot structure is identified as a flux rope, which is quickly energized by the flare reconnection and later on continuously produces the thermal energy during the gradual phase. Together with the late-phase loop arcades, the fail to erupt flux rope with the additional heating creates the extremely large EUV late phase.

  20. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    NASA Astrophysics Data System (ADS)

    Fuchs, S.; Rödel, C.; Krebs, M.; Hädrich, S.; Bierbach, J.; Paz, A. E.; Kuschel, S.; Wünsche, M.; Hilbert, V.; Zastrau, U.; Förster, E.; Limpert, J.; Paulus, G. G.

    2013-02-01

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 μW and μJ per harmonic using the respective generation mechanisms.

  1. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory

    PubMed Central

    2010-01-01

    Global concerns about climate changes and their association with the use of fossil fuels have accelerated research on biological fuel production. Biological hydrogen production from hemicellulose-containing waste is considered one of the promising avenues. A major economical issue for such a process, however, is the low substrate conversion efficiency. Interestingly, the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus can produce hydrogen from carbohydrate-rich substrates at yields close to the theoretical maximum of the dark fermentation process (i.e., 4 mol H2/mol hexose). The organism is able to ferment an array of mono-, di- and polysaccharides, and is relatively tolerant to high partial hydrogen pressures, making it a promising candidate for exploitation in a biohydrogen process. The behaviour of this Gram-positive bacterium bears all hallmarks of being adapted to an environment sparse in free sugars, which is further reflected in its low volumetric hydrogen productivity and low osmotolerance. These two properties need to be improved by at least a factor of 10 and 5, respectively, for a cost-effective industrial process. In this review, the physiological characteristics of C. saccharolyticus are analyzed in view of the requirements for an efficient hydrogen cell factory. A special emphasis is put on the tight regulation of hydrogen production in C. saccharolyticus by both redox and energy metabolism. Suggestions for strategies to overcome the current challenges facing the potential use of the organism in hydrogen production are also discussed. PMID:21092203

  2. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  3. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  4. Inactivation of food spoilage fungi by ultra violet (UVC) irradiation.

    PubMed

    Begum, Mariam; Hocking, Ailsa D; Miskelly, Di

    2009-01-31

    The effect of ultraviolet irradiation (254 nm, UVC) on Aspergillus flavus, Aspergillus niger, Penicillium corylophilum and Eurotium rubrum was investigated using three different exposure techniques. Survival was determined for spores suspended in liquid medium after 1, 2 and 3 min UVC exposure at 4644 J/m(2)/min. The same UVC dose was applied to spores on the surface of agar plates for 5, 10, 15, 30, 60 and 120 s. Spores of A. niger were dried onto a membrane filter, then exposed to UVC treatment. In the liquid medium, treatments from 1-3 min significantly (P<0.001) reduce the number of viable spores. On the surface of agar plates, after a 15 s exposure, a 80-99% reduction of viable spores was observed for all species except A. niger, for which the reduction was only 62%. For spores dried onto filter membranes, a 3.5 log(10) reduction was achieved for A. niger after 180 s exposure. These observations suggest that UVC irradiation can effectively inactivate spores of A. flavus, P. corylophilum, E. rubrum and A. niger but the efficacy of UVC radiation against fungal spores varies significantly according to methods of exposure to the irradiation, and among genera.

  5. CHARACTERIZATION OF RELATIVE SENSITIVITY OF AMPHIBIANS TO ULTRA VIOLET RADIATION

    EPA Science Inventory

    Different studies have demonstrated that solar ultraviolet (UV) radiation can adversely affect survival and development of embryonic and larval amphibians. However, because of among-laboratory variations in exposure profiles (artificial vs. natural sunlight; natural sunlight at d...

  6. The ultra-violet question in maximally supersymmetric field theories

    NASA Astrophysics Data System (ADS)

    Bossard, G.; Howe, P. S.; Stelle, K. S.

    2009-04-01

    We discuss various approaches to the problem of determining which supersymmetric invariants are permitted as counterterms in maximally supersymmetric super Yang-Mills and supergravity theories in various dimensions. We review the superspace non-renormalisation theorems based on conventional, light-cone, harmonic and certain non-Lorentz covariant superspaces, and we write down explicitly the relevant invariants. While the first two types of superspace admit the possibility of one-half BPS counterterms, of the form F 4 and R 4 respectively, the last two do not. This suggests that UV divergences begin with one-quarter BPS counterterms, i.e. d 2 F 4 and d 4 R 4, and this is supported by an entirely different approach based on algebraic renormalisation. The algebraic formalism is discussed for non-renormalisable theories and it is shown how the allowable supersymmetric counterterms can be determined via cohomological methods. These results are in agreement with all the explicit computations that have been carried out to date. In particular, they suggest that maximal supergravity is likely to diverge at four loops in D = 5 and at five loops in D = 4, unless other infinity suppression mechanisms not involving supersymmetry or gauge invariance are at work.

  7. An evaluation of the differences in the rumen transcriptome among beef steers with extreme feed efficiency phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feed is the largest variable cost in beef production and the rumen likely has a critical role in an animal’s ability to efficiently utilize feed. We identified differentially expressed transcripts in animals with extreme differences in postweaning feed intake and gain. Rumen papillae RNA samples wer...

  8. Endometrial gene expression profile of pregnant sows with extreme phenotypes for reproductive efficiency

    PubMed Central

    Córdoba, S.; Balcells, I.; Castelló, A.; Ovilo, C.; Noguera, J. L.; Timoneda, O.; Sánchez, A.

    2015-01-01

    Prolificacy can directly impact porcine profitability, but large genetic variation and low heritability have been found regarding litter size among porcine breeds. To identify key differences in gene expression associated to swine reproductive efficiency, we performed a transcriptome analysis of sows’ endometrium from an Iberian x Meishan F2 population at day 30–32 of gestation, classified according to their estimated breeding value (EBV) as high (H, EBV > 0) and low (L, EBV < 0) prolificacy phenotypes. For each sample, mRNA and small RNA libraries were RNA-sequenced, identifying 141 genes and 10 miRNAs differentially expressed between H and L groups. We selected four miRNAs based on their role in reproduction, and five genes displaying the highest differences and a positive mapping into known reproductive QTLs for RT-qPCR validation on the whole extreme population. Significant differences were validated for genes: PTGS2 (p = 0.03; H/L ratio = 3.50), PTHLH (p = 0.03; H/L ratio = 3.69), MMP8 (p = 0.01; H/L ratio = 4.41) and SCNN1G (p = 0.04; H/L ratio = 3.42). Although selected miRNAs showed similar expression levels between H and L groups, significant correlation was found between the expression level of ssc-miR-133a (p < 0.01) and ssc-miR-92a (p < 0.01) and validated genes. These results provide a better understanding of the genetic architecture of prolificacy-related traits and embryo implantation failure in pigs. PMID:26435523

  9. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources

    SciTech Connect

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry; Jiang, Weihua; Endo, Akira

    2010-12-06

    We have investigated the dependence of the spectral behavior and conversion efficiencies of rare-earth plasma extreme ultraviolet sources with peak emission at 6.7 nm on laser wavelength and the initial target density. The maximum conversion efficiency was 1.3% at a laser intensity of 1.6x10{sup 12} W/cm{sup 2} at an operating wavelength of 1064 nm, when self-absorption was reduced by use of a low initial density target. Moreover, the lower-density results in a narrower spectrum and therefore improved spectral purity. It is shown to be important to use a low initial density target and/or to produce low electron density plasmas for efficient extreme ultraviolet sources when using high-Z targets.

  10. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    NASA Astrophysics Data System (ADS)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  11. Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system

    NASA Astrophysics Data System (ADS)

    Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr; Burhenn, Rainer

    2008-09-01

    The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5×1017 m-3 which corresponds to a local carbon concentration of 2%.

  12. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    NASA Astrophysics Data System (ADS)

    Galashov, Nikolay; Tsibulskii, Svjatoslav; Matveev, Aleksandr; Masjuk, Vladimir

    2016-02-01

    The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  13. Extremely Efficient Multiple Electron-hole Pair Generation in Carbon Nanotube Photodiodes

    NASA Astrophysics Data System (ADS)

    Gabor, Nathaniel

    2010-03-01

    The efficient generation of multiple electron-hole (e-h) pairs from a single photon could improve the efficiency of photovoltaic solar cells beyond standard thermodynamic limits [1] and has been the focus of much recent work in semiconductor nanomaterials [2,3]. In single walled carbon nanotubes (SWNTs), the small Fermi velocity and low dielectric constant suggests that electron-electron interactions are very strong and that high-energy carriers should efficiently generate e-h pairs. Here, I will discuss observations of highly efficient generation of e-h pairs due to impact excitation in SWNT p-n junction photodiodes [4]. To investigate optoelectronic transport properties of individual SWNT photodiodes, we focus a laser beam over the device while monitoring the electronic characteristics. Optical excitation into the second electronic subband E22 ˜ 2 EGAP leads to striking photocurrent steps in the device I-VSD characteristics that occur at voltage intervals of the band gap energy EGAP/ e. Spatially and spectrally resolved photocurrent combined with temperature-dependent studies suggest that these steps result from efficient generation of multiple e-h pairs from a single hot E22 carrier. We conclude that in the SWNT photodiode, a single photon with energy greater than 2EGAP is converted into multiple e-h pairs, leading to enhanced photocurrent and increased photo-conversion efficiency. [1] W. Shockley, and H. J. Queisser, Journal of Applied Physics 32, 510 (1961). [2] R. D. Schaller, and V. I. Klimov, Physical Review Letters 92 (18), 186601 (2004). [3] R. J. Ellingson, et al, Nano Letters, 5 (5), 865-871 (2005). [4] Nathaniel M. Gabor, Zhaohui Zhong, Ken Bosnick, Jiwoong Park, and Paul McEuen, Science, 325, 1367 (2009).

  14. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  15. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  16. Extremely Accessible Potassium Nitrate (KNO3) as the Highly Efficient Electrolyte Additive in Lithium Battery.

    PubMed

    Jia, Weishang; Fan, Cong; Wang, Liping; Wang, Qingji; Zhao, Mingjuan; Zhou, Aijun; Li, Jingze

    2016-06-22

    The systematic investigation of RNO3 salts (R = Li, Na, K, and Cs) as electrolyte additives was carried out for lithium-battery systems. For the first time, the abundant and extremely available KNO3 was proved to be an excellent alternative of LiNO3 for suppression of the lithium dendrites. The reason was ascribed to the possible synergetic effect of K(+) and NO3(-) ions: The positively charged K(+) ion could surround the lithium dendrites by electrostatic attraction and then delay their further growth, while simultaneously the oxidative NO3(-) ion could be reduced and subsequently profitable to the reinforcement of the solid-electrolyte interphase (SEI). By adding KNO3 into the practical Li-S battery, the discharging capacity was enhanced to average 687 mAh g(-1) from the case without KNO3 (528 mAh g(-1)) during 100 cycles, which was comparable to the one with the well-known LiNO3 additive (637 mAh g(-1)) under the same conditions.

  17. Extremely efficient and recyclable absorbents for oily pollutants enabled by ultrathin-layered functionalization.

    PubMed

    Wang, Qianqian; Wang, Hanghua; Xiong, Sen; Chen, Rizhi; Wang, Yong

    2014-11-12

    Oils and organic solvents that leak into water bodies must be promptly removed to avoid ecological disasters, for example, by selective absorption using oleophilic absorbents. However, it remains a challenge for the low-cost synthesis of efficient and recyclable absorbents for oily pollutants. By surface functionalization to inexpensive polyurethane (PU) foams, we synthesize oil absorbents exhibiting the highest absorption capacity and the best recyclability among all polymeric absorbents. The synthesis is enabled by atomic layer deposition of ∼5 nm-thick Al2O3 transition layer onto the skeleton surface of PU foams, followed by coupling a single-molecule layer of silanes to the Al2O3 layer. The sub-10 nm functionalization layer provides the PU foam an outstanding water-repelling and oil-absorbing functionality without compromising its high porosity and elasticity. The functionalized foam is able to quickly absorb oily pollutants spread on water surfaces or precipitated in water with a capacity more than 100 times its own weight. This ultrathin-layer-functionalization method is also applicable to renewable porous biomaterials, providing a sustainable solution for oil spills. Moreover, we propose devices than can continuously operate to efficiently collect oil spills from water surfaces based on the functionalized PU foam developed in this work.

  18. Efficient Collection of Methane from Extremely Large Volumes of Water for Natural Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, K. J.; Kessler, J. D.

    2014-12-01

    Collecting sufficient amounts of natural methane sample for a high precision radiocarbon (14C-CH4) analysis was previously unfeasible when sampling from low methane concentration waters like the open ocean. A new method incorporating dissolved gas extraction technology (Liqui-Cel® membrane contactors) has been developed to circumvent the challenges that natural 14C-CH4 sampling presents. With this method, adequate amounts of methane-carbon for a traditional 14C-accelerator mass spectrometry (AMS) analysis can be cleanly and efficiently extracted from 1000s L water in a few hours. This technique is currently being improved to enable sampling from > 11,000 L water in less than 1 hr. For transport from the field to the laboratory, each extracted gas sample is compressed into a small (1.68 L) high-pressure aluminum cylinder using an oil-free compressor pump. Due to the small size and portability of the sample cylinders, high resolution sampling plans composed of 30+ samples are possible even in remote locations. The laboratory preparation of these methane samples for 14C-AMS analyses is carried out on a new flow-through vacuum line. While the bulk water vapor and carbon dioxide (CO2) are removed before the sample is compressed in the field, the residual trace amounts of these constituents are cryogenically removed from the sample in the initial phase of the vacuum line. Carbon monoxide in the sample is quantitatively oxidized at 290°C to CO2 and cryogenically removed. Finally, the sample methane is quantitatively oxidized at 950°C to products CO2 and water and then cryogenically isolated. The new vacuum line technique achieves low blanks and purifies and oxidizes the methane contained in the extracted gas sample with high efficiency. At an AMS facility, an aliquot of the methane-produced CO2 is graphitized and analyzed for radiocarbon content using traditional 14C-AMS. Supporting dual-inlet isotope ratio mass spectrometry measurements are conducted to determine both

  19. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  20. An Efficient Leave-One-Out Cross-Validation-Based Extreme Learning Machine (ELOO-ELM) With Minimal User Intervention.

    PubMed

    Shao, Zhifei; Er, Meng Joo; Wang, Ning

    2016-08-01

    It is well known that the architecture of the extreme learning machine (ELM) significantly affects its performance and how to determine a suitable set of hidden neurons is recognized as a key issue to some extent. The leave-one-out cross-validation (LOO-CV) is usually used to select a model with good generalization performance among potential candidates. The primary reason for using the LOO-CV is that it is unbiased and reliable as long as similar distribution exists in the training and testing data. However, the LOO-CV has rarely been implemented in practice because of its notorious slow execution speed. In this paper, an efficient LOO-CV formula and an efficient LOO-CV-based ELM (ELOO-ELM) algorithm are proposed. The proposed ELOO-ELM algorithm can achieve fast learning speed similar to the original ELM without compromising the reliability feature of the LOO-CV. Furthermore, minimal user intervention is required for the ELOO-ELM, thus it can be easily adopted by nonexperts and implemented in automation processes. Experimentation studies on benchmark datasets demonstrate that the proposed ELOO-ELM algorithm can achieve good generalization with limited user intervention while retaining the efficiency feature.

  1. Efficient extreme ultraviolet plasma source generated by a CO{sub 2} laser and a liquid xenon microjet target

    SciTech Connect

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-07

    We demonstrated efficacy of a CO{sub 2}-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5 nm at variable laser pulse widths between 200 ps and 25 ns. The plasma target was a 30 {mu}m liquid xenon microjet. To ensure the optimum coupling of CO{sub 2} laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5 nm EUV emission for different pulse widths of the CO{sub 2} laser. A maximum CE of 0.6% was obtained for a CO{sub 2} laser pulse width of 25 ns at an intensity of 5x10{sup 10} W/cm{sup 2}.

  2. Efficient multicyclic sorption and desorption of lead ions on facilely prepared poly(m-phenylenediamine) particles with extremely strong chemoresistance.

    PubMed

    Huang, Mei-Rong; Lu, Hong-Jie; Li, Xin-Gui

    2007-09-01

    Nitric acid, hydrochloric acid and EDTA were carefully chosen as desorbent to systematically evaluate the adsorption/desorption performance of the Pb(2+)-adsorbing fine microparticles of poly(m-phenylenediamine). The sorption/desorption efficiency was maximized by optimizing desorption condition including the desorbent concentration, contact time, and desorption mode. The variation of the solution pH with Pb(2+) desorption was recorded to speculate the desorption mechanism. The practical reusability of the microparticles was elaborated through the sorption-desorption cycle experiments in an optimum condition. It was found that the desorption was very rapid with an equilibrium time of several minutes. A strong dependence of the desorbability on the species and concentration of the desorbents was observed. When 20 mM EDTA was chosen as the desorbent, the highest desorptivity was up to 94.2% that was much higher than those using nitric and hydrochloric acids. A successive sorption-desorption study employing nitric acid indicated that the microparticles could be simply regenerated and reutilized for more than 5 cycles together with Pb(2+) re-adsorption efficiency of about 50% and accumulative Pb(2+) adsorption capacity of up to 720.4 mg L(-1). Facilely prepared, extremely chemoresistant and cost-effective PmPD microparticles would be potentially used for multicyclic sorption of lead ions from aqueous solution.

  3. Using a Clean Energy Version of Moore's Law to Plan for the Extreme Efficiency of the Future

    NASA Astrophysics Data System (ADS)

    van Buskirk, Robert

    2014-03-01

    In 1965, Gordon Moore predicted a decade of exponential growth in the transistor density growth (and hence computing power) for integrated circuits that--with some modification--has held to the present day. In this talk, we discuss to what extent clean energy technologies are subject to similar laws of long term exponential improvement and how these improvement rates may be accelerating due to recent developments. We review a range of long term energy efficiency and technology productivity improvement trends ranging from lighting, televisions, refrigerators, HVAC, batteries, motors, power electronics and solar PV. After reviewing historical and recent trends, we discuss several factors that may lead to an acceleration of improvement rates in the clean energy technology sector. Finally, we discuss the Baumol effect which predicts how differential trends in technology productivity may affect trends in relative prices in the economy. We conclude with a discussion of some of the implications that Baumol's theories may have for the development of extreme levels of energy efficiency in the coming decades.

  4. Efficiency droop enhancement in AlGaN deep ultraviolet light-emitting diodes by making whole barriers but the bottom Mg doped

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Sun, Huiqing; Yi, Xinyan; Yang, Xian; Fan, Xuancong; Zhang, Cheng; Zhang, Zhuding; Guo, Zhiyou

    2016-09-01

    Ultra violet light-emitting diodes (UVLEDs) with different types of Mg-doped barriers have been studied. The energy band diagrams, internal quantum efficiency, total output power and radiative recombination rate are investigated by APSYS software. The simulation results show that the UVLED with only a p-doped top barrier get little enhancement comparing to the conventional one, on the contrary the structure with p-doping in all but the bottom barriers has a much better optical and electrical properties due to enhancement of the holes' injection and the electrons' confinement. The efficiency droop is significantly alleviated and the light output power is greatly enhanced. To avoid forming a PN junction by the bottom barrier and the n-AlGaN in the proposed structure, therefore, the bottom barrier isn't p-doped. Then structures with different hole densities in the Mg-doped barriers have been studied numerically and that confirmed the best.

  5. Efficient trans-cleavage by the Schistosoma mansoni SMα1 hammerhead ribozyme in the extreme thermophile Thermus thermophilus

    PubMed Central

    Vazquez-Tello, Alejandro; Castán, Pablo; Moreno, Renata; Smith, James M.; Berenguer, José; Cedergren, Robert

    2002-01-01

    The catalytic hammerhead structure has been found in association with repetitive DNA from several animals, including salamanders, crickets and schistosomes, and functions to process in cis the long multimer transcripts into monomer RNA in vivo. The cellular role of these repetitive elements and their transcripts is unknown. Moreover, none of these natural hammerheads have been shown to trans-cleave a host mRNA in vivo. We analyzed the cis- and trans-cleavage properties of the hammerhead ribozyme associated with the SMα DNA family from the human parasite Schistosoma mansoni. The efficiency of trans-cleavage of a target RNA in vitro was affected mainly by both the temperature-dependent chemical step and the ribozyme–product dissociation step. The optimal temperature for trans-cleavage was 70°C. This result was confirmed when both the SMα1 ribozyme and the target RNA were expressed in the extreme thermophile Thermus thermophilus. Moreover, SMα1 RNA showed a remarkable thermostability, equal or superior to that of the most stable RNAs in this species, suggesting that SMα1 RNA has been selected for stability. Computer analysis predicts that the monomer and multimer transcripts fold into highly compact secondary structures, which may explain their exceptional stability in vivo. PMID:11917021

  6. An Efficient Diagnosis System for Parkinson's Disease Using Kernel-Based Extreme Learning Machine with Subtractive Clustering Features Weighting Approach

    PubMed Central

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua

    2014-01-01

    A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance. PMID:25484912

  7. Efficient trans-cleavage by the Schistosoma mansoni SMalpha1 hammerhead ribozyme in the extreme thermophile Thermus thermophilus.

    PubMed

    Vazquez-Tello, Alejandro; Castán, Pablo; Moreno, Renata; Smith, James M; Berenguer, José; Cedergren, Robert

    2002-04-01

    The catalytic hammerhead structure has been found in association with repetitive DNA from several animals, including salamanders, crickets and schistosomes, and functions to process in cis the long multimer transcripts into monomer RNA in vivo. The cellular role of these repetitive elements and their transcripts is unknown. Moreover, none of these natural hammerheads have been shown to trans-cleave a host mRNA in vivo. We analyzed the cis- and trans-cleavage properties of the hammerhead ribozyme associated with the SMalpha DNA family from the human parasite Schistosoma mansoni. The efficiency of trans-cleavage of a target RNA in vitro was affected mainly by both the temperature-dependent chemical step and the ribozyme-product dissociation step. The optimal temperature for trans-cleavage was 70 degrees C. This result was confirmed when both the SMalpha1 ribozyme and the target RNA were expressed in the extreme thermophile Thermus thermophilus. Moreover, SMalpha1 RNA showed a remarkable thermostability, equal or superior to that of the most stable RNAs in this species, suggesting that SMalpha1 RNA has been selected for stability. Computer analysis predicts that the monomer and multimer transcripts fold into highly compact secondary structures, which may explain their exceptional stability in vivo.

  8. Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes

    SciTech Connect

    Guo, Wei Kirste, Ronny; Bryan, Zachary; Bryan, Isaac; Collazo, Ramón; Sitar, Zlatko; Gerhold, Michael

    2015-03-21

    Enhanced light extraction efficiency was demonstrated on nanostructure patterned GaN and AlGaN/AlN Multiple-Quantum-Well (MQW) structures using mass production techniques including natural lithography and interference lithography with feature size as small as 100 nm. Periodic nanostructures showed higher light extraction efficiency and modified emission profile compared to non-periodic structures based on integral reflection and angular-resolved transmission measurement. Light extraction mechanism of macroscopic and microscopic nanopatterning is discussed, and the advantage of using periodic nanostructure patterning is provided. An enhanced photoluminescence emission intensity was observed on nanostructure patterned AlGaN/AlN MQW compared to as-grown structure, demonstrating a large-scale and mass-producible pathway to higher light extraction efficiency in deep-ultra-violet light-emitting diodes.

  9. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.; Tallents, G. J.

    2015-02-01

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 1016 Wcm-2 is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe5+ and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  10. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  11. The Effect of Contrasting Wet and Dry Extreme Precipitation on Ecosystem Carbon Fluxes and Water Use Efficiency in the Southern Great Plains, United States

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Felzer, B. S.

    2015-12-01

    Climate extremes, such as heat waves and heavy precipitation, are more likely to occur with increased warming and simultaneously have profound influences on ecosystem fluxes. Existing studies have already investigated how a single extreme event affects ecosystem dynamics. However, how ecosystems respond to consecutive climate extremes is rarely examined. More heat waves are expected to cause more droughts, while more heavy precipitation could cause more floods. Both may have a negative effect on vegetation growth, although wetter conditions may alternatively stimulate growth. In the southern Great Plains the hydrological year of 2006 was the second-driest year on record, with only 61% of long-term annual precipitation. In contrast, the summer of 2007 was the second-wettest summer, with 121% of the normal annual precipitation. This "pair" provides a unique example to study alternatively contrasting climate extremes and their impacts on ecosystem dynamics. In this study, we aim to assess whether or not this consecutive drought and flood has altered the sensitivity of ecosystem carbon fluxes and water use efficiency. To investigate this question, we parameterized a newly developed process-based terrestrial ecosystem model (TEM-Hydro daily version) and applied the Maurer's 1/8 degree daily climate datasets. The modeled results are compared against the MODIS datasets and Ameriflux Eddy Covariance observations to determine the mechanism responsible for understanding how extremes in precipitation affect ecosystem functions. The significance of the consecutive climate extremes on ecosystem structures and processes in the southern Great Plains will be discussed.

  12. EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations

    NASA Astrophysics Data System (ADS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Woods, T.; Jones, A.

    2012-01-01

    The Extreme ultraviolet SpectroPhotometer (ESP) is one of five channels of the Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO). The ESP channel design is based on a highly stable diffraction transmission grating and is an advanced version of the Solar Extreme ultraviolet Monitor (SEM), which has been successfully observing solar irradiance onboard the Solar and Heliospheric Observatory (SOHO) since December 1995. ESP is designed to measure solar Extreme UltraViolet (EUV) irradiance in four first-order bands of the diffraction grating centered around 19 nm, 25 nm, 30 nm, and 36 nm, and in a soft X-ray band from 0.1 to 7.0 nm in the zeroth-order of the grating. Each band’s detector system converts the photo-current into a count rate (frequency). The count rates are integrated over 0.25-second increments and transmitted to the EVE Science and Operations Center for data processing. An algorithm for converting the measured count rates into solar irradiance and the ESP calibration parameters are described. The ESP pre-flight calibration was performed at the Synchrotron Ultraviolet Radiation Facility of the National Institute of Standards and Technology. Calibration parameters were used to calculate absolute solar irradiance from the sounding-rocket flight measurements on 14 April 2008. These irradiances for the ESP bands closely match the irradiance determined for two other EUV channels flown simultaneously: EVE’s Multiple EUV Grating Spectrograph (MEGS) and SOHO’s Charge, Element and Isotope Analysis System/ Solar EUV Monitor (CELIAS/SEM).

  13. Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO{sub 2} laser pulse

    SciTech Connect

    Tao, Y.; Tillack, M. S.; Sequoia, K. L.; Burdt, R. A.; Yuspeh, S.; Najmabadi, F.

    2008-06-23

    The effect of pulse duration on in-band (2% bandwidth) conversion efficiency (CE) from a CO{sub 2} laser to 13.5 nm extreme ultraviolet (EUV) light was investigated for Sn plasma. It was found that high in-band CE, 2.6%, is consistently obtained using a CO{sub 2} laser with pulse durations from 25 to 110 ns. Employing a long pulse, for example, 110 ns, in a CO{sub 2} laser system used in an EUV lithography source could make the system significantly more efficient, simpler, and cheaper as compared to that using a short pulse of 25 ns or shorter.

  14. Payloads with Resource-Efficient Integration for Science Missions (PRISM)

    NASA Astrophysics Data System (ADS)

    Emam, O.; FitzGeorge, T.; Whittaker, A.; Wishart, A.; Fowell, S.; Prochazka, M.; Bentley, R.; Cole, R.; Brown, P.; Carr, C.; Cupido, E.; Oddy, T.

    2009-05-01

    PRISM is a collaborative industry and academia project to demonstrate the practicality of a highly integrated payload processing architecture, in order to exploit improvements in spacecraft computer performance to reduce multi-instrument payload mass and power requirements. Integrated architectures also provide opportunities for a greater degree of autonomy and advanced target selection (e.g. inter-instrument triggering). The PRISM architecture has potential advantages for missions such as EJSM (Europa Jupiter System Mission) or Solar Orbiter. The key technology objectives of PRISM are application partitioning on a qualifiable operating system, supported by the software required for fault-tolerant centralised processing, and the development of an application development environment for writing and testing instrument control applications. A working demonstrator has been implemented on a LEON3 platform, with representative payload applications from an in-situ magnetometer and a remote sensing extreme ultra-violet imager, both proposed for Solar Orbiter. PRISM is supported by the UK Science and Technology Facilities Council (STFC).

  15. Test report: Low cost access and efficient use of TDRSS

    NASA Technical Reports Server (NTRS)

    Horan, S.

    1996-01-01

    In order to develop new ways to increase the number of users taking advantage of NASA's Space Network for space-to-ground communications links, researchers at New Mexico State University (NMSU) developed a technique for using non-gimballed antennas for accessing a Tracking and Data Relay Satellite (TDRS) within the Space Network (SN). This concept would allow spin-stabilized satellites to access one of the TDRS spacecraft in the SN constellation as the user satellite sweeps past the TDRS position as the satellite approaches either its ascending or descending node if this node is relatively close to the TDRS subsatellite point. ne research team from NMSU developing this concept proposed to NASA the use of the Extreme Ultra Violet Explorer (EUVE) to test this concept on orbit. EUVE differs from the desired satellite configuration in that EUVE has a relatively high-gain parabolic antenna and, most importantly, EUVE has an inertially-stabilized attitude control system while the concept to be tested was for a spin-stabilized satellite. We believed that these limitations would not affect the basic proof-of-concept test we were trying to achieve. With the approval and coordination of NASA, a total of six satellite passes through the West TDRS were requested and the necessary equipment configured for data collection at the Second TDRS Ground Terminal (STGT), also known as Danzante, at the White Sands Complex.

  16. Extreme ultraviolet reflection efficiencies of diamond-turned aluminum, polished nickel, and evaporated gold surfaces. [for telescope mirrors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Cash, W.

    1978-01-01

    Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.

  17. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification.

    PubMed

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Yue, Yuanzheng; Greaves, G Neville; Zhao, Xiujian

    2015-02-14

    The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed.

  18. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  19. Effects of deprotonation efficiency of protected units on line edge roughness and stochastic defect generation in chemically amplified resist processes for 11 nm node of extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2014-11-01

    The deprotonation of polymer radical cations plays an important role in the acid generation in chemically amplified resists upon exposure to ionizing radiation. In this study, the effects of the deprotonation efficiency of protected units of a resist polymer on line edge roughness (LER) and stochastic defect generation were investigated. The suppression of stochastic effects is essential for the realization of high-volume production of semiconductor devices with an 11 nm critical dimension using extreme ultraviolet (EUV) lithography. By increasing the deprotonation efficiency, the chemical contrast (latent image quality) was improved; however, the protected unit number fluctuation did not significantly change. Consequently, LER and the probability of stochastic defect generation were reduced. This effect was prominent when the protection ratio was close to 100%.

  20. Quantum efficiency of opaque CsI photocathodes with channel electron multiplier arrays in the extreme and far ultraviolet

    NASA Technical Reports Server (NTRS)

    Martin, C.; Bowyer, S.

    1982-01-01

    The arrays are overcoated with a CsI photocathode in the VUV. The measurements are part of the development program for the Extreme Ultraviolet Explorer. Monochromatic light from a hollow cathode discharge source passing through a McPherson grazing incidence monochromator is used to illuminate the CsI photocathode. The beam diameter is kept small (approximately 2 mm) to confine it within the individual thickness strips. A bias grid is used to produce a 50-V/mm electric field to guarantee collection of all photoelectrons emitted by the CEMA (channel electron multiplier array) webbing. The CEMAs are operated with a gain of 2-3 x 10 to the 6th and are moderately saturated. A channeltron secondary transfer standard is used to determine the absolute QE in the EUV, whereas an NBS calibrated windowed photodiode is used to measure the FUV absolute QE. It is noted that the CsI gives a factor of 3 increase in the QE in the EUV and a factor of 50-5000 in the FUV.

  1. Development of n+-in-p planar pixel sensors for extremely high radiation environments, designed to retain high efficiency after irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Yajima, K.; Yamauchi, Y.; Hirose, M.; Homma, Y.; Jinnouchi, O.; Kimura, K.; Motohashi, K.; Sato, S.; Sawai, H.; Todome, K.; Yamaguchi, D.; Hara, K.; Sato, Kz.; Sato, Kj.; Hagihara, M.; Iwabuchi, S.

    2016-09-01

    We have developed n+-in-p pixel sensors to obtain highly radiation tolerant sensors for extremely high radiation environments such as those found at the high-luminosity LHC. We have designed novel pixel structures to eliminate the sources of efficiency loss under the bias rails after irradiation by removing the bias rail out of the boundary region and routing the bias resistors inside the area of the pixel electrodes. After irradiation by protons with the fluence of approximately 3 ×1015neq /cm2, the pixel structure with the polysilicon bias resistor and the bias rails removed far away from the boundary shows an efficiency loss of < 0.5 % per pixel at the boundary region, which is as efficient as the pixel structure without a biasing structure. The pixel structure with the bias rails at the boundary and the widened p-stop's underneath the bias rail also exhibits an improved loss of approximately 1% per pixel at the boundary region. We have elucidated the physical mechanisms behind the efficiency loss under the bias rail with TCAD simulations. The efficiency loss is due to the interplay of the bias rail acting as a charge collecting electrode with the region of low electric field in the silicon near the surface at the boundary. The region acts as a "shield" for the electrode. After irradiation, the strong applied electric field nearly eliminates the region. The TCAD simulations have shown that wide p-stop and large Si-SiO2 interface charge (inversion layer, specifically) act to shield the weighting potential. The pixel sensor of the old design irradiated by γ-rays at 2.4 MGy is confirmed to exhibit only a slight efficiency loss at the boundary.

  2. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    PubMed Central

    de Vrije, Truus; Bakker, Robert R; Budde, Miriam AW; Lai, Man H; Mars, Astrid E; Claassen, Pieternel AM

    2009-01-01

    Background The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content. Results Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75°C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained. Conclusion Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass. PMID:19534765

  3. Soft X-ray and extreme utraviolet quantum detection efficiency of potassium chloride photocathode layers on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael

    1988-01-01

    The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.

  4. AlGaN Nanostructures with Extremely High Room-Temperature Internal Quantum Efficiency of Emission Below 300 nm

    NASA Astrophysics Data System (ADS)

    Toropov, A. A.; Shevchenko, E. A.; Shubina, T. V.; Jmerik, V. N.; Nechaev, D. V.; Evropeytsev, E. A.; Kaibyshev, V. Kh.; Pozina, G.; Rouvimov, S.; Ivanov, S. V.

    2016-11-01

    We present theoretical optimization of the design of a quantum well (QW) heterostructure based on AlGaN alloys, aimed at achievement of the maximum possible internal quantum efficiency of emission in the mid-ultraviolet spectral range below 300 nm at room temperature. A sample with optimized parameters was fabricated by plasma-assisted molecular beam epitaxy using the submonolayer digital alloying technique for QW formation. High-angle annular dark-field scanning transmission electron microscopy confirmed strong compositional disordering of the thus-fabricated QW, which presumably facilitates lateral localization of charge carriers in the QW plane. Stress evolution in the heterostructure was monitored in real time during growth using a multibeam optical stress sensor intended for measurements of substrate curvature. Time-resolved photoluminescence spectroscopy confirmed that radiative recombination in the fabricated sample dominated in the whole temperature range up to 300 K. This leads to record weak temperature-induced quenching of the QW emission intensity, which at 300 K does not exceed 20% of the low-temperature value.

  5. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain

    PubMed Central

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800–850 seeds m−2. Average yields of 7.42 t ha−1 and WUE of 1.84 kg m−3 were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%–8.9% higher yield and 4.2%–9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP. PMID:27100187

  6. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    PubMed

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  7. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    PubMed

    Giardi, Maria Teresa; Rea, Giuseppina; Lambreva, Maya D; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  8. Mutations of Photosystem II D1 Protein That Empower Efficient Phenotypes of Chlamydomonas reinhardtii under Extreme Environment in Space

    PubMed Central

    Lambreva, Maya D.; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K.

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA− state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space. PMID:23691201

  9. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  10. Simultaneous Liquid Chromatographic Determination of 10 Ultra-Violet Filters in Sunscreens.

    PubMed

    Wharton, Mary; Geary, Michael; O'Connor, Niamh; Curtin, Laura; Ketcher, Krystal

    2015-09-01

    A rapid HPLC method was developed for the simultaneous determination of 10 UV filters found in sunscreen. The following UV filters were analyzed in this method; 2-phenylbenzimidazole-5-sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl 4-aminobenzoic acid, ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, ethylhexyl salicylate and homosalate. The method was developed on two columns; a Thermo Hypersil C18 BDS, 3 µm column (4.6 × 100 mm) and a Chromolith RP-18e Monolithic column (4.6 × 100 mm). The same mobile phase of ethanol and 1% acetic acid (70:30, v/v) was employed for both columns. The separation of the 10 UV filters was carried out successfully on both columns; the optimal resolution was obtained on the Thermo Scientific Hypersil column in a time frame of 7 min. An isocratic elution utilizing ethanol and acetic acid (70:30, v/v) at a temperature of 35°C was employed. The method was applied to a number of commercial samples of sunscreen and lotions and was validated according to International Conference on Harmonisation guidelines for selectivity, linearity, accuracy, precision and robustness. A comparison of the performances of both columns was also carried out.

  11. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    Lambertian Emission ( SETi , 2012). Note that these measurements of the LED were into air, and output angles in water have yet to be defined in...Although Snell’s Law was applied to determine the output angle of the LEDs in water based upon specifications provided by SETi corporation, this...240 nm at 40 mA 63 38.8 42.0 The data was used to compare the SETi specifications and calculate predictions for the water measurement. As

  12. White Light Coronograph (WLC) and Ultra-Violet Coronal Spectrometer (UVCS)

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1985-01-01

    The white light coronagraph (WLC) and ultraviolet coronal spectrometer (UVCS) together reveal the corona and the roots of the solar wind from 1.5 to 6 solar radii from Sun center. The WLC measures the plasma density and spatial structure of the corona and coronal mass ejections at a resolution of about 20 arcseconds. The UVCS, in combination with the WLC, measures the temperature and radial outflow speed of the coronal plasma. These instruments will detect mass ejections from active regions and high speed solar wind streams from coronal holes a few days before the source regions rotate onto the face of the Sun, thus giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth.

  13. Using JWST Heritage to Enable a Future Large Ultra-Violet Optical Infrared Telescope

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee

    2016-01-01

    To the extent it makes sense, leverage JWST knowledge, designs, architectures, GSE. Develop a scalable design reference mission (9.2 meter). Do just enough work to understand launch break points in aperture size. Demonstrate 10 pm stability is achievable on a design reference mission. Make design compatible with starshades. While segmented coronagraphs with high throughput and large bandpasses are important, make the system serviceable so you can evolve the instruments. Keep it room temperature to minimize the costs associated with cryo. Focus resources on the contrast problem. Start with the architecture and connect it to the technology needs.

  14. Registration of RF Plasma Radiation in Ultra-Violet Range by Solar-blind Photoreceptor

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    A spectrum response of a photoreceptor to the RF plasma radiation is determined in the present work by means of a spectrophotometer utilizing a gas-filled photoreceptor. A continuous radiation spectrum was observed in the wavelength interval of 190 - 270 nm. The photoreceptor allows measuring of absolute radiation taking into account the spectral sensitivity of the photoreceptor and the values of quantum output for the given wavelength. A continuous spectrum was observed in all three orders of magnitude of diffraction. Develop and test a technique for measuring the intensity of the plasma radiation in the UV wavelength range measured amount of discharge pulses can be used to determine the spectral sensitivity range of UV radiation receivers. Professor.

  15. Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar

    PubMed Central

    Cuesta, Juan; Chazette, Patrick; Allouis, Tristan; Flamant, Pierre H.; Durrieu, Sylvie; Sanak, Joseph; Genau, Pascal; Guyon, Dominique; Loustau, Denis; Flamant, Cyrille

    2010-01-01

    We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France). It is the first one that: (i) operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii) is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ∼500 × 500 m2 with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ∼1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols. PMID:22163608

  16. High-resolution ultra-violet observations of the interstellar diffuse clouds toward Mu Columbae

    NASA Technical Reports Server (NTRS)

    Sofia, Ulysses J.; Savage, Blair D.; Cardelli, Jason A.

    1993-01-01

    Data obtained from the Goddard High Resolution spectrograph (GHRS) are used to study differences in gas-phase abundances of ions occurring in the diffuse neutral clouds toward mu Col. The sight-line characteristics determined in previous studies are reviewed and results for the cloud velocities, absorption equivalent widths, ion column densities, and depletions are presented. It is found that interstellar features from four distinct absorption regions with low-ionization gas are apparent in the GHRS data at heliocentric velocities of 23, 41, 53, and 62 km/s. Absorption by Mg II, Si II, and possibly Al II also occurs over the heliocentric velocity range from -17 to 0 km/s. The presence of stronger Si III absorption over this velocity region indicates that the absorption arises from an ionized gas region.

  17. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  18. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  19. SOLAR SPECTRAL IRRADIANCE, SOLAR ACTIVITY, AND THE NEAR-ULTRA-VIOLET

    SciTech Connect

    Fontenla, J. M.; Stancil, P. C.; Landi, E. E-mail: stancil@physast.uga.edu

    2015-08-20

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160–400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  20. Ultra-Violet/Electron Beam Detoxification of Nitroglycerin/Propylene Glycol Dinrate Waste Water, Phase 1

    DTIC Science & Technology

    2007-11-02

    materials can be found Oxalic acid < MDL in production waste water. Compounds Glyoxylic acid < MDLGlycoliccid< MDL commonly found in waste streams...formic acid, and oxalic acid (19). (4) CH2 - CH - CH2 H II II 0 0 O 6 + H120 H-C-H + H-C=O + H-C-H I I III 0 0NO2 NO2 NO2 O6 NO2 NO 2 NO2 , -(5...hydroxyl radical, to produce formic acid and oxalic acid -- (17) CO + -OH > COOH which is once again pH sensitive, and (18) COOH I-I + Carj pk= 1.5 17 can

  1. Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation

    PubMed Central

    Bhatia, Saurabh; Garg, Arun; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P.

    2011-01-01

    Various facts demonstrated that UVB is harmful to organisms. Sunscreen compounds are usually used to prevent the excessive damage caused by UVB. However, certain photosynthetic organisms have evolved mechanisms to counteract the toxicity of ultraviolet radiation by synthesizing UV screening compounds such as mycosporine-like amino acids (MAAs). MAAs provide UV protection to primary and secondary consumers through food chain and to non-biological materials by photostabilizing action. Information related to the ecological consequence of MAAs and their spatial distribution from a wide range of organisms is accumulating. Hence, our studies seek a potent class of natural sun protective compounds to understand their relationship with environment and to develop a protocol for large-scale industrial production of these compounds so that they can find application as UV-protecting cosmetics. PMID:22279371

  2. Growth and properties of ultra-violet emitting aligned zinc oxide nanocones with hexagonal caps.

    PubMed

    Umar, Ahmad; Al Hajry, A; Al-Ghamdi, A A; Al-Heniti, S

    2010-10-01

    Ultraviolet-emitting, single-crystalline aligned zinc oxide (ZnO) nanocones with hexagonal caps were grown on silicon substrate via simple non-catalytic thermal evaporation process. High-purity metallic zinc powder and oxygen were used as source materials for zinc and oxygen, respectively. The detailed structural characterizations confirmed that the formed products are single-crystalline, possess a wurtzite hexagonal phase and grown along the c-axis direction. Raman-active optical-phonon E2(high) mode at 437 cm(-1) with sharp and strong UV emission at 385 nm in room-temperature photoluminescence (PL) spectrum demonstrated that the as-grown ZnO nanocones with hexagonal caps possess good-crystal quality with the excellent optical properties. Finally, a plausible growth mechanism for the formation of as-grown ZnO nanocones with hexagonal caps was also proposed.

  3. Properties of Ultra-Violet Cured Poly(diemthylsiloxane)-Urea Acrylates.

    DTIC Science & Technology

    1984-11-01

    polycaprolactone) and polyol molecular weight on physical properties were evaluated. TDI/ hydroxyethyl methacrylate ( HEMA ) based samples were also...diluents. The reactive diluents or crosslinkers I. chosen were: ethyl methacrylate (EMA), hydroxyethyl methacrylate ( HEMA ), butyl acrylate (BA...butylacrylate (BA), acrylic acid (AA), ethyl methacrylate (EMA), B- hydroxyethyl ’metthacrylate ( HEMA ), m~ethyl trethacrylate (MMA), and 4-vinylpyridine (4

  4. Sulphur Dioxide: High Resolution Ultra-Violet Photoabsorption Cross Section Measurements at 200K.

    NASA Astrophysics Data System (ADS)

    Blackie, D.; Blackwell-Whitehead, R.; Stark, G.; Pickering, J. C.; Rufus, J.; Thorne, A.; Smith, P. L.

    2007-12-01

    Sulphur Dioxide plays an important role not only within the Earth's atmosphere but also within the complex chemistry of both the upper atmosphere of Venus and the volcanically active Jovian moon Io. The lack of high resolution laboratory studies has prevented the full, accurate determination of absorption cross sections which are the basis for reliable photochemical models. High resolution laboratory measurements of SO2 are essential to resolve the complex SO2 spectrum and yield accurate photoabsorption cross sections. Using the Imperial College UV Fourier Transform Spectrometer new high resolution (λ/δλ ~ 450,000) measurements have been recorded over a range of temperatures and pressures. As part of an on-going series of measurements, current laboratory work focused on photoabsorption cross sections of SO2 at 200K across the wavelength range 220 → 325 nm. These measurements not only compliment previous room temperature measurements obtained at Imperial College in the 190 → 220 nm and 220 → 328 nm ranges (Stark et al., JGR Planets 104, 16, 585 (1999) and Rufus et al.,( JGR Planets 108, 2, 5 (2003)), but also coincide with the wavelength regions being recorded by the Venus Express mission through the UV-IR spectrometer SPICAV (ESA-SCI(2001)6). Our new measurements will allow accurate analysis of the chemical processes in the upper atmosphere of Venus. These absorption cross section measurements are the first to be acquired at this resolution, temperature and pressure. Results will be presented. This work was supported in part by NASA Grant NNG05GA03G, PPARC (UK), and the Leverhulme Trust.

  5. Observing the forest canopy with a new ultra-violet compact airborne lidar.

    PubMed

    Cuesta, Juan; Chazette, Patrick; Allouis, Tristan; Flamant, Pierre H; Durrieu, Sylvie; Sanak, Joseph; Genau, Pascal; Guyon, Dominique; Loustau, Denis; Flamant, Cyrille

    2010-01-01

    We have developed a new airborne UV lidar for the forest canopy and deployed it in the Landes forest (France). It is the first one that: (i) operates at 355 nm for emitting energetic pulses of 16 mJ at 20 Hz while fulfilling eye-safety regulations and (ii) is flown onboard an ultra-light airplane for enhanced flight flexibility. Laser footprints at ground level were 2.4 m wide for a flying altitude of 300 m. Three test areas of ≈ 500 × 500 m(2) with Maritime pines of different ages were investigated. We used a threshold method adapted for this lidar to accurately extract from its waveforms detailed forest canopy vertical structure: canopy top, tree crown base and undergrowth heights. Good detection sensitivity enabled the observation of ground returns underneath the trees. Statistical and one-to-one comparisons with ground measurements by field foresters indicated a mean absolute accuracy of ≈ 1 m. Sensitivity tests on detection threshold showed the importance of signal to noise ratio and footprint size for a proper detection of the canopy vertical structure. This UV-lidar is intended for future innovative applications of simultaneous observation of forest canopy, laser-induced vegetation fluorescence and atmospheric aerosols.

  6. Effect of ultra violet irradiation on the interplay between Th1 and Th2 lymphocytes

    PubMed Central

    Abo Elnazar, Salma Y.; Ghazy, Amany A.; Ghoneim, Hossam E.; Taha, Abdul-Rahman M.; Abouelella, Amira M.

    2015-01-01

    Although ultraviolet (UV) radiation is used to treat several types of diseases, including rickets, psoriasis, eczema, and jaundice, the prolonged exposure to its radiation may result in acute and chronic health effects particularly on the skin, eyes, and the immune system. Aim: This study was carried out to show the effect of UV on both of the lymphoproliferative response and their capacity to produce IL-12 and IL-10 in mice. Methods: Mice were exposed to whole body UVB and tested for the effect of recovery times on lymphocyte proliferation and cytokine production. In addition, direct irradiation of spleens and lymphocyte suspension was carried out. Basal and mitogens-stimulated lymphocyte proliferation was assessed by MTT assay while IL-10 and IL-12 were measured using ELISA. Results: There was a significant suppression in lymphocyte proliferation in comparison with control. IL-12 level was significantly reduced while the level of IL-10 was increased. Con A and PWM mitogens had no significant changes in IL-10 while Con A caused a highly significant increase in IL-12 at day 6 of recovery in UVB body irradiation. Conclusion: Exposure to UVB radiation could cause a state of immune suppression and shifts Th1/Th2 cell response. This effect is closely associated with the reduction of Th1 cytokines’ expression and increase in Th2 cytokines’ levels. PMID:25852558

  7. Design of a high-efficiency extreme ultraviolet overview spectrometer system for plasma impurity studies on the stellarator experiment Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Biel, W.; Bertschinger, G.; Burhenn, R.; König, R.; Jourdain, E.

    2004-10-01

    The design for a set of four high-efficiency vacuum ultraviolet/extreme ultraviolet (VUV/XUV) spectrometers has been developed, which shall be used for plasma impurity monitoring and impurity transport studies on the stellarator experiment Wendelstein 7-X (W7-X). The new high-efficiency XUV overview spectrometer (HEXOS) system covers the wavelength range from 2.5 to 160 nm, divided into four subsections with some overlapping, thus achieving a complete coverage of prominent spectral lines from the relevant impurity elements. Taking into account spectrometer geometries and detector geometries, toroidal holographic diffraction gratings are numerically optimized to maximize the total throughput while maintaining good spectral resolution. The performance of the spectrometers is tested and optimized by means of ray tracing calculations. In order to prove the potential for line identification as well as the expected levels of signal intensity and noise figures of the new systems, spectra are simulated using the impurity transport code STRAHL. Under typical plasma conditions on W7-X the new spectrometers will allow clear identification of all relevant impurity elements in the plasma. The large collected photon flux results in a high accuracy for the measured line intensities, even when operating the spectrometers at spectra rates of 1000/s.

  8. Simultaneous efficient removal of high-strength ammonia nitrogen and chemical oxygen demand from landfill leachate by using an extremely high ammonia nitrogen-resistant strain.

    PubMed

    Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun

    2015-01-01

    Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control.

  9. On the maximum conversion efficiency into the 13.5-nm extreme ultraviolet emission under a steady-state laser ablation of tin microspheres

    NASA Astrophysics Data System (ADS)

    Basko, M. M.

    2016-08-01

    Theoretical investigation has been performed on the conversion efficiency (CE) into the 13.5-nm extreme ultraviolet (EUV) radiation in a scheme where spherical microspheres of tin (Sn) are simultaneously irradiated by two laser pulses with substantially different wavelengths. The low-intensity short-wavelength pulse is used to control the rate of mass ablation and the size of the EUV source, while the high-intensity long-wavelength pulse provides efficient generation of the EUV light at λ=13.5 nm. The problem of full optimization for maximizing the CE is formulated and solved numerically by performing two-dimensional radiation-hydrodynamics simulations with the RALEF-2D code under the conditions of steady-state laser illumination. It is shown that, within the implemented theoretical model, steady-state CE values approaching 9% are feasible; in a transient peak, the maximum instantaneous CE of 11.5% was calculated for the optimized laser-target configuration. The physical factors, bringing down the fully optimized steady-state CE to about one half of the absolute theoretical maximum of CE≈20 % for the uniform static Sn plasma, are analyzed in detail.

  10. Study of connected system of automatic control of load and operation efficiency of a steam boiler with extremal controller on a simulation model

    NASA Astrophysics Data System (ADS)

    Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.

    2017-02-01

    The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.

  11. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    PubMed

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (P<0.05) faster than that observed with synthetic wastewater (with similar CN concentration). A combined application of H(2)O(2)/O(3) was found to be the best option for maximum CN destruction. This treatment allows CN to reach the regional/international limit (of 0.02 mg/L) for safe industrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  12. Asymmetric diffusion into the postsynaptic neuron: an extremely efficient mechanism for removing excess GABA from synaptic clefts on the Deiters' neurone plasma membrane.

    PubMed

    Hyden, H; Cupello, A; Palm, A

    1986-05-01

    Microdissected Deiters' neuron plasma membranes have been used for studying the passage of GABA through the membrane both in the inward and outward direction. Working with 0.2 mM GABA in the compartment simulating the outside of the neurone and with 2.0 mM GABA in the one simulating the inside we found a net transport of GABA towards the inside. This mechanism does not require a Na+ ion gradient across the membrane. The nature of the transport process involved was studied by determining the rate of [3H]-GABA inward passage as a function of GABA concentration (1 nM - 800 microM) on the outward side of the membrane. The results have shown that until 50 microM a diffusion process (v = D1 X C, where D1 = 3.1 X 10(-11) 1/micron 2 X sec) is the sole mechanism involved. Above 50 microM a second diffusion process is activated v = D2 X (C - 50 X 10(-6), where D2 = 2.8 X 10(-11) 1/micron 2 X sec. Taking in account both inward and outward directed diffusion, one can calculate 16 microM as the equilibrium concentration of GABA on the outward side of the membrane. From a kinetic point of view, these diffusion processes are able to reduce GABA concentration in a synaptic cleft from 3 mM to 20 microM within 3 mu sec. These diffusion systems are discussed as extremely efficient in removing the excess of released GABA in the synaptic cleft.

  13. Comparison and characterization of efficient frequency doubling at 397.5 nm with PPKTP, LBO and BiBO crystals

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Han, Yashuai; Wang, Junmin

    2016-04-01

    A continuous-wave Ti:sapphire laser at 795 nm is frequency doubled in a bow-tie type enhancement four-mirror ring cavity with LiB3O5 (LBO), BiB3O6 (BiBO), and periodically polled KTiOPO4 (PPKTP) crystals, respectively. The properties of 397.5 nm ultra-violet (UV) output power, beam quality, stability for these different nonlinear crystals are investigated and compared. For PPKTP crystal, the highest doubling efficiency of 58.1% is achieved from 191 mW of 795 nm mode-matched fundamental power to 111 mW of 397.5 nm UV output. For LBO crystal, with 1.34 W of mode-matched 795 nm power, 770 mW of 397.5 nm UV output is achieved, implying a doubling efficiency of 57.4%. For BiBO crystal, with 323 mW of mode-matched 795 nm power, 116 mW of 397.5 nm UV output is achieved, leading to a doubling efficiency of 35.9%. The generated UV radiation has potential applications in the fields of quantum physics.

  14. Extreme Heat

    MedlinePlus

    ... Emergencies Biological Threats Chemical Threats Cyber Incident Drought Earthquakes Extreme Heat Explosions Floods Hazardous Materials Incidents Home ... Emergencies Biological Threats Chemical Threats Cyber ... Heat Explosions Floods Hazardous Materials Incidents Home ...

  15. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  16. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  17. Improved light extraction efficiency in GaN-based light emitting diode by nano-scale roughening of p-GaN surface.

    PubMed

    Park, Sang Jae; Sadasivam, Karthikeyan Giri; Chung, Tae Hoon; Hong, Gi Cheol; Kim, Jin Bong; Kim, Sang Mook; Park, Si-Hyun; Jeon, Seong-Ran; Lee, June Key

    2008-10-01

    Improvement in light extraction efficiency of Ultra Violet-Light Emitting Diode (UV-LED) is achieved by nano-scale roughening of p-type Gallium Nitride (p-GaN) surface. The process of surface roughening is carried out by using self assembled gold (Au) nano-clusters with support of nano-size silicon-oxide (SiO2) pillars on p-GaN surface as a dry etching mask and by p-GaN regrowth in the regions not covered by the mask after dry etching. Au nano-clusters are formed by rapid thermal annealing (RTA) process carried out at 600 degrees C for 1 min using 15 nm thick Au layer on top of SiO2. The p-GaN roughness is controlled by p-GaN regrowth time. Four different time values of 15 sec, 30 sec, 60 sec and 120 sec are considered for p-GaN regrowth. Among the four different p-GaN regrowth time values 30 sec regrown p-GaN sample has the optimum roughness to increase the electroluminescence (EL) intensity to a value approximately 60% higher than the EL intensity of a conventional LED.

  18. The energy-down-shift effect of Cd(0.5)Zn(0.5)S-ZnS core-shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells.

    PubMed

    Baek, Seung-Wook; Shim, Jae-Hyoung; Park, Jea-Gun

    2014-09-14

    We found that Cd0.5Zn0.5S-ZnS core (4.2 nm in diameter)-shell (1.2 nm in thickness) quantum dots (QDs) demonstrated a typical energy-down-shift (2.76-4.96 → 2.81 eV), which absorb ultra-violet (UV) light (250-450 nm in wavelength) and emit blue visible light (∼442 nm in wavelength). They showed the quantum yield of ∼80% and their coating on the SiNX film textured p-type silicon solar-cells enhanced the external-quantum-efficiency (EQE) of ∼30% at 300-450 nm in wavelength, thereby enhancing the short-circuit-current-density (JSC) of ∼2.23 mA cm(-2) and the power-conversion-efficiency (PCE) of ∼1.08% (relatively ∼6.04% increase compared with the reference without QDs for p-type silicon solar-cells). In particular, the PCE peaked at a specific coating thickness of the Cd0.5Zn0.5S-ZnS core-shell QD layer; i.e., the 1.08% PCE enhancement at the 8.8 nm thick QD layer.

  19. Diffraction efficiency of 200-nm-period critical-angle transmission gratings in the soft x-ray and extreme ultraviolet wavelength bands

    SciTech Connect

    Heilmann, Ralf K.; Ahn, Minseung; Bruccoleri, Alex; Chang, Chih-Hao; Gullikson, Eric M.; Mukherjee, Pran; Schattenburg, Mark L.

    2011-04-01

    We report on measurements of the diffraction efficiency of 200-nm-period freestanding blazed transmission gratings for wavelengths in the 0.96 to 19.4 nm range. These critical-angle transmission (CAT) gratings achieve highly efficient blazing over a broad band via total external reflection off the sidewalls of smooth, tens of nanometer thin ultrahigh aspect-ratio silicon grating bars and thus combine the advantages of blazed x-ray reflection gratings with those of more conventional x-ray transmission gratings. Prototype gratings with maximum depths of 3.2 and 6 {mu}m were investigated at two different blaze angles. In these initial CAT gratings the grating bars are monolithically connected to a cross support mesh that only leaves less than half of the grating area unobstructed. Because of our initial fabrication approach, the support mesh bars feature a strongly trapezoidal cross section that leads to varying CAT grating depths and partial absorption of diffracted orders. While theory predicts broadband absolute diffraction efficiencies as high as 60% for ideal CAT gratings without a support mesh, experimental results show efficiencies in the range of {approx}50-100% of theoretical predictions when taking the effects of the support mesh into account. Future minimization of the support mesh therefore promises broadband CAT grating absolute diffraction efficiencies of 50% or higher.

  20. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  1. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  2. Matrix-assisted colloidosome reverse-phase layer-by-layer encapsulating biomolecules in hydrogel microcapsules with extremely high efficiency and retention stability.

    PubMed

    Mak, Wing Cheung; Bai, Jianhao; Chang, Xiang Yun; Trau, Dieter

    2009-01-20

    The layer-by-layer (LbL) polyelectrolyte self-assembly encapsulation method has attracted much interest because of its versatility to use various polymers for capsule formation, ability to encapsulate different templates, and capability to control capsule permeability. Traditionally, the LbL method was performed in water as solvent and limited to poorly or non-water-soluble templates. Using the matrix-assisted LbL method, complex mixtures of water-soluble proteins or DNA could be encapsulated within agarose microbeads templates but leakage of biomolecules into the water phase during the LbL process results in low encapsulation efficiency. Recently, the reverse-phase LbL (RP-LbL) method was introduced to perform LbL and encapsulation of water-soluble templates in organic solvents, thus preventing the templates from dissolving and allowing high encapsulation efficiency. However, encapsulation of complex mixtures of biomolecules or other substances with quantitative encapsulation efficiency remained impossible. Here we present a new approach for encapsulation of biomolecules or complex mixtures thereof with almost 100% encapsulation efficiency. The ability of our method to achieve high encapsulation efficiency arises from the combination of two strategies. (1) Using microparticles as surface stabilizer to create stable biomolecule-loaded hydrogel microbeads, termed matrix-assisted colloidosome (MAC), that are able to disperse in oil and organic solvents. (2) Using the RP-LbL method to fabricate polymeric capsule "membranes", thereby preventing diffusion of the highly water-soluble biomolecules. Using an oil phase during emulsification and an organic solvent phase during encapsulation could completely prevent leakage of water-soluble biomolecules and almost 100% encapsulation efficiency is achieved. Microcapsules fabricated with our method retained nearly 100% of encapsulated proteins during a 7 day incubation period in water. The method was demonstrated on model

  3. On symmetric X-ray beam splitting with high efficiency by use of reflection gratings with rectangular profile in the extreme off-plane configuration.

    PubMed

    Jark, Werner; Eichert, Diane

    2015-08-24

    In order to be reflected or diffracted off a surface structure soft X-rays and hard X-rays need to impinge at grazing angles of incidence onto the surface. In case of a reflection grating of highly symmetric structure with rectangular groove profile these grooves can be oriented parallel to the beam trajectory. In such a symmetric situation the distribution of the diffracted intensity with respect to the plane of incidence is then expected to be symmetric. This is indeed observed with symmetrically oriented diffraction peaks. It can be predicted that for appropriate structure parameters the intensity can be contained mostly in two symmetrically oriented diffraction peaks. This will also be the case for hard X-rays. The diffraction efficiency will be particularly high, when the angle of grazing incidence is chosen in the total reflection regime below the critical angle of the grating coating. These predictions were experimentally verified in this work for hard X-rays with photon energies between 4 keV and 12.4 keV. In the experiment of the order of 30% of the incident intensity was diffracted into the two first orders. This is to be compared to reflectivities of the order of 50% measured at the same coating in an unruled area of the substrate. Consequently the relative structural diffraction efficiency for each first order was about 30%, while ideally it could have been 40%. The presented grating structure will thus be a rather efficient amplitude beam splitter for hard X-rays, e.g. in the coherent beam from a free electron laser. In addition such object could then be used as the first component in Michelson interferometers for the beam characterisation or for introducing a time delay between two coherent beams.

  4. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation

    NASA Astrophysics Data System (ADS)

    Shen, Song; Kong, Fenfen; Guo, Xiaomeng; Wu, Lin; Shen, Haijun; Xie, Meng; Wang, Xinshi; Jin, Yi; Ge, Yanru

    2013-08-01

    With the potential uses of photothermal therapy (PTT) in cancer treatment with excellent efficacy, and the growing concerns about the nanotoxicity of hyperthermia agents such as carbon nanotubes and gold-based nanomaterials, the importance of searching for a biocompatible hyperthermia agent cannot be emphasized too much. In this work, a novel promising hyperthermia agent employing magnetic Fe3O4 particles with fairly low toxicity was proposed. This hyperthermia agent showed rapid heat generation under NIR irradiation. After modification with carboxymethyl chitosan (CMCTS), the obtained Fe3O4@CMCTS particles could disperse stably in PBS and serum without any aggregation. The modification of CMCTS could decrease the adsorption of bovine serum albumin (BSA) and improve the cellular uptake. In a comparative study with hollow gold nanospheres (HAuNS), Fe3O4@CMCTS particles exhibited a comparable photothermal effect and fairly low cytotoxicity. The in vivo magnetic resonance (MR) images of mice revealed that by attaching a magnet to the tumor, Fe3O4@CMCTS particles accumulated in the tumor after intravenous injection and showed a low distribution in the liver. After being exposed to a 808 nm laser for 5 min at a low power density of 1.5 W cm-2, the tumors on Fe3O4@CMCTS-injected mice reached a temperature of ~52 °C and were completely destroyed. Thus, a kind of multifunctional magnetic nanoparticle with extremely low toxicity and a simple structure for simultaneous MR imaging, targeted drug delivery and photothermal therapy can be easily fabricated.With the potential uses of photothermal therapy (PTT) in cancer treatment with excellent efficacy, and the growing concerns about the nanotoxicity of hyperthermia agents such as carbon nanotubes and gold-based nanomaterials, the importance of searching for a biocompatible hyperthermia agent cannot be emphasized too much. In this work, a novel promising hyperthermia agent employing magnetic Fe3O4 particles with fairly low

  5. An efficient photoanode for dye sensitized solar cells using naturally derived S/TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Arunmetha, S.; Rajendran, V.; Vinoth, M.; Karthik, A.; Srither, S. R.; Srither Panday, M.; Nithyavathy, N.; Manivasakan, P.; Maaza, M.

    2017-03-01

    Natural mineral rutile sand is used for preparing titania (TiO2) nanoparticles employing a cost-effective simple chemical method and mass production technology. Further the sulfur doped (S/TiO2) and pure TiO2 are produced from chemical precursor also. Different techniques are used to analyse the effect of sulfur dopant like x-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, x-ray photoelectrons spectroscopy, ultraviolet–visible spectra, photoluminescence, Brunauer–Emmett–Teller analyser, field emission scanning electron microscopy with energy-dispersive x-ray analysis, and high-resolution transmission electron microscopy. Under visible light, a useful procedure is followed on the sulfur-doped samples preparation, enhancing the charge carrier recombination, and reducing crystallite size. In the improvement of the efficiency of dye-sensitized solar cells, this dopant could open up vast opportunities; consequently, our work is extended to apply these prepared samples in standard dye-sensitized solar cells. The photoanode of dye-sensitized solar cells are made up of these prepared materials (S-doped TiO2 and pure TiO2) and compared with both commercial TiO2 (P-25) powder, as well as commercially available paste (Dyesol). The S/TiO2 nanoparticles on dye-sensitized solar cells exhibit enhanced ultra-violet visible light absorbance with increased photogenerated electrons and holes meanwhile reduce the recombination rate of charge carriers in dye-sensitized solar cells. Further, the overall power-conversion efficiency (η) and external quantum efficiency of the S/TiO2 cells (η  =  4.32% and EQE  =  32%) is two times higher than that of pure TiO2 cells (η  =  2.75% and EQE  =  16%).

  6. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

    SciTech Connect

    Huang, Kuan-Chih; Lu, James J.-Q.; Bhat, Ishwara B.; Dahal, Rajendra; Danon, Yaron

    2013-04-15

    We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 Degree-Sign C was obtained by current density-voltage characteristics for fabricated p{sup +}-n diodes. A very low leakage current density of {approx}2 Multiplication-Sign 10{sup -8} A/cm{sup 2} at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p{sup +}-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be {approx}26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to {sup 3}He tube based technology.

  7. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer.

    PubMed

    Ayán-Varela, M; Paredes, J I; Guardia, L; Villar-Rodil, S; Munuera, J M; Díaz-González, M; Fernández-Sánchez, C; Martínez-Alonso, A; Tascón, J M D

    2015-05-20

    The stable dispersion of graphene flakes in an aqueous medium is highly desirable for the development of materials based on this two-dimensional carbon structure, but current production protocols that make use of a number of surfactants typically suffer from limitations regarding graphene concentration or the amount of surfactant required to colloidally stabilize the sheets. Here, we demonstrate that an innocuous and readily available derivative of vitamin B2, namely the sodium salt of flavin mononucleotide (FMNS), is a highly efficient dispersant in the preparation of aqueous dispersions of defect-free, few-layer graphene flakes. Most notably, graphene concentrations in water as high as ∼50 mg mL(-1) using low amounts of FMNS (FMNS/graphene mass ratios of about 0.04) could be attained, which facilitated the formation of free-standing graphene films displaying high electrical conductivity (∼52000 S m(-1)) without the need of carrying out thermal annealing or other types of post-treatment. The excellent performance of FMNS as a graphene dispersant could be attributed to the combined effect of strong adsorption on the sheets through the isoalloxazine moiety of the molecule and efficient colloidal stabilization provided by its negatively charged phosphate group. The FMNS-stabilized graphene sheets could be decorated with nanoparticles of several noble metals (Ag, Pd, and Pt), and the resulting hybrids exhibited a high catalytic activity in the reduction of nitroarenes and electroreduction of oxygen. Overall, the present results should expedite the processing and implementation of graphene in, e.g., conductive inks, composites, and hybrid materials with practical utility in a wide range of applications.

  8. Integrated Physiological, Proteomic, and Metabolomic Analysis of Ultra Violet (UV) Stress Responses and Adaptation Mechanisms in Pinus radiata.

    PubMed

    Pascual, Jesús; Cañal, María Jesús; Escandón, Mónica; Meijón, Mónica; Weckwerth, Wolfram; Valledor, Luis

    2017-03-01

    Globally expected changes in environmental conditions, especially the increase of UV irradiation, necessitate extending our knowledge of the mechanisms mediating tree species adaptation to this stress. This is crucial for designing new strategies to maintain future forest productivity. Studies focused on environmentally realistic dosages of UV irradiation in forest species are scarce. Pinus spp. are commercially relevant trees and not much is known about their adaptation to UV. In this work, UV treatment and recovery of Pinus radiata plants with dosages mimicking future scenarios, based on current models of UV radiation, were performed in a time-dependent manner. The combined metabolome and proteome analysis were complemented with measurements of + physiological parameters and gene expression. Sparse PLS analysis revealed complex molecular interaction networks of molecular and physiological data. Early responses prevented phototoxicity by reducing photosystem activity and the electron transfer chain together with the accumulation of photoprotectors and photorespiration. Apart from the reduction in photosynthesis as consequence of the direct UV damage on the photosystems, the primary metabolism was rearranged to deal with the oxidative stress while minimizing ROS production. New protein kinases and proteases related to signaling, coordination, and regulation of UV stress responses were revealed. All these processes demonstrate a complex molecular interaction network extending the current knowledge on UV-stress adaptation in pine.

  9. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    PubMed

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm(2)/(V s), as well as a mobility of 7 cm(2)/(V s) on solid substrate (Si/SiO2) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  10. Advanced Ultra-Violet (UV) Aircraft Fire Detection System. Volume 2. System Hardware Design, Software Design, and Test

    DTIC Science & Technology

    1982-08-01

    be clear. This is termed 5th fire level. The program treats the 6 gates W or ZX,Y, and W’,XI and Y’ as a window, thus if say W,Y and X’ were...con now treat th, two options together, with the adjacencies for 1, 2, 3 and 4 repeated for 5, 6, 7 and 8. H LIMITED 2 ENGLAND TECHNICAL REPORT SHT I...SKIP, RETURN, DISABLE, POP, PUSH, SAVE, GOSTAT., CALL, and EXIT. EXIT is treated like a first class instruction and CALL is treated like a macro call in

  11. Advanced Ultra-Violet (UV) Aircraft Fire Detection System. Volume 3. Ground Support Equipment (GSE) for System Check-Out

    DTIC Science & Technology

    1982-08-01

    34 Weand t-91, ste dl 5 2 3 i Low PnOO *#ld monenr.1uY oov .pp- .01’ ISO ~. XWn 16 20’ a 6 00" X,. 2259 18ut I ola’l Uflb. s~tI~ito’iU prel.4 ~ NCI...on the bward, the mnear, c.r..Citool . fil contains.a single Intel 2768 orogframmed with rvn! can be fi 0*w as 3mA typical A-so. since ar GAUTIL in the

  12. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Cook, A.; Colaprete, A.; Shirley, M.; Vargo, K.; Elphic, R. C.; Hermalyn, B.; Stubbs, T. J.; Glenar, D. A.

    2014-12-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight [1, 2]. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow [2,3,4]. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (~anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (~100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams [5] and magnetotail [3] crossings to investigate impact- versus electrostatic-lofting [6]. Once lofted, nanoparticles can become charged and picked up by the solar wind [7,8]. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of a lunar dust exosphere. [1] Wooden et al. 2014, LPSC 45, 2123 [2] Wooden et al. (2014) & [3] Colaprete et al. 2014, at http://nesf2014.arc.nasa.gov [4] Glenar et al. 2011, PSS 59, 1695 [5] Stubbs et al. 2014 LPSC 45, 2705 [6] Stubbs et al. (2014), PSS 90, 10 [7] Farrell et al., 2012, Icarus 219, 498 [8] Mayer-Vernet et al., 2009, Solar Phys. 256, 463

  13. Ultra-violet/electron beam detoxification of nitroglycerin/propylene glycol dinitrate waste water: Phase 1. Final report

    SciTech Connect

    1994-03-16

    The principal objective of this two year program is to develop an industrial radiation process for the destruction of the explosive nitrate ester compounds in several production waste water streams at the Navy`s facilities in Indian Head, Maryland. Using Fourier Transform Infrared (FTIR), electrospray-mass spectroscopy (MS), and GC-MS, UV and EB treated waste water streams were evaluated for post treatment non-volatile content. UV and EB processing of nitroglycerine contaminated waste water reduced the original organic nitrates to less than 1 ppm, and converted more than 98.5% of the original nitrate esters to glycerine. Concomitant with the cleavage of the nitrate groups from the nitrate esters was the production of nitric acid and a reduction of the solution`s pH from >7 to 2. Based on the dose requirement to reduce the NG level less than 1 ppm, installation costs for and EB treatment system for the Biazzi Plant are estimated to be less than $900,000.00. Operating costs are estimated to be less than $50/1000 USG. No qualitative or quantitative difference between UV and EB treated samples were observed for comparably treated samples.

  14. The effect of heat- or ultra violet ozone-treatment of titanium on complement deposition from human blood plasma.

    PubMed

    Linderbäck, Paula; Harmankaya, Necati; Askendal, Agneta; Areva, Sami; Lausmaa, Jukka; Tengvall, Pentti

    2010-06-01

    Titanium (Ti) is a well known metallic biomaterial extensively used in dental, orthopaedic-, and occasionally also in blood contacting applications. It integrates well to bone and soft tissues, and is shown upon blood plasma contact to activate the intrinsic pathway of coagulation and bind complement factor 3b. The material properties depend largely on those of the nm-thick dense layer of TiO(2) that becomes rapidly formed upon contact with air and water. The spontaneously formed amorphous Ti-oxide has a pzc approximately 5-6 and its water solubility is at the order of 1-2 micromolar. It is often subjected to chemical- and heat treatments in order to increase the anatase- and rutile crystallinity, to modify the surface topography and to decrease the water solubility. In this work, we prepared sol-gel derived titanium and smooth PVD titanium surfaces, and analysed their oxide and protein deposition properties in human blood plasma before and after annealing at 100-500 degrees C or upon UVO-treatment for up to 96 hours. The blood plasma results show that complement deposition vanished irreversibly after heat treatment at 250-300 degrees C for 30 minutes or after UVO exposure for 24 hours or longer. XPS and infrared spectroscopy indicated change of surface water/hydroxyl binding upon the heat- and UVO treatments, and increased Ti oxidation. XRD analysis confirmed an increased crystallinity and both control (untreated) and annealed smooth titanium displayed low XRD-signals indicating some nanocrystallinity, with predominantly anatase phase. The current results show that the behaviour of titanium dioxide in blood contact can be controlled through relatively simple means, such as mild heating and illumination in UV-light, which both likely irreversibly change the stoichiometry and structure of the outmost layers of titanium dioxide and its OH/H(2)O binding characteristics.

  15. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of a lunar dust exosphere.

  16. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  17. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  18. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    SciTech Connect

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. Black-Right-Pointing-Pointer NAC inhibits UVB induced Cyp-D expression, while H{sub 2}O{sub 2} facilitates it. Black-Right-Pointing-Pointer Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. Black-Right-Pointing-Pointer Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H{sub 2}O{sub 2}) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H{sub 2}O{sub 2}-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H{sub 2}O{sub 2}-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.

  19. MAVEN Primary Mission Results from the Imaging UltraViolet Spectrograph: Aurora, Meteor Showers, Dayglow and Corona

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas

    2016-07-01

    The Imaging Ultraviolet Spectrograph (IUVS) is one of nine science instruments aboard the Mars Atmosphere and Volatile and EvolutioN (MAVEN) spacecraft. Its payload is dedicated to exploring the upper atmosphere of Mars and understanding the magnitude and drivers of Mars' atmospheric escape rate. The instrument is among the most powerful spectrographs sent to another planet, with several key capabilities: (1) separate Far-UV & Mid-UV channels for stray light control, (2) a high resolution echelle mode to resolve deuterium and hydrogen emission, (3) internal instrument pointing and scanning capabilities to allow complete mapping and nearly continuous operation, and (4) optimization for airglow studies. I will present an overview of selected IUVS results, including: • The impact of Comet Siding Spring's tail on Mars' atmosphere; • The discovery of diffuse aurora at Mars, and its contrast with previously detected discrete aurora near crustal fields; • Significant seasonal and short-timescale variability in thermospheric dayglow emissions; • Global ozone maps spanning six months of seasonal evolution; and • Mapping of the Mars H and O coronas, to measure the escape rates of H and O and their variability.

  20. Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC 1138-262: Evidence for Efficient Active Galactic Nucleus Feedback in the Early Universe?

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; Lehnert, M. D.; Eisenhauer, F.; Gilbert, A.; Tecza, M.; Abuter, R.

    2006-10-01

    To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such feedback in the optical emission line gas around the z=2.16 powerful radio galaxy MRC 1138-262, likely a massive galaxy in formation. The kiloparsec-scale kinematics, with FWHMs and relative velocities <~2400 km s-1 and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of a few ×1060 ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models and suggest that AGN winds might have a cosmological significance that is similar to, or perhaps larger than, starburst-driven winds if MRC 1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions (<~50%) from a >L* galaxy within a few tens to 100 Myr, fast enough to preserve the observed [α/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC 1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation. Based on observations collected at the European Southern Observatory, Very Large Telescope Array, Cerro Paranal; program Nos. 70.B-0545, 70.A-0229, and 076.A-0684.

  1. Protic acid immobilized on solid support as an extremely efficient recyclable catalyst system for a direct and atom economical esterification of carboxylic acids with alcohols.

    PubMed

    Chakraborti, Asit K; Singh, Bavneet; Chankeshwara, Sunay V; Patel, Alpesh R

    2009-08-21

    A convenient and clean procedure of esterification is reported by direct condensation of equimolar amounts of carboxylic acids with alcohols catalyzed by an easy to prepare catalyst system of perchloric acid immobilized on silica gel (HClO(4)-SiO(2)). The direct condensation of aryl, heteroaryl, styryl, aryl alkyl, alkyl, cycloalkyl, and long-chain aliphatic carboxylic acids with primary/secondary alkyl/cycloalkyl, allyl, propargyl, and long-chain aliphatic alcohols has been achieved to afford the corresponding esters in excellent yields. Chiral alcohol and N-t-Boc protected chiral amino acid also resulted in ester formation with the representative carboxylic acid or alcohol without competitive N-t-Boc deprotection and detrimental effect on the optical purity of the product demonstrating the mildness and chemoselectivity of the procedure. The esters of long-chain (>C(10)) acids and alcohols are obtained in high yields. The catalyst is recovered and recycled without significant loss of activity. The industrial application of the esterification process is demonstrated by the synthesis of prodrugs of ibuprofen and a few commercial flavoring agents. Other protic acids such as H(2)SO(4), HBr, TfOH, HBF(4), and TFA that were adsorbed on silica gel were less effective compared to HClO(4)-SiO(2) following the order HClO(4)-SiO(2) > H(2)SO(4)-SiO(2) > HBr-SiO(2) > TfOH-SiO(2) > HBF(4)-SiO(2) approximately TFA-SiO(2). When HClO(4) was immobilized on other solid supports the catalytic efficiency followed the order HClO(4)-SiO(2) > HClO(4)-K10 > HClO(4)-Al(2)O(3) (neutral) > HClO(4)-Al(2)O(3) (acidic) > HClO(4)-Al(2)O(3) (basic).

  2. Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC1138-262: Evidence for Efficient AGN Feedback in the Early Universe?

    SciTech Connect

    Nesvadba, N H; Lehnert, M D; Eisenhauer, F; Gilbert, A M; Tecza, M; Abuter, R

    2007-06-26

    To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such a feedback in the optical emission line gas around the z = 2.16 powerful radio galaxy MRC1138-262, likely a massive galaxy in formation. The kpc-scale kinematics, with FWHMs and relative velocities {approx}< 2400 km s{sup -1} and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of {approx} few x 10{sup 60} ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models, and suggest that AGN winds might have a similar, or perhaps larger, cosmological significance than starburst-driven winds, if MRC1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions ({approx}< 50%) from a > L* galaxy within a few 10 to 100 Myrs, fast enough to preserve the observed [{alpha}/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation.

  3. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light.

    PubMed

    Faithfull, C L; Mathisen, P; Wenzel, A; Bergström, A K; Vrede, T

    2015-03-01

    This study demonstrates that clear and humic freshwater pelagic communities respond differently to the same environmental stressors, i.e. nutrient and light availability. Thus, effects on humic communities cannot be generalized from existing knowledge about these environmental stressors on clear water communities. Small humic lakes are the most numerous type of lake in the boreal zone, but little is known about how these lakes will respond to increased inflows of nutrients and terrestrial dissolved organic C (t-DOC) due to climate change and increased human impacts. Therefore, we compared the effects of nutrient addition and light availability on pelagic humic and clear water lake communities in a mesocosm experiment. When nutrients were added, phytoplankton production (PPr) increased in both communities, but pelagic energy mobilization (PEM) and bacterial production (BP) only increased in the humic community. At low light conditions, the addition of nutrients led to increased PPr only in the humic community, suggesting that, in contrast to the clear water community, humic phytoplankton were already adapted to lower ambient light levels. Low light significantly reduced PPr and PEM in the clear water community, but without reducing total zooplankton production, which resulted in a doubling of food web efficiency (FWE = total zooplankton production/PEM). However, total zooplankton production was not correlated with PEM, PPr, BP, PPr:BP or C:nutrient stoichiometry for either community type. Therefore, other factors such as food chain length, food quality, ultra-violet radiation or duration of the experiment, must have determined total zooplankton production and ultimately FWE.

  4. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein.

    PubMed

    Ding, Xueqin; Wang, Yuzhi; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-07

    A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by (1)H nuclear magnetic resonance ((1)H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV-vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV-vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.

  5. Method for detection of extremely low concentration

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    2002-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and CO.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  6. Extreme Heat Guidebook

    EPA Pesticide Factsheets

    The 'Climate Change and Extreme Heat: What You Can Do to Prepare' handbook explains the connection between climate change and extreme heat events, and outlines actions citizens can take to protect their health during extreme heat.

  7. Growth of free-standing bulk wurtzite AlxGa1-xN layers by molecular beam epitaxy using a highly efficient RF plasma source

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.; Foxon, C. T.

    2016-12-01

    The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra-violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1-xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 μm/h. Wurtzite AlxGa1-xN layers with thicknesses up to 100 μm were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1-xN wafers. Free-standing bulk AlxGa1-xN wafers with thicknesses in the range 30-100 μm may be used as substrates for further growth of AlxGa1-xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1-xN layers in a single day's growth, making this a commercially viable process.

  8. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles

    SciTech Connect

    Ramasami, Alamelu K.; Raja Naika, H.; Nagabhushana, H.; Ramakrishnappa, T.; Balakrishna, Geetha R.; Nagaraju, G.

    2015-01-15

    Zinc oxide nanoparticles were synthesized by gel-combustion method using novel bio-fuel tapioca starch pearls, derived from the tubers of Manihotesculenta. The product is characterized using various techniques. The X-ray diffraction pattern correspond to a hexagonal zincite structure. Fourier transform infrared spectrum showed main absorption peaks at 394 and 508 cm{sup −} {sup 1} due to stretching vibration of Zn–O. Ultravoilet–visible spectrum of zinc oxide nanoparticles showed absorption maximum at 373 nm whereas the maximum of the bulk zinc oxide was 377 nm. The morphology of the product was studied using scanning electron microscopy and transmission electron microscopy. The scanning electron microscopic images showed that the products are agglomerated and porous in nature. The transmission electron microscopic images revealed spherical particles of 40–50 nm in diameter. The photocatalytic degradation of methylene blue was examined using zinc oxide nanoparticles and found more efficient in sunlight than ultra-violet light due to reduced band gap. The antibacterial properties of zinc oxide nanoparticles were investigated against four bacterial strains Klebsiella aerogenes, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aereus, where Pseudomonas aeruginosa and Staphylococcus aereus exhibited significant antibacterial activity in agar well diffusion method when compared to positive control. - Highlights: • ZnO nanoparticles have been prepared from a new bio-fuel, tapioca starch by gel combustion method. • XRD pattern revealed hexagonal zincite crystal structure with crystallite size 33 nm. • ZnO nanoparticles exhibited a band gap of 2.70 eV. • The ZnO nanoparticles exhibited superior degradation in sunlight in comparison with UV light. • The product showed a good anti-bacterial activity against two bacterial strains.

  9. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  10. Upper Extremity Length Equalization

    PubMed Central

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, shortening osteotomy, angulatory correction osteotomy and lengthening. This report reviews the literature relative to upper extremity length inequality and equalization and presents an algorithm for evaluation and planning appropriate treatment for patients with this condition. This algorithm is illustrated by two clinical cases of posttraumatic shortness of the radius which were effectively treated. ImagesFigure 1Figure 2Figure 3

  11. How extreme is extreme hourly precipitation?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  12. 21st Birthday Drinking: Extremely Extreme

    ERIC Educational Resources Information Center

    Rutledge, Patricia C.; Park, Aesoon; Sher, Kenneth J.

    2008-01-01

    Despite public recognition of the hazards of 21st birthday drinking, there is little empirical information concerning its prevalence, severity, and risk factors. Data from a sample of 2,518 college students suggest that 21st birthday drinking poses an extreme danger: (a) 4 of every 5 participants (83%) reported drinking to celebrate, (b) birthday…

  13. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  14. Extremal surface barriers

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Wall, Aron C.

    2014-03-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  15. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    NASA Astrophysics Data System (ADS)

    Yu, Changhai; Deng, Aihua; Tian, Ye; Li, Wentao; Wang, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Liu, Jiansheng

    2016-08-01

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside the overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.

  16. Extreme environments and exobiology.

    PubMed

    Friedmann, E I

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  17. Survival of extreme opinions

    NASA Astrophysics Data System (ADS)

    Hsu, Jiann-wien; Huang, Ding-wei

    2009-12-01

    We study the survival of extreme opinions in various processes of consensus formation. All the opinions are treated equally and subjected to the same rules of changing. We investigate three typical models to reach a consensus in each case: (A) personal influence, (B) influence from surroundings, and (C) influence to surroundings. Starting with uniformly distributed random opinions, our calculated results show that the extreme opinions can survive in both models (A) and (B), but not in model (C). We obtain a conclusion that both personal influence and passive adaptation to the environment are not sufficient enough to eradicate all the extreme opinions. Only the active persuasion to change the surroundings eliminates the extreme opinions completely.

  18. Extreme environments and exobiology

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  19. USACE Extreme Sea levels

    DTIC Science & Technology

    2014-03-14

    into Extreme Water Level Characterization 9 September 2013 Attendees: Heidi Moritz, Kate White, Jonathan Simm, Robert Nicholls, Peter Hawkes...adaptation. Robert Nicholls raised the question of how well do we feel that we understand the present extreme climate? We should start with this area...the peer-review and acceptance process for a journal paper. Robert suggested that most of the papers which are needed for an analysis today may be

  20. Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  1. Extreme Programming: Maestro Style

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  2. Advanced Instrumentation for Extreme Environments

    SciTech Connect

    Melin, Alexander M; Kisner, Roger; Fugate, David L

    2013-01-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) is pursuing embedded instrumentation and controls (I&C) technology for next generation nuclear power generation applications. Embedded systems encompass a wide range of configurations and technologies; we define embedding in this instance as the integration of the sensors and the control system design into the component design using a systems engineering process. Embedded I&C systems are often an essential part of developing new capabilities, improving reliability, enhancing performance, and reducing operational costs. The new intrinsically safe, more efficient, and cost effective reactor technologies (Next Generation Nuclear Plant and Small Modular Reactors) require the development and application of new I&C technologies. These new designs raise extreme environmental challenges such as high temperatures (over 700 C) and material compatibility (e.g., molten salts). The desired reliability and functionality requires measurements in these extreme conditions including high radiation environments which were not previously monitored in real time. The DOE/NE Nuclear Energy Enabling Technologies (NEET) program currently has several projects investigating I&C technologies necessary to make these reactor designs realizable. The project described in this paper has the specific goal of investigating embedded I&C with the following objectives: 1.Explore and quantify the potential gains from embedded I&C improved reliability, increased performance, and reduced cost 2.Identify practical control, sensing, and measurement techniques for the extreme environments found in high-temperature reactors 3.Design and fabricate a functional prototype high-temperature cooling pump for molten salts represents target demonstration of improved performance, reliability, and widespread usage There are many engineering challenges in the design of a high-temperature liquid salt cooling pump. The pump and motor are in direct contact with

  3. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  4. Determination of mitomycin C in plasma, serum and urine by high-performance liquid chromatography with ultra-violet and electrochemical detection.

    PubMed

    Tjaden, U R; Langenberg, J P; Ensing, K; van Bennekom, W P; de Bruijn, E A; van Oosterom, A T

    1982-11-12

    The performance of a number of normal phase and reversed-phase systems, with ultraviolet detection at 360 nm, has been investigated with respect to their applicability to pharmacokinetic studies of mitomycin C (MMC). The reversed-phase system developed was also combined with a polarographic detector in order to compare the sensitivity and selectivity of ultraviolet and electrochemical detection. A simple isolation procedure, based on the adsorption of MMC on a non-ionogenic resin, has been developed. The developed assay is applied to a pharmacokinetic study from which some examples are given.

  5. VUV dissociative excitation cross sections of H2O, NH3, and CH4 by electron impact. [Vacuum Ultra-Violet

    NASA Technical Reports Server (NTRS)

    Morgan, H. D.; Mentall, J. E.

    1974-01-01

    Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.

  6. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    PubMed

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface.

  7. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  8. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms.

    PubMed

    Bangert, U; Pierce, W; Boothroyd, C; Pan, C-T; Gwilliam, R

    2016-06-07

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  9. Ultra-Violet Light Emission from HPV-G Cells Irradiated with Low Let Radiation From (90)Y; Consequences for Radiation Induced Bystander Effects.

    PubMed

    Ahmad, Syed Bilal; McNeill, Fiona E; Byun, Soo Hyun; Prestwich, William V; Mothersill, Carmel; Seymour, Colin; Armstrong, Andrea; Fernandez, Cristian

    2013-01-01

    In this study, we aimed to establish the emission of UV photons when HPV-G cells and associated materials (such as the cell substrate and cell growth media) are exposed to low LET radiation. The potential role of UV photons in the secondary triggering of biological processes led us to hypothesize that the emission and absorption of photons at this wavelength explain some radiation induced "bystander effects" that have previously been thought to be chemically mediated. Cells were plated in Petri-dishes of two different sizes, having different thicknesses of polystyrene (PS) substrate, and were exposed to β-radiation from (90)Y produced by the McMaster Nuclear Reactor. UV measurements were performed using a single photon counting system employing an interference-type filter for selection of a narrow wavelength range, 340±5 nm, of photons. Exposure of the cell substrates (which were made of polystyrene) determined that UV photons were being emitted as a consequence of β particle irradiation of the Petri-dishes. For a tightly collimated β-particle beam exposure, we observed 167 photons in the detector per unit μCi in the shielded source for a 1.76 mm thick substrate and 158 photons/μCi for a 0.878 mm thick substrate. A unit μCi source activity was equivalent to an exposure to the substrate of 18 β-particles/cm(2) in this case. The presence of cells and medium in a Petri-dish was found to significantly increase (up to a maximum of 250%) the measured number of photons in a narrow band of wavelengths of 340±5 nm (i.e. UVA) as compared to the signal from an empty control Petri-dish. When coloured growth medium was added to the cells, it reduced the measured count rate, while the addition of transparent medium in equal volume increased the count rate, compared to cells alone. We attribute this to the fact that emission, scattering and absorption of light by cells and media are all variables in the experiment. Under collimated irradiation conditions, it was observed that increasing cell density in medium of fixed volume resulted in a decrease in the observed light output. This followed a roughly exponential decline. We suggest that this may be due to increased scattering at the cell boundary and absorption of the UV in the cells. We conclude that we have measured UVA emitted by cells, cell medium and cell substrates as a consequence of their irradiation by low LET β-particle radiation. We suggest that these secondary UV photons could lead to effects in non-targetted cells. Some effects that had previously been attributed to a chemically mediated "bystander effect" may in fact be due to secondary UV emission. Some radiation bystander effect studies may require re-interpretation as this phenomenon of UV emission is further investigated.

  10. Degradation of picric acid and 2,6-DNT in marine sediments and waters: The role of microbial activity and ultra-violet exposure

    USGS Publications Warehouse

    Nipper, Marion; Qian, Yaorong; Carr, R. Scott; Miller, Karen

    2004-01-01

    Bio- and photo-transformation of two munitions and explosives of concern, 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked marine sediments and water. A sandy and a fine-grained sediment, with 0.25% and 1.1% total organic carbon, respectively, were used for biotransformation assessments at 10 and 20 °C. Sterilized sediments were used as controls for biotic vs. abiotic transformation. Transformation products were analyzed by HPLC, GC/MS and LC/MS. Biotransformation in sediments started soon after the initial contact of the chemicals with the sediments and proceeded for several months, with rates in the following sequence: fine-grain at 20 °C > fine-grain at 10 °C > sand at 20 °C > sand at 10 °C. The biotransformation paths seemed to be similar for all conditions. The major biotransformation product of 2,6-DNT was 2-amino-6-nitrotoluene (2-A-6-NT). 2-Nitrotoluene (2-NT) and other minor components, including N,N-dimethyl-3-nitroaniline, benzene nitrile, methylamino-2-nitrosophenol and diaminophenol, were also identified. After more prolonged incubation these chemicals were replaced by high molecular weight polymers. Several breakdown products of picric acid were identified by GC/MS, including 2,4-dinitrophenol, amino dinitrophenols, 3,4-diamino phenol, amino nitrophenol and nitro diaminophenol. Photo-transformation of 2,6-DNT and picric acid in seawater was assessed under simulated solar radiation (SSR). No significant photolysis of picric acid in seawater was observed for up to 47 days, but photo-transformation of 2,6-DNT began soon after the initial exposure to SSR, with 89% being photo-transformed in 24 h and none remaining after 72 h. High molecular weight chemicals were generated, with mass spectra ranging from molecular weight 200–500 compared to 182 for DNT, and the color of the stock solution changed from clear to orange. Complexity of the mass spectra and mass differences among fragments suggest that multiple polymers were produced and were co-eluting during the LC/MS analyses.

  11. The Use of Ultra-Violet (UV) Light Emitting Diodes (LEDS) in an Advanced Oxidation Process (AOP) with Brilliant Blue FCF as an Indicator

    DTIC Science & Technology

    2015-03-26

    indicated that it performed suitably as a witness dye with improved characteristics as compared to methylene blue. Further, the experiments indicated...light output by methylene blue adsorption on post experimentation reactor UV LEDsUV LED Quartz Lens Adsorption Experiment ...31 UV Brilliant Blue FCF...10 Figure 2 - Flow through reactor with UV LEDs

  12. OH SENSOR BASED ON ULTRA-VIOLET, CONTINUOUS-WAVE ABSORPTION SPECTROSCOPY UTILIZING A FREQUENCY-QUADRUPLED, FIBER-AMPLIFIED EXTERNAL CAVITY DIODE LASER. (R828180)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. The uveco-proof project: induction of microbial community responses and dissolved organic matter transformations by ultra violet radiation in marine ecosystems

    NASA Astrophysics Data System (ADS)

    Tedetti, M.; Sempéré, R.; Joux, F.; Belviso, S.; Chami, M.; Goyet, C.; Monzikoff, A.; Partensky, F.

    2003-04-01

    The UVECO project was defined in order to study the effects of the UV radiations (UV-R) on bacterial and phytoplanktonic communities as well as on the transformations of the dissolved organic matter (DOM). These researches will be undertaken in the framework of the French program PROOF (PROcessus biogéochimiques dans l'Océan et Flux) of INSU/CNRS. The different objectives of UVECO are the following: Objective 1: To study cellular and molecular responses of microbial populations to UV stress using picocyanobacteria (Prochlorococcus MED4 and Synechococcus WH8102) and heterotrophic marine bacteria (Sphingomonas alaskensis RB2256 and Vibrio angustum S14) models. Laboratory and field experiments will be conducted to assess cellular response to a variety of light stresses (UV and visible). For instance, a simulator of natural light regimes developed in the outline of this project will be used to determine if picocyanobacteria and heterotrophic bacteria are able to develop photoprotection mechanisms against UV stress. Objective 2: To study the effects of UV-R (A and B) and PAR radiations on the molecular structure of DOM (proteins, polysaccharides and fatty acids) and its subsequent utilization by marine bacterioplankton. Objective 3: To study the in situ effects of UV-R on carbon fluxes at the ocean surface (0-25 m) in relation with the DOM/bacteria/phytoplankton compartments using incubations on special moorings. A model that integrates the effect of UV will be then proposed. Objective 4: To study the processes of DMS photolysis and DMSP degradation by heterotrophic bacteria. The UVECO project will start during spring 2003. The area studied will be the Mediterranean Sea that is exposed to high relative UV irradiance because of its weak cloud cover. Complementary studies including UV-R underwater profiles will also be performed in the framework of other projects including BIOSOPE (South East Pacific, end of 2004) and KEOPS (Southern Ocean, 2004).

  14. An assessment of the long-term drift in SBUV total ozone data, based on comparison with the Dobson network. [Solar Backscatter UltraViolet experiment

    NASA Technical Reports Server (NTRS)

    Fleig, Albert J.; Bhartia, Pawan K.; Silberstein, David S.

    1986-01-01

    Six years of total ozone data derived from the Nimbus 7 Solar Backscatter Ultraviolet (SBUV) experiment are compared with results from 41 Dobson stations to determine year-to-year changes in addition to the monthly bias change for individual stations and for the network. The SBUV measurements are found to drift against the Dobson stations with a linear trend of .38 + or - .13 percent/yr. The cause of the drift could not be separated between residual uncorrected drift in the SBUV instrument, limited sensitivity of the SBUV to increases in tropospheric ozone, and the effect of local increases in pollution level on individual Dobson stations.

  15. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    PubMed

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol.

  16. Proposal for Testing and Validation of Vacuum Ultra-Violet Atomic Laser-Induced Fluorescence as a Method to Analyze Carbon Grid Erosion in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Stevens, Richard

    2003-01-01

    Previous investigation under award NAG3-25 10 sought to determine the best method of LIF to determine the carbon density in a thruster plume. Initial reports from other groups were ambiguous as to the number of carbon clusters that might be present in the plume of a thruster. Carbon clusters would certainly affect the ability to LIF; if they were the dominant species, then perhaps the LIF method should target clusters. The results of quadrupole mass spectroscopy on sputtered carbon determined that minimal numbers of clusters were sputtered from graphite under impact from keV Krypton. There were some investigations in the keV range by other groups that hinted at clusters, but at the time the proposal was presented to NASA, there was no data from low-energy sputtering available. Thus, the proposal sought to develop a method to characterize the population only of atoms sputtered from a graphite target in a test cell. Most of the ground work had been established by the previous two years of investigation. The proposal covering 2003 sought to develop an anti-Stokes Raman shifting cell to generate VUW light and test this cell on two different laser systems, ArF and YAG- pumped dye. The second goal was to measure the lowest detectable amounts of carbon atoms by 156.1 nm and 165.7 nm LIF. If equipment was functioning properly, it was expected that these goals would be met easily during the timeframe of the proposal, and that is the reason only modest funding was requested. The PI was only funded at half- time by Glenn during the summer months. All other work time was paid for by Whitworth College. The college also funded a student, Charles Shawley, who worked on the project during the spring.

  17. Climatology of Ultra Violet(UV) Irradiance at the Surface of the Earth as Measured by the Belgian UV Radiation Monitoring Network

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-08-01

    In this paper we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiations -UVB, UVA and total solar irradiation (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index, together with the variation of irradiations during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  18. Enhancing the optical properties of silver nanowire transparent conducting electrodes by the modification of nanowire cross-section using ultra-violet illumination

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Lee, H.; Woo, Y.

    2016-11-01

    Improvement in the haze and transmittance of the silver nanowire (Ag NW) based transparent conducting electrodes is achieved by illuminating UV light after the Ag NW network formation. The evidences from the experimental analyses and numerical calculations indicate that the enhancement of the optical properties is derived from the modification of the Ag NW cross-section from a pentagonal to a circular shape, as well as the removal of the polyvinylpyrrolidone capping layer on the Ag NW surface. The deformation of the Ag NW cross-section occurs due to heat generation induced by the UV light absorption in the Ag NW, and it provides thermal energy for recrystallization to the Ag atoms on the NW surface, specifically near the corners of the pentagon, resulting in an increase in the radius of the rounded corners.

  19. Ultra-Violet Light Emission from HPV-G Cells Irradiated with Low Let Radiation From 90Y; Consequences for Radiation Induced Bystander Effects

    PubMed Central

    Ahmad, Syed Bilal; McNeill, Fiona E.; Byun, Soo Hyun; Prestwich, William V.; Mothersill, Carmel; Seymour, Colin; Armstrong, Andrea; Fernandez, Cristian

    2013-01-01

    In this study, we aimed to establish the emission of UV photons when HPV-G cells and associated materials (such as the cell substrate and cell growth media) are exposed to low LET radiation. The potential role of UV photons in the secondary triggering of biological processes led us to hypothesize that the emission and absorption of photons at this wavelength explain some radiation induced “bystander effects” that have previously been thought to be chemically mediated. Cells were plated in Petri-dishes of two different sizes, having different thicknesses of polystyrene (PS) substrate, and were exposed to β-radiation from 90Y produced by the McMaster Nuclear Reactor. UV measurements were performed using a single photon counting system employing an interference-type filter for selection of a narrow wavelength range, 340±5 nm, of photons. Exposure of the cell substrates (which were made of polystyrene) determined that UV photons were being emitted as a consequence of β particle irradiation of the Petri-dishes. For a tightly collimated β-particle beam exposure, we observed 167 photons in the detector per unit μCi in the shielded source for a 1.76 mm thick substrate and 158 photons/μCi for a 0.878 mm thick substrate. A unit μCi source activity was equivalent to an exposure to the substrate of 18 β-particles/cm2 in this case. The presence of cells and medium in a Petri-dish was found to significantly increase (up to a maximum of 250%) the measured number of photons in a narrow band of wavelengths of 340±5 nm (i.e. UVA) as compared to the signal from an empty control Petri-dish. When coloured growth medium was added to the cells, it reduced the measured count rate, while the addition of transparent medium in equal volume increased the count rate, compared to cells alone. We attribute this to the fact that emission, scattering and absorption of light by cells and media are all variables in the experiment. Under collimated irradiation conditions, it was observed that increasing cell density in medium of fixed volume resulted in a decrease in the observed light output. This followed a roughly exponential decline. We suggest that this may be due to increased scattering at the cell boundary and absorption of the UV in the cells. We conclude that we have measured UVA emitted by cells, cell medium and cell substrates as a consequence of their irradiation by low LET β-particle radiation. We suggest that these secondary UV photons could lead to effects in non-targetted cells. Some effects that had previously been attributed to a chemically mediated “bystander effect” may in fact be due to secondary UV emission. Some radiation bystander effect studies may require re-interpretation as this phenomenon of UV emission is further investigated. PMID:24298227

  20. Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscuta chinensis Lam. by ultra-violet detection

    PubMed Central

    2012-01-01

    Background Cuscuta species known as dodder, have been used in traditional medicine of eastern and southern Asian countries as liver and kidney tonic. Flavonoids are considered as the main biologically active constituents in Cuscuta plants especially in C. chinensis Lam. Objective In the present study, a fast, simple and reliable method for the simultaneous determination and quantization of C. chinensis flavonols including hyperoside, rutin, isorhamnetin and kaempferol has been developed. Materials and methods The chromatographic separation was carried out on a reversed phase ACE 5 C18 with eluting at a flow rate of 1 ml/min using a gradient with O-phosphoric acid 0.25% : acetonitrile for 42 min. UV spectra were collected across the range of 200–900 nm, extracting 360 nm for the chromatograms. The method was validated according to linearity, selectivity, precision, recovery, LOD and LOQ. Results The method was selective for determination of rutin, hyperoside, isorhamnetin and kampferol. The calibration graphs of flavonols were linear with r2 > 0.999. RSDs% of intra- and inter-day precisions were found 1.3&3.4 for rutin, 1.5&2.8 for hyperoside, 1.3&3.3 for isorhamnetin and 1.7 & 2.9 for kaempferol which were satisfactory. LODs and LOQs were calculated as 1.73 & 8.19 for rutin, 0.09 & 4.19 for hyperoside, 2.09 & 6.3 for isorhamnetin and 0.18 & 0.56 for kaempferol. The recovery averages of above-mentioned flavonols were 90.3%, 97.4%, 98.7% and 90.0%, respectively. Conclusion The simplicity of the method makes it highly valuable for quality control of C. chinensis according to quantization of flavonols. PMID:23352257

  1. Influence of Alternative Tubulin Inhibitors on the Potency of a Epirubicin-Immunochemotherapeutic Synthesized with an Ultra Violet Light-Activated Intermediate

    PubMed Central

    Coyne, C. P.; Jones, Toni; Bear, Ryan

    2015-01-01

    Immunochemotherapeutics, epirubicin-(C3-amide)-SS-[anti-HER2/neu] with an internal disulfide bond, and epirubicin-(C3-amide)-[anti-HER2/neu] were synthesized utilizing succinimidyl 2-[(4,4′-azipentanamido) ethyl]-1,3′-dithioproprionate or succinimidyl 4,4-azipentanoate respectively. Western blot analysis was used to determine the presence of any immunoglobulin fragmentation or IgG-IgG polymerization. Retained HER2/neu binding characteristics of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] were validated by cell-ELISA using a mammary adenocarcinoma (SKBr-3) population that highly over-expresses trophic HER2/neu receptor complexes. Cytotoxic anti-neoplastic potency of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10−10 M and 10−6 M was determined by measuring the vitality/proliferation of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3 cell type). Cytotoxic anti-neoplastic potency of benzimidazoles (albendazole, flubendazole, membendazole) and griseofulvin were assessed between 0-to-2 μg/ml and 0-to-100 μg/ml respectively while mebendazole and griseofulvin were analyzed at fixed concentrations of 0.35 μg/ml and 35 g/ml respectively in dual combination with gradient concentrations of epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency for epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-SS-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was nearly identical at epirubicin-equivalent concentrations of 10−10 M and 10−6 M. The benzimadazoles also possessed cytotoxic anti-neoplastic activity with flubendazole and albendazole being the most and least potent respectively. Similarly, griseofulvin had cytotoxic anti-neoplastic activity and was more potent than methylselenocysteine. Both mebendazole and griseofulvin when applied in dual combination with either epirubicin-(C3-amide)-[anti-HER2/neu] or epirubicin-(C3-amide)-SS-[anti-HER2/neu] produced enhanced levels of cytotoxic anti-neoplatic potency. PMID:26225190

  2. Simultaneous determination of substituted diphenylamine antioxidants and benzotriazole ultra violet stabilizers in blood plasma and fish homogenates by ultra high performance liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Lu, Zhe; Peart, Thomas E; Cook, Cyril J; De Silva, Amila O

    2016-08-26

    Analytical methods were developed for the determination of eight substituted diphenylamines (SDPAs) and six benzotriazole UV stabilizers (BZT-UVs) in blood plasma and fish homogenate matrices. Liquid-liquid extraction by methyl tert-butyl ether and denaturation by KOH following silica gel packed column clean-up was employed for blood plasma preparation. For the fish homogenate samples, ultrasonic assisted solvent extraction combined with automated gel permeation chromatography and silica gel packed column clean-up was used. The target compounds were determined by optimized ultra performance liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode. The method limits of quantification (MLOQs) of the 14 analytes ranged from 0.002 to 1.5ngg(-1) and 0.001 to 2.3ngg(-1) (wet weight, w.w.) for blood plasma and fish homogenate, respectively. The total recoveries of the target compounds varied from 61% to 100% (mean 77±9%). Eleven targets including monobutyl- (C4), dibutyl- (C4C4), monooctyl- (C8), monobutyl monooctyl- (C4C8), dioctyl-(C8C8), monononyl- (C9), dinonly-(C9C9) and 4,4'-bis(α,α-dimethylbenzyl)-(diAMS) DPAs, as well as 2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (UV234), 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl) phenol (UV327) and 2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) were identified in the environmental biota samples, with concentrations in the range of 

  3. Ultra-violet protection and water repellency of polyester fabrics treated by surface deposition of nickel under the effect of low temperature plasma

    NASA Astrophysics Data System (ADS)

    Kan, C. W.; Yuen, C. W. M.

    2007-12-01

    This paper is aimed at understanding the textile properties of nickel-deposited polyester fabric after treating with low temperature plasma treatment. Low temperature plasma treatment with oxygen gas was employed in this paper to activate a hydrophilic surface for the polyester fabrics and hence facilitate the nickel deposition through an electroless plating process. The textile properties of plasma-induced electroless nickel-plated polyester fabrics were evaluated by different standard testing methods in terms of both physical and chemical performances. The electroless nickel plating with plasma treatment improved significantly the performance of nickel-plated polyester fabrics as reflected by the scanning electron microscopy, tensile strength, ultraviolet protection as well as fabric weight. On the contrary, it also enhanced the fabric thickness and colour fastness to crocking. In addition, there was no influence on the performance of colour fastness to light and colourfastness to laundering. Moreover, the application of plasma treatment adversely affected slightly the performance of contact angle and wrinkle recovery property.

  4. Nano-scale SiO2 patterned n-type GaN substrate for 380 nm ultra violet light emitting diodes.

    PubMed

    Jo, Min Sung; Seo, Hyo Won; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ryu, Sang Wan; Ha, Jun Seok; Jeon, Seong Ran; Cui, Hao; Park, Si Hyun; Lee, June Key

    2014-08-01

    380 nm Ultraviolet (UV) light emitting diodes (LEDs) were grown on patterned n-type GaN substrate (PNS). Wet etched self-assembled indium tin oxide (ITO) nano clusters serves as dry etching mask for converting the SiO2 layer grown on n-GaN template into SiO2 nano dots by inductively coupled plasma etching. In the pre-experiment, crystal quality and optical properties of n-GaN were greatly improved by applying PNS process. In this work, etch-pits density (EPD) method confirmed that PNS with SiO2 nano dots have superior crystalline properties. Thus Reference LED without PNS, 1-step PNS LEDs with SiO2 nano dots size were 200 nm, 250 nm, 300 nm and 300 nm 2-step PNS LED were fabricated. LEDs show almost the same operating voltage of about 3.4 V at an injection current of 50 mA. Light intensity was enhanced by ~2.1 times and 3.2 times for 300 nm 1-step and 300 nm 2-step PNS, respectively. FDTD simulation results show a similar tendency. As a result, PNS promotes epitaxial lateral overgrowth (ELOG) for defect reduction as well as act as a light scattering point.

  5. Climatology of Ultra Violet (UV) irradiance as measured through the Belgian ground-based monitoring network during the time period of 1995-2014

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-04-01

    In this study we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiances -UVB, UVA and total solar irradiance (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index (UVI), together with the variation of irradiances during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  6. Adventure and Extreme Sports.

    PubMed

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure.

  7. Occult fractures of extremities.

    PubMed

    Ahn, Joong Mo; El-Khoury, Georges Y

    2007-05-01

    Recent advances in cross-sectional imaging, particularly in CT and MR imaging, have given these modalities a prominent role in the diagnosis of fractures of the extremities. This article describes the clinical application and imaging features of cross-sectional imaging (CT and MR imaging) in the evaluation of patients who have occult fractures of the extremities. Although CT or MR imaging is not typically required for evaluation of acute fractures, these modalities could be helpful in the evaluation of the occult osseous injuries in which radiographic findings are equivocal or inconclusive.

  8. Hydrological extremes and security

    NASA Astrophysics Data System (ADS)

    Kundzewicz, Z. W.; Matczak, P.

    2015-04-01

    Economic losses caused by hydrological extremes - floods and droughts - have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes - floods and droughts - are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state's task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  9. Astron extreme lightweighting

    NASA Astrophysics Data System (ADS)

    Tromp, Niels; Drost, Marco; Pragt, Johan

    2004-09-01

    Producing extreme light weighted structures by combining a new design concept with the most recent production machines and production software tools. Weight reductions of up to 50% compared to the traditional techniques are feasible with the same stiffness performance. Suitable for standard materials like aluminium and steel, for single construction parts out of mono material and with a single production process. Astronomical instruments for space applications and ground-based applications require more and more extreme light and extreme stiff structures. The traditional technique like 3-axis or multisided machining of metal parts seems limited and not suitable for the next generation instruments. New materials with new production technologies are used more and more with all their specialties and restrictions. ASTRON developed a new structural design of traditional materials with heritage optimized for production with the most recent milling machines. The structural shapes are closely linked to the extremes of 5-axis simultaneous milling. The design and production process is patented and now free for publication.

  10. Extreme resilience in cochleate nanoparticles.

    PubMed

    Bozó, Tamás; Brecska, Richárd; Gróf, Pál; Kellermayer, Miklós S Z

    2015-01-20

    Cochleates, prospective nanoscale drug delivery vehicles, are rolls of negatively charged phospholipid membrane layers. The membrane layers are held together by calcium ions; however, neither the magnitude of membrane interaction forces nor the overall mechanical properties of cochleates have been known. Here, we manipulated individual nanoparticles with atomic force microscopy to characterize their nanomechanical behavior. Their stiffness (4.2-12.5 N/m) and membrane-rupture forces (45.3-278 nN) are orders of magnitude greater than those of the tough viral nanoshells. Even though the fundamental building material of cochleates is a fluid membrane, the combination of supramolecular geometry, the cross-linking action of calcium, and the tight packing of the ions apparently lead to extreme mechanical resilience. The supramolecular design of cochleates may provide efficient protection for encapsulated materials and give clues to understanding biomolecular structures of similar design, such as the myelinated axon.

  11. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  12. Materials in extreme environments.

    SciTech Connect

    Hemley, R. J.; Crabtree, G. W.; Buchanan, M. V.; Materials Science Division; Geophysical Lab.; ORNL

    2009-11-01

    Nature is rich with examples of phenomena and environments we might consider extreme, at least from our familiar experience on Earth's surface: large fluxes of radiation and particles from the Sun, explosive asteroid collisions in space, volcanic eruptions that originate deep underground, extraordinary pressures and temperatures in the interiors of planets and stars, and electromagnetic discharges that occur, say, in sunspots and pulsars. We often intentionally create similar extreme environments - for example, in high-powered lasers, high-temperature turbines, internal-combustion engines, and industrial chemical plants. The response of materials to the broad range of such environments signals the materials underlying structure and dynamics, provides insight into new phenomena, exposes failure modes that limit technological possibility, and presents novel routes for making new materials.

  13. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  14. Lower extremity venous reflux

    PubMed Central

    Baliyan, Vinit; Tajmir, Shahein; Ganguli, Suvranu; Prabhakar, Anand M.

    2016-01-01

    Venous incompetence in the lower extremity is a common clinical problem. Basic understanding of venous anatomy, pathophysiologic mechanisms of venous reflux is essential for choosing the appropriate treatment strategy. The complex interplay of venous pressure, abdominal pressure, venous valvular function and gravitational force determine the venous incompetence. This review is intended to provide a succinct review of the pathophysiology of venous incompetence and the current role of imaging in its management. PMID:28123974

  15. Religious Extremism in Pakistan

    DTIC Science & Technology

    2014-12-01

    Face (July 2008): 32. 21 Ahmed Rashid , Pakistan on the Brink: The Future of America, Pakistan, and Afghanistan (New York: Viking, 2012). 22 Brian J...promoting extremism. Commentators such as Jessica Stern, Alan Richards, Hussain Haqqani, Ahmed Rashid , and Ali Riaz are a few of the scholars who...www.jstor.org/stable/3183558; See also Ahmed Rashid , Descent Into Chaos: The United States and the Failure of Nation Building in Pakistan, Afghanistan, and

  16. Extreme geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  17. On extreme geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cid, Consuelo; Palacios, Judith; Saiz, Elena; Guerrero, Antonio; Cerrato, Yolanda

    2014-10-01

    Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  18. The Engineering for Climate Extremes Partnership

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; Tye, M. R.

    2014-12-01

    Hurricane Sandy and the recent floods in Thailand have demonstrated not only how sensitive the urban environment is to the impact of severe weather, but also the associated global reach of the ramifications. These, together with other growing extreme weather impacts and the increasing interdependence of global commercial activities point towards a growing vulnerability to weather and climate extremes. The Engineering for Climate Extremes Partnership brings academia, industry and government together with the goals encouraging joint activities aimed at developing new, robust, and well-communicated responses to this increasing vulnerability. Integral to the approach is the concept of 'graceful failure' in which flexible designs are adopted that protect against failure by combining engineering or network strengths with a plan for efficient and rapid recovery if and when they fail. Such an approach enables optimal planning for both known future scenarios and their assessed uncertainty.

  19. Mineralogy under extreme conditions

    SciTech Connect

    Shu, Jinfu

    2012-02-07

    We have performed measurements of minerals based on the synchrotron source for single crystal and powder X-ray diffraction, inelastic scattering, spectroscopy and radiography by using diamond anvil cells. We investigated the properties of iron (Fe), iron-magnesium oxides (Fe, Mg)O, silica(SiO{sub 2}), iron-magnesium silicates (Fe, Mg)SiO{sub 3} under simulated high pressure-high temperature extreme conditions of the Earth's crust, upper mantle, low mantle, core-mantle boundary, outer core, and inner core. The results provide a new window on the investigation of the mineral properties at Earth's conditions.

  20. Upper Extremity Regional Anesthesia

    PubMed Central

    Neal, Joseph M.; Gerancher, J.C.; Hebl, James R.; Ilfeld, Brian M.; McCartney, Colin J.L.; Franco, Carlo D.; Hogan, Quinn H.

    2009-01-01

    Brachial plexus blockade is the cornerstone of the peripheral nerve regional anesthesia practice of most anesthesiologists. As part of the American Society of Regional Anesthesia and Pain Medicine’s commitment to providing intensive evidence-based education related to regional anesthesia and analgesia, this article is a complete update of our 2002 comprehensive review of upper extremity anesthesia. The text of the review focuses on (1) pertinent anatomy, (2) approaches to the brachial plexus and techniques that optimize block quality, (4) local anesthetic and adjuvant pharmacology, (5) complications, (6) perioperative issues, and (6) challenges for future research. PMID:19282714

  1. Characterizing Extreme Ionospheric Storms

    NASA Astrophysics Data System (ADS)

    Sparks, L.; Komjathy, A.; Altshuler, E.

    2011-12-01

    Ionospheric storms consist of disturbances of the upper atmosphere that generate regions of enhanced electron density typically lasting several hours. Depending upon the storm magnitude, gradients in electron density can sometimes become large and highly localized. The existence of such localized, dense irregularities is a major source of positioning error for users of the Global Positioning System (GPS). Consequently, satellite-based augmentation systems have been implemented to improve the accuracy and to ensure the integrity of user position estimates derived from GPS measurements. Large-scale irregularities generally do not pose a serious threat to estimate integrity as they can be readily detected by such systems. Of greater concern, however, are highly localized irregularities that interfere with the propagation of a signal detected by a user measurement but are poorly sampled by the receivers in the system network. The most challenging conditions have been found to arise following disturbances of large magnitude that occur only rarely over the course of a solar cycle. These extremely disturbed conditions exhibit behavior distinct from moderately disturbed conditions and, hence, have been designated "extreme storms". In this paper we examine and compare the behavior of the extreme ionospheric storms of solar cycle 23 (or, more precisely, extreme storms occurring between January 1, 2000, and December 31, 2008), as represented in maps of vertical total electron content. To identify these storms, we present a robust means of quantifying the regional magnitude of an ionospheric storm. Ionospheric storms are observed frequently to occur in conjunction with magnetic storms, i.e., periods of geophysical activity as measured by magnetometers. While various geomagnetic indices, such as the disturbance storm time (Dst) and the planetary Kp index, have long been used to rank the magnitudes of distinct magnetic storms, no comparable, generally recognized index exists for

  2. [The extremely violent child].

    PubMed

    Berger, M; Bonneville, E

    2009-02-01

    More and more children have extremely violent behaviour which appears about the age of 15-16 months, when walking makes their hands free. This violence is individual, can appear suddenly at anytime, and is not accompanied by guilt. It is caused by early psychological and repeated traumas, whose importance is usually underestimated: unpredictable, violent parents, exposure to the spectacle of conjugal violence, distortion of the signals emitted by the toddler. These traumas bring about specific psychological structure. The prevention of these troubles exists but is impossible to realise in France.

  3. Upper extremity golf injuries.

    PubMed

    Cohn, Michael A; Lee, Steven K; Strauss, Eric J

    2013-01-01

    Golf is a global sport enjoyed by an estimated 60 million people around the world. Despite the common misconception that the risk of injury during the play of golf is minimal, golfers are subject to a myriad of potential pathologies. While the majority of injuries in golf are attributable to overuse, acute traumatic injuries can also occur. As the body's direct link to the golf club, the upper extremities are especially prone to injury. A thorough appreciation of the risk factors and patterns of injury will afford accurate diagnosis, treatment, and prevention of further injury.

  4. Precipitation Extremes Under Climate Change.

    PubMed

    O'Gorman, Paul A

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to better constrain the sensitivity of tropical precipitation extremes to warming.

  5. Solar extreme events

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh S.

    2015-08-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of “extreme events,” defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than S-2, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial 14C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observational results have impacted our use of the relatively limited historical record in new ways: the detection of actual events in the 14C tree-ring records, and the systematic observations of flares and “superflares” by the Kepler spacecraft. I discuss how these new findings may affect our understanding of the distribution function expected for extreme solar events.

  6. Some characterizations of unique extremality

    NASA Astrophysics Data System (ADS)

    Yao, Guowu

    2008-07-01

    In this paper, it is shown that some necessary characteristic conditions for unique extremality obtained by Zhu and Chen are also sufficient and some sufficient ones by them actually imply that the uniquely extremal Beltrami differentials have a constant modulus. In addition, some local properties of uniquely extremal Beltrami differentials are given.

  7. Monster symmetry and extremal CFTs

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide

    2012-11-01

    We test some recent conjectures about extremal selfdual CFTs, which are the candidate holographic duals of pure gravity in AdS 3. We prove that no c = 48 extremal selfdual CFT or SCFT may possess Monster symmetry. Furthermore, we disprove a recent argument against the existence of extremal selfdual CFTs of large central charge.

  8. (Welding under extreme conditions)

    SciTech Connect

    Davis, S.A.

    1989-09-29

    The traveler was an invited member of the United States delegation and representative of the Basic Energy Science Welding Science program at the 42nd Annual International Institute of Welding (IIW) Assembly and Conference held in Helsinki, Finland. The conference and the assembly was attended by about 600 delegates representing 40 countries. The theme of the conference was welding under extreme conditions. The conference program contained several topics related to welding in nuclear, arctic petrochemical, underwater, hyperbaric and space environments. At the annual assembly the traveler was a delegate (US) to two working groups of the IIW, namely Commission IX and welding research study group 212. Following the conference the traveler visited the Danish Welding Institute in Copenhagen and the Risoe National Laboratory in Roskilde. Prior to the conference the traveler visited Lappeenranta University of Technology and presented an invited seminar entitled Recent Advances in Welding Science and Technology.''

  9. Extreme Scale Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2009-11-01

    We live in extraordinary times. With increasingly sophisticated observatories opening up new vistas on the universe, astrophysics is becoming more complex and data-driven. The success in understanding astrophysical systems that are inherently multi-physical, nonlinear systems demands realism in our models of the phenomena. We cannot hope to advance the realism of these models to match the expected sophistication of future observations without extreme-scale computation. Just one example is the advent of gravitational wave astronomy. Detectors like LIGO are about to make the first ever detection of gravitational waves. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. I will discuss the computational and theoretical challenges ahead in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  10. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    NASA Astrophysics Data System (ADS)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  11. Women in extreme poverty.

    PubMed

    1994-01-01

    Population is estimated to increase from 5.5 billion in 1990 to 10 billion by 2050; the poverty level is expected to increase from 1 billion to 2-3 billion people. Women in development has been promoted throughout the UN and development system, but women in poverty who perform work in the informal sector are still uncounted, and solutions are elusive. The issue of extreme poverty can not be approached as just another natural disaster with immediate emergency relief. Many people live in precarious economic circumstances throughout their lives. Recent research reveals a greater understanding of the underlying causes and the need for inclusion of poor women in sustainable development. Sanitation, water, housing, health facilities need to be improved. Women must have access to education, opportunities for trading, and loans on reasonable terms. UNESCO makes available a book on survival strategies for poor women in the informal sector. The profile shows common problems of illiteracy, broken marriages, and full time involvement in provision of subsistence level existence. Existence is a fragile balance. Jeanne Vickers' "Women and the World" offers simple, low cost interventions for aiding extremely poor women. The 1992 Commission on the Status of Women was held in Vienna. Excerpts from several speeches are provided. The emphasis is on some global responses and an analysis of solutions. The recommendation is for attention to the gender dimension of poverty. Women's dual role contributes to greater disadvantages. Women are affected differently by macroeconomic factors, and that there is intergenerational transfer of poverty. Social services should be viewed as investments and directed to easing the burdens on time and energy. Public programs must be equipped to deal with poverty and to bring about social and economic change. Programs must be aware of the different distribution of resources within households. Women must be recognized as principal economic providers within

  12. Extreme efficiency of mud volcanism in dewatering accretionary prisms

    NASA Astrophysics Data System (ADS)

    Kopf, Achim; Klaeschen, Dirk; Mascle, Jean

    2001-07-01

    Drilling results from two mud volcanoes on the Mediterranean Ridge accretionary complex as well as bottom sampling and the wealth of geophysical data acquired recently have provided fundamental knowledge of the 3D geometry of mud extrusions. Mud volcanism is generally related to buoyancy (density inversion), and is triggered by the collision of the African and Eurasian blocks, forcing undercompacted clayey sediments to extrude along faults in the central and hinterlandward parts of the prism. Volumetric estimates of extruded mud in several well-studied areas were based on pre-stack depth-migrated seismic profiles across the entire, up to >150 km wide, prism. The resulting volumes of mud were combined with ages from mud dome drilling, so that rates of mud extrusion were obtained. Subtracting the solid rock mass from the bulk mud volume using physical property data, fluid flux as a function of mud volcanism alone has been quantified for the first time. The volume of fluid extruding with the mud is found to be variable, but reaches up to 15 km 3 fluid per km trench length and Ma along cross sections with abundant mud volcanoes. Such large fluid quantities in a region some 50-150 km behind the deformation front exceed estimates from those elsewhere (where undoubtedly the majority of the interstitial fluid is lost due to compaction). Such fluids near the backstop are likely to result predominantly from mineral dehydration and diagenetic reactions at depth, and consequently provide a window to understand deeper processes along the deep décollement. More importantly, the enormous rates with which such fluids and liquified mud escape along the out-of-sequence faults alter fluid budget calculations in subduction zones drastically.

  13. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  14. Stacked Extreme Learning Machines.

    PubMed

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  15. Detectors in Extreme Conditions

    SciTech Connect

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  16. Understanding water extremes with caution

    NASA Astrophysics Data System (ADS)

    Stehlík, Milan; Stehlíková, Silvia; Torres, Sebastián

    2016-06-01

    We discuss a sensitive topic, how to scientifically estimate extremes in water quality managements. Such extremes are incorporating establishment of thresholds or levels of certain chemicals in the drinking water. In particular, we address the water fluoridation and quality of drinking water in Chile. Statistical approaches demonstrating the necessary background of water manager will be given in a survey exposition to establish link between statistics of extremes and practice.

  17. Upper Extremity Amputations and Prosthetics

    PubMed Central

    Ovadia, Steven A.; Askari, Morad

    2015-01-01

    Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions. PMID:25685104

  18. Upper extremity amputations and prosthetics.

    PubMed

    Ovadia, Steven A; Askari, Morad

    2015-02-01

    Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions.

  19. Predictability of Extreme Events in Social Media

    PubMed Central

    Miotto, José M.; Altmann, Eduardo G.

    2014-01-01

    It is part of our daily social-media experience that seemingly ordinary items (videos, news, publications, etc.) unexpectedly gain an enormous amount of attention. Here we investigate how unexpected these extreme events are. We propose a method that, given some information on the items, quantifies the predictability of events, i.e., the potential of identifying in advance the most successful items. Applying this method to different data, ranging from views in YouTube videos to posts in Usenet discussion groups, we invariantly find that the predictability increases for the most extreme events. This indicates that, despite the inherently stochastic collective dynamics of users, efficient prediction is possible for the most successful items. PMID:25369138

  20. Gender, Education, Extremism and Security

    ERIC Educational Resources Information Center

    Davies, Lynn

    2008-01-01

    This paper examines the complex relationships between gender, education, extremism and security. After defining extremism and fundamentalism, it looks first at the relationship of gender to violence generally, before looking specifically at how this plays out in more extremist violence and terrorism. Religious fundamentalism is also shown to have…

  1. Grassland responses to precipitation extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  2. Denitrification by extremely halophilic bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  3. Magnetotactic Bacteria from Extreme Environments

    NASA Astrophysics Data System (ADS)

    Bazylinski, Dennis A.; Lefère, Christopher T.

    2013-03-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  4. Representing Extremes in Agricultural Models

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.

  5. Runtime Systems for Extreme Scale Platforms

    DTIC Science & Technology

    2013-12-01

    Nodes) 500000 O(Million) Total Concurrency 50 Million O(Billion) Storage 150 PB 300 PB I / O 10 TB/s 20 TB/s Power 10 MW 20 MW Table 1.1 : The...heterogeneous processors, non-uniform clock speeds and other load imbalances across cores due to power management, fault tolerance, and other runtime...future extreme scale systems, driven by a limited power budget, will have reduced shared-memory capacities, lead- ing to an increased focus on efficient

  6. Terrestrial Applications of Extreme Environment Stirling Space Power Systems

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger. W.

    2012-01-01

    NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.

  7. Extreme events in computational turbulence

    PubMed Central

    Yeung, P. K.; Zhai, X. M.; Sreenivasan, Katepalli R.

    2015-01-01

    We have performed direct numerical simulations of homogeneous and isotropic turbulence in a periodic box with 8,1923 grid points. These are the largest simulations performed, to date, aimed at improving our understanding of turbulence small-scale structure. We present some basic statistical results and focus on “extreme” events (whose magnitudes are several tens of thousands the mean value). The structure of these extreme events is quite different from that of moderately large events (of the order of 10 times the mean value). In particular, intense vorticity occurs primarily in the form of tubes for moderately large events whereas it is much more “chunky” for extreme events (though probably overlaid on the traditional vortex tubes). We track the temporal evolution of extreme events and find that they are generally short-lived. Extreme magnitudes of energy dissipation rate and enstrophy occur simultaneously in space and remain nearly colocated during their evolution. PMID:26424452

  8. Extreme hypertriglyceridemia managed with insulin.

    PubMed

    Thuzar, Moe; Shenoy, Vasant V; Malabu, Usman H; Schrale, Ryan; Sangla, Kunwarjit S

    2014-01-01

    Extreme hypertriglyceridemia can lead to acute pancreatitis and rapid lowering of serum triglycerides (TG) is necessary for preventing such life-threatening complications. However, there is no established consensus on the acute management of extreme hypertriglyceridemia. We retrospectively reviewed 10 cases of extreme hypertriglyceridemia with mean serum TG on presentation of 101.5 ± 23.4 mmol/L (8982 ± 2070 mg/dL) managed with insulin. Serum TG decreased by 87 ± 4% in 24 hours in those patients managed with intravenous insulin and fasting and 40 ± 8.4% in those managed with intravenous insulin alone (P = .0003). The clinical course was uncomplicated in all except 1 patient who subsequently developed a pancreatic pseudocyst. Thus, combination of intravenous insulin with fasting appears to be an effective, simple, and safe treatment strategy in immediate management of extreme hypertriglyceridemia.

  9. Hall sensors for extreme temperatures.

    PubMed

    Jankowski, Jakub; El-Ahmar, Semir; Oszwaldowski, Maciej

    2011-01-01

    We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from -270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.

  10. Observed Statistics of Extreme Waves

    DTIC Science & Technology

    2006-12-01

    9 Figure 5. An energy stealing wave as a solution to the NLS equation . (From: Dysthe and...shown that nonlinear interaction between four colliding waves can produce extreme wave behavior. He utilized the NLS equation in his numerical ...2000) demonstrated the formation of extreme waves using the Korteweg de Vries ( KdV ) equation , which is valid in shallow water. It was shown in the

  11. Even extreme heat cannot affect the SP-ablator

    NASA Astrophysics Data System (ADS)

    Stoclfleth, Holger; Knabe, Helmut; Wahl, Juergen; Haug, Tilman

    A heat-protection system that was successfully tested in a plasma wind tunnel is described. The system is capable of withstanding extreme short-term heat loads when reentering the atmosphere. The surface-protected (SP) ablator exhibits significant increase in the efficiency of the cooling effect and dynamic pressure resistance due to a ceramic matrix composite layer that protects its surface.

  12. Linking Extreme Weather Events and Extreme ENSO States

    NASA Astrophysics Data System (ADS)

    Perlwitz, J.; Hoerling, M. P.; Xu, T.; Hoell, A.; Cheng, L.; Wolter, K.

    2015-12-01

    To what extent are the risks of extreme weather events over the contiguous US, such as heavy precipitation, heat and cold waves, conditioned by the state of tropical east Pacific SSTs? Further, do extreme magnitudes of El Niño and La Niña events exert a unique and particularly strong controlling effect on weather extremes? Here, we utilize both observations and multi-model large ensemble historical simulations to characterize the behavior of 5-day maximum precipitation distributions. We focus on relations between ENSO impacts on seasonal means and weather extremes, and explore the distinction between effects based on ENSO phase and intensity. For the cold season (November to April), overall ENSO impacts on mean precipitation are shown to be consistent with observations. This signal includes enhanced seasonal mean precipitation over the southern part of the U.S. and central Great Plains during El Niño, and enhanced seasonal mean precipitation over the Midwest during La Nina. We further demonstrate how these signals change under the influence of the most extreme ENSO events, conditions that are difficult to verify from observations owing to small sample sizes, but are modeled via large ensemble methods. The statistics of 5-day maximum precipitation, with a focus on 20-year return levels that characterizes rare but potentially damaging events, are examined. We demonstrate substantial differences in changes in the risk of extreme 5-day precipitation and the seasonal mean precipitation signal, especially in such regions as California, and the western Great Plains including the Front Range of the Rockies from Montana to New Mexico. The plausibility of such behavior is discussed via physical considerations and by examining the structural uncertainty in such outcomes across three different climate models.

  13. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  14. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  15. Book review: Extreme ocean waves

    USGS Publications Warehouse

    Geist, Eric L.

    2017-01-01

    Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.

  16. Extreme hydrological events and security

    NASA Astrophysics Data System (ADS)

    Kundzewicz, Z. W.; Matczak, P.

    2015-06-01

    Economic losses caused by hydrological extremes - floods and droughts - have been on the rise, worldwide. Hydrological extremes jeopardize human security and cause serious threats to human life and welfare and societal livelihood. Floods and droughts can undermine societies' security, understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. Floods and droughts pose a burden and serious challenges to the state, responsible to sustain economic development, societal and environmental security - the maintenance of ecosystem services, on which a society depends. It is shown that reduction of risk of hydrological disasters improves human security.

  17. Shear Fractures of Extreme Dynamics

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-10-01

    Natural and laboratory observations show that shear ruptures (faults) can propagate with extreme dynamics (up to intersonic rupture velocities) through intact materials and along pre-existing faults with frictional and coherent (bonded) interfaces. The rupture propagation is accompanied by significant fault strength weakening in the rupture head. Although essential for understanding earthquakes, rock mechanics, tribology and fractures, the question of what physical processes determine how that weakening occurs is still unresolved. The general approach today to explain the fault weakening is based upon the strong velocity-weakening friction law according to which the fault strength drops rapidly with slip velocity. Different mechanisms of strength weakening caused by slip velocity have been proposed including thermal effect, high-frequency compressional waves, expansion of pore fluid, macroscopic melting and gel formation. This paper proposes that shear ruptures of extreme dynamics propagating in intact materials and in pre-existing frictional and coherent interfaces are governed by the same recently identified mechanism which is associated with an intensive microcracking process in the rupture tip observed for all types of extreme ruptures. The microcracking process creates, in certain conditions, a special fan-like microstructure shear resistance of which is extremely low (up to an order of magnitude less than the frictional strength). The fan-structure representing the rupture head provides strong interface weakening and causes high slip and rupture velocities. In contrast with the velocity-weakening dependency, this mechanism provides the opposite weakening-velocity effect. The fan-mechanism differs remarkably from all reported earlier mechanisms, and it can provide such important features observed in extreme ruptures as: extreme slip and rupture velocities, high slip velocity without heating, off-fault tensile cracking, transition from crack-like to pulse

  18. Extreme Conditions Modeling Workshop Report

    SciTech Connect

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  19. Automation Rover for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn

    2017-01-01

    Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.

  20. Moving in extreme environments: what's extreme and who decides?

    PubMed

    Cotter, James David; Tipton, Michael J

    2014-01-01

    Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving

  1. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    PubMed Central

    Shamaila, Shahzadi; Zafar, Noshin; Riaz, Saira; Sharif, Rehana; Nazir, Jawad; Naseem, Shahzad

    2016-01-01

    Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV)-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM) analysis confirmed the size and X-ray diffractometry (XRD) analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria. PMID:28335198

  2. Photostabilizing Efficiency of PVC in the Presence of Schiff Bases as Photostabilizers.

    PubMed

    Yousif, Emad; Al-Amiery, Ahmed A; Kadihum, Abdulhadi; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2015-11-04

    The photostabilization of polyvinyl chloride (PVC) films by Schiff bases was investigated. Polyvinyl chloride films containing 0.5 wt % Schiff bases were produced using the same casting method as that used for additive-free PVC films from tetrahydrofuran (THF) solvent. The photostabilization activities of these compounds were determined by monitoring the carbonyl, polyene and hydroxyl indices with irradiation time. The changes in viscosity average molecular weight of PVC with irradiation time were also monitored using THF as a solvent. The quantum yield of chain scission (Φcs) for the studied complexes in PVC was estimated to range between 4.72 and 8.99 × 10(-8). According to the experimental results, several mechanisms were suggested, depending on the structure of the additive. Ultra violet (UV) absorption, peroxide decomposition and radical scavenging were suggested as the photostabilizing mechanisms.

  3. Astrobiology: Life in Extreme Environments

    ERIC Educational Resources Information Center

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  4. Tetrasulfide extreme pressure lubricant additives

    SciTech Connect

    Gast, L.E.; Kenney, H.E.; Schwab, A.W.

    1980-08-19

    A novel class of compounds has been prepared comprising the tetrasulfides of /sup 18/C hydrocarbons, /sup 18/C fatty acids, and /sup 18/C fatty and alkyl and triglyceride esters. These tetrasulfides are useful as extreme pressure lubricant additives and show potential as replacements for sulfurized sperm whale oil.

  5. How Cells Endure Extreme Conditions

    SciTech Connect

    2009-01-01

    One of natures most gripping feats of survival is now better understood. For the first time, Berkeley Lab scientists observed the chemical changes in individual cells that enable them to survive in conditions that should kill them. http://newscenter.lbl.gov/feature-stories/2009/07/07/cells-endure-extremes/

  6. The Estimation of Probability of Extreme Events for Small Samples

    NASA Astrophysics Data System (ADS)

    Pisarenko, V. F.; Rodkin, M. V.

    2017-02-01

    The most general approach to the study of rare extreme events is based on the extreme value theory. The fundamental General Extreme Value Distribution lies in the basis of this theory serving as the limit distribution for normalized maxima. It depends on three parameters. Usually the method of maximum likelihood (ML) is used for the estimation that possesses well-known optimal asymptotic properties. However, this method works efficiently only when sample size is large enough ( 200-500), whereas in many applications the sample size does not exceed 50-100. For such sizes, the advantage of the ML method in efficiency is not guaranteed. We have found that for this situation the method of statistical moments (SM) works more efficiently over other methods. The details of the estimation for small samples are studied. The SM is applied to the study of extreme earthquakes in three large virtual seismic zones, representing the regime of seismicity in subduction zones, intracontinental regime of seismicity, and the regime in mid-ocean ridge zones. The 68%-confidence domains for pairs of parameter (ξ, σ) and (σ, μ) are derived.

  7. Extreme events in Faraday waves

    NASA Astrophysics Data System (ADS)

    Punzmann, Horst; Shats, Michael; Xia, Hua

    2014-05-01

    Observations of extreme wave events in the ocean are rare due to their low statistical probability. In the laboratory however, the evolution of extreme wave events can be studied in great detail with high spatial and temporal resolution. The reported surface wave experiments in the short wavelength gravity-capillary range aim to contribute to the understanding of some of the underlying mechanisms for rogue wave generation. In this talk, we report on extreme wave events in parametrically excited Faraday waves. Faraday waves appear if a fluid is accelerated (normal to the fluid surface) above a critical threshold. A variety of novel tools have been deployed to characterize the 2D surface elevation. The results presented show spatio-temporal and statistical data on the surface wave conditions leading up to extreme wave events. The peak in wave amplitude during such an event is shown to exceed six times the standard deviation of the average wave field with significantly increased statistical probability compared to the background wave field [1]. The experiments also show that parametrically excited waves can be viewed as assembles of oscillons [2] (or oscillating solitons) where modulation instability seems to play a crucial role in their formation. More detailed studies on the oscillon dynamics reveal that the onset of an increased probability of extreme wave events correlates with the increase in the oscillons mobility and merger [3]. Reference: 1. Xia H., Maimbourg T., Punzmann H., and Shats M., Oscillon dynamics and rogue wave generation in Faraday surface ripples, Physical Review Letters 109, 114502 (2012) 2. Shats M., Xia H., and Punzmann H., Parametrically excited water surface ripples as ensembles of oscillons, Physical Review Letters 108, 034502 (2012) 3. Shats M., Punzmann H., Xia H., Capillary rogue waves, Physical Review Letters, 104, 104503 (2010)

  8. The Extreme Universe Space Observatory

    NASA Technical Reports Server (NTRS)

    Adams, Jim; Six, N. Frank (Technical Monitor)

    2002-01-01

    This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.

  9. Detecting Extreme Events in Gridded Climate Data

    SciTech Connect

    Ramachandra, Bharathkumar; Gadiraju, Krishna; Vatsavai, Raju; Kaiser, Dale Patrick; Karnowski, Thomas Paul

    2016-01-01

    Detecting and tracking extreme events in gridded climatological data is a challenging problem on several fronts: algorithms, scalability, and I/O. Successful detection of these events will give climate scientists an alternate view of the behavior of different climatological variables, leading to enhanced scientific understanding of the impacts of events such as heat and cold waves, and on a larger scale, the El Nin o Southern Oscillation. Recent advances in computing power and research in data sciences enabled us to look at this problem with a different perspective from what was previously possible. In this paper we present our computationally efficient algorithms for anomalous cluster detection on climate change big data. We provide results on detection and tracking of surface temperature and geopotential height anomalies, a trend analysis, and a study of relationships between the variables. We also identify the limitations of our approaches, future directions for research and alternate approaches.

  10. Extreme overbalance perforating improves well performance

    SciTech Connect

    Dees, J.M.; Handren, P.J.

    1994-01-01

    The application of extreme overbalance perforating, by Oryx Energy Co., is consistently outperforming the unpredictable, tubing-conveyed, underbalance perforating method which is generally accepted as the industry standard. Successful results reported from more than 60 Oryx Energy wells, applying this technology, support this claim. Oryx began this project in 1990 to address the less-than-predictable performance of underbalanced perforating. The goal was to improve the initial completion efficiency, translating it into higher profits resulting from earlier product sales. This article presents the concept, mechanics, procedures, potential applications and results of perforating using overpressured well bores. The procedure can also be used in wells with existing perforations if an overpressured surge is used. This article highlights some of the case histories that have used these techniques.

  11. Measuring Extreme Vacuum Pressure with Ultraintense Lasers

    NASA Astrophysics Data System (ADS)

    Paredes, Angel; Novoa, David; Tommasini, Daniele

    2012-12-01

    We show that extreme vacuum pressures can be measured with current technology by detecting the photons produced by the relativistic Thomson scattering of ultraintense laser light by the electrons of the medium. We compute the amount of radiation scattered at different frequencies and angles when a Gaussian laser pulse crosses a vacuum tube and design strategies for the efficient measurement of pressure. In particular, we show that a single day experiment at a high repetition rate petawatt laser facility such as Vega, that will be operating in 2014 in Salamanca, will be sensitive, in principle, to pressures p as low as 10-16Pa, and will be able to provide highly reliable measurements for p≳10-14Pa.

  12. Extreme Ultraviolet Solar Spectroscopy with CHIPS

    NASA Astrophysics Data System (ADS)

    Hurwitz, Mark V.; Sasseen, T. P.; Sirk, M.; Marchant, W.; McDonald, J.; Thorsness, J.; Lewis, M.; Woods, T.

    2006-12-01

    The Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) can be utilized to collect extreme ultraviolet spectra of the full solar disk. CHIPS has been collecting solar spectra since late 2005, although the observation geometry was not standardized until April 2006. Since that time, CHIPS has been accumulating spectra on nearly a daily basis. As for the diffuse emission that CHIPS was designed to observe, the bandpass is about 90 to 260 Å, with a peak resolution (λ/Δλ) of about 100. The instrumental efficiency as a function of wavelength is expected to be stable, but is subject to an overall scale factor that is less certain. We explain how CHIPS can collect these spectra, and present representative results.

  13. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    NASA Technical Reports Server (NTRS)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  14. Holographic optical elements for the extreme-ultravioletregime

    SciTech Connect

    Naulleau, Patrick P.; Salmassi, Farhad; Gullikson, Eric M.; Anderson, Erik H.

    2006-08-14

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such component is the diffractive optical element used, for example, in illumination systems to efficiently generate modified pupil fills. Here we demonstrate the fabrication and characterization of EUV binary phase-only computer-generated holograms allowing arbitrary far-field diffraction patterns to be generated.

  15. Extreme Conditions Modeling Workshop Report

    SciTech Connect

    Coe, Ryan Geoffrey; Neary, Vincent Sinclair; Lawon, Michael J.; Yu, Yi-Hsiang; Weber, Jochem

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  16. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  17. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  18. On causality of extreme events

    PubMed Central

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866

  19. The 2014 Silba Precipitation Extreme

    NASA Astrophysics Data System (ADS)

    Rasol, Dubravka; Ólafsson, Haraldur

    2015-04-01

    On 30 July 2014 a 24 h precipitation record of 218 mm was set at the island of Silba in the N-Adriatic Sea. The precipitation was of convective nature and significantly less precipitation was recorded only small distances away, at the coast of mainland Croatia. The event is reproduced numerically and discussed in terms of dynamics and predictability. On a large scale, the precipitation extreme was associated with a slow-moving upper tropospheric low that formed over the N-Atlantic several days earlier. At lower levels, there were humid mediterranean airmasses. On a smaller scale, there are indications that the extreme convection may have been triggered by an orographic disturbance.

  20. Upper Extremity Injuries in Gymnasts.

    PubMed

    Wolf, Megan R; Avery, Daniel; Wolf, Jennifer Moriatis

    2017-02-01

    Gymnastics is a unique sport, which loads the wrist and arms as weight-bearing extremities. Because of the load demands on the wrist in particular, stress fractures, physeal injury, and overuse syndromes may be observed. This spectrum of injury has been termed "gymnast's wrist," and incorporates such disorders as wrist capsulitis, ligamentous tears, triangular fibrocartilage complex tears, chondromalacia of the carpus, stress fractures, distal radius physeal arrest, and grip lock injury.

  1. Countering Extremism; Beyond Interagency Cooperation

    DTIC Science & Technology

    2011-04-18

    the comparative advantages that DOD has to offer in order to help illuminate how those resources and expertise can best be brought to bear...National Security Strategy. There is no doubt that helping developing nations become peaceful, stable and economically self-sufficient is in the best ...ongoing global extremism; a backlash to Globalization, a Global Insurgency, a Civil War inside Islam, and Asymmetric Warfare. These views are each best

  2. [Genes for extreme violent behaviour?].

    PubMed

    Jordan, Bertrand

    2015-01-01

    A new genetic study focussing on the degree of violence in criminals and using both candidate gene and GWAS approaches finds statistically significant associations of extreme violent behaviour with low activity alleles of monoamine oxydase A (MAOA) and with the CD13 gene. However, the alleles implicated are common in the general population, thus they cannot be causal, and only represent potential indicators of increased risk.

  3. Islamist Extremism in East Africa

    DTIC Science & Technology

    2016-08-01

    Opportunities for East African youth to study in the Arab world steadily expanded. As these youth returned home, they brought with them more rigid...and exclusivist interpretations of Islam. The expanding reach of Arab satellite television has reinforced and acculturated these interpretations to a...East Africa—imported from the Arab world—challenging long-established norms of tolerance. u Confronting Islamist extremism with heavy-handed or

  4. Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2013-03-07

    AFOSR/RTD Air Force Research Laboratory AEROSPACE MATERIALS FOR EXTREME ENVIRONMENTS Date: 7 March 2013 Report Documentation Page Form...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA

  5. Typologies of Extreme Longevity Myths

    PubMed Central

    Young, Robert D.; Desjardins, Bertrand; McLaughlin, Kirsten; Poulain, Michel; Perls, Thomas T.

    2010-01-01

    Purpose. Political, national, religious, and other motivations have led the media and even scientists to errantly accept extreme longevity claims prima facie. We describe various causes of false claims of extraordinary longevity. Design and Methods. American Social Security Death Index files for the period 1980–2009 were queried for individuals with birth and death dates yielding ages 110+ years of age. Frequency was compared to a list of age-validated supercentenarians maintained by the Gerontology Research Group who died during the same time period. Age claims of 110+ years and the age validation experiences of the authors facilitated a list of typologies of false age claims. Results. Invalid age claim rates increase with age from 65% at age 110-111 to 98% by age 115 to 100% for 120+ years. Eleven typologies of false claims were: Religious Authority Myth, Village Elder Myth, Fountain of Youth Myth (substance), Shangri-La Myth (geographic), Nationalist Pride, Spiritual Practice, Familial Longevity, Individual and/or Family Notoriety, Military Service, Administrative Entry Error, and Pension-Social Entitlement Fraud. Conclusions. Understanding various causes of false extreme age claims is important for placing current, past, and future extreme longevity claims in context and for providing a necessary level of skepticism. PMID:21461047

  6. Typologies of extreme longevity myths.

    PubMed

    Young, Robert D; Desjardins, Bertrand; McLaughlin, Kirsten; Poulain, Michel; Perls, Thomas T

    2010-01-01

    Purpose. Political, national, religious, and other motivations have led the media and even scientists to errantly accept extreme longevity claims prima facie. We describe various causes of false claims of extraordinary longevity. Design and Methods. American Social Security Death Index files for the period 1980-2009 were queried for individuals with birth and death dates yielding ages 110+ years of age. Frequency was compared to a list of age-validated supercentenarians maintained by the Gerontology Research Group who died during the same time period. Age claims of 110+ years and the age validation experiences of the authors facilitated a list of typologies of false age claims. Results. Invalid age claim rates increase with age from 65% at age 110-111 to 98% by age 115 to 100% for 120+ years. Eleven typologies of false claims were: Religious Authority Myth, Village Elder Myth, Fountain of Youth Myth (substance), Shangri-La Myth (geographic), Nationalist Pride, Spiritual Practice, Familial Longevity, Individual and/or Family Notoriety, Military Service, Administrative Entry Error, and Pension-Social Entitlement Fraud. Conclusions. Understanding various causes of false extreme age claims is important for placing current, past, and future extreme longevity claims in context and for providing a necessary level of skepticism.

  7. Technology improves upper extremity rehabilitation.

    PubMed

    Kowalczewski, Jan; Prochazka, Arthur

    2011-01-01

    Stroke survivors with hemiparesis and spinal cord injury (SCI) survivors with tetraplegia find it difficult or impossible to perform many activities of daily life. There is growing evidence that intensive exercise therapy, especially when supplemented with functional electrical stimulation (FES), can improve upper extremity function, but delivering the treatment can be costly, particularly after recipients leave rehabilitation facilities. Recently, there has been a growing level of interest among researchers and healthcare policymakers to deliver upper extremity treatments to people in their homes using in-home teletherapy (IHT). The few studies that have been carried out so far have encountered a variety of logistical and technical problems, not least the difficulty of conducting properly controlled and blinded protocols that satisfy the requirements of high-level evidence-based research. In most cases, the equipment and communications technology were not designed for individuals with upper extremity disability. It is clear that exercise therapy combined with interventions such as FES, supervised over the Internet, will soon be adopted worldwide in one form or another. Therefore it is timely that researchers, clinicians, and healthcare planners interested in assessing IHT be aware of the pros and cons of the new technology and the factors involved in designing appropriate studies of it. It is crucial to understand the technical barriers, the role of telesupervisors, the motor improvements that participants can reasonably expect and the process of optimizing IHT-exercise therapy protocols to maximize the benefits of the emerging technology.

  8. Geoeffectiveness of Extreme Solar Winds

    NASA Astrophysics Data System (ADS)

    Alleyne, H.; Nanan, B.; Walker, S.; Reme, H.; Lucek, E.; Andre, M.; Cornilleau-Wehrlin, N.; Fazakerley, A.; Decreau, P.; McCrea, I.; Zhang, S.; van Eyken, A.

    2006-12-01

    The geoeffectiveness of the extreme solar winds that flowed pass the Earth on 24 October 2003, 07 November 2004 and 09 November 2004 are presented using Cluster (FGM, CIS, PEACE, STAFF and EFW) and ground- based (EISCAT radars at 69.6N, 19.2E and IMAGE magnetometer network at 68-79N)observations. The Cluster observations suggest that magnetic reconnection need not be the main process for solar wind entry into the magnetosphere during extreme solar winds. The ion velocity in the magnetosheath-cusp region remains strongly anti-sunward and poleward and ion density remains high irrespective of IMF Bz is negative or positive. The ion velocity components are also found to agree with the ExB velocities. The ground-based observations indicate that the extreme solar winds directly affect the high latitude ionosphere. The solar wind plasma is found to enter the ionosphere through an afternoon cusp that descends to low latitudes during negative IMF Bz period when a westward electrojet is also found to ascend to high latitudes.

  9. Outcomes for extremely premature infants.

    PubMed

    Glass, Hannah C; Costarino, Andrew T; Stayer, Stephen A; Brett, Claire M; Cladis, Franklyn; Davis, Peter J

    2015-06-01

    Premature birth is a significant cause of infant and child morbidity and mortality. In the United States, the premature birth rate, which had steadily increased during the 1990s and early 2000s, has decreased annually for 7 years and is now approximately 11.39%. Human viability, defined as gestational age at which the chance of survival is 50%, is currently approximately 23 to 24 weeks in developed countries. Infant girls, on average, have better outcomes than infant boys. A relatively uncomplicated course in the intensive care nursery for an extremely premature infant results in a discharge date close to the prenatal estimated date of confinement. Despite technological advances and efforts of child health experts during the last generation, the extremely premature infant (less than 28 weeks gestation) and extremely low birth weight infant (<1000 g) remain at high risk for death and disability with 30% to 50% mortality and, in survivors, at least 20% to 50% risk of morbidity. The introduction of continuous positive airway pressure, mechanical ventilation, and exogenous surfactant increased survival and spurred the development of neonatal intensive care in the 1970s through the early 1990s. Routine administration of antenatal steroids during premature labor improved neonatal mortality and morbidity in the late 1990s. The recognition that chronic postnatal administration of steroids to infants should be avoided may have improved outcomes in the early 2000s. Evidence from recent trials attempting to define the appropriate target for oxygen saturation in preterm infants suggests arterial oxygen saturation between 91% and 95% (compared with 85%-89%) avoids excess mortality; however, final analyses of data from these trials have not been published, so definitive recommendations are still pending. The development of neonatal neurocritical intensive care units may improve neurocognitive outcomes in this high-risk group. Long-term follow-up to detect and address

  10. Moving in extreme environments: extreme loading; carriage versus distance.

    PubMed

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W; Goldman, Ralph F; Cotter, James D

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may be at least as problematic, and are therefore included as a reference, e.g. when considering exposure, dangers and (mal)adaptations. As per the other reviews in this series, we describe the nature of the stress and the associated consequences; illustrate relevant regulations, including why and how they are set; present the pros and cons for self versus prescribed acute and chronic exposure; describe humans' (mal)adaptations; and finally suggest future directions for practice and research. In summary, we describe adaptation patterns that are often U or J shaped and that over time minimal or no load carriage decreases the global load carrying capacity and eventually leads to severe adverse effects and manifest disease under minimal absolute but high relative loads. We advocate that further understanding of load carrying capacity and the inherent mechanisms leading to adverse effects may advantageously be studied in this perspective. With improved access to insightful and portable technologies, there are some exciting possibilities to explore these questions in this context.

  11. Online Sequential Extreme Learning Machine With Kernels.

    PubMed

    Scardapane, Simone; Comminiello, Danilo; Scarpiniti, Michele; Uncini, Aurelio

    2015-09-01

    The extreme learning machine (ELM) was recently proposed as a unifying framework for different families of learning algorithms. The classical ELM model consists of a linear combination of a fixed number of nonlinear expansions of the input vector. Learning in ELM is hence equivalent to finding the optimal weights that minimize the error on a dataset. The update works in batch mode, either with explicit feature mappings or with implicit mappings defined by kernels. Although an online version has been proposed for the former, no work has been done up to this point for the latter, and whether an efficient learning algorithm for online kernel-based ELM exists remains an open problem. By explicating some connections between nonlinear adaptive filtering and ELM theory, in this brief, we present an algorithm for this task. In particular, we propose a straightforward extension of the well-known kernel recursive least-squares, belonging to the kernel adaptive filtering (KAF) family, to the ELM framework. We call the resulting algorithm the kernel online sequential ELM (KOS-ELM). Moreover, we consider two different criteria used in the KAF field to obtain sparse filters and extend them to our context. We show that KOS-ELM, with their integration, can result in a highly efficient algorithm, both in terms of obtained generalization error and training time. Empirical evaluations demonstrate interesting results on some benchmarking datasets.

  12. Extremely Randomized Machine Learning Methods for Compound Activity Prediction.

    PubMed

    Czarnecki, Wojciech M; Podlewska, Sabina; Bojarski, Andrzej J

    2015-11-09

    Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called 'extremely randomized methods'-Extreme Entropy Machine and Extremely Randomized Trees-for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their 'non-extreme' competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  13. Soft-Nano-Materials: Extreme Mechanics at Extreme Length Scales

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    2013-03-01

    Over decades of intensive research, various technologies have been developed to manufacture large-scale nanomaterials such as nanoparticles, quantum dots, nanowires, carbon nanotubes, biomolecules, nanofilms, and graphene. Meanwhile, extraordinary properties and functionalities of nanomaterials have been demonstrated by harnessing their deformations and instabilities coupled with their small length scales. However, a grand challenge still exists on how to control the deformations and instabilities of large-scale nanomaterials for scaling-up functions and applications that can impact the society. An emerging paradigm that addresses this challenge is by using soft materials such as polymers, gels and biomaterials to assemble large amounts of nanomaterials and regulate their deformations and instabilities in controlled manners. Successful examples range from nanostructured tissues such as bones and cartilages found in nature to polymer composites with nanowire/nanotube/graphene, flexible electronics, nano-generators and nano-batteries. This talk is focused on extreme mechanics of these soft-nano-materials and systems. We will discuss large deformation, instabilities, and fractures of one-dimensional and two dimensional nanomaterials, such as nanowires and graphene, interacting with matrices of soft materials. We will further illustrate extraordinary properties and functions achieved by understanding and exploiting the extreme mechanics of soft-nano-materials and systems.

  14. Neuropsychological Assessment in Extreme Environments

    DTIC Science & Technology

    2007-01-01

    Archives of Clinical Neuropsychology 22S (2007) S89–S99 Neuropsychological assessment in extreme environments Michael Lowe a,∗, Wayne Harris b...c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 S90 M. Lowe et al. / Archives of Clinical Neuropsychology 22S...et al. / Archives of Clinical Neuropsychology 22S (2007) S89–S99 S91 There was a 10% reduction in this score during the final hour of toluene

  15. Extreme Geomagnetic Storms - 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  16. Materials Response under extreme conditions

    SciTech Connect

    Remington, B A; Lorenz, K T; Pollaine, S; McNaney, J M

    2005-10-06

    Solid state experiments at extreme pressures, 10-100 GPa (0.1-1 Mbar) and strain rates (10{sup 6}-10{sup 8} s{sup -1}) are being developed on high-energy laser facilities. The goal is an experimental capability to test constitutive models for high-pressure, solid-state strength for a variety of materials. Relevant constitutive models are discussed, and our progress in developing a quasi-isentropic, ramped-pressure, shockless drive is given. Designs to test the constitutive models with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples are presented.

  17. Communication path for extreme environments

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  18. Gravity and Extreme Magnetism SMEX

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The Gravity and Extreme Magnetism SMEX mission will be the first mission to catalogue the X-ray polarisation of many astrophysical objects including black-holes and pulsars. This first of its kind mission is enabled by the novel use of a time projection chamber as an X-ray polarimeter. The detector has been developed over the last 5 years, with the current effort charged toward a demonstration of it's technical readiness to be at level 6 prior to the preliminary design review. This talk will describe the design GEMS polarimeter and the results to date from the engineering test unit.

  19. Advances in upper extremity prosthetics.

    PubMed

    Zlotolow, Dan A; Kozin, Scott H

    2012-11-01

    Until recently, upper extremity prostheses had changed little since World War II. In 2006, the Defense Advanced Research Projects Agency responded to an increasing number of military amputees with the Revolutionizing Prosthetics program. The program has yielded several breakthroughs both in the engineering of new prosthetic arms and in the control of those arms. Direct brain-wave control of a limb with 22° of freedom may be within reach. In the meantime, advances such as individually powered digits have opened the door to multifunctional full and partial hand prostheses. Restoring sensation to the prosthetic limb remains a major challenge to full integration of the limb into a patient's self-image.

  20. Extreme Events: The Indian Experience

    NASA Astrophysics Data System (ADS)

    Murty, K. S.

    2008-05-01

    The geographical situation of India is such that it experiences varied types of climate in different parts of the country and invariably the natural events, extreme and normal, would affect such areas that are prone to them. Cyclones hit the eastern coast, while floods affect mostly northern India, while earthquakes hit any part of the country, particuarly when itbecame evident after the 1967 earthquake of Koyna that the peninsular part toois prone to seismic events. The National Commission on Floods estimated that nearly 40 millionn hectares of land is prone to flooding, which could rise to60 million soon. The cropped area thus affected annually is about 10 millionhectares. On an average 1500 lives are lost during floods annually, while the damage to property could run into billions of dollars. The total loss on account of floods damage to crops is estimated at about Rs 53,000 crores(crore= 100 lakhs), during the period 1953-1998. The other extreme natural event is drought which affects large parts of the country, except the northeast. Both floods and droughts can hit different parts of the country during the same period. The 2001 earthquake that hit Gujarat is perhaps the severest and studies on that event are still in progress. The 2004 tsunami which hit large parts of southeast Asia did not spare India. Its southern coast was battered and many lives were lost. In fact some geogrphic landmarks were lost, while some of the cities have suffered a shift in their position. It was estimated that about 1.2 billion dollars were required ro meet the rehabilitation and relief measures. The seismic zone map of India thus had to be revised more often than before. Apart from these, extreme rainfall has also caused floods in urban areas as in Mumbai in 2005, but this was mostly because of lack of proper drainage system and the existing system proved ineffective. Human hand in such cases is evident. There are systems working to forecast floods, cyclones, and droughts, though

  1. Outcomes for Extremely Premature Infants

    PubMed Central

    Glass, Hannah C.; Costarino, Andrew T.; Stayer, Stephen A.; Brett, Claire; Cladis, Franklyn; Davis, Peter J.

    2015-01-01

    Premature birth is a significant cause of infant and child morbidity and mortality. In the United States, the premature birth rate, which had steadily increased during the 1990s and early 2000s, has decreased annually for four years and is now approximately 11.5%. Human viability, defined as gestational age at which the chance of survival is 50%, is currently approximately 23–24 weeks in developed countries. Infant girls, on average, have better outcomes than infant boys. A relatively uncomplicated course in the intensive care nursery for an extremely premature infant results in a discharge date close to the prenatal EDC. Despite technological advances and efforts of child health experts during the last generation, the extremely premature infant (less than 28 weeks gestation) and extremely low birth weight infant (ELBW) (< 1000 grams) remain at high risk for death and disability with 30–50% mortality and, in survivors, at least 20–50% risk of morbidity. The introduction of CPAP, mechanical ventilation, and exogenous surfactant increased survival and spurred the development of neonatal intensive care in the 1970s through the early 1990s. Routine administration of antenatal steroids during premature labor improved neonatal mortality and morbidity in the late 1990s. The recognition that chronic postnatal administration of steroids to infants should be avoided may have improved outcomes in the early 2000s. Evidence from recent trials attempting to define the appropriate target for oxygen saturation in preterm infants suggests arterial oxygen saturation between 91–95% (compared to 85–89%) avoids excess mortality. However, final analyses of data from these trials have not been published, so definitive recommendations are still pending The development of neonatal neurocognitive care visits may improve neurocognitive outcomes in this high-risk group. Long-term follow up to detect and address developmental, learning, behavioral, and social problems is critical for

  2. Window performance in extreme cold

    NASA Astrophysics Data System (ADS)

    Flanders, S. N.; Buska, J. S.; Barrett, S. A.

    1982-12-01

    Extreme cold causes heavy buildup of frost, ice and condensation on many windows. It also increases the incentive for improving the airtightness of windows against heat loss. Our study shows that tightening specifications for Alaskan windows to permit only 30% of the air leakage allowed by current American airtightness standards is economically attractive. We also recommend triple glazing in much of Alaska to avoid window icing in homes and barracks. We base our conclusions on a two year field study of Alaskan military bases that included recording humidity and temperature data, observing moisture accumulation on windows and measuring airtightness with a fan pressurized device.

  3. Will extreme climatic events facilitate biological invasions?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...

  4. Solar-blind ultraviolet photodetector based on (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 single crystal

    NASA Astrophysics Data System (ADS)

    Du, Jian-yu; Ge, Chen; Xing, Jie; Li, Jian-kun; Jin, Kui-juan; Yang, Jing-ting; Guo, Hai-zhong; He, Meng; Wang, Can; Lu, Hui-bin; Yang, Guo-zhen

    2017-03-01

    A solar-blind ultraviolet photodetector based on perovskite (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) single crystal has been fabricated. The Deep Ultra Violet (DUV)/Ultra Violet (UV) (200 versus 290 nm) ratio is more than three orders of magnitude under the applied bias voltage 200 V. Under illumination at 200 nm, the responsivity of this ultraviolet photodetector reaches 4 mA/W at 200 V bias. The corresponding quantum efficiency and detectivity are 2.76% and 1×1011 cmṡHz0.5/W, respectively. The ultrafast response with a rise time of 563 ps and full width half maximum (FWHM) of 1.085 ns is obtained. The high sensitivity, ultrafast response speed, and good signal-to-noise ratio demonstrate that the LSAT photodetector could be a promising candidate as the solar-blind ultraviolet photodetector.

  5. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure

    PubMed Central

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  6. Extreme Event impacts on Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic

    2013-04-01

    a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.

  7. Biology of Extreme Radiation Resistance: The Way of Deinococcus radiodurans

    PubMed Central

    Krisko, Anita; Radman, Miroslav

    2013-01-01

    The bacterium Deinococcus radiodurans is a champion of extreme radiation resistance that is accounted for by a highly efficient protection against proteome, but not genome, damage. A well-protected functional proteome ensures cell recovery from extensive radiation damage to other cellular constituents by molecular repair and turnover processes, including an efficient repair of disintegrated DNA. Therefore, cell death correlates with radiation-induced protein damage, rather than DNA damage, in both robust and standard species. From the reviewed biology of resistance to radiation and other sources of oxidative damage, we conclude that the impact of protein damage on the maintenance of life has been largely underestimated in biology and medicine. PMID:23818498

  8. Lower extremity abnormalities in children.

    PubMed

    Sass, Pamela; Hassan, Ghinwa

    2003-08-01

    Rotational and angular problems are two types of lower extremity abnormalities common in children. Rotational problems include intoeing and out-toeing. Intoeing is caused by one of three types of deformity: metatarsus adductus, internal tibial torsion, and increased femoral anteversion. Out-toeing is less common than intoeing, and its causes are similar but opposite to those of intoeing. These include femoral retroversion and external tibial torsion. Angular problems include bowlegs and knock-knees. An accurate diagnosis can be made with careful history and physical examination, which includes torsional profile (a four-component composite of measurements of the lower extremities). Charts of normal values and values with two standard deviations for each component of the torsional profile are available. In most cases, the abnormality improves with time. A careful physical examination, explanation of the natural history, and serial measurements are usually reassuring to the parents. Treatment is usually conservative. Special shoes, cast, or braces are rarely beneficial and have no proven efficacy. Surgery is reserved for older children with deformity from three to four standard deviations from the normal.

  9. Dome cities for extreme environments

    NASA Technical Reports Server (NTRS)

    Leonard, Raymond S.; Schwartz, Milton

    1992-01-01

    Extreme environments whether they be the frigid nights of the polar regions, the burning sands of the desert, or the harsh environment of space pose interesting challenges to the architect, the engineer, and the constructor in their efforts to create habitats for mankind. In space, the goals are to provide radiation protection while also providing an aesthetic living environment for long duration missions. Because of the need to provide both radiation protection and options for expansion of base facilities, a unique structural system which separates the radiation protection systems from the pressure envelope of the habitats was created. The system uses cable networks in a tensioned structural system, which supports the lunar regolith used for shielding above the facilities. The system is modular, easily expandable, and simple to construct. Additional innovations include the use of rock melting perpetrators for piles and anchoring deadmen, and various sized craters to provide side shielding. The reflective properties of the fabric used in the membrane are utilized to provide diffuse illumination. The use of craters along with the suspended shielding allows the dome to be utilized in fashions similar to those proposed by various designers unaware of the Moon's hostile radiation environment. Additional topics addressed deal with construction techniques for large domes, i.e., on the order of 100's to 1000's of meters, thermal control, the integration of tertiary water treatment schemes with architectural design, human factors, and its implications for the design of habitats for long term use in extreme environments.

  10. The Extremes of Quasar Variability

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2016-04-01

    Variability is one of the key observational properties of quasars, and it can be used as a probe of their fueling, physics, and evolution. A new generation of synoptic sky surveys, in combination with the novel data analytics tools, offers unprecedented data sets for the studies of quasars in the time domain. I will illustrate this with examples from the Catalina Real-Time Transient Survey (CRTS), which has an open and growing archive of 500 million light curves, including 350,000 spectroscopically confirmed quasars, with the time baselines ranging from 10 minutes to 10 years. I will discuss a new approach to discover quasars using a combination of variability and mid-IR colors from WISE, which results in a catalog of over a million quasar candidates. I will then discuss quasars with extreme, anomolous light curves, including quasars that have gone through extreme brightening events over the past decade with concordant large changes in their spectroscopic properties. I will also discuss a small subset of quasars with periodic light curves which we interpret as a signature of close (milliparsec scale) supermassive black hole (SMBH) binaries.

  11. Laser Driven, Extreme Compression Science

    NASA Astrophysics Data System (ADS)

    Eggert, Jon

    2014-03-01

    Extreme-compression science is blessed by a number of new techniques and facilities that are shattering previous experimental limitations: static pressures above 600 GPa, equation of state (EOS) experiments on pulsed-power machines, picosecond-resolved x-ray diffraction on free-electron lasers, and many new experiments on high-energy lasers. Our goals, using high-energy lasers, have been to push the limits of high pressure accessible to measurement and to bridge the gap between static- and dynamic-compression experiments by exploring off-Hugoniot states. I will review laser techniques for both shock- and ramp-compression experiments, and discuss a variety of diagnostics. I will present recent results including: impedance-matching Hugoniot experiments, absolute-Hugoniot implosive-shock radiography, coupled radiometry and velocimetry, ramp-compression EOS, and in-situ x-ray diffraction and absorption spectroscopy into the TPa regime. As the National Ignition Facility (NIF) transitions to a laser user facility for basic and applied science, we are transferring many of these techniques. The unprecedented quality and variety of diagnostics available, coupled with exquisite pulse-shaping predictability and control make the NIF a premier facility for extreme-compression experiments.

  12. Laser Driven, Extreme Compression Science

    NASA Astrophysics Data System (ADS)

    Eggert, Jon

    2013-06-01

    Extreme-compression science is blessed by a number of new techniques and facilities that are shattering previous experimental limitations: static pressures above 600 GPa, equation of state (EOS) experiments on pulsed-power machines, picosecond-resolved x-ray diffraction on free-electron lasers, and many new experiments on high-energy lasers. Our goals, using high-energy lasers, have been to push the limits of high pressure accessible to measurement and to bridge the gap between static- and dynamic-compression experiments by exploring off-Hugoniot states. I will review laser techniques for both shock- and ramp-compression experiments, and discuss a variety of diagnostics. I will present recent results including: impedance-matching Hugoniot experiments, absolute-Hugoniot implosive-shock radiography, coupled radiometry and velocimetry, ramp-compression EOS, and in-situ x-ray diffraction and absorption spectroscopy into the TPa regime. As the National Ignition Facility (NIF) transitions to a laser user facility for basic and applied science, we are transferring many of these techniques. The unprecedented quality and variety of diagnostics available, coupled with exquisite pulse-shaping predictability and control make the NIF a premier facility for extreme-compression experiments.

  13. Min and Max Extreme Interval Values

    ERIC Educational Resources Information Center

    Jance, Marsha L.; Thomopoulos, Nick T.

    2011-01-01

    The paper shows how to find the min and max extreme interval values for the exponential and triangular distributions from the min and max uniform extreme interval values. Tables are provided to show the min and max extreme interval values for the uniform, exponential, and triangular distributions for different probabilities and observation sizes.

  14. Statistical analysis of extreme river flows

    NASA Astrophysics Data System (ADS)

    Mateus, Ayana; Caeiro, Frederico; Gomes, Dora Prata; Sequeira, Inês J.

    2016-12-01

    Floods are recurrent events that can have a catastrophic impact. In this work we are interested in the analysis of a data set of gauged daily flows from the Whiteadder Water river, Scotland. Using statistic techniques based on extreme value theory, we estimate several extreme value parameters, including extreme quantiles and return periods of high levels.

  15. Undulator radiation driven by laser-wakefield accelerator electron beams

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Welsh, G. H.; Brunetti, E.; Cipiccia, S.; Grant, P. A.; Reboredo, D.; Manahan, G.; Grant, D. W.; Jaroszynski, D. A.

    2015-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.

  16. Batch efficiency

    NASA Astrophysics Data System (ADS)

    Schwickerath, Ulrich; Silva, Ricardo; Uria, Christian

    2010-04-01

    A frequent source of concern for resource providers is the efficient use of computing resources in their centers. This has a direct impact on requests for new resources. There are two different but strongly correlated aspects to be considered: while users are mostly interested in a good turn-around time for their jobs, resource providers are mostly interested in a high and efficient usage of their available resources. Both things, the box usage and the efficiency of individual user jobs, need to be closely monitored so that the sources of the inefficiencies can be identified. At CERN, the Lemon monitoring system is used for both purposes. Examples of such sources are poorly written user code, inefficient access to mass storage systems, and dedication of resources to specific user groups. As a first step for improvements CERN has launched a project to develop a scheduler add-on that allows careful overloading of worker nodes that run idle jobs.

  17. Electronic Components for use in Extreme Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electrical power management and control systems designed for use in planetary exploration missions and deep space probes require electronics that are capable of efficient and reliable operation under extreme temperature conditions. Space-based infra-red satellites, all-electric ships, jet engines, electromagnetic launchers, magnetic levitation transport systems, and power facilities are also typical examples where the electronics are expected to be exposed to harsh temperatures and to operate under severe thermal swings. Most commercial-off-the-shelf (COTS) devices are not designed to function under such extreme conditions and, therefore, new parts must be developed or the conventional devices need to be modified. For example, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. At the other end, built-in radiators and coolers render the operation of electronics possible under hot conditions. These thermal measures lead to design complexity, affect development costs, and increase size and weight. Electronics capable of operation at extreme temperatures, thus, will not only tolerate the hostile operational environment, but also make the overall system efficient, more reliable, and less expensive. The Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices, including COTS parts, for potential use under extreme temperatures. These components include semiconductor switching devices, passive devices, DC/DC converters, operational amplifiers, and oscillators. An overview of the program will be presented along with some experimental findings.

  18. Weather extremes could affect agriculture

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  19. Extreme solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Afanasiev, Alexandr; Battarbee, Markus

    2016-04-01

    Properties of extreme solar energetic particle (SEP) events, here defined as those leading to ground level enhancements (GLEs) of cosmic rays, are reviewed. We review recent efforts on modeling SEP acceleration to relativistic energies and present simulation results on particle acceleration at shocks driven by fast coronal mass ejections (CMEs) in different types of coronal magnetic structures and turbulent downstream compression regions. Based on these modeling results, we discuss the possible role of solar and CME parameters in the lack of GLEs during the present sunspot cycle. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support.

  20. Causes of Extremely Fast CMEs

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Ruzmaikin, Alexander

    2006-01-01

    We study CMEs observed by LASCO to have plane of the sky velocities exceeding 1500 km/sec. We find that these extremely fast CMEs are typically associated with flares accompanied by erupting prominences. Our results are consistent with a single CME initiation process that consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure. The second stage is a fast reconnection phase with flaring, filament eruption and a sudden increase of the rise velocity of the magnetic structure (CME). The third stage consists of propagation in the corona. We discuss the sources of these CMEs and the need for improved understanding of the first and third stages.

  1. Graph Embedded Extreme Learning Machine.

    PubMed

    Iosifidis, Alexandros; Tefas, Anastasios; Pitas, Ioannis

    2016-01-01

    In this paper, we propose a novel extension of the extreme learning machine (ELM) algorithm for single-hidden layer feedforward neural network training that is able to incorporate subspace learning (SL) criteria on the optimization process followed for the calculation of the network's output weights. The proposed graph embedded ELM (GEELM) algorithm is able to naturally exploit both intrinsic and penalty SL criteria that have been (or will be) designed under the graph embedding framework. In addition, we extend the proposed GEELM algorithm in order to be able to exploit SL criteria in arbitrary (even infinite) dimensional ELM spaces. We evaluate the proposed approach on eight standard classification problems and nine publicly available datasets designed for three problems related to human behavior analysis, i.e., the recognition of human face, facial expression, and activity. Experimental results denote the effectiveness of the proposed approach, since it outperforms other ELM-based classification schemes in all the cases.

  2. Acquired Upper Extremity Growth Arrest.

    PubMed

    Gauger, Erich M; Casnovsky, Lauren L; Gauger, Erica J; Bohn, Deborah C; Van Heest, Ann E

    2016-09-29

    This study reviewed the clinical history and management of acquired growth arrest in the upper extremity in pediatric patients. The records of all patients presenting from 1996 to 2012 with radiographically proven acquired growth arrest were reviewed. Records were examined to determine the etiology and site of growth arrest, management, and complications. Patients with tumors or hereditary etiology were excluded. A total of 44 patients (24 boys and 20 girls) with 51 physeal arrests who presented at a mean age of 10.6 years (range, 0.8-18.2 years) were included in the study. The distal radius was the most common site (n=24), followed by the distal humerus (n=8), metacarpal (n=6), distal ulna (n=5), proximal humerus (n=4), radial head (n=3), and olecranon (n=1). Growth arrest was secondary to trauma (n=22), infection (n=11), idiopathy (n=6), inflammation (n=2), compartment syndrome (n=2), and avascular necrosis (n=1). Twenty-six patients (59%) underwent surgical intervention to address deformity caused by the physeal arrest. Operative procedures included ipsilateral unaffected bone epiphysiodesis (n=21), shortening osteotomy (n=10), lengthening osteotomy (n=8), excision of physeal bar or bone fragment (n=2), angular correction osteotomy (n=1), and creation of single bone forearm (n=1). Four complications occurred; 3 of these required additional procedures. Acquired upper extremity growth arrest usually is caused by trauma or infection, and the most frequent site is the distal radius. Growth disturbances due to premature arrest can be treated effectively with epiphysiodesis or osteotomy. In this series, the specific site of anatomic growth arrest was the primary factor in determining treatment. [Orthopedics. 201x; xx(x):xx-xx.].

  3. Extremely red quasars in BOSS

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.

    2017-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity ˜ 47.1, sky density 0.010 deg-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colours, and common outflow signatures including BALs or BAL-like features and large C IV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.

  4. Gut Microbiota and Extreme Longevity.

    PubMed

    Biagi, Elena; Franceschi, Claudio; Rampelli, Simone; Severgnini, Marco; Ostan, Rita; Turroni, Silvia; Consolandi, Clarissa; Quercia, Sara; Scurti, Maria; Monti, Daniela; Capri, Miriam; Brigidi, Patrizia; Candela, Marco

    2016-06-06

    The study of the extreme limits of human lifespan may allow a better understanding of how human beings can escape, delay, or survive the most frequent age-related causes of morbidity, a peculiarity shown by long-living individuals. Longevity is a complex trait in which genetics, environment, and stochasticity concur to determine the chance to reach 100 or more years of age [1]. Because of its impact on human metabolism and immunology, the gut microbiome has been proposed as a possible determinant of healthy aging [2, 3]. Indeed, the preservation of host-microbes homeostasis can counteract inflammaging [4], intestinal permeability [5], and decline in bone and cognitive health [6, 7]. Aiming at deepening our knowledge on the relationship between the gut microbiota and a long-living host, we provide for the first time the phylogenetic microbiota analysis of semi-supercentenarians, i.e., 105-109 years old, in comparison to adults, elderly, and centenarians, thus reconstructing the longest available human microbiota trajectory along aging. We highlighted the presence of a core microbiota of highly occurring, symbiotic bacterial taxa (mostly belonging to the dominant Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae families), with a cumulative abundance decreasing along with age. Aging is characterized by an increasing abundance of subdominant species, as well as a rearrangement in their co-occurrence network. These features are maintained in longevity and extreme longevity, but peculiarities emerged, especially in semi-supercentenarians, describing changes that, even accommodating opportunistic and allochthonous bacteria, might possibly support health maintenance during aging, such as an enrichment and/or higher prevalence of health-associated groups (e.g., Akkermansia, Bifidobacterium, and Christensenellaceae).

  5. Extreme precipitation patterns reduced terrestrial ecosystem production across biomes

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Moran, S. M.; Nearing, M.; Ponce Campos, G. E.; Huete, A. R.; Buda, A. R.; Bosch, D. D.; Gunter, S. A.; Kitchen, S. G.; McNab, W.; Morgan, J. A.; McClaran, M. P.; Montoya, D. S.; Peters, D. P.; Starks, P. J.

    2012-12-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of novel climatic conditions on aboveground net primary production (ANPP) by combining a greenness index from satellite measurements and climatic records during 2000 to 2009 from 11 long-term experimental sites in multiple biomes and climates. Results showed that extreme precipitation patterns decreased the sensitivity of ANPP to total annual precipitation (PT), at the regional and decadal scales, leading to a mean 20% decrease in rain-use efficiency across biomes. Relative decreases in ANPP were greatest for arid grassland (16%) and Mediterranean forest (20%), and less for mesic grassland and temperate forest (3%). The co-occurrence of more heavy rainfall events and longer dry intervals caused greater water stress that resulted in reduced vegetation production. A new generalized model was developed to improve predictions of the ANPP response to changes in extreme precipitation patterns by using a function of both PT and an index of precipitation extremes. These findings suggest that extreme precipitation patterns have more substantial and complex effects on vegetation production across biomes, and are as important as total annual precipitation in understanding vegetation processes. With predictions of more extreme weather events, forecasts of ecosystem production should consider these non-linear responses to altered precipitation patterns associated with climate change. Figure. Relation of production across precipitation gradients for 11 sites for two groups (Low: R95p% < 20%, High: R95p% ≥ 20%). See Table 2 for R95p% definitions. The relations were significantly different for the two groups (F2, 106 = 18.51, P < 0.0001).

  6. Efficiency Goals

    ERIC Educational Resources Information Center

    Graham, Donald

    2009-01-01

    The lighting of learning environments is an important focus in designing new schools and renovating older schools. Studies long have shown that appropriate lighting levels and daylighting improve learning; now, climbing energy budgets have spurred school administrators to seek more efficient use of lighting. Electricity rates are expected to rise…

  7. Multi-Scale Gaussian Normalization for Solar Image Processing.

    PubMed

    Morgan, Huw; Druckmüller, Miloslav

    Extreme ultra-violet images of the corona contain information over a wide range of spatial scales, and different structures such as active regions, quiet Sun, and filament channels contain information at very different brightness regimes. Processing of these images is important to reveal information, often hidden within the data, without introducing artefacts or bias. It is also important that any process be computationally efficient, particularly given the fine spatial and temporal resolution of Atmospheric Imaging Assembly on the Solar Dynamics Observatory (AIA/SDO), and consideration of future higher resolution observations. A very efficient process is described here, which is based on localised normalising of the data at many different spatial scales. The method reveals information at the finest scales whilst maintaining enough of the larger-scale information to provide context. It also intrinsically flattens noisy regions and can reveal structure in off-limb regions out to the edge of the field of view. We also applied the method successfully to a white-light coronagraph observation.

  8. Sparse Extreme Learning Machine for Classification

    PubMed Central

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M. Brandon

    2016-01-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM. PMID:25222727

  9. Sparse extreme learning machine for classification.

    PubMed

    Bai, Zuo; Huang, Guang-Bin; Wang, Danwei; Wang, Han; Westover, M Brandon

    2014-10-01

    Extreme learning machine (ELM) was initially proposed for single-hidden-layer feedforward neural networks (SLFNs). In the hidden layer (feature mapping), nodes are randomly generated independently of training data. Furthermore, a unified ELM was proposed, providing a single framework to simplify and unify different learning methods, such as SLFNs, least square support vector machines, proximal support vector machines, and so on. However, the solution of unified ELM is dense, and thus, usually plenty of storage space and testing time are required for large-scale applications. In this paper, a sparse ELM is proposed as an alternative solution for classification, reducing storage space and testing time. In addition, unified ELM obtains the solution by matrix inversion, whose computational complexity is between quadratic and cubic with respect to the training size. It still requires plenty of training time for large-scale problems, even though it is much faster than many other traditional methods. In this paper, an efficient training algorithm is specifically developed for sparse ELM. The quadratic programming problem involved in sparse ELM is divided into a series of smallest possible sub-problems, each of which are solved analytically. Compared with SVM, sparse ELM obtains better generalization performance with much faster training speed. Compared with unified ELM, sparse ELM achieves similar generalization performance for binary classification applications, and when dealing with large-scale binary classification problems, sparse ELM realizes even faster training speed than unified ELM.

  10. Deep ultra violet and visible Raman spectroscopy studies of ion implanted 6H-SiC: Recrytallisation behaviour and thermal decomposition/thermal etching of the near surface region

    NASA Astrophysics Data System (ADS)

    Kuhudzai, R. J.; Malherbe, J. B.; van der Berg, N. G.; Hlatshwayo, T. T.; Odutemowo, O.; Prinsloo, L. C.; Buys, A. V.; Erasmus, R.; Wendler, E.

    2015-12-01

    The recystallisation behaviour and thermal decomposition of the near surface amorphised region of 6H-SiC have been investigated by Raman spectroscopy. 360 keV ions of iodine and silver were implanted at room temperature into wafers of 6H-SiC resulting in the amorphisation of the near surface region. Vacuum annealing of the samples was performed at 1200 °C for 5 h and then sequentially from 1200 to 1600 °C in steps of 100 °C for 30 h at each annealing temperature. Raman spectroscopy was performed using two laser wavelength excitation regimes, the 514 nm laser (visible region) and the 244 nm laser (deep ultraviolet region, DUV). Measurements in the visible region for samples annealed at 1200 °C for 5 h showed that the characteristic 6H-SiC peaks, namely, the Transverse Optical (TO) and Longitudinal Optical (LO) are similar to the virgin samples, albeit with lower intensity due to some retained defects upon recystallisation of the SiC surface region. The similarities between the virgin spectra and the annealed sample were due to the deep penetration of the 514 nm laser into 6H-SiC resulting in the signal from the bulk undamaged 6H-SiC contributing to the overall spectra. However, DUV laser excitation, which only probes the near surface region, shows that after annealing the peaks are broader and asymmetrical compared to the virgin samples. DUV Raman spectra of samples annealed at 1600 °C indicate that SiC has completely decomposed and the top surface layer is now covered by a carbon layer. However the deeper penetrating laser in the visible region showed that the extent of decomposition at 1600 °C was greater for the silver implanted samples than for the iodine implanted samples.

  11. Experimental determination of optical constants in the vacuum ultra violet wavelength region between 80 and 140 nm: A reflectance versus thickness method and its application to ZnSe

    NASA Astrophysics Data System (ADS)

    Bridou, Françoise; Cuniot-Ponsard, Mireille; Desvignes, Jean-Michel

    2007-03-01

    The 80-120 nm spectral range is a key domain for solar physics. Below 105 nm solids do not transmit light and the reflectance of available mirrors is particularly low which makes optical measurements specifically difficult. Optical constants of the materials may consequently be unavailable or unreliable. We present here a two media reflectance method at normal incidence suited to this VUV range, in which the variable is not the incidence angle but the thickness of the top layer made of the material to be analyzed. The real (n) and imaginary (k) parts of the complex index are directly and graphically determined in the (n, k) plane as the common intersection point of isoreflectance curves corresponding to samples different only in the thickness of the top layer. The method is tested and illustrated with ZnSe films evaporated on Al covered float glass substrates. In the literature, the reflectance magnitudes measured on ZnSe crystals differ strongly from an author to the other, leading to discrepant data for ZnSe in the VUV domain. We obtain precise and reliable values of (n, k), which fit the experimental values determined on freshly cleaved ZnSe crystals by J.L. Freeouf and the theoretical values calculated from the electronic band structure of ZnSe by John P. Walter and Marvin L. Cohen, but strongly differ from the optical constants selected by E.D. Palik in his tables.

  12. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    PubMed

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  13. Ablation of (GeS{sub 2}){sub 0.3}(Sb{sub 2}S{sub 3}){sub 0.7} glass with an ultra-violet nano-second laser

    SciTech Connect

    Knotek, P.; Navesnik, J.; Cernohorsky, T.; Kincl, M.; Vlcek, M.; Tichy, L.

    2015-04-15

    Highlights: • The interaction of (GeS{sub 2}){sub 0.3}(Sb{sub 2}S{sub 3}){sub 0.7} bulk glass and film with UV nanosecond laser. • Ablation process, topography of crater and structure of the material were studied. • Ablation threshold fluencies changed with the spot diameter and number of pulses. • The photo-thermal expansion of the material occurred for low laser fluency. • Laser direct writing process applicable for fabrication of passive optical elements. - Abstract: The results of an experimental study of the laser ablation of bulk and thin films of a GeSbS chalcogenide glass using UV nanosecond pulses are reported. The response of the samples to illumination conditions was studied through the use of atomic force spectroscopy, digital holographic microscopy, Raman scattering and scanning electron microscopy. The multi-pulse ablation thresholds were determined for both the bulk and thin film samples for varying number of pulses and illuminated spot diameter. The possible application of direct laser writing into the bulk and thin films of this material is presented.

  14. Reversed Phase High-Performance Liquid Chromatographic Ultra-violet (Photo Diode Array) Quantification of Oleanolic Acid and its Isomer Ursolic Acid for Phytochemical Comparison and Pharmacological Evaluation of Four Leucas Species Used in Ayurveda

    PubMed Central

    Shukla, Pushpendra Kumar; Misra, Ankita; Srivastava, Sharad; Rawat, Ajay K. S.

    2016-01-01

    Content: Different Leucas species are well known as “Dronpushpi,” a well-known herb of Ayurveda, used in the treatment of various ailments. Objective: Evaluation of four industrially important Leucas species for their in vitro antidiabetic potential and radical scavenging effect along with high-performance liquid chromatographic quantification of the bioactive triterpenes. Materials and Methods: The quantification of triterpenes was carried out on C-18 column with acetonitrile and water (90:10) as the solvent system at a detection wavelength of 210 nm. In vitro antidiabetic activity was evaluated by α-amylase inhibition assay based on starch–iodine and 3,5 dinitrosalicylic acid (DNS) method. Antioxidant activity was calculated by five different models, namely total phenolic and total flavonoid content, free radical scavenging activity by 1-1-diphenyl-2-pic-rylhydrazyl (DPPH), ferric-reducing power assay, and the total antioxidant capacity. Results: Maximum concentration of oleanolic acid was found in Leucas cristata, followed by Leucas mollissima, Leucas Aspera, and Leucas biflora. Ursolic acid was highest in L. mollissima and then in L. biflora, L. cristata, and L. aspera, respectively. In in vitro antidiabetic activity, IC50 of L. aspera (1.56 ± 0.01 mg/ml) and L. mollissima (0.75 ± 0.005 mg/ml) were found to be highest in DNS and iodine starch assay. IC50 in DPPH assay ranges from 0.6 ± 0.011 to 1.68 ± 0.011 mg/ml. Antioxidant capacity follows the order; L. aspera > L. mollissima > L. biflora > L. cristata. Conclusion: Promising activities were observed in targeted species, thus L. mollissima, L. biflora, and L. cristata can be used alternatively as a substitute to L. aspera. SUMMARY Physicochemical parameters are within the limit as per the Ayurvedic Pharmacopoeia of IndiaMaximum concentration of oleanolic acid was found in Leucas cristata; however, ursolic acid was highest in Leucas mollissimaIn vitro antidiabetic activity of Leucas aspera and L. mollissima was found to be heighest as compared to other species. However, antioxidant capacity is almost similar in targeted species.Promising activities were observed in all the species, thus L. mollissima, Leucas biflora, and L. cristata can be used alternatively as a substitute to L. aspera. PMID:27279701

  15. High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin.

    PubMed

    Corradini, C; Bianchi, F; Matteuzzi, D; Amoretti, A; Rossi, M; Zanoni, S

    2004-10-29

    Fructooligosaccharides (FOS) and inulin are food grade non-digestible carbohydrates that exert beneficial nutritional effect. This paper describes the suitability of high-performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) and capillary zone electrophoresis (CZE) to evaluate fermentation properties of FOS and inulin in pure Bifidobacterium cultures; and to study their effects on faecal cultures (microbial population and short-chain fatty acids). Prebiotic effectiveness of FOS and inulin of different degrees of polymerization was evaluated monitoring the changes in their molecular weight distribution during the in vitro growth of selected Bifidobacterium strains. The qualitative analysis of the residual soluble oligosaccharides or polysaccharides from Raftilose Synergy, Raftiline HP and Raftilose P95 was carried out by HPAEC-PAD, using a CarboPac PA 100 column and an appositely optimized gradient elution program. Under the optimized gradient elution conditions, glucose, fructose, sucrose were resolved from each other and from fructans with a DP ranging from 3 (1-kestose) to 60. The chromatographic profiles of the spent broths pointed out that almost every strain presented a different capability to ferment fructan chains of variable DP, indicating wide strain to strain differences. To explore the prebiotic effect of FOS and inulin, related to of short chain fatty acids (SCFAs) accumulation in faecal cultures due to fermentative metabolism of intestinal microflora, analysis of SCFAs, acetic and lactic acid was achieved by co-electroosmotic capillary electrophoresis, where the electrophoretic mobility of the anionic analytes and electroosmotic flow (EOF) were similarly directed. Moreover, the use of UV detection for the analyses of our organic anions required a running electrolyte which allowed indirect detection. The optimization of the capillary electrophoretic conditions was carried out by applying a chemometric study based on the use of the experimental design, the effects of three parameters, i.e. temperature, voltage and percentage of methanol added to the background electrolyte were investigated.

  16. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  17. Remembrance of ecohydrologic extremes past

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Hwang, T.

    2013-12-01

    Ecohydrological systems operate at time scales that span several orders of magnitude. Significant processes and feedbacks range from subdaily physiologic response to meteorological drivers, to soil forming and geomorphic processes ranging up through 10^3-10^4 years. While much attention in ecohydrology has focused on ecosystem optimization paradigms, these systems can show significant transience in structure and function, with apparent memory of hydroclimate extremes and regime shifts. While optimization feedbacks can be reconciled with system transience, a better understanding of the time scales and mechanisms of adjustment to increased hydroclimate variability and to specific events is required to understand and predict dynamics and vulnerability of ecosystems. Under certain circumstances of slowly varying hydroclimate, we hypothesize that ecosystems can remain adjusted to changing climate regimes, without displaying apparent system memory. Alternatively, rapid changes in hydroclimate and increased hydroclimate variability, amplified with well expressed non-linearity in the processes controlling feedbacks between water, carbon and nutrients, can move ecosystems far from adjusted states. The Coweeta Hydrological Laboratory is typical of humid, broadleaf forests in eastern North America, with a range of forest biomes from northern hardwoods at higher elevations, to oak-pine assemblages at lower elevations. The site provides almost 80 years of rainfall-runoff records for a set of watersheds under different management, along with multi-decadal forest plot structural information, soil moisture conditions and stream chemistry. An initial period of multi-decadal cooling, was followed by three decades of warming and increased hydroclimate variability. While mean temperature has risen over this time period, precipitation shows no long term trends in the mean, but has had a significant rise in variability with repeated extreme drought and wet periods. Over this latter

  18. Extreme Programming in a Research Environment

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2002-01-01

    This article explores the applicability of Extreme Programming in a scientific research context. The cultural environment at a government research center differs from the customer-centric business view. The chief theoretical difficulty lies in defining the customer to developer relationship. Specifically, can Extreme Programming be utilized when the developer and customer are the same person? Eight of Extreme Programming's 12 practices are perceived to be incompatible with the existing research culture. Further, six of the nine 'environments that I know don't do well with XP' apply. A pilot project explores the use of Extreme Programming in scientific research. The applicability issues are addressed and it is concluded that Extreme Programming can function successfully in situations for which it appears to be ill-suited. A strong discipline for mentally separating the customer and developer roles is found to be key for applying Extreme Programming in a field that lacks a clear distinction between the customer and the developer.

  19. Investigation of Star Formation: Instrumentation and Methodology

    NASA Astrophysics Data System (ADS)

    Veach, Todd Justin

    A thorough exploration of star formation necessitates observation across the electromagnetic spectrum. In particular, observations in the submillimeter and ultra-violet allow one to observe very early stage star formation and to trace the evolution from molecular cloud collapse to stellar ignition. Submillimeter observations are essential for piercing the heart of heavily obscured stellar nurseries to observe star formation in its infancy. Ultra-violet observations allow one to observe stars just after they emerge from their surrounding environment, allowing higher energy radiation to escape. To make detailed observations of early stage star formation in both spectral regimes requires state-of-the-art detector technology and instrumentation. In this dissertation, I discuss the calibration and feasibility of detectors developed by Lawrence Berkeley National Laboratory and specially processed at the Jet Propulsion Laboratory to increase their quantum efficiency at far-ultraviolet wavelengths. A cursory treatment of the delta-doping process is presented, followed by a thorough discussion of calibration procedures developed at JPL and in the Laboratory for Astronomical and Space Instrumentation at ASU. Subsequent discussion turns to a novel design for a Modular Imager Cell forming one possible basis for construction of future large focal plane arrays. I then discuss the design, fabrication, and calibration of a sounding rocket imaging system developed using the MIC and these specially processed detectors. Finally, I discuss one scientific application of sub-mm observations. I used data from the Heinrich Hertz Sub-millimeter Telescope and the Sub-Millimeter Array (SMA) to observe sub-millimeter transitions and continuum emission towards AFGL 2591. I tested the use of vibrationally excited HCN emission to probe the protostellar accretion disk structure. I measured vibrationally excited HCN line ratios in order to elucidate the appropriate excitation mechanism. I find

  20. The Extreme Case of Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11, 2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501+4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP 1E1547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  1. Gravity and Extreme Magnetism SMEX

    NASA Technical Reports Server (NTRS)

    Swank, Jean; Kallman, Timothy R.; Jahoda, Keith M.

    2008-01-01

    Gas accreting ont,o black holes and neutron stars form a dynamic system generating X-rays with spectroscopic signatures and varying on time scales determined by the system. The radiation from various parts of these systems is surely polarized and compact sources have been calculated to give rise to net polarization from the unresolved sum of the radiation from the systems. Polarization has been looked to for some time as also bearing the imprint of strong gravity and providing complementary information that could resolve ambiguities between the physical models that can give rise to frequencies, time delays, and spectra. In the cases of both stellar black holes and supermassive black holes the net polarizations predicted for probable disk and corona models are less than 10 needed. This sensitivity can be achieved, even for sources as faint as 1 milliCrab, in the Gravity and Extreme Magnetism SMEX (GEMS) mission that uses foil mirrors and Time Projection Chamber detectors. Similarities have been pointed out between the timing and the spectral characteristics of low mass X-ray binaries and stellar black hole sources. Polarization measurements for these sources could play a role in determining the configuration of the disk and the neutron star.

  2. Magnetic slippery extreme icephobic surfaces

    PubMed Central

    Irajizad, Peyman; Hasnain, Munib; Farokhnia, Nazanin; Sajadi, Seyed Mohammad; Ghasemi, Hadi

    2016-01-01

    Anti-icing surfaces have a critical footprint on daily lives of humans ranging from transportation systems and infrastructure to energy systems, but creation of these surfaces for low temperatures remains elusive. Non-wetting surfaces and liquid-infused surfaces have inspired routes for the development of icephobic surfaces. However, high freezing temperature, high ice adhesion strength, and high cost have restricted their practical applications. Here we report new magnetic slippery surfaces outperforming state-of-the-art icephobic surfaces with a ice formation temperature of −34 °C, 2–3 orders of magnitude higher delay time in ice formation, extremely low ice adhesion strength (≈2 Pa) and stability in shear flows up to Reynolds number of 105. In these surfaces, we exploit the magnetic volumetric force to exclude the role of solid–liquid interface in ice formation. We show that these inexpensive surfaces are universal and can be applied to all types of solids (no required micro/nano structuring) with no compromise to their unprecedented properties. PMID:27824053

  3. Extreme Mechanics of Growing Matter

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2013-03-01

    Growth is a distinguishing feature of all living things. Unlike standard materials, living matter can autonomously respond to alterations in its environment. As a result of a continuous ultrastructural turnover and renewal of cells and extracellular matrix, living matter can undergo extreme changes in composition, size, and shape within the order of months, weeks, or days. While hard matter typically adapts by increasing its density to grow strong, soft matter adapts by increasing its volume to grow large. Here we provide a state-of-the-art review of growing matter, and compare existing mathematical models for growth and remodeling of living systems. Applications are plentiful ranging from plant growth to tumor growth, from asthma in the lungs to restenosis in the vasculature, from plastic to reconstructive surgery, and from skeletal muscle adaptation to heart failure. Using these examples, we discuss current challenges and potential future directions. We hope to initiate critical discussions around the biophysical modeling of growing matter as a powerful tool to better understand biological systems in health and disease. This research has been supported by the NSF CAREER award CMMI 0952021.

  4. Extreme Light Infrastructure: nuclear physics

    NASA Astrophysics Data System (ADS)

    Zamfir, N. V.; Habs, D.; Negoita, F.; Ursescu, D.

    2011-06-01

    The spectacular progress of electron and heavy-ions acceleration driven by ultra-short high-power laser has opened the way for new methods of investigations in nuclear physics and related fields. On the other hand, upshifting the photon energies of a high repetition TW-class laser through inverse Compton scattering on electron bunches classically accelerated, a high-flux narrow bandwidth gamma beam can be produced. With such a gamma beam in the 1-20 MeV energy range and a two-arms 10-PW class laser system, the pillar of "Extreme Light Infrastructure" to be built in Bucharest will focus on nuclear phenomena and their practical applications. Nuclear structure, nuclear astrophysics, fundamental QED aspects as well as applications in material and life sciences, radioactive waste management and homeland security will be studied using the high-power laser, the gamma beam or combining the two. The article includes a general description of ELI-Nuclear Physics (ELI-NP) facility, an overview of the Physics Case and some details on the few, most representative proposed experiments.

  5. Magnetic slippery extreme icephobic surfaces

    NASA Astrophysics Data System (ADS)

    Irajizad, Peyman; Hasnain, Munib; Farokhnia, Nazanin; Sajadi, Seyed Mohammad; Ghasemi, Hadi

    2016-11-01

    Anti-icing surfaces have a critical footprint on daily lives of humans ranging from transportation systems and infrastructure to energy systems, but creation of these surfaces for low temperatures remains elusive. Non-wetting surfaces and liquid-infused surfaces have inspired routes for the development of icephobic surfaces. However, high freezing temperature, high ice adhesion strength, and high cost have restricted their practical applications. Here we report new magnetic slippery surfaces outperforming state-of-the-art icephobic surfaces with a ice formation temperature of -34 °C, 2-3 orders of magnitude higher delay time in ice formation, extremely low ice adhesion strength (~2 Pa) and stability in shear flows up to Reynolds number of 105. In these surfaces, we exploit the magnetic volumetric force to exclude the role of solid-liquid interface in ice formation. We show that these inexpensive surfaces are universal and can be applied to all types of solids (no required micro/nano structuring) with no compromise to their unprecedented properties.

  6. The Diffuse Extreme Ultraviolet Background

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Slavin, Jonathan

    1996-01-01

    Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.

  7. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  8. Pushing particles in extreme fields

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel F.; Hafizi, Bahman; Palastro, John

    2017-03-01

    The update of the particle momentum in an electromagnetic simulation typically employs the Boris scheme, which has the advantage that the magnetic field strictly performs no work on the particle. In an extreme field, however, it is found that onerously small time steps are required to maintain accuracy. One reason for this is that the operator splitting scheme fails. In particular, even if the electric field impulse and magnetic field rotation are computed exactly, a large error remains. The problem can be analyzed for the case of constant, but arbitrarily polarized and independent electric and magnetic fields. The error can be expressed in terms of exponentials of nested commutators of the generators of boosts and rotations. To second order in the field, the Boris scheme causes the error to vanish, but to third order in the field, there is an error that has to be controlled by decreasing the time step. This paper introduces a scheme that avoids this problem entirely, while respecting the property that magnetic fields cannot change the particle energy.

  9. [Injury mechanisms in extreme violence settings].

    PubMed

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes.

  10. The limits for life under multiple extremes.

    PubMed

    Harrison, Jesse P; Gheeraert, Nicolas; Tsigelnitskiy, Dmitry; Cockell, Charles S

    2013-04-01

    Life on Earth is limited by physical and chemical extremes that define the 'habitable space' within which it operates. Aside from its requirement for liquid water, no definite limits have been established for life under any extreme. Here, we employ growth data published for 67 prokaryotic strains to explore the limitations for microbial life under combined extremes of temperature, pH, salt (NaCl) concentrations, and pressure. Our review reveals a fundamental lack of information on the tolerance of microorganisms to multiple extremes that impedes several areas of science, ranging from environmental and industrial microbiology to the search for extraterrestrial life.

  11. Against objective statistical analysis of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Bardsley, W. E.

    1994-11-01

    Random-variable models are frequently applied to recorded sequences of hydrological extremes. However, even if the recorded extremes behave like random variables the underlying probability distribution still remains unknown. It follows that better extrapolations of extreme hydrological events will never be achieved by comparing permutations of the latest estimation techniques and specified probability distributions. Yet such estimation/distribution comparisons continue to proliferate through the hydrological literature in the vain hope that some 'best' extrapolation method will emerge in time. The questionable value of the whole comparison process calls into question the worth of objectivity as a desirable attribute in techniques for analysing hydrological extremes.

  12. Controlling extreme events on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  13. Generalized extreme gust wind speeds distributions

    USGS Publications Warehouse

    Cheng, E.; Yeung, C.

    2002-01-01

    Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.

  14. Exclusive lower extremity mirror movements and diastematomyelia.

    PubMed

    Tubbs, R Shane; Smyth, Matthew D; Dure, Leon S; Oakes, W Jerry

    2004-01-01

    Mirror movements usually seen in the Klippel-Feil syndrome are most commonly appreciated in the upper extremities. Lower extremity involvement is seen rarely and when observed, is found in conjunction with upper extremity mirror movements. We report what we believe to be the first case of mirror movements found exclusively in the lower extremities in a female patient presenting with tethered cord syndrome. Our hopes are that this report will help elucidate mechanisms involved with these anomalous movements, as currently there is no commonly accepted etiology.

  15. Real World: Analog Testing in Extreme Environments

    NASA Video Gallery

    See how NASA uses analog testing to simulate space exploration. Explore extreme environments like the Aquarius underwater laboratory in Key Largo, Florida. Find out how scientists use mathematical ...

  16. Data-driven prediction and prevention of extreme events in a spatially extended excitable system.

    PubMed

    Bialonski, Stephan; Ansmann, Gerrit; Kantz, Holger

    2015-10-01

    Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in field studies, we assume not to know the governing equations of motion and to be able to observe only a subset of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well. With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able to completely suppress extreme events in this system.

  17. Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Klein, Roman; Bock, Thomas

    2003-10-01

    Photodiodes are used as easy-to-operate detectors in the extreme-ultraviolet spectral range. At the Physikalisch-Technische Bundesanstalt photodiodes are calibrated with an uncertainty of spectral responsivity of 0.3% or less. Stable photodiodes are a prerequisite for the dissemination of these high-accuracy calibrations to customers. Silicon photodiodes with different top layers were exposed to intense extreme-ultraviolet irradiation. Diodes coated with diamondlike carbon or TiSiN proved to be stable within a few percent up to a radiant exposure of 100 kJ/cm2. The changes in responsivity could be explained as being due to carbon contamination and to changes in the internal charge collection efficiency. In ultrahigh vacuum, no indication of oxidation was found.

  18. Extreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Graham, J. R.; Ghez, A.; Kalas, P.; Lloyd, J.; Makidon, R.; Olivier, S.; Patience, J.; Perrin, M.; Poyneer, L.; Severson, S.; Sheinis, A.; Sivaramakrishnan, A.; Troy, M.; Wallace, J.; Wilhelmsen, J.

    2002-12-01

    Direct detection of photons emitted or reflected by extrasolar planets is the next major step in extrasolar planet studies. Current adaptive optics (AO) systems, with <300 subapertures and Strehl ratio 0.4-0.7, can achieve contrast levels of 106 at 2" separations; this is sufficient to see very young planets in wide orbits but insufficient to detect solar systems more like our own. Contrast levels of 107 - 108 in the near-IR are needed to probe a significant part of the extrasolar planet phase space. The NSF Center for Adaptive Optics is carrying out a design study for a dedicated ultra-high-contrast "Extreme" adaptive optics system for an 8-10m telescope. With 3000 controlled subapertures it should achieve Strehl ratios > 0.9 in the near-IR. Using a spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused static errors. We predict that it will achieve contrast levels of 107-108 around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. The system will be capable of a variety of high-contrast science including studying circumstellar dust disks at densities a factor of 10-100 lower than currently feasible and a systematic inventory of other solar systems on 10-100 AU scale. This work was supported by the NSF Science and Technology Center for Adaptive Optics, managed by UC Santa Cruz under AST-9876783. Portions of this work was performed under the auspices of the U.S. Department of Energy, under contract No. W-7405-Eng-48.

  19. War injuries of the extremities.

    PubMed

    Korzinek, K

    1993-05-01

    This paper describes experience acquired during the war against Croatia under improvised conditions at the Kutina War Hospital in the immediate vicinity of the first front lines. Over a period of almost 6 months a total of 701 soldiers and civilians, 546 of whom had been wounded by firearm missiles, were treated at the Kutina War Hospital, which has a capacity of 30-40 beds. As many as 87% of the injuries were due to mine, bomb or artillery shell shrapnel. The percentage of gunshot wounds was very low, mainly caused by sniper shots. Most patients (419, or 76.7%) were admitted with injuries to the extremities, including 893 severe soft tissue injuries and 182 fractures (32.3%). Soft tissue injuries were treated by routine procedures of war surgery, associated with ample use of Lavasept, an antiseptic solution (Fresenius, Stans, Switzerland), which has proved to be highly efficacious in preventing and decontaminating infection without disturbance of the wound healing process. Long bone fractures were fixed with the aid of external fixators of various designs, including the CMC external fixator of our own construction. External fixators have once again proved indispensable in the treatment of open fractures sustained in war settings. Amputations were performed in 10.4% of cases, including fingers and toes. Only 8 patients died during or immediately after surgery, corresponding to a very low mortality rate of 1.46%. The main prerequisites for successful treatment are a professional relationship to war surgery and its specific requirements, satisfactory technical equipment, and excellent organization of medical and non-medical services.

  20. Extreme-UV lithography system

    DOEpatents

    Replogle, William C.; Sweatt, William C.

    2001-01-01

    A photolithography system that employs a condenser that includes a series of aspheric mirrors on one side of a small, incoherent source of radiation producing a series of beams is provided. Each aspheric mirror images the quasi point source into a curved line segment. A relatively small arc of the ring image is needed by the camera; all of the beams are so manipulated that they all fall onto this same arc needed by the camera. Also, all of the beams are aimed through the camera's virtual entrance pupil. The condenser includes a correcting mirror for reshaping a beam segment which improves the overall system efficiency. The condenser efficiently fills the larger radius ringfield created by today's advanced camera designs. The system further includes (i) means for adjusting the intensity profile at the camera's entrance pupil or (ii) means for partially shielding the illumination imaging onto the mask or wafer. The adjusting means can, for example, change at least one of: (i) partial coherence of the photolithography system, (ii) mask image illumination uniformity on the wafer or (iii) centroid position of the illumination flux in the entrance pupil. A particularly preferred adjusting means includes at least one vignetting mask that covers at least a portion of the at least two substantially equal radial segments of the parent aspheric mirror.

  1. Comparison of line x-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses

    SciTech Connect

    Fazeli, R.; Mahdieh, M. H.

    2015-11-15

    Enhancement of line x-ray emission from both solid and porous iron targets induced by irradiation of single and double laser pulses is studied numerically. The line emission from laser produced plasma is calculated within the extreme ultra-violet lithography wavelength range of 13.5–13.7 nm. The effects of pre-pulse intensity and delay time between two pulses (pre-pulse and main pulse) are examined. The results show that using double pulses irradiation in the conditions of porous target can reduce the x-ray enhancement. According to the results, the use of both pre-pulse and porous target leads to efficient absorption of the laser energy. Calculations also show that such enhanced laser absorption can ionize atoms of the target material to very high degrees of ionization, leading to decrease of the density of appropriate ions that are responsible for line emission in the selected wavelength region. By increasing the target porosity, x-ray yield was more reduced.

  2. Low-energy ion emission from a xenon gas-puff laser-plasma X-ray source

    NASA Astrophysics Data System (ADS)

    Daido, H.; Yamagami, S.; Suzuki, M.; Azuma, H.; Choi, I. W.; Fiedorowicz, H.

    We have measured low-energy ion emission from a gas-puff laser-plasma X-ray source. The ions may cause the degradation of the condenser mirror of the extreme ultra-violet projection lithography system. A 0.7 J in 8 ns Nd:YAG laser at 1.06 μm was focused onto the xenon gas-puff target with an intensity of 1012 W/cm2. The silicon (111) plates, placed at a distance of 32 mm from the laser-interaction region, were exposed with the xenon ions. The average ion energy was measured to be less than 50 eV with a Faraday-cup detector placed close to the silicon plates. The xenon deposition occurred in the silicon plates with a depth of less than 40 nm. The deposition density was measured with a quadrupole secondary ion mass spectrometer to be 1021 /cm3 after 1500 laser shots. The energy-conversion efficiency from the laser energy into the ions is 0.1%/4 πsr/shot. For the lithography system, if we can remove such ion bombardment completely using novel techniques such as electro-magnetic devices or gas flow curtain techniques, the lifetime of the condenser mirror will be extended significantly.

  3. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.

    PubMed

    Rankin, Jeffery W; Kwarciak, Andrew M; Mark Richter, W; Neptune, Richard R

    2010-10-19

    Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g., fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different values of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g., rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimize upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand.

  4. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    NASA Astrophysics Data System (ADS)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  5. Complex Plasma Research Under Extreme Conditions

    SciTech Connect

    Ishihara, Osamu

    2008-09-07

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  6. Infectious disease and the extreme sport athlete.

    PubMed

    Young, Craig C; Niedfeldt, Mark W; Gottschlich, Laura M; Peterson, Charles S; Gammons, Matthew R

    2007-07-01

    Extreme sport competition often takes place in locations that may harbor atypical diseases. This article discusses infections that may be more likely to occur in the extreme sport athlete, such as selected parasitic infections, marine infections, freshwater-borne diseases, tick-borne disease, and zoonoses. Epidemiology, presentation, treatment, complications, and return-to-sport issues are discussed for each of these diseases.

  7. The Nature and Characteristics of Youthful Extremism

    ERIC Educational Resources Information Center

    Zubok, Iu. A.; Chuprov, V. I.

    2010-01-01

    Extremism is an acute problem of the present day. Moods of extremism are manifested in all spheres of the life and activities of young people--in education, work, business, political life, and leisure activity. They can be found in both individual and group social self-determination and are influenced by the immediate social environment as well as…

  8. Surface atmospheric extremes (Launch and transportation areas)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The effects of extreme values of surface and low altitude atmospheric parameters on space vehicle design, tests, and operations are discussed. Atmospheric extremes from the surface to 150 meters for geographic locations of interest to NASA are given. Thermal parameters (temperature and solar radiation), humidity, pressure, and atmospheric electricity (lighting and static) are presented. Weather charts and tables are included.

  9. Britain Sets Guidelines on Islamic Extremism

    ERIC Educational Resources Information Center

    Labi, Aisha

    2006-01-01

    The British government has published a long-anticipated report containing guidelines designed to help higher-education institutions combat Islamic extremism. The report entitled "Promoting Good Campus Relations: Working With Staff and Students to Build Community Cohesion and Tackle Violent Extremism in the Name of Islam at Universities and…

  10. How Vulnerable Is Nigeria to Islam Extremism?

    DTIC Science & Technology

    2011-06-01

    38  c.  Triggers of Violence ................................................................40  2...MOVEMENT THEORY, DRIVERS OF VIOLENT EXTREMISM AND NIGERIAN VIOLENCE ...........................................55  viii LIST OF REFERENCES...intolerance, hatred, and violence .1 The factors that determine why people resort to religious extremism vary from one nation to another. Nowadays, the

  11. Generalized IRT Models for Extreme Response Style

    ERIC Educational Resources Information Center

    Jin, Kuan-Yu; Wang, Wen-Chung

    2014-01-01

    Extreme response style (ERS) is a systematic tendency for a person to endorse extreme options (e.g., strongly disagree, strongly agree) on Likert-type or rating-scale items. In this study, we develop a new class of item response theory (IRT) models to account for ERS so that the target latent trait is free from the response style and the tendency…

  12. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  13. Efficient fireplace

    SciTech Connect

    Bigelow, T.

    1985-10-01

    Among the efforts to overcome the inherent inefficiency of fireplaces, the most effective to date is a fireplace insert, which is an air-tight wood-burning heater made to fit inside an existing fireplace. New aesthetically pleasing designs combine the latest in heating technology (including catalytic combustors). Features to look for are strong construction with double walls and smooth welds, a good warranty, and proper sizing. Efficiency ratings of the new inserts are 40-45%, compared to 10-15% for a conventional fireplace. Disadvantages include the difficulty of handling and installing the inserts, creosote formation because of lingering smoke, and possible fires. The National Fire Protection Association has adopted a positive connect requirement to carry smoke directly into the chimney. Prices range from $600 to $1300 for the inserts.

  14. EPE The Extreme Physics Explorer

    NASA Technical Reports Server (NTRS)

    Garcia, Michael; Elvis, Martin; Bookbinder, Jay; Brenneman, Laura; Bulbul, Esra; Nulsen, Paul; Patnaude, Dan; Smith, Randall; Bandler, Simon; Okajima, Takashi; Ptak, Andy; Figueroa-Feliciano, Enectali; Chakrabarty, Deepto; Danner, Rolf; Daily, Dean; Fraser, George; Willingale, Richard; Miller, Jon; Turner, T. J.; Risalti, Guido; Galeazzi, Massimiliano

    2012-01-01

    The Extreme Physics Explorer (EPE) is a mission concept that will address fundamental and timely questions in astrophysics which are primary science objectives of IXO. The reach of EPE to the areas outlined in NASA RFI NNH11ZDA018L is shown as a table. The dark green indicates areas in which EPE can do the basic IXO science, and the light green areas where EPE can contribute but will not reach the full IXO capability. To address these science questions, EPE will trace orbits close to the event horizon of black holes, measure black hole spin in active galactic nuclei (AGN), use spectroscopy to characterize outflows and the environment of AGN, map bulk motions and turbulence in galaxy clusters, and observe the process of cosmic feedback where black holes inject energy on galactic and intergalactic scales. EPE gives up the high resolution imaging of IXO in return for lightweight, high TRL foil mirrors which will provide >20 times the effective area of ASTRO-H and similar spatial resolution, with a beam sufficient to study point sources and nearby galaxies and clusters. Advances in micro-calorimeters allow improved performance at high rates with twice the energy resolution of ASTRO-H. A lower TRL option would provide 200 times the area of ASTRO-H using a micro-channel plate optic (MCPO) and a deployable optical bench. Both options are in the middle range of RFI missions at between $600M and $1000M. The EPE foil optic has direct heritage to ASTRO-H, allowing robust cost estimates. The spacecraft is entirely off the shelf and introduces no difficult requirements. The mission could be started and launched in this decade to an L2 orbit, with a three-year lifetime and consumables for 5 years. While ASTRO-H will give us the first taste of high-resolution, non-dispersive X-ray spectroscopy, it will be limited to small numbers of objects in many categories. EPE will give us the first statistically significant samples in each of these categories.

  15. Extreme Ultraviolet Imaging Telescope (EIT)

    NASA Technical Reports Server (NTRS)

    Lemen, J. R.; Freeland, S. L.

    1997-01-01

    Efforts concentrated on development and implementation of the SolarSoft (SSW) data analysis system. From an EIT analysis perspective, this system was designed to facilitate efficient reuse and conversion of software developed for Yohkoh/SXT and to take advantage of a large existing body of software developed by the SDAC, Yohkoh, and SOHO instrument teams. Another strong motivation for this system was to provide an EIT analysis environment which permits coordinated analysis of EIT data in conjunction with data from important supporting instruments, including Yohkoh/SXT and the other SOHO coronal instruments; CDS, SUMER, and LASCO. In addition, the SSW system will support coordinated EIT/TRACE analysis (by design) when TRACE data is available; TRACE launch is currently planned for March 1998. Working with Jeff Newmark, the Chianti software package (K.P. Dere et al) and UV /EUV data base was fully integrated into the SSW system to facilitate EIT temperature and emission analysis.

  16. Extreme Learning Machine for Multilayer Perceptron.

    PubMed

    Tang, Jiexiong; Deng, Chenwei; Huang, Guang-Bin

    2016-04-01

    Extreme learning machine (ELM) is an emerging learning algorithm for the generalized single hidden layer feedforward neural networks, of which the hidden node parameters are randomly generated and the output weights are analytically computed. However, due to its shallow architecture, feature learning using ELM may not be effective for natural signals (e.g., images/videos), even with a large number of hidden nodes. To address this issue, in this paper, a new ELM-based hierarchical learning framework is proposed for multilayer perceptron. The proposed architecture is divided into two main components: 1) self-taught feature extraction followed by supervised feature classification and 2) they are bridged by random initialized hidden weights. The novelties of this paper are as follows: 1) unsupervised multilayer encoding is conducted for feature extraction, and an ELM-based sparse autoencoder is developed via l1 constraint. By doing so, it achieves more compact and meaningful feature representations than the original ELM; 2) by exploiting the advantages of ELM random feature mapping, the hierarchically encoded outputs are randomly projected before final decision making, which leads to a better generalization with faster learning speed; and 3) unlike the greedy layerwise training of deep learning (DL), the hidden layers of the proposed framework are trained in a forward manner. Once the previous layer is established, the weights of the current layer are fixed without fine-tuning. Therefore, it has much better learning efficiency than the DL. Extensive experiments on various widely used classification data sets show that the proposed algorithm achieves better and faster convergence than the existing state-of-the-art hierarchical learning methods. Furthermore, multiple applications in computer vision further confirm the generality and capability of the proposed learning scheme.

  17. [Crossing borders. The motivation of extreme sportsmen].

    PubMed

    Opaschowski, H W

    2005-08-01

    In his article "Crossing borders -- the motivation of extreme sportsmen" the author gets systematically to the bottom of the question of why extreme sportsmen voluntarily take risks and endanger themselves. Within the scope of a representative sampling 217 extreme sportsmen -- from the fields of mountain biking, trekking and free climbing, canoyning, river rafting and deep sea diving, paragliding, parachuting, bungee jumping and survival training -- give information about their personal motives. What fascinates them? The attraction of risk? The search for sensation? Or the drop out of everyday life? And what comes afterwards? Does in the end the whole life become an extreme sport? Fact is: they live extremely, because they want to move beyond well-trodden paths. To escape the boredom of everyday life they are searching for the kick, the thrill, the no-limit experience. It's about calculated risk between altitude flight and deep sea adventure.

  18. Climate extremes and the carbon cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Bahn, M.; Ciais, P.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.

    2013-12-01

    The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Ongoing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that rare climate extremes can lead to a decrease in ecosystem carbon stocks and therefore have the potential to negate the expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget. In addition to direct impact on the carbon fluxes of photosynthesis and respiration via extreme temperature and (or) drought, effects of extreme events may also lead to lagged responses, such as wildfires triggered by heat waves and droughts, or pest and pathogen outbreaks following wind-throw caused by heavy storms, reduced plant health due to drought stress or due to less frequent cold extremes in presently cold regions. One extreme event can potentially override accumulated previous carbon sinks, as shown by the Western European 2003 heat wave.. Extreme events have the potential to affect the terrestrial ecosystem carbon balance through a single factor, or as a combination of factors. Climate extremes can cause carbon losses from accumulated stocks, as well as long-lasting impacts on (e.g. lagged effects) on plant growth and mortality, extending beyond the duration of the extreme event itself. The sensitivity of terrestrial ecosystems and their carbon balance to climate change and extreme events varies according to the type of extreme, the climatic region, the land cover, and the land management. Extreme event impacts are very relevant in forests due to the importance of lagged and memory effects on tree growth and mortality, the longevity of tree species, the large forest carbon stocks and their vulnerability, as well as the

  19. Extreme Weather and Climate: Workshop Report

    NASA Technical Reports Server (NTRS)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; Orlove, Ben; Rosenzweig, Cynthia; Seager, Richard; Shaman, Jeffrey; Tippett, Michael

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  20. Fault Tolerant Magnetic Bearing Testing and Conical Magnetic Bearing Development for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Clark, Daniel

    2004-01-01

    During the six month tenure of the grant, activities included continued research of hydrostatic bearings as a viable backup-bearing solution for a magnetically levitated shaft system in extreme temperature environments (1000 F), developmental upgrades of the fault-tolerant magnetic bearing rig at the NASA Glenn Research Center, and assisting in the development of a conical magnetic bearing for extreme temperature environments, particularly turbomachinery. It leveraged work from the ongoing Smart Efficient Components (SEC) and the Turbine-Based Combined Cycle (TBCC) program at NASA Glenn Research Center. The effort was useful in providing technology for more efficient and powerful gas turbine engines.

  1. Keeping Cool in Extreme Heat

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a partnership with Unitika Ltd., NASA's Langley Research Center created a foam based on high temperature resistant polyimide chemistry. Licensed non-exclusively to SORDAL, Inc., the low-density foam, named TEEK, can be processed into forms or used to fill structures such as honeycomb. TEEK offers superior insulation and support qualities, with heat and flame resistance abilities.TEEK is a practical selection for hull insulation in the shipbuilding industry, with numerous potential applications in aerospace applications, fire-resistant construction materials, and a wide range of consumer products that will improve safety and energy efficiency. Other opportunities are available in the areas of automotive coatings and sealants, electrical components, and recreational equipment. SORDAL has introduced its new product in several different forms, under the name "SOLREX". The company is developing a new product called SORDAL Paper(TM) that will be used in conjunction with the polyimide foam to offer thermal protection in various products, such as fire resistant garments and prosthetics.

  2. Understanding hydrological extremes in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Mård, Johanna; Di Baldassarre, Giuliano

    2016-04-01

    Hydrological extremes, from floods to droughts, pose one of the greatest challenges of the 21st century. Many of these challenges are associated with societal interactions with water, as people control or impact hydrological systems in a multitude of ways while they are also being affected and shaped by hydrological extremes, depending on their response to drought and flood events. However, the fact that the human and natural components of freshwater systems interact and co-evolve over time is often not taken into account. There is a need to study the two-way coupling between hydrology and society within a more comprehensive framework for hydrological extremes to anticipate future trajectories in a rapidly changing world. We present an interdisciplinary framework (and concepts) to identify internal controlling variables, processes and feedbacks, and the external system drivers and disturbances of the coupled human-water system with regard to hydrological extremes. To achieve this, the study (i) synthesizes existing research on coupled human-water system focusing on floods and droughts, (ii) analyzes hydrological extremes that have already occurred and their spatiotemporal patterns to investigate what patterns are observed in different regions of the world, and (iii) systematically describe the observed hydrological extremes, their causes and the interactions and feedbacks between hydrology and society. Advancing our understanding of mechanisms and feedbacks driving hydrological extremes is essential to better anticipate how the coupled human-water system will respond to future environmental change.

  3. Extreme weather events and infectious disease outbreaks.

    PubMed

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  4. Extreme weather events and infectious disease outbreaks

    PubMed Central

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and ‘pestilence’ associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations. PMID:26168924

  5. Changes in Concurrent Precipitation and Temperature Extremes

    DOE PAGES

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  6. Changes in Concurrent Precipitation and Temperature Extremes

    SciTech Connect

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes. The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.

  7. Use of an Extremely Large Telescope for HTRA

    NASA Astrophysics Data System (ADS)

    Ryan, Oliver; Redfern, Mike

    Investigative studies have designed concept instruments for a proposed 42 m European Extremely Large Telescope (E-ELT) facility suite. An ELT will aid, at its most basic level, detection of the faintest stellar sources and instrinsic features, and detailed quantitative analysis of relatively bright sources. The development of such a telescope thus plays to the strengths of high time resolution (HTR) detectors which provide single photon detection capabilities and/or extremely high refresh rates—they can maximize detection of faint sources through photon counting and they can cope with the high photon flux from relatively bright objects building up extremely high S/N. Specific considerations and fast detectors then need to be adopted into the ELT design to accommodate high time resolution astrophysics (HTRA) efficiently. No one instrument or detector can cover all HTRA timescales (nanoseconds to seconds and `slower'), and a dedicated facility HTRA instrument on the ELT is unlikely as yet, but chosen facility instruments can include HTRA options in their packages. Currently there are numerous HTRA options in existing telescope facilities around the world as well as many visiting HTRA instruments. This demonstrates an active HTRA community with worldwide support and interest in HTRA observation capabilities, which underscores the need for HTR capabilities to be designed into the ELT.

  8. Dynamical proxies of North Atlantic predictability and extremes

    PubMed Central

    Faranda, Davide; Messori, Gabriele; Yiou, Pascal

    2017-01-01

    Atmospheric flows are characterized by chaotic dynamics and recurring large-scale patterns. These two characteristics point to the existence of an atmospheric attractor defined by Lorenz as: “the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid”. The average dimension D of the attractor corresponds to the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts. PMID:28120899

  9. Dynamical proxies of North Atlantic predictability and extremes

    NASA Astrophysics Data System (ADS)

    Faranda, Davide; Messori, Gabriele; Yiou, Pascal

    2017-01-01

    Atmospheric flows are characterized by chaotic dynamics and recurring large-scale patterns. These two characteristics point to the existence of an atmospheric attractor defined by Lorenz as: “the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid”. The average dimension D of the attractor corresponds to the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts.

  10. Amniotic band sequence: an extreme case.

    PubMed

    Kahramaner, Zelal; Cosar, Hese; Turkoglu, Ebru; Erdemir, Aydin; Kanik, Ali; Sutcuoglu, Sumer; Ozer, Esra Arun

    2012-03-01

    Amniotic band sequence (ABS) is a rare cause of fetal disruptions associated with fibrous bands that entrap various fetal parts in utero and lead to abnormalities. Fetal disruptions of ABS are influenced by the timing of the amnion rupture and the site of amnion adherence. Herein we report an extreme case of ABS presented with dysmorphic face, amputation of four extremities and fusion of legs and genitalia with a fibrotic band. This is an extreme case of ABS characterized by an unusual combination of multiple fetal anomalies.

  11. Extremely thermophilic energy metabolisms: biotechnological prospects.

    PubMed

    Straub, Christopher T; Zeldes, Benjamin M; Schut, Gerrit J; Adams, Michael Ww; Kelly, Robert M

    2017-03-16

    New strategies for metabolic engineering of extremely thermophilic microorganisms to produce bio-based fuels and chemicals could leverage pathways and physiological features resident in extreme thermophiles for improved outcomes. Furthermore, very recent advances in genetic tools for these microorganisms make it possible for them to serve as metabolic engineering hosts. Beyond providing a higher temperature alternative to mesophilic platforms, exploitation of strategic metabolic characteristics of high temperature microorganisms grants new opportunities for biotechnological products. This review considers recent developments in extreme thermophile biology as they relate to new horizons for energy biotechnology.

  12. Deep venous thrombosis of the upper extremity.

    PubMed

    Stephens, M B

    1997-02-01

    Deep venous thrombosis (DVT) of the upper extremity is a relatively uncommon but important cause of morbidity, especially in young active persons. The causes of upper extremity DVT may be categorized as catheter-related, spontaneous (effort-related) and miscellaneous (e.g., trauma, intravenous drug use). Diagnosis is based on clinical history and confirmed by either duplex ultrasonography or contrast venography. Significant controversy surrounds the optimal management of upper extremity DVT. Treatment options include conservative therapy, anticoagulation, catheter-directed thrombolysis and surgical intervention to remove intravascular clot or revise the anatomy of the costoclavicular space. Early aggressive treatment of active young patients may decrease long-term morbidity.

  13. Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

    PubMed

    Yang, Yimin; Wu, Q M Jonathan

    2015-10-09

    The extreme learning machine (ELM), which was originally proposed for ''generalized'' single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

  14. Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

    PubMed

    Yang, Yimin; Wu, Q M Jonathan

    2016-11-01

    The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

  15. Controlling extreme events on complex networks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-01-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed. PMID:25131344

  16. Forecaster's dilemma: Extreme events and forecast evaluation

    NASA Astrophysics Data System (ADS)

    Lerch, Sebastian; Thorarinsdottir, Thordis; Ravazzolo, Francesco; Gneiting, Tilmann

    2015-04-01

    In discussions of the quality of forecasts in the media and public, attention often focuses on the predictive performance in the case of extreme events. Intuitively, accurate predictions on the subset of extreme events seem to suggest better predictive ability. However, it can be demonstrated that restricting conventional forecast verification methods to subsets of observations might have unexpected and undesired effects and may discredit even the most skillful forecasters. Hand-picking extreme events is incompatible with the theoretical assumptions of established forecast verification methods, thus confronting forecasters with what we refer to as the forecaster's dilemma. For probabilistic forecasts, weighted proper scoring rules provide suitable alternatives for forecast evaluation with an emphasis on extreme events. Using theoretical arguments, simulation experiments and a case study on probabilistic forecasts of wind speed over Germany, we illustrate the forecaster's dilemma and the use of weighted proper scoring rules.

  17. Upper extremity trauma: current trends in management.

    PubMed

    Stone, W M; Fowl, R J; Money, S R

    2007-10-01

    Upper extremity trauma can be penetrating or blunt in etiology. The close proximity of vein, artery and nerve makes for a complicated presentation and potentially complicated reconstruction. Orthopedic and neurologic injuries can cause the more long term disability of these patients, but vascular injuries are initially more life threatening. Control of vascular injuries can be particularly difficult due to anatomic issues in the upper extremities. The intervention carried significant morbidity until evolution to endovascular approaches occurred. By reconstructing the injury from a more ''remote'' access site, less concomitant injury to the extremity can be encountered. However, although control of vascular injuries may result in greater survival rates with less morbidity from the procedure, long term outcome remains dependent upon concomitant injuries. This review will encompass both vascular and neurologic injuries secondary to trauma to the upper extremity and outline some of the trends in management.

  18. NASA Measures Extreme Precipitation From Space

    NASA Video Gallery

    From Jan. 25 through Feb. 3, IMERG data estimated that the most extreme precipitation over the United States during this period was over 200mm (7.9 inches) in an area where stormy weather frequentl...

  19. Frequently Asked Questions (FAQ) about Extreme Heat

    MedlinePlus

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  20. Technology of planetary extreme environment simulation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.; Hall, C. A.

    1972-01-01

    Four test chamber systems were devleoped to simulate the extreme atmospheric environs of Venus and Jupiter, in order to assure satisfactory performance of scientific entry probes and their experiments.

  1. Astronomy and the Extreme Ultraviolet Explorer satellite.

    PubMed

    Bowyer, S

    1994-01-07

    The extreme ultraviolet wave band (100 to 912 angstroms) was thought until recently to be useless to astronomy, primarily because the opacity of the interstellar medium would prevent observations at these wavelengths. However, the interstellar medium has been found to be markedly inhomogeneous in both density and ionization state and the sun is fortunately located in a region of low extreme ultraviolet opacity. The Extreme Ultraviolet Explorer, launched in June 1992, has surveyed the sky in this wave band and has detected a wide variety of astronomical sources at considerable distances, including some extragalactic objects. Studies in the extreme ultraviolet band have already begun to increase our understanding of the contents of the universe.

  2. Astronomy and the Extreme Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Bowyer, S.

    1994-01-01

    The extreme ultraviolet wave band (100 to 912 angstroms) was thought until recently to be useless to astronomy, primarily because the opacity of the interstellar medium would prevent observations at these wavelengths. However, the interstellar medium has been found to be markedly inhomogeneous in both density and ionization state and the sun is fortunately located in a region of low extreme ultraviolet opacity. The Extreme Ultraviolet Explorer, launched in June 1992, has surveyed the sky in this wave band and has detected a wide variety of astronomical sources at considerable distances, including some extragalactic objects. Studies in the extreme ultraviolet band have already begun to increase our understanding of the contents of the universe.

  3. Impact of extreme amounts of stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Arfeuille, F.; Weisenstein, D. K.; Luo, B.; Rozanov, E.; Peter, T.

    2012-12-01

    Geoengineering by injection of sulfur (S) into the stratosphere is among the most promising methods of solar radiation management (SRM) techniques (Royal Society, 2009). However, recent work shows that formation of very large particles and removal processes might be fast, so that efficient SRM would require extreme S-injections. In this study we investigate two such extreme scenarios with continuous sulfur injection of 20 Mt S/a at 30S-30N at 20-26 km and 75 Mt S/a at the Equator at 20 km. We model these scenarios using the chemistry-climate model SOCOL forced by the 2D AER spectral aerosol model (SPARC, 2006). The aerosol model includes S chemistry and microphysics, including nucleation, condensation, evaporation, coagulation and sedimentation. Our results show that these extreme scenarios lead shifts in climate regimes such as a poleward expansion of the Hadley cell in the southern hemisphere. Furthermore, the net SW flux anomalies are about -4 W/m2 and -6.5 W/m2 for the discussed two extreme scenarios. This suggests that 40 Mt S/a (injected at the Equator at 20 km) is required to achieve -4W/m2, which is thought to be required to compensate the forcing due to a CO2 doubling. However, our results indicate a much smaller cooling effect than suggested by Niemeier et al.,(2011). The calculations of radiative forcing directly from aerosols suggest that this discrepancy is mainly due to the differences in the particle size distributions, as Niemeier et al. (2011) used a simplifying modal approach with 3 lognormal modes.

  4. Extreme Ultraviolet Explorer Bright Source List

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  5. A Millennial Challenge: Extremism in Uncertain Times

    PubMed Central

    Fiske, Susan T.

    2014-01-01

    This comment highlights the relevance and importance of the uncertainty-extremism topic, both scientifically and societally, identifies common themes, locates this work in a wider scientific and social context, describes what we now know and what we still do not, acknowledges some limitations, foreshadowing future directions, and discusses some potential policy relevance. Common themes emerge around the importance of social justice as sound anti-extremism policy. PMID:24511155

  6. Regional Changes in Extreme Climatic Events

    NASA Astrophysics Data System (ADS)

    Bell, J. L.; Sloan, L. C.; Snyder, M. A.

    2002-12-01

    This study focuses on California as a climatically complex region that is vulnerable to changes in water supply and delivery. A regional climate model is employed to assess changes in the frequency and intensity of extreme temperatures and precipitation. Significant increases in daily minimum and maximum temperatures occur with a doubling of atmospheric carbon dioxide concentration. Increases in daily temperatures lead to increases in prolonged heat waves and length of the growing season. Changes in total and extreme precipitation vary by geographic region.

  7. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  8. EXTREME VALUE THEORY WITH OPERATOR NORMING

    PubMed Central

    MEERSCHAERT, MARK M.; SCHEFFLER, HANS-PETER; STOEV, STILIAN A.

    2013-01-01

    A new approach to extreme value theory is presented for vector data with heavy tails. The tail index is allowed to vary with direction, where the directions are not necessarily along the coordinate axes. Basic asymptotic theory is developed, using operator regular variation and extremal integrals. A test is proposed to judge whether the tail index varies with direction in any given data set. PMID:24443640

  9. Test fields cannot destroy extremal black holes

    NASA Astrophysics Data System (ADS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-09-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.

  10. Flexible diaphragm-extreme temperature usage

    NASA Technical Reports Server (NTRS)

    Lerma, Guillermo (Inventor)

    1991-01-01

    A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.

  11. A Millennial Challenge: Extremism in Uncertain Times.

    PubMed

    Fiske, Susan T

    2013-09-01

    This comment highlights the relevance and importance of the uncertainty-extremism topic, both scientifically and societally, identifies common themes, locates this work in a wider scientific and social context, describes what we now know and what we still do not, acknowledges some limitations, foreshadowing future directions, and discusses some potential policy relevance. Common themes emerge around the importance of social justice as sound anti-extremism policy.

  12. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    PubMed Central

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  13. Energetic extremes in aquatic locomotion by coral reef fishes.

    PubMed

    Fulton, Christopher J; Johansen, Jacob L; Steffensen, John F

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  14. Evaluating environmental joint extremes for the offshore industry using the conditional extremes model

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Jonathan, Philip

    2014-02-01

    Understanding extreme ocean environments and their interaction with fixed and floating structures is critical for the design of offshore and coastal facilities. The joint effect of various ocean variables on extreme responses of offshore structures is fundamental in determining the design loads. For example, it is known that mean values of wave periods tend to increase with increasing storm intensity, and a floating system responds in a complex way to both variables. Specification of joint extremes in design criteria has often been somewhat ad hoc, being based on fairly arbitrary combinations of extremes of variables estimated independently. Such approaches are even outlined in design guidelines. Mathematically more consistent estimates of the joint occurrence of extreme environmental variables fall into two camps in the offshore industry - response-based and response-independent. Both are outlined here, with emphasis on response-independent methods, particularly those based on the conditional extremes model recently introduced by (Heffernan and Tawn, 2004), which has a solid theoretical motivation. We illustrate an application of the conditional extremes model to joint estimation of extreme storm peak significant wave height and peak period at a northern North Sea location, incorporating storm direction as a model covariate. We also discuss joint estimation of extreme current profiles with depth off the North West Shelf of Australia. Methods such as the conditional extremes model provide valuable additions to the metocean engineer's toolkit.

  15. The future intensification of hourly precipitation extremes

    NASA Astrophysics Data System (ADS)

    Prein, Andreas F.; Rasmussen, Roy M.; Ikeda, Kyoko; Liu, Changhai; Clark, Martyn P.; Holland, Greg J.

    2017-01-01

    Extreme precipitation intensities have increased in all regions of the Contiguous United States (CONUS) and are expected to further increase with warming at scaling rates of about 7% per degree Celsius (ref. ), suggesting a significant increase of flash flood hazards due to climate change. However, the scaling rates between extreme precipitation and temperature are strongly dependent on the region, temperature, and moisture availability, which inhibits simple extrapolation of the scaling rate from past climate data into the future. Here we study observed and simulated changes in local precipitation extremes over the CONUS by analysing a very high resolution (4 km horizontal grid spacing) current and high-end climate scenario that realistically simulates hourly precipitation extremes. We show that extreme precipitation is increasing with temperature in moist, energy-limited, environments and decreases abruptly in dry, moisture-limited, environments. This novel framework explains the large variability in the observed and modelled scaling rates and helps with understanding the significant frequency and intensity increases in future hourly extreme precipitation events and their interaction with larger scales.

  16. Lower Extremity Permanent Dialysis Vascular Access.

    PubMed

    Parekh, Vishal B; Niyyar, Vandana D; Vachharajani, Tushar J

    2016-09-07

    Hemodialysis remains the most commonly used RRT option around the world. Technological advances, superior access to care, and better quality of care have led to overall improvement in survival of patients on long-term hemodialysis. Maintaining a functioning upper extremity vascular access for a prolonged duration continues to remain a challenge for dialysis providers. Frequently encountered difficulties in clinical practice include (1) a high incidence of central venous catheter-related central vein stenosis and (2) limited options for creating a functioning upper extremity permanent arteriovenous access. Lack of surgical skills, fear of complications, and limited involvement of the treating nephrologists in the decision-making process are some of the reasons why lower extremity permanent dialysis access remains an infrequently used option. Similar to upper extremity vascular access options, lower extremity arteriovenous fistula remains a preferred access over arteriovenous synthetic graft. The use of femoral tunneled catheter as a long-term access should be avoided as far as possible, especially with the availability of newer graft-catheter hybrid devices. Our review provides a summary of clinical evidence published in surgical, radiology, and nephrology literature highlighting the pros and cons of different types of lower extremity permanent dialysis access.

  17. Extreme Weather Events and Climate Change Attribution

    SciTech Connect

    Thomas, Katherine

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  18. Ongoing climatic extreme dynamics in Siberia

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Shulgina, T. M.; Okladnikov, I. G.; Titov, A. G.

    2013-12-01

    Ongoing global climate changes accompanied by the restructuring of global processes in the atmosphere and biosphere are strongly pronounced in the Northern Eurasia regions, especially in Siberia. Recent investigations indicate not only large changes in averaged climatic characteristics (Kabanov and Lykosov, 2006, IPCC, 2007; Groisman and Gutman, 2012), but more frequent occurrence and stronger impacts of climatic extremes are reported as well (Bulygina et al., 2007; IPCC, 2012: Climate Extremes, 2012; Oldenborh et al., 2013). This paper provides the results of daily temperature and precipitation extreme dynamics in Siberia for the last three decades (1979 - 2012). Their seasonal dynamics is assessed using 10th and 90th percentile-based threshold indices that characterize frequency, intensity and duration of climatic extremes. To obtain the geographical pattern of these variations with high spatial resolution, the sub-daily temperature data from ECMWF ERA-Interim reanalysis and daily precipitation amounts from APHRODITE JMA dataset were used. All extreme indices and linear trend coefficients have been calculated using web-GIS information-computational platform Climate (http://climate.scert.ru/) developed to support collaborative multidisciplinary investigations of regional climatic changes and their impacts (Gordov et al., 2012). Obtained results show that seasonal dynamics of daily temperature extremes is asymmetric for tails of cold and warm temperature extreme distributions. Namely, the intensity of warming during cold nights is higher than during warm nights, especially at high latitudes of Siberia. The similar dynamics is observed for cold and warm day-time temperatures. Slight summer cooling was observed in the central part of Siberia. It is associated with decrease in warm temperature extremes. In the southern Siberia in winter, we also observe some cooling mostly due to strengthening of the cold temperature extremes. Changes in daily precipitation extremes

  19. The Pace of Perceivable Extreme Climate Change

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y.

    2015-12-01

    When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.

  20. Neurodevelopmental problems and extremes in BMI

    PubMed Central

    Tajnia, Armin; Lichtenstein, Paul; Lundström, Sebastian; Anckarsäter, Henrik; Nilsson, Thomas; Råstam, Maria

    2015-01-01

    Background. Over the last few decades, an increasing number of studies have suggested a connection between neurodevelopmental problems (NDPs) and body mass index (BMI). Attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) both seem to carry an increased risk for developing extreme BMI. However, the results are inconsistent, and there have been only a few studies of the general population of children. Aims. We had three aims with the present study: (1) to define the prevalence of extreme (low or high) BMI in the group of children with ADHD and/or ASDs compared to the group of children without these NDPs; (2) to analyze whether extreme BMI is associated with the subdomains within the diagnostic categories of ADHD or ASD; and (3) to investigate the contribution of genetic and environmental factors to BMI in boys and girls at ages 9 and 12. Method. Parents of 9- or 12-year-old twins (n = 12,496) were interviewed using the Autism—Tics, ADHD and other Comorbidities (A-TAC) inventory as part of the Child and Adolescent Twin Study in Sweden (CATSS). Univariate and multivariate generalized estimated equation models were used to analyze associations between extremes in BMI and NDPs. Results. ADHD screen-positive cases followed BMI distributions similar to those of children without ADHD or ASD. Significant association was found between ADHD and BMI only among 12-year-old girls, where the inattention subdomain of ADHD was significantly associated with the high extreme BMI. ASD scores were associated with both the low and the high extremes of BMI. Compared to children without ADHD or ASD, the prevalence of ASD screen-positive cases was three times greater in the high extreme BMI group and double as much in the low extreme BMI group. Stereotyped and repetitive behaviors were significantly associated with high extreme BMIs. Conclusion. Children with ASD, with or without coexisting ADHD, are more prone to have low or high extreme BMIs than children

  1. Charged Matter Tests of Cosmic Censorship for Extremal and Nearly-Extremal Black Holes

    NASA Astrophysics Data System (ADS)

    Sorce, Jonathan; Wald, Robert

    2017-01-01

    We investigate scenarios in which adding electrically charged matter to a black hole may cause it to become over-extremal, violating cosmic censorship. It has previously been shown that when the matter is localized as a point particle, no violation occurs for extremal black holes to lowest nonvanishing order in the particle's charge and mass. However, recent work has suggested that violations may be possible when the black hole deviates from extremality. We show that these potential violations always occur above lowest nonvanishing order, and conclude that no lowest-order violation can occur in the nearly-extremal case unless a violation also occurs in the extremal case. We also extend the previous results on point particles to show that no violations occur to second order in charge when an arbitrary charged matter configuration is added to an extremal Kerr black hole, provided only that the matter satisfies the null energy condition.

  2. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  3. [Theoretical analysis and experimental measurement for secondary electron yield of microchannel plate in extreme ultraviolet region].

    PubMed

    Li, Min; Ni, Qi-liang; Dong, Ning-ning; Chen, Bo

    2010-08-01

    Photon counting detectors based on microchannel plate have widespread applications in astronomy. The present paper deeply studies secondary electron of microchannel plate in extreme ultraviolet. A theoretical model describing extreme ultraviolet-excited secondary electron yield is presented, and the factor affecting on the secondary electron yields of both electrode and lead glass which consist of microchannel plate is analyzed according to theoretical formula derived from the model. The result shows that the higher secondary electron yield is obtained under appropriate condition that the thickness of material is more than 20 nm and the grazing incidence angle is larger than the critical angle. Except for several wavelengths, the secondary electron yields of both electrode and lead glass decrease along with the increase in the wavelength And also the quantum efficiency of microchannel plate is measured using quantum efficiency test set-up with laser-produced plasmas source as an extreme ultraviolet radiation source, and the result of experiment agrees with theoretical analysis.

  4. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  5. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  6. Conditional simulations for fields of extreme precipitation

    NASA Astrophysics Data System (ADS)

    Bechler, Aurélien; Vrac, Mathieu; Bel, Liliane

    2014-05-01

    Many environmental models, such as hydrological models, require input data, e.g. precipitation values, correctly simulated and distributed, even at locations where no observation is available. This is particularly true for extreme events that may be of high importance for impact studies. The last decade has seen max-stable processes emerge as a powerful tool for the statistical modeling of spatial extremes. Recently, such processes have been used in climate context to perform simulations at ungauged sites based on empirical distributions of a spatial field conditioned by observed values in some locations. In this work conditional simulations of extremal t process are investigated, taking benefits of its spectral construction. The methodology of conditional simulations proposed by Dombry et al. [2013] for Brown-Resnick and Schlather models is adapted for the extremal t process with some improvements which enlarge the possible number of conditional points. A simulation study enables to highlight the role of the different parameters of the model and to emphasize the importance of the steps of the algorithm. In this work, we focus on the French Mediterranean basin, which is a key spot of occurrences of meteorological extremes such as heavy precipitation. Indeed, major extreme precipitation are regularly observed in this region near the 'cévenol" mountains. The modeling and the understanding of these extreme precipitation - the so-called 'cévenol events" - are of major importance for hydrological studies in this complex terrain since they often trigger major floods in this region. The application of our methodology on real data in this region shows that the model and the algorithm perform well provided the stationary assumptions are fulfilled.

  7. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  8. Antibody-Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells.

    PubMed

    Li, Yingying; Lu, Qihang; Liu, Hongliang; Wang, Jianfeng; Zhang, Pengchao; Liang, Huageng; Jiang, Lei; Wang, Shutao

    2015-11-18

    An antibody-modified reduced graphene oxide (rGO) film with unexpected -extreme sensitivity to circulating tumor cells (CTCs) is reported. The antibody--modified rGO films efficiently capture CTCs from billions of blood cells and minimize the background of white blood cells, without complex microfluidic operations.

  9. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  10. Characterizing and Implementing Efficient Primitives for Privacy-Preserving Computation

    DTIC Science & Technology

    2015-07-01

    CHARACTERIZING AND IMPLEMENTING EFFICIENT PRIMITIVES FOR PRIVACY-PRESERVING COMPUTATION GEORGIA INSTITUTE OF TECHNOLOGY JULY 2015...FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) MAY 2011 – MAR 2015 4. TITLE AND SUBTITLE CHARACTERIZING AND IMPLEMENTING EFFICIENT PRIMITIVES ...computation to be executed upon it. However, the primitives making such computation possible are extremely expensive, and have long been viewed as

  11. Spatial distribution of precipitation extremes in Norway

    NASA Astrophysics Data System (ADS)

    Verpe Dyrrdal, Anita; Skaugen, Thomas; Lenkoski, Alex; Thorarinsdottir, Thordis; Stordal, Frode; Førland, Eirik J.

    2015-04-01

    Estimates of extreme precipitation, in terms of return levels, are crucial in planning and design of important infrastructure. Through two separate studies, we have examined the levels and spatial distribution of daily extreme precipitation over catchments in Norway, and hourly extreme precipitation in a point. The analyses were carried out through the development of two new methods for estimating extreme precipitation in Norway. For daily precipitation we fit the Generalized Extreme Value (GEV) distribution to areal time series from a gridded dataset, consisting of daily precipitation during the period 1957-today with a resolution of 1x1 km². This grid-based method is more objective and less manual and time-consuming compared to the existing method at MET Norway. In addition, estimates in ungauged catchments are easier to obtain, and the GEV approach includes a measure of uncertainty, which is a requirement in climate studies today. Further, we go into depth on the debated GEV shape parameter, which plays an important role for longer return periods. We show that it varies according to dominating precipitation types, having positive values in the southeast and negative values in the southwest. We also find indications that the degree of orographic enhancement might affect the shape parameter. For hourly precipitation, we estimate return levels on a 1x1 km² grid, by linking GEV distributions with latent Gaussian fields in a Bayesian hierarchical model (BHM). Generalized linear models on the GEV parameters, estimated from observations, are able to incorporate location-specific geographic and meteorological information and thereby accommodate these effects on extreme precipitation. Gaussian fields capture additional unexplained spatial heterogeneity and overcome the sparse grid on which observations are collected, while a Bayesian model averaging component directly assesses model uncertainty. We find that mean summer precipitation, mean summer temperature, latitude

  12. Multidecadal oscillations in rainfall and hydrological extremes

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2013-04-01

    Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water

  13. Extreme wind climate in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Pop, L.; Hanslian, D.; Jiri, H.

    2011-12-01

    Extreme wind events belong to the most damaging weather-related hazards in Czech Republic. Therefore a complex survey is performed to exploit the wind data available over the period of industrial measurements in Czech Republic for extreme wind analysis. The object of the survey is to find the limitations of wind data available, to analyze the conditions for extreme wind events and to try to enhance the knowledge about the statistical behavior of extreme wind. The data quality showed itself as a major issue. The homogeneity of extreme wind data is broken in many cases as the extreme wind values are highly dependent on the measuring instrumentation and changes in neighborhood. It also may be difficult to distinguish between correct high wind data and erroneous values. The individual analysis and quality assessment of wind data used in extremal analysis is therefore essential. There are generally two basic groups of extreme wind events typical in the Czech Republic and generally over the mid-latitudes: The "convective" events (can be also called as "squalls") are primarily initiated by deep convection, whereas the primary cause for "non-convective" (synoptic) events is large-scale pressure gradient. The subject is, however, a bit more complex, as the pressure gradient inducing high wind in higher atmospheric levels or wind shear can be a significant factor in convective events; on the other hand, convection may increase wind speeds in otherwise "non-convective" synoptic-scale windstorms. In addition, there are some special phenomena that should be treated individually: the physical principle and climatological behavior (frequency, magnitude and area affected) of tornadoes make them very different from common convective straight winds; this is in lesser scale also the case of "foehn" or "bora" effects belonging to non-convective events. These effects, however, do not play major role over the Czech Republic. In Czech Republic, the overall impact of convective and non

  14. Detection and attribution of extreme weather disasters

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  15. Extreme Metal Music and Anger Processing.

    PubMed

    Sharman, Leah; Dingle, Genevieve A

    2015-01-01

    The claim that listening to extreme music causes anger, and expressions of anger such as aggression and delinquency have yet to be substantiated using controlled experimental methods. In this study, 39 extreme music listeners aged 18-34 years were subjected to an anger induction, followed by random assignment to 10 min of listening to extreme music from their own playlist, or 10 min silence (control). Measures of emotion included heart rate and subjective ratings on the Positive and Negative Affect Scale (PANAS). Results showed that ratings of PANAS hostility, irritability, and stress increased during the anger induction, and decreased after the music or silence. Heart rate increased during the anger induction and was sustained (not increased) in the music condition, and decreased in the silence condition. PANAS active and inspired ratings increased during music listening, an effect that was not seen in controls. The findings indicate that extreme music did not make angry participants angrier; rather, it appeared to match their physiological arousal and result in an increase in positive emotions. Listening to extreme music may represent a healthy way of processing anger for these listeners.

  16. Upper Extremity Problems in Doner Kebab Masters

    PubMed Central

    Taspinar, Ozgur; Kepekci, Muge; Ozaras, Nihal; Aydin, Teoman; Guler, Mustafa

    2014-01-01

    [Purpose] Doner kebab is a food specific to Turkey; it is a cone-shaped meat placed vertically on a high stand. The doner kebab chefs stand against the meat and cut it by using both of their upper extremities. This work style may lead to recurrent trauma and correspondingly the upper extremity problems. The aim of this study was to investigate the upper extremity disorders of doner chefs. [Subjects and Methods] Doner kebab chefs were selected as the study group, and volunteers who were not doner kebab chefs and didn’t exert intense effort with upper extremities their business lives were selected as the control group. A survey form was prepared to obtain data about the participants’ ages, working experience (years), daily work hours, work at a second job, diseases, drug usage, and any musculoskeletal (lasting at least 1 week) complaint in last 6 months. [Results] A total of 164 individuals participated in the study, 82 doner chefs and 82 volunteers. In 20.6% of the study group and 15.6% of the control group, an upper extremity musculoskeletal system disorder was detected. Lateral epicondylitis was more frequently statistically significant in the work group. [Conclusion] Hand pain and lateral epicondylitis are more frequent in doner chefs than in other forms of business. PMID:25276030

  17. Climate Extremes and the Length of Gestation

    PubMed Central

    Basagaña, Xavier; Sartini, Claudio; Figueras, Francesc; Vrijheid, Martine; de Nazelle, Audrey; Sunyer, Jordi; Nieuwenhuijsen, Mark J.

    2011-01-01

    Background: Although future climate is predicted to have more extreme heat conditions, the available evidence on the impact of these conditions on pregnancy length is very scarce and inconclusive. Objectives: We investigated the impact of maternal short-term exposure to extreme ambient heat on the length of pregnancy. Methods: This study was based on a cohort of births that occurred in a major university hospital in Barcelona during 2001–2005. Three indicators of extreme heat conditions based on 1-day exposure to an unusually high heat–humidity index were applied. Each mother was assigned the measures made by the meteorological station closest to maternal residential postcodes. A two-stage analysis was developed to quantify the change in pregnancy length after maternal exposure to extreme heat conditions adjusted for a range of covariates. The second step was repeated for lags 0 (delivery date) to 6 days. Results: We included data from 7,585 pregnant women in our analysis. We estimated a 5-day reduction in average gestational age at delivery after an unusually high heat–humidity index on the day before delivery. Conclusion: Extreme heat was associated with a reduction in the average gestational age of children delivered the next day, suggesting an immediate effect of this exposure on pregnant women. Further studies are required to confirm our findings in different settings. PMID:21659038

  18. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  19. How does public opinion become extreme?

    PubMed Central

    Ramos, Marlon; Shao, Jia; Reis, Saulo D. S.; Anteneodo, Celia; Andrade, José S.; Havlin, Shlomo; Makse, Hernán A.

    2015-01-01

    We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are “very conservative” versus “moderate to very conservative” ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual “stubbornness” that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people’s ties. PMID:25989484

  20. Biological Extreme Events: A Research Framework

    NASA Astrophysics Data System (ADS)

    Gutschick, Vincent P.; BassiriRad, Hormoz

    2010-03-01

    Efforts designed to understand and predict adaptation responses of organisms and populations to global climate change must make a clear distinction between responses to changes in average conditions (e.g., doubling of atmospheric carbon dioxide concentration accompanied by an average increase of 1°-3°C in global air temperature by the end of this century) and responses resulting from increased incidence of extreme events [Loehle and LeBlanc, 1996; Easterling et al., 2000; Garrett et al., 2006]. Such distinction is critical because, unlike changes in average conditions, extremes (e.g., megadroughts, fire, flooding, hurricanes, heat waves, and pest outbreaks) are typically short in duration but challenge organisms and populations considerably further beyond their ability to acclimate than those expected from average trends in climate changes. There is growing evidence that climatic extremes have been rising in frequency or magnitude during the last part of the twentieth century and will continue to increase during the remainder of this century [Easterling et al., 2000; Meehl et al., 2000; Parmesan and Yohe, 2003; Barnett et al., 2006]. More important, the frequency of extremes is likely to increase even if the climatic means do not change substantially [Intergovernmental Panel on Climate Change (IPCC), 2001, chapter 10]. Therefore, it makes sense to pay special attention to extremes as major agents of biological adaption (genetic change) when considering global climate change.

  1. How does public opinion become extreme?

    NASA Astrophysics Data System (ADS)

    Ramos, Marlon; Shao, Jia; Reis, Saulo D. S.; Anteneodo, Celia; Andrade, José S.; Havlin, Shlomo; Makse, Hernán A.

    2015-05-01

    We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are “very conservative” versus “moderate to very conservative” ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual “stubbornness” that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people’s ties.

  2. Present-day irrigation mitigates heat extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  3. How does public opinion become extreme?

    PubMed

    Ramos, Marlon; Shao, Jia; Reis, Saulo D S; Anteneodo, Celia; Andrade, José S; Havlin, Shlomo; Makse, Hernán A

    2015-05-19

    We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are "very conservative" versus "moderate to very conservative" ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual "stubbornness" that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people's ties.

  4. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  5. Extreme Metal Music and Anger Processing

    PubMed Central

    Sharman, Leah; Dingle, Genevieve A.

    2015-01-01

    The claim that listening to extreme music causes anger, and expressions of anger such as aggression and delinquency have yet to be substantiated using controlled experimental methods. In this study, 39 extreme music listeners aged 18–34 years were subjected to an anger induction, followed by random assignment to 10 min of listening to extreme music from their own playlist, or 10 min silence (control). Measures of emotion included heart rate and subjective ratings on the Positive and Negative Affect Scale (PANAS). Results showed that ratings of PANAS hostility, irritability, and stress increased during the anger induction, and decreased after the music or silence. Heart rate increased during the anger induction and was sustained (not increased) in the music condition, and decreased in the silence condition. PANAS active and inspired ratings increased during music listening, an effect that was not seen in controls. The findings indicate that extreme music did not make angry participants angrier; rather, it appeared to match their physiological arousal and result in an increase in positive emotions. Listening to extreme music may represent a healthy way of processing anger for these listeners. PMID:26052277

  6. Ranking efficient DMUs using minimizing distance in DEA

    NASA Astrophysics Data System (ADS)

    Ziari, Shokrollah; Raissi, Sadigh

    2016-01-01

    In many applications, ranking of decision making units (DMUs) is a problematic technical task procedure to decision makers in data envelopment analysis (DEA), especially when there are extremely efficient DMUs. In such cases, many DEA models may usually get the same efficiency score for different DMUs. Hence, there is a growing interest in ranking techniques yet. The main purpose of this paper is to overcome the lack of infeasibility and unboundedness in some DEA ranking methods. The proposed method is for ranking extreme efficient DMUs in DEA based on exploiting the leave-one out and minimizing distance between DMU under evaluation and virtual DMU.

  7. Multifractal Geophysical Extremes: Nonstationarity and Long Range Correlations

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    Throughout the world, extremes in environmental sciences are of prime importance. They are key variables not only for risk assessments and engineering designs (e.g. of dams and bridges), but also for resource management (e.g. water and energy) and for land use. A better understanding of them is more and more indispensable in settling the debate on their possible climatological evolution. Whereas it took decades before a uniform technique for estimating flow frequencies within a stationary framework, it is often claimed that « stationarity is dead ! ». The fact that geophysical and environmental fields are variable over a wider range of scales than previously thought require to go beyond the limits of the (classical) Extreme Value Theory (EVT). Indeed, long-range correlations are beyond the scope of the classical EVT theory. We show that multifractal concepts and techniques are particularly appealing because they can effectively deal with a cascade of interactions concentrating for instance energy, liquid water, etc. into smaller and smaller space-time domains. Furthermore, a general outcome of these cascade processes -which surprisingly was realized only rather recently- is that rather independently of their details they yield probability distributions with power-law fall-offs, often called (asymptotic) Pareto or Zipf laws. We discuss the corresponding probability distributions of their maxima and its relationship with the Frechet law. We use these multifractal techniques to investigate the possibility of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we assess the multifractal parameter uncertainty with the help of long synthetic multifractal series and their sub-samples, in particular to obtain an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of this approach with its application to

  8. Spatiotemporal variability of extreme temperature frequency and amplitude in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui

    2017-03-01

    Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.

  9. Recent and future extreme precipitation over Ukraine

    NASA Astrophysics Data System (ADS)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  10. Extremity model for neutron dose calculations

    SciTech Connect

    Sattelberger, J. A.; Shores, E. F.

    2001-01-01

    In personnel dosimetry for external radiation exposures, health physicists tend to focus on measurement of whole body dose, where 'whole body' is generally regarded as the torso on which the dosimeter is placed.' Although a variety of scenarios exist in which workers must handle radioactive materials, whole body dose estimates may not be appropriate when assessing dose, particularly to the extremities. For example, consider sources used for instrument calibration. If such sources are in a contact geometry (e.g. held by fingers), an extremity dose estimate may be more relevant than a whole body dose. However, because questions arise regarding how that dose should be calculated, a detailed extremity model was constructed with the MCNP-4Ca Monte Carlo code. Although initially intended for use with gamma sources, recent work by Shores2 provided the impetus to test the model with neutrons.

  11. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  12. Extremism without extremists: Deffuant model with emotions

    NASA Astrophysics Data System (ADS)

    Sobkowicz, Pawel

    2015-03-01

    The frequent occurrence of extremist views in many social contexts, often growing from small minorities to almost total majority, poses a significant challenge for democratic societies. The phenomenon can be described within the sociophysical paradigm. We present a modified version of the continuous bounded confidence opinion model, including a simple description of the influence of emotions on tolerances, and eventually on the evolution of opinions. Allowing for psychologically based correlation between the extreme opinions, high emotions and low tolerance for other people's views leads to quick dominance of the extreme views within the studied model, without introducing a special class of agents, as has been done in previous works. This dominance occurs even if the initial numbers of people with extreme opinions is very small. Possible suggestions related to mitigation of the process are briefly discussed.

  13. Extremes of Population Estimated from Kepler Observations

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.

    2015-12-01

    The extremes of exoplanet population (0.5 to 16 Earth radii, 0.5 to 512 days period) are estimated from Kepler observations by comparing the observed numbers of planets at each radius and period against a simulation that accounts for the probability of transit and the estimated instrument sensitivity. By assuming that the population can be modeled as a function of period times a function of radius, and further assuming that these functions are broken power laws, sufficient leverage is gained such that the well-measured short-period extreme of the planet distribution can effectively be used as a template for the less-well sampled long-period extreme. The resulting population distribution over this full range of radius and period provides a challenge to models of the origin and evolution of planetary systems.

  14. Extreme_SeaState_Contour_v1

    SciTech Connect

    2015-10-19

    This software generates environmental contours of extreme sea states using buoy observations of significant wave height and energy period or peak period. The code transforms these observations using principal component analysis (PCA) to create an uncorrelated representation of the data. The subsequent components are modeled using probability distributions and parameter fitting functions. The inverse first-order reliability method (I-FORM) is then applied to these models in order to generate an extreme event contour based on a given return period (i.e., 100 years).The subsequent contour is then transformed back into the original input space defined by the variables of interest in order to create an environmental contour of extreme sea states.

  15. The Field Expedient Extremity Tower (FEET).

    PubMed

    Stinner, Daniel J; Kerr, Glenn J; Hsu, Jospeh R

    2013-03-01

    The field expedient extremity tower (FEET) is a versatile multipurpose radiolucent lower extremity positioner, which can be constructed from readily available external fixator parts and employed as an intraoperative aid for a variety of lower extremity cases. Examples include intramedullary nailing of the tibia, retrograde nailing of the femur, open or percutaneous plating of the distal femur and proximal tibia as well as skin grafting and wound debridements involving the posterior thigh, leg, and foot. In addition, it allows surgeons in austere environments to perform a wide variety of cases employing modern orthopedic techniques with this dual purpose liquid asset which can readily be broken down and reused as an external fixator if needed.

  16. Photoresist composition for extreme ultraviolet lithography

    SciTech Connect

    Felter, T.E.; Kubiak, G.D.

    1999-11-23

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4--0.05 {mu}m using projection lithography and extreme ultraviolet (EUV) radiation is disclosed. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  17. Lower extremity injuries sustained while farming.

    PubMed

    Neil, Janice A

    2002-01-01

    Today's complex farm environment can pose many threats to the lower extremities of all people especially those with chronic diseases that affect the lower extremities. The purpose of this study was to investigate the incidence of injuries to the lower extremities among farmers and to rank the importance of these incidents in order to plan prevention programs. one hundred farmers were surveyed at a large farm show in the southeastern United States. An average of 4.86 injuries per farmer were reported. Blisters from work shoes or boots, followed by injuries from animals stepping on the feet were the most common injuries. Since those with chronic illnesses are especially prone to injury and disability, regular foot assessments, evaluation, and education about the hazards of farming are mainstays of prevention.

  18. Interplanetary shocks and solar wind extremes

    NASA Astrophysics Data System (ADS)

    Vats, Hari

    The interplanetary shocks have a very high correlation with the annual sunspot numbers during the solar cycle; however the correlation falls very low on shorter time scale. Thus poses questions and difficulty in the predictability. Space weather is largely controlled by these interplanetary shocks, solar energetic events and the extremes of solar wind. In fact most of the solar wind extremes are related to the solar energetic phenomena. It is quite well understood that the energetic events like flares, filament eruptions etc. occurring on the Sun produce high speed extremes both in terms of density and speed. There is also high speed solar wind steams associated with the coronal holes mainly because the magnetic field lines are open there and the solar plasma finds it easy to escape from there. These are relatively tenuous high speed streams and hence create low intensity geomagnetic storms of higher duration. The solar flares and/or filament eruptions usually release excess coronal mass into the interplanetary medium and thus these energetic events send out high density and high speed solar wind which statistically found to produce more intense storms. The other extremes of solar wind are those in which density and speed are much lower than the normal values. Several such events have been observed and are found to produce space weather consequences of different kind. It is found that such extremes are more common around the maximum of solar cycle 20 and 23. Most of these have significantly low Alfven Mach number. This article is intended to outline the interplanetary and geomagnetic consequences of observed by ground based and satellite systems for the solar wind extremes.

  19. Mangled extremity severity score: an accurate guide to treatment of the severely injured upper extremity.

    PubMed

    Slauterbeck, J R; Britton, C; Moneim, M S; Clevenger, F W

    1994-08-01

    The mangled extremity severity score (MESS) is a scoring system that can be applied to mangled extremities and help one determine which mangled limbs will eventually come to amputation. The MESS is a graduated grading system based on skeletal and soft tissue injury, shock, ischemia, and age. The records of 37 patients having sustained 43 open fractures or mangled upper extremity injuries, seen and treated at the University of New Mexico's Regional Trauma Center between April 1987 and September 1990, have been reviewed. All nine extremity injuries with a MESS of greater than or equal to seven were amputated, and 34 of 34 with a MESS of less than seven were salvaged. Nine Grade IIIC and six mangled extremities were identified in our study. Five of these Grade IIIC and four of the mangled extremities with a MESS of greater than or equal to seven were amputated. All Grade IIIC or mangled extremities with a MESS of less than seven were salvaged. In conclusion, the MESS is an early and accurate predictor for identifying the extremities that may be best treated by amputation.

  20. Overuse lower extremity injuries in sports.

    PubMed

    Fullem, Brian W

    2015-04-01

    When athletes train harder the risk of injury increases, and there are several common overuse injuries to the lower extremity. Three of the most common lower extremity overuse injuries in sports are discussed including the diagnosis and treatments: medial tibal stress syndrome, iliotibial band syndrome, and stress fractures. The charge of sports medicine professionals is to identify and treat the cause of the injuries and not just treat the symptoms. Symptomatology is an excellent guide to healing and often the patient leads the physician to the proper diagnosis through an investigation of the athlete's training program, past injury history, dietary habits, choice of footwear, and training surface.