Sample records for efficient fluorescence quenching

  1. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu

    2018-07-01

    In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.

  2. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.

  3. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    PubMed

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  4. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  5. Selective fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by nucleotides.

    PubMed

    Marquez, Cesar; Pischel, Uwe; Nau, Werner M

    2003-10-16

    [reaction: see text] The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by nucleotides has been studied. The quenching mechanism was analyzed on the basis of deuterium isotope effects, tendencies for exciplex formation, and the quenching efficiency in the presence of a molecular container (cucurbit[7]uril). Exciplex-induced quenching appears to prevail for adenosine, cytidine, and uridine, while hydrogen abstraction becomes competitive for thymidine and guanosine. Compared to other fluorescent probes, DBO responds very selectively to the type of nucleotide.

  6. Designing an anion-functionalized fluorescent ionic liquid as an efficient and reversible turn-off sensor for detecting SO2.

    PubMed

    Che, Siying; Dao, Rina; Zhang, Weidong; Lv, Xiaoyu; Li, Haoran; Wang, Congmin

    2017-03-30

    A novel anion-functionalized fluorescent ionic liquid was designed and prepared, which was capable of capturing sulphur dioxide with high capacity and could also be used as a good colorimetric and fluorescent SO 2 sensor. Compared to conventional fluorescent sensors, this fluorescent ionic liquid did not undergo aggregation-caused quenching or aggregation-induced emission, and the fluorescence was quenched when exposed to SO 2 , and the fluorescence would quench when exposed to SO 2 . The experimental absorption, spectroscopic investigation, and quantum chemical calculations indicated that the quenching of the fluorescence originated from SO 2 physical absorption, not chemical absorption. Furthermore, this fluorescent ionic liquid exhibited high selectivity, good quantification, and excellent reversibility for SO 2 detection, and showed potential for an excellent liquid sensor.

  7. The efficiency of non-photochemical fluorescence quenching by cation radicals in photosystem II reaction centers.

    PubMed

    Paschenko, V Z; Churin, A A; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Maksimov, E G; Mamedov, M D

    2016-12-01

    In a direct experiment, the rate constants of photochemical k p and non-photochemical k p + quenching of the chlorophyll fluorescence have been determined in spinach photosystem II (PS II) membrane fragments, oxygen-evolving PS II core, as well as manganese-depleted PS II particles using pulse fluorimetry. In the dark-adapted reaction center(s) (RC), the fluorescence decay kinetics of the antenna were measured at low-intensity picosecond pulsed excitation. To create a "closed" P680 + Q A - state, RCs were illuminated by high-intensity actinic flash 8 ns prior to the measuring flash. The obtained data were approximated by the sum of two decaying exponents. It was found that the antennae fluorescence quenching efficiency by the oxidized photoactive pigment of RC P680 + was about 1.5 times higher than that of the neutral P680 state. These results were confirmed by a single-photon counting technique, which allowed to resolve the additional slow component of the fluorescence decay. Slow component was assigned to the charge recombination of P680 + Pheo - in PS II RC. Thus, for the first time, the ratio k p + /k p  ≅ 1.5 was found directly. The mechanism of the higher efficiency of non-photochemical quenching comparing to photochemical quenching is discussed.

  8. Fluorescence quenching by TEMPO: a sub-30 A single-molecule ruler.

    PubMed

    Zhu, Peizhi; Clamme, Jean-Pierre; Deniz, Ashok A

    2005-11-01

    A series of DNA molecules labeled with 5-carboxytetramethylrhodamine (5-TAMRA) and the small nitroxide radical TEMPO were synthesized and tested to investigate whether the intramolecular quenching efficiency can be used to measure short intramolecular distances in small ensemble and single-molecule experiments. In combination with distance calculations using molecular mechanics modeling, the experimental results from steady-state ensemble fluorescence and fluorescence correlation spectroscopy measurements both show an exponential decrease in the quenching rate constant with the dye-quencher distance in the 10-30 A range. The results demonstrate that TEMPO-5-TAMRA fluorescence quenching is a promising method to measure short distance changes within single biomolecules.

  9. Quenching of fluorescence of conjugated poly(p-phenylene) polymers by benzil and dimethylaminobenzil molecules

    NASA Astrophysics Data System (ADS)

    Bagnich, S. A.; Knyukshto, V. N.

    2006-11-01

    We have studied the mechanisms for quenching of the fluorescence of conjugated poly(p-phenylene) polymers by benzil and dimethylaminobenzil molecules. We have shown that molecules in the diketone series are quenching agents for the fluorescence of the indicated polymers, and can serve as singlet-triplet converters capable of populating the triplet state of the polymer. We have observed that the efficiency of quenching of the fluorescence of the studied polymers depends considerably on the presence of bulky side groups in the polymer or in the activator molecules. Based on analysis of the data obtained, we conclude that in the case of a rigid planar structure for the polymer, a significant contribution to quenching of its fluorescence comes from not only singlet-singlet energy transfer but also charge transfer, leading to formation of intermolecular complexes (exciplexes).

  10. Fluorescence Quenching by TEMPO: A Sub-30 Å Single-Molecule Ruler

    PubMed Central

    Zhu, Peizhi; Clamme, Jean-Pierre; Deniz, Ashok A.

    2005-01-01

    A series of DNA molecules labeled with 5-carboxytetramethylrhodamine (5-TAMRA) and the small nitroxide radical TEMPO were synthesized and tested to investigate whether the intramolecular quenching efficiency can be used to measure short intramolecular distances in small ensemble and single-molecule experiments. In combination with distance calculations using molecular mechanics modeling, the experimental results from steady-state ensemble fluorescence and fluorescence correlation spectroscopy measurements both show an exponential decrease in the quenching rate constant with the dye-quencher distance in the 10–30 Å range. The results demonstrate that TEMPO-5-TAMRA fluorescence quenching is a promising method to measure short distance changes within single biomolecules. PMID:16199509

  11. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    PubMed

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  12. Extended Fluorescent Resonant Energy Transfer in DNA Constructs

    NASA Astrophysics Data System (ADS)

    Oh, Taeseok

    This study investigates the use of surfactants and metal cations for the enhancement of long range fluorescent resonant energy transfer (FRET) and the antenna effect in DNA structures with multiple fluorescent dyes. Double-stranded (ds) DNA structures were formed by hybridization of 21mer DNA oligonucleotides with different arrangements of three fluorescent TAMRA donor dyes with two different complementary 21mer oligonucleotides with one fluorescent TexasRed acceptor dye. In such DNA structures, hydrophobic interactions between the fluorescent dyes in close proximity produces dimerization which along with other quenching mechanisms leads to significant reduction of fluorescent emission properties. Addition of the surfactants Triton X-100, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) along with sodium cations (Na+) and divalent magnesium cations (Mg 2+) were tested for their ability to reduce quenching of the fluorescent dyes and improve overall fluorescent emission, the long range FRET and the antenna effect properties. When the neutral (uncharged) surfactant Triton X-100 was added to the FRET ds-DNA hybrid structures with three TAMRA donors and one TexasRed acceptor, dye dimerization and emission quenching remained unaffected. However, for the positively charged CTAB surfactant at concentrations of 100 uM or higher, the neutralization of the negatively charged ds-DNA backbone by the cationic surfactant micelles was found to reduce TAMRA dye dimerization and emission quenching and improve TexasRed quantum yield, resulting in much higher FRET efficiencies and an enhanced antenna effect. This improvement is likely due to the CTAB molecules covering or sheathing the fluorescent donor and acceptor dyes which breaks up the dimerized dye complexes and prevents further quenching from interactions with water molecules and guanine bases in the DNA structure. While the negatively charged SDS surfactant alone was not able to reduce dimerization and emission quenching due to repulsive forces between DNA and SDS micelles, the addition of cations such as sodium ions (Na+) and divalent magnesium ions (Mg2+) did lead to a significant reduction in the dimerization and emission quenching resulting in much higher FRET efficiency and an enhanced antenna effect. It appears that when the repulsive electrostatic forces are screened by the cations (Mg2+ in particular), the SDS micelles can approach the FRET ds-DNA structures thereby sheathing or insulating the TAMRA and TexasRed dyes. Overall, the study provides a viable strategy for using combinations of surfactants and cations to reduce adverse fluorescent dye and other quenching mechanisms and improve the overall long distance FRET efficiency and the antenna effect in DNA structures with multi-donor and single acceptor fluorescent dye groups.

  13. One-step synthesis of fluorescein modified nano-carbon for Pd(II) detection via fluorescence quenching.

    PubMed

    Panchompoo, Janjira; Aldous, Leigh; Baker, Matthew; Wallace, Mark I; Compton, Richard G

    2012-05-07

    Carbon black (CB) nanoparticles modified with fluorescein, a highly fluorescent molecule, were prepared using a facile and efficient methodology. Simply stirring CB in aqueous solution containing fluorescein resulted in the strong physisorption of fluorescein onto the CB surface. The resulting Fluorescein/CB was then characterised by means of X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), fluorescence microscopy and fluorescence spectroscopy. The optimum experimental conditions for fluorescence of Fluorescein/CB viz. fluorescence excitation and emission wavelengths, O(2) removal and the amount of Fluorescein/CB used, were investigated. The Fluorescein/CB was used as a fluorescent probe for the sensitive detection of Pd(II) in water, based on fluorescence quenching. The results demonstrated that the fluorescence intensity of Fluorescein/CB decreased with increasing Pd(II) concentration, and the fluorescence quenching process could be described by the Stern-Volmer equation. The limit of detection (LOD) for the fluorescence quenching of Fluorescein/CB by Pd(II) in aqueous solution was found to be 1.07 μM (based on 3σ). Last, approaches were studied for the removal of Fe(III) which interferes with the fluorescence quenching of Fluorescein/CB. Complexation of Fe(III) with salicylic acid was used to enhance and control the selectivity of Fluorescein/CB sensor towards Pd(II) in the presence of Fe(III).

  14. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    PubMed

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  15. Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence.

    PubMed

    Lee, Jiyoung; Aizawa, Naoya; Numata, Masaki; Adachi, Chihaya; Yasuda, Takuma

    2017-01-01

    Concentration quenching of thermally activated delayed fluorescence is found to be dominated by electron-exchange interactions, as described by the Dexter energy-transfer model. Owing to the short-range nature of the electron-exchange interactions, even a small modulation in the molecular geometric structure drastically affects the concentration-quenching, leading to enhanced solid-state photoluminescence and electroluminescence quantum efficiencies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.

    PubMed

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-02-09

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.

  17. Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes

    PubMed Central

    Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei

    2018-01-01

    Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163

  18. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide.

    PubMed

    Zhao, Yuzhen; Li, Kexuan; He, Zemin; Zhang, Yongming; Zhao, Yang; Zhang, Haiquan; Miao, Zongcheng

    2016-11-30

    Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  19. Development of a homogeneous assay format for p53 antibodies using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Neuweiler, Hannes; Scheffler, Silvia; Sauer, Markus

    2005-08-01

    The development of reliable methods for the detection of minute amounts of antibodies directly in homogeneous solution represents one of the major tasks in the current research field of molecular diagnostics. We demonstrate the potential of fluorescence correlation spectroscopy (FCS) in combination with quenched peptide-based fluorescence probes for sensitive detection of p53 antibodies directly in homogeneous solution. Single tryptophan (Trp) residues in the sequences of short, synthetic peptide epitopes of the human p53 protein efficiently quench the fluorescence of an oxazine fluorophore attached to the amino terminal ends of the peptides. The fluorescence quenching mechanism is thought to be a photoinduced electron transfer reaction from Trp to the dye enabled by the formation of intramolecular complexes between dye and Trp. Specific recognition of the epitope by the antibody confines the conformational flexibility of the peptide. Consequently, complex formation between dye and Trp is abolished and fluorescence is recovered. Using fluorescence correlation spectroscopy (FCS), antibody binding can be monitored observing two parameters simultaneously: the diffusional mobility of the peptide as well as the quenching amplitude induced by the conformational flexibility of the peptide change significantly upon antibody binding. Our data demonstrate that FCS in combination with fluorescence-quenched peptide epitopes opens new possibilities for the reliable detection of antibody binding events in homogeneous solution.

  20. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    PubMed

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  1. Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    NASA Astrophysics Data System (ADS)

    Jung, Yun Kyung; Lee, Taemin; Shin, Eeseul; Kim, Byeong-Su

    2013-11-01

    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 μM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.

  2. Reversible intermolecular energy transfer between saturated amines and benzene in non-polar solution

    NASA Astrophysics Data System (ADS)

    Halpern, Arthur M.; Wryzykowska, Krystyna

    1981-01-01

    Excitation of a mixture of dimethylethylamine (DEMA) and benzene in n-hexane at 222 nm primarily produces excited amine, while at 261 nm excited benzene predominantly results. The fluorescence spectra appreciably overlap. With 222 nm excitation, DEMA fluorescence is quenched by benzene at the diffusion-controlled rate; this quenching results with nearly unit efficiency in sensitized benzene fluorescence. With 261 nm excitation, some sensitized DEMA fluorescence is observed: the rate constant for tins process is ≈ 2.6 × 10 9 M -1 s -1.

  3. Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle.

    PubMed

    Liu, Jinchuan; Guan, Zheng; Lv, Zhenzhen; Jiang, Xiaoling; Yang, Shuming; Chen, Ailiang

    2014-02-15

    Gold nanoparticles (AuNPs) based fluorescence quenching or colorimetric aptasensor have been developed for many analytes recently largely because of the ease of detection, high sensitivity, and potential for high-throughput analysis. However, the effects of remnant non-AuNPs components in the colloid gold solution on these assays performance remain unclear. For the first time, we demonstrated that the remnant sodium citrate and the reaction products of three acids play counteractive roles in AuNPs based fluorescence quenching and colorimetric aptasensor in three ways in this study. First, the remnant sodium citrate in the colloid gold solution could increase the fluorescence intensity of FAM labeled on the aptamer that reduce the efficiency of AuNPs fluorescent quenching. Second, the reaction products of citric acid, HCl and ketoglutaric acid reduce the fluorescence recovery by quenching the fluorescence of FAM labeled on the aptamer dissociated from the surface of AuNPs upon addition of target. Lastly, the reaction products of three acids reduce the pH value of the colloid gold solution that reduce the sensitivity of AuNPs based colorimetric aptasensor by increasing the adsorption of aptamer to surface of AuNPs. With sulfadimethoxine and thrombin as model analytes, we found that water resuspended AuNPs can significantly increase the sensitivity by more than 10-fold for AuNPs based fluorescence quenching aptasensor. In the AuNPs based colorimetric aptasensor for sulfadimethoxine using the water resuspended AuNPs, the sensitivity also was increased by 10-fold compared with that of original AuNPs. The findings in this study provide theoretical guidance for further improving AuNPs based fluorescent quenching and colorimetric aptasensor by adjusting the composition of AuNPs solution. © 2013 Elsevier B.V. All rights reserved.

  4. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    PubMed

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  5. Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer.

    PubMed

    Zeisser-Labouèbe, Magali; Mattiuzzo, Marc; Lange, Norbert; Gurny, Robert; Delie, Florence

    2009-09-01

    Photodynamic therapy has emerged as a promising alternative to current cancer treatment. However, conventional photosensitizers have several limitations due to their unsuitable pharmaceutical formulations and lack of selectivity. Our strategy was to exploit the advantages of nanoparticles and the quenching-induced deactivation of the model photosensitizer hypericin to produce "activatable" drug delivery systems. Efficient fluorescence and activity quenching were achieved by increasing the drug-loading rate of nanoparticles. In vitro assays confirmed the reversibility of hypericin deactivation, as the hypericin fluorescence and photodynamic activity were recovered upon cell internalization.

  6. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    PubMed

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  7. Spectroscopic probing of ortho-nitrophenol localization in phospholipid bilayers.

    PubMed

    Sánchez, Julieta M; Turina, Anahí del V; Perillo, María A

    2007-11-12

    In the present study we estimated the localization of ortho-nitrophenol (ONP) within model membranes through its efficiency to quench and to modify the anisotropy of DPH and TMA-DPH fluorescence. These fluorescent probes are known to sense the hydrocarbon core and the polar head group region of membranes, respectively. TMA-DPH fluorescence in MLVs was more efficiently quenched than DPH (K(q,TMA-DPH)=2.36 and K(q,DPH)=1.07 mM ns(-1)). Moreover, these results demonstrated the interfacial localization of ONP and may contribute to understand membrane-mediated mechanisms of ONP-induced toxicity and the behavior of ONP as a product of several enzymatic reactions occurring in the presence of lipid-water interfaces.

  8. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1.

    PubMed

    He, Yue; Lin, Yi; Tang, Hongwu; Pang, Daiwen

    2012-03-21

    Mucin 1 (MUC1) which presents in epithelial malignancies, is a well-known tumor biomarker. In this paper, a highly sensitive and selective fluorescent aptasensor for Mucin 1 (MUC1) detection is constructed, utilizing graphene oxide (GO) as a quencher which can quench the fluorescence of single-stranded dye-labeled MUC1 specific aptamer. In the absence of MUC1, the adsorption of the dye-labeled aptamer on GO brings the dyes in close proximity to the GO surface resulting in high efficiency quenching of dye fluorescence. Therefore, the fluorescence of the designed aptasensor is completely quenched by GO, and the system shows very low background fluorescence. Conversely, and very importantly, upon the adding of MUC1, the quenched fluorescence is recovered significantly, and MUC1 can be detected in a wide range of 0.04-10 μM with a detection limit of 28 nM and good selectivity. Moreover, the results have also been verified for real sample application by testing 2% serum containing buffer solution spiked with a series of concentrations of MUC1. This journal is © The Royal Society of Chemistry 2012

  9. The design and application of fluorophore–gold nanoparticle activatable probes

    PubMed Central

    Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes. PMID:21380462

  10. A new dual-channel optical signal probe for Cu2+ detection based on morin and boric acid.

    PubMed

    Wang, Peng; Yuan, Bin Fang; Li, Nian Bing; Luo, Hong Qun

    2014-01-01

    In this work we utilized the common analytical reagent morin to develop a new a dual-channel, cost-effective, and sensitive method for determination of Cu(2+). It is found that morin is only weakly fluorescent by itself, but forms highly fluorescent complexes with boric acid. Moreover, the fluorescence of complexes of morin with boric acid is quenched linearly by Cu(2+) in a certain concentration range. Under optimum conditions, the fluorescence quenching efficiency was linearly proportional to the concentration of cupric ions in the range of 0.5-25 μM with high sensitivity, and the detection limit for Cu(2+) was 0.38 μM. The linear range was 1-25 μM determined by spectrophotometry, and the detection limit for cupric ions was 0.8 μM. Furthermore, the mechanism of sensitive fluorescence quenching response of morin to Cu(2+) is discussed.

  11. Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching

    PubMed Central

    Teo, Yin Nah; Wilson, James N.

    2010-01-01

    We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115

  12. Detection of trace tetracycline in fish via synchronous fluorescence quenching with carbon quantum dots coated with molecularly imprinted silica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-02-01

    A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.

  13. A naphthalimide fluorophore with efficient intramolecular PET and ICT processes: application in molecular logic.

    PubMed

    Wang, Haixia; Wu, Haixia; Xue, Lin; Shi, Yan; Li, Xiyou

    2011-08-07

    A novel 4-amino-1,8-naphthalimide (NDI) with two different metal cation receptors connected at 4-amino or imide nitrogen positions respectively was designed and prepared. Significant internal charge transfer (ICT) as well as photoinduced electron transfer (PET) from the receptors to NDI is revealed by the shifted UV-vis absorption spectra and significant fluorescence quenching. Both Zn(2+) and Cu(2+) can coordinate selectively with the two cation receptors in this molecule with different affinities. The coordination of Zn(2+) with the receptor at imide nitrogen hindered the PET process and accordingly restored the quenched fluorescence of NDI. But the coordination of Zn(2+) at 4-amino position blocked the ICT process and caused significant blue-shift on the absorption peak with the fluorescence intensity unaffected. Similarly, coordination of Cu(2+) with the receptor at imide nitrogen can block the PET process, but can not restore the quenched fluorescence of compound 3 due to the paramagnetic properties of Cu(2+), which quench the fluorescence significantly instead. With Cu(2+) and Zn(2+) as two chemical inputs and absorption or fluorescence as output, several logic gate operations, such as OR, NOR and INHIBIT, can be achieved.

  14. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection

    NASA Astrophysics Data System (ADS)

    Guo, Linjuan; Zu, Baiyi; Yang, Zheng; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2014-01-01

    For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives.For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (~10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives. Electronic supplementary information (ESI) available: Vapor pressure of TNT and its analogues, fluorescence quenching kinetics, fluorescence quenching efficiencies and additional SEM images. See DOI: 10.1039/c3nr04960d

  15. New anthracene derivatives as triplet acceptors for efficient green-to-blue low-power upconversion.

    PubMed

    Liang, Zuo-Qin; Sun, Bin; Ye, Chang-Qing; Wang, Xiao-Mei; Tao, Xu-Tang; Wang, Qin-Hua; Ding, Ping; Wang, Bao; Wang, Jing-Jing

    2013-10-21

    Three new anthracene derivatives [2-chloro-9,10-dip-tolylanthracene (DTACl), 9,10-dip-tolylanthracene-2-carbonitrile (DTACN), and 9,10-di(naphthalen-1-yl)anthracene-2-carbonitrile (DNACN)] were synthesized as triplet acceptors for low-power upconversion. Their linear absorption, single-photon-excited fluorescence, and upconversion fluorescence properties were studied. The acceptors exhibit high fluorescence yields in DMF. Selective excitation of the sensitizer Pd(II)octaethylporphyrin (PdOEP) in solution containing DTACl, DTACN, or DNA-CN at 532 nm with an ultralow excitation power density of 0.5 W cm(-2) results in anti-Stokes blue emission. The maximum upconversion quantum yield (Φ(UC) =17.4%) was obtained for the couple PdOEP/DTACl. In addition, the efficiency of the triplet-triplet energy transfer process was quantitatively studied by quenching experiments. Experimental results revealed that a highly effective acceptor for upconversion should combine high fluorescence quantum yields with efficient quenching of the sensitizer triplet. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    PubMed

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  17. Enhancement of fluorescence quenching and exciplex formation in DNA major groove by double incorporation of modified fluorescent deoxyuridines.

    PubMed

    Tanaka, Makiko; Oguma, Kazuhiro; Saito, Yoshio; Saito, Isao

    2012-06-15

    5-(1-Naphthalenylethynyl)-2'-deoxyuridine ((N)U) and 5-[(4-cyano-1-naphthalenyl)ethynyl]-2'-deoxyuridine ((CN)U) were synthesized and incorporated into oligodeoxynucleotides. Fluorescence emissions of modified duplexes containing double (N)U were efficiently quenched depending upon the sequence pattern of the naphthalenes in DNA major groove, as compared to the duplex possessing single (N)U. When one of the naphthalene moieties has a cyano substituent, the exciplex emission from the chromophores in DNA major groove was observed at longer wavelength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    PubMed

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  19. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Shujuan; Ding, Liping; Lü, Fengting; Liu, Taihong; Fang, Yu

    2012-11-01

    The detection of nitroaromatics in aqueous solutions by a novel pyrene-functionalized film has been investigated in the present study. The pyrene moieties were attached on the glass surface via a long flexible spacer based on self-assembled monolayer technique. Steady-state fluorescence measurements revealed that these surface-attached pyrene moieties exhibited both monomer and excimer emission. Nitroaromatics such as 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,4,6-trinitrophenol (picric acid) were found to efficiently quench the fluorescence emission of this film. The quenching results demonstrated that the excimer emission of these surface-confined pyrene moieties is more sensitive to the presence of nitroaromatics than the monomer emission. The quenching mechanism was examined through fluorescence lifetime measurement and it revealed that the quenching is static in nature and may be caused by electron transfer from the polycyclic aromatics to the nitroaromatics. Furthermore, the response of the film to nitroaromatics is fast and reversible, and the obtained film shows promising potentials in detecting explosives in aqueous environment.

  20. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    PubMed

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area.

  1. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  2. Complex-formation-enhanced fluorescence quenching effect for efficient detection of picric acid.

    PubMed

    Ding, Aixiang; Yang, Longmei; Zhang, Yuyang; Zhang, Gaobin; Kong, Lin; Zhang, Xuanjun; Tian, Yupeng; Tao, Xutang; Yang, Jiaxiang

    2014-09-15

    Amine-functionalized α-cyanostilbene derivatives (Z)-2-(4-aminophenyl)-3-(4-butoxyphenyl)acrylonitrile (ABA) and (Z)-3-(4-butoxyphenyl)-2-[4-(butylamino)phenyl]acrylonitrile (BBA) were designed for specific recognition of picric acid (PA), an environmental and biological pollutant. The 1:1 host-guest complexes formed between the chemosensors and PA enhanced fluorescence quenching, thus leading to sensitive and selective detection in aqueous media and the solid phase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.

    PubMed

    Kotresh, M G; Inamdar, L S; Shivkumar, M A; Adarsh, K S; Jagatap, B N; Mulimani, B G; Advirao, G M; Inamdar, S R

    2017-06-01

    In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (k q ) determined at different temperatures and the time-resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van 't Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins

    NASA Astrophysics Data System (ADS)

    Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin

    2009-04-01

    The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4- N, N, N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.

  5. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.

    PubMed

    Ma, Hong-Min; Chen, Xin; Zhang, Nuo; Han, Yan-Yan; Wu, Dan; Du, Bin; Wei, Qin

    2009-04-01

    The interaction of a water-soluble cationic porphyrin, meso-tetrakis (4-N,N,N-trimethylanilinium) porphyrin (TMAP), with two proteins, bovine serum albumin (BSA) and human serum albumin (HSA), was studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence anisotropy and synchronous fluorescence spectroscopy at neutral aqueous solutions. Free base TMAP bound to proteins as monomers and no aggregation was observed. The binding of TMAP quenched the fluorescence of the protein. On the contrary, the fluorescence of TMAP was enhanced and the fluorescence anisotropy increased due to the binding. The direct static binding mechanism could account for the quenching by TMAP and the binding constants were calculated. TMAP showed a higher quenching efficiency and binding constant of HSA than BSA. The binding of TMAP had no obvious effect on the molecular conformation of the protein. There was only one binding site for TMAP and it was located on the surface of the protein molecule. Electrostatic force played an important role in the binding due to the opposite charges on porphyrin and the proteins.

  6. Fluorescence quenching of protonated β-carbolines in water and microemulsions: evidence for heavy-atom and electron-transfer mechanisms.

    PubMed

    Mousa, Souad A; Douglas, Peter; Burrows, Hugh D; Fonseca, Sofia M

    2013-09-01

    The fluorescence quenching of protonated β-carbolines has been investigated in acidic aqueous solutions and in w/o microemulsions using I(-), Br(-), Cu(2+), SCN(-), and Pb(2+) as quenchers. It was found that fluorescence quenching by these compounds is much more efficient in water than in microemulsions since quenching in microemulsions depends on the simultaneous occupancy of the water droplets by both fluorophore and quencher. Linear Stern-Volmer plots were obtained in all cases, leading to quenching rate constants of ca. 10(8)-10(10) M(-1) s(-1) in water and ca. 10(7)-10(8) M(-1) s(-1) in microemulsions. In the case of quenching by SCN(-), ns flash photolysis studies indicate formation of (SCN)2(˙-) showing that at least part of the quenching process involves an electron transfer mechanism. This indicates that the singlet excited states of the protonated β-carbolines can act as relatively strong oxidants (E° > 1.6 V), capable of oxidizing many species, including the biologically relevant DNA base guanine. The observation of the (SCN)2(˙-) transient in microemulsions demonstrates that it is possible to have the protonated β-carboline and at least two thiocyanate ions in the same water pool.

  7. Substrate-based near-infrared imaging sensors enable fluorescence lifetime contrast via built-in dynamic fluorescence quenching elements.

    PubMed

    Kumar, Anand T N; Rice, William L; López, Jessica C; Gupta, Suresh; Goergen, Craig J; Bogdanov, Alexei A

    2016-04-22

    Enzymatic activity sensing in fluorescence lifetime (FLT) mode with "self-quenched" macromolecular near-infrared (NIR) sensors is a highly promising strategy for in vivo imaging of proteolysis. However, the mechanisms of FLT changes in such substrate-based NIR sensors have not yet been studied. We synthesized two types of sensors by linking the near-infrared fluorophore IRDye 800CW to macromolecular graft copolymers of methoxy polyethylene glycol and polylysine (MPEG-gPLL) with varying degrees of MPEGylation and studied their fragmentation induced by trypsin, elastase, plasmin and cathepsins (B,S,L,K). We determined that the efficiency of such NIR sensors in FLT mode depends on sensor composition. While MPEG-gPLL with a high degree of MPEGylation showed rapid (τ 1/2 =0.1-0.2 min) FLT increase (Δτ=0.25 ns) upon model proteinase-mediated hydrolysis in vivo , lower MPEGylation density resulted in no such FLT increase. Temperature-dependence of fluorescence de-quenching of NIR sensors pointed to a mixed dynamic/static-quenching mode of MPEG-gPLL-linked fluorophores. We further demonstrated that although the bulk of sensor-linked fluorophores were de-quenched due to the elimination of static quenching, proteolysis-mediated deletion of a fraction of short (8-10kD) negatively charged fragments of highly MPEGylated NIR sensor is the most likely event leading to a rapid FLT increase phenomenon in quenched NIR sensors. Therefore, the optimization of "built-in" dynamic quenching elements of macromolecular NIR sensors is a potential avenue for improving their response in FLT mode.

  8. Efficiency of the intermolecular interaction of salicylic acid neutral form and monoanion with Cd2 + ion studied by methods of absorption and fluorescence

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2018-02-01

    The methods of absorption and fluorescence were used to study the efficiency of the interaction between salicylic acid derivatives SAD (neutral SA form and SA monoanion) and Cd2 + ions (in CdBr2 salt) within the range pH = 1.5 ÷ 8. The efficiency was determined from the change in both the absorption band contour and the fluorescence intensity of various SAD forms. It has been established that depending on the SAD form, the addition of CdBr2 to a starting solution leads to the formation of additional absorption for both the shorter wave lengths in the absorption spectrum of the neutral form (at pH < 3) and the longer wave lengths in the absorption spectrum for the HSal- monoanion (at pH > 4). In the fluorescence spectra, the intensity was observed to increase for the neutral SAD form (at pH < 3) and to decrease for the HSal- monoanion (at pH > 4) after addition of CdBr2. The spectral changes were interpreted in the framework of common notions about the effect of three physicochemical factors that determine the interaction between the SAD and the Cd2 + ion and affect the parameters of absorption and fluorescence spectra. These factors are: (1) the decrease in pH after addition of CdBr2 to the SAD solution, (2) the decrease in the efficiency of the H-bonding of SAD molecules to the water ones, and (3) the existence of electrostatic ion-ion interaction between the HSal- monoanion and the Cd2 + ion. The bimolecular fluorescence quenching constants Kq of HSal- monoanion fluorescence quenching by the Cd2 + ion appeared to be substantially less than those of the quenching which would follow either the dynamic (diffusion) or the concentration (static) mechanisms.

  9. An aggregated perylene-based broad-spectrum, efficient and label-free quencher for multiplexed fluorescent bioassays.

    PubMed

    Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin

    2014-08-15

    Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Ternary Interactions and Energy Transfer between Fluorescein Isothiocyanate, Adenosine Triphosphate, and Graphene Oxide Nanocarriers.

    PubMed

    Ratajczak, Katarzyna; Stobiecka, Magdalena

    2017-07-20

    The interactions of fluorescent probes and biomolecules with nanocarriers are of key importance to the emerging targeted drug delivery systems. Graphene oxide nanosheets (GONs) as the nanocarriers offer biocompatibility and robust drug binding capacity. The interactions of GONs with fluorophores lead to strong fluorescence quenching, which may interfere with fluorescence bioimaging and biodetection. Herein, we report on the interactions and energy transfers in a model ternary system: GONs-FITC-ATP, where FITC is a model fluorophore (fluorescein isothiocyanate) and ATP is a common biomolecule (adenosine-5'-triphosphate). We have found that FITC fluorescence is considerably quenched by ATP (the quenching constant K SV = 113 ± 22 M -1 ). The temperature coefficient of K SV is positive (α T = 4.15 M -1 deg -1 ). The detailed analysis of a model for internal self-quenching of FITC indicates that the temperature dependence of the net quenching efficiency η for the FITC-ATP pair is dominated by FITC internal self-quenching modes with their contribution estimated at 79%. The quenching of FITC by GONs is much stronger (K SV = 598 ± 29 M -1 ) than that of FITC-ATP and is associated with the formation of supramolecular assemblies bound with hydrogen bonding and π-π stacking interactions. For the analysis of the complex behavior of the ternary system GONs-FITC-ATP, a model of chemisorption of ATP on GONs, with partial blocking of FITC quenching, has been developed. Our results indicate that ATP acts as a moderator for FITC quenching by GONs. The interactions between ATP, FITC, and GONs have been corroborated using molecular dynamics and quantum mechanical calculations.

  11. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  12. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.

    PubMed

    Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin

    2015-01-14

    In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.

  13. Type 2 pyoverdine from Pseudomonas aeruginosa strain BUP2 as turn-off biosensor for the rapid detection of iron and copper ions in contaminated water.

    PubMed

    Unni, Kizhakkepowathial Nair; Priji, Prakasan; Sajith, Sreedharan; Faisal, Panichikkal Abdul; Shainy, Karippayi Mattil; Joseph, Abraham; Babu, Moolath Girish; Benjamin, Sailas

    2016-09-23

    Employing fluorescent quenching mechanism, type 2 pyoverdine (PVD) purified from Pseudomonas aeruginosa strain BUP2 (new strain isolated from the rumen of Malabari goat) was used as a simple, convenient and inexpensive tool for the rapid detection of Fe and Cu ions in contaminated drinking water samples. The fluorescence emitted at λ 460 by PVD (in sterile water), mounted on a glass slide was efficiently quenched by the ions of heavy metals like Fe and Cu. The fluorescence quenching effect of PVD was monitored using UV trans-illuminator, and subsequently quantified and confirmed by spectrofluorimetry. Upon exposure for about 50 sec at 25 °C, this quenching efficiency could directly be assessed by naked eye with the aid of a UV trans-illuminator. The linear range of detection for Fe was 1 to 60 µM, while that of Cu was 1 to 20 µM. The limits of detection at µM concentration for Fe 3+ , Fe 2+ and Cu 2+ were 0.23, 0.24 and 0.38, respectively. The quenching of fluorescence was more pronounced in Fe-PVD system than Cu-PVD, and this observation was in corroboration with the Pearson acid base concept; being a hard acid, Fe 3+ effectively bound with the O-ligands and this ability was less in Cu 2+ , a border line acid. Briefly, this study proposed the use of type 2 PVD as a turn-off biosensor for the rapid screening of heavy metals like Fe and Cu in drinking water, at ppm levels only with the aid of UV trans-illuminator at 25 °C in 50 sec.

  14. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange.

    PubMed

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-15

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange

    NASA Astrophysics Data System (ADS)

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-01

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.

  16. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2018-01-01

    The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.

  18. Photogalvanic cells driven by electron transfer quenching of excited singlet states

    NASA Astrophysics Data System (ADS)

    Creed, D.; Fawcett, N. C.

    Photoreduction of oxonine by iron(II) sulfate in dilute acid is produced by quenching of the excited signlet state (S1). No induced intersystem crossing to the tripolet (T1) is observed by nanosecond flash photolysis. The photoreduction of oxonine (S1) by iron(II) was used in a totally illuminated thin layer photogalvanic cell. Power conversion efficiencies are, however, very low. The fluorescence of oxonine and thiazine dyes such as thionine is quenched by acids. Oxonine fluorescence is also quenched by hydroquinone and catechol sulfonates and related compounds. Eleven new thiazine dyes were synthesized. A few photogalvanic experiments were carried out using high concentrations of the water miscible dye and iron(II) in a TI/TL cell. Ferrophos, an iron phosphorus alloy, can be substituted for platinum or gold as a cathode in photogalvanic cells.

  19. Determination of adenine based on the fluorescence recovery of the L-Tryptophan-Cu(2+) complex.

    PubMed

    Duan, Ruilin; Li, Chunyan; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Yuan, Yusheng; Hu, Xiaoli

    2016-01-05

    A simple and sensitive method for determination of adenine was developed based on fluorescence quenching and recovery of L-Tryptophan (L-Trp). The fluorescence of L-Trp could efficiently quenched by copper ion compared with other common metal ions. Upon addition of adenine (Ade) in L-Trp-Cu(II) system, the fluorescence was reoccurred. Under the optimum conditions, the recovery fluorescence intensity was linearly correlated with the concentration of adenine in the range from 0.34 to 25.0μmolL(-1), with a correlation coefficient (R(2)) of 0.9994. The detection limit (3σ/k) was 0.046μmolL(-1), indicating that this method could applied to detect trace adenine. In this study, amino acids including L-Trp, D-Trp, L-Tyr, D-Tyr, L-Phe, D-Phe were investigated and only L-Trp could well chelated copper ion. Additionally, the mechanism of quench and recovery also were discussed and the method was successfully applied to detect the adenine in DNA with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots.

    PubMed

    Qu, Zhengyi; Na, Weidan; Liu, Xiaotong; Liu, Hua; Su, Xingguang

    2018-01-02

    In this paper, we developed a sensitive fluorescence biosensor for tyrosinase (TYR) and acid phosphatase (ACP) activity detection based on nitrogen-doped graphene quantum dots (N-GQDs). Tyrosine could be catalyzed by TYR to generate dopaquinone, which could efficiently quench the fluorescence of N-GQDs, and the degree of fluorescence quenching of N-GQDs was proportional to the concentration of TYR. In the presence of ACP, l-Ascorbic acid-2-phosphate (AAP) was hydrolyzed to generate ascorbic acid (AA), and dopaquinone was reduced to l-dopa, resulting in the fluorescence recovery of the quenched fluorescence by dopaquinone. Thus, a novel fluorescence biosensor for the detection of TYR and ACP activity based on N-GQDs was constructed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of TYR and ACP in the range of 0.43-3.85 U mL -1 and 0.04-0.7 mU mL -1 with a detection limit of 0.15 U mL -1 and 0.014 mU mL -1 , respectively. The feasibility of the proposed biosensor in real samples assay was also studied and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: application to adenosine triphosphate and pyrophosphate sensing.

    PubMed

    Yu, Cheng-Ju; Wu, Su-Mei; Tseng, Wei-Lung

    2013-09-17

    We report that magnetite nanoparticles (Fe3O4 NPs) act as an efficient quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) that is highly fluorescent in bulk solution. BODIPY-ATP molecules attached to the surface of Fe3O4 NPs through the coordination between the triphosphate group of BODIPY-ATP and Fe(3+)/Fe(2+) on the NP surface. The formed complexes induced an apparent reduction in the BODIPY-ATP fluorescence resulting from an oxidative-photoinduced electron transfer (PET) from the BODIPY-ATP excited state to an unfilled d shell of Fe(3+)/Fe(2+) on the NP surface. A comparison of the Stern-Volmer quenching constant between Fe(3+) and Fe(2+) suggests that Fe(3+) on the NP surface dominantly controls this quenching process. The efficiency for Fe3O4 NP-induced fluorescence quenching of the BODIPY-ATP was enhanced by increasing the concentration of Fe3O4 NPs and lowering the pH of the solution to below 6.0. We found that pyrophosphate and ATP compete with BODIPY-ATP for binding to Fe3O4 NPs. Thus, we amplified BODIPY-ATP fluorescence in the presence of increasing the pyrophosphate and ATP concentration; the detection limits at a signal-to-noise ratio of 3 for pyrophosphate and ATP were determined to be 7 and 30 nM, respectively. The Fe3O4 NP-based competitive binding assay detected ATP and pyrophosphate in only 5 min. The selectivity of this assay for ATP over metal ions, amino acids, and adenosine analogues is particularly high. The practicality of using the developed method to determine ATP in a single drop of blood is also validated.

  2. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    PubMed

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A fluorescent organic nanoprobe developed for the detection of erythrosine (ETS) food dye in aqueous medium based on fluorescence resonance energy transfer (FRET). The FRET process between donor (nanoparticles) and acceptor (ETS dye) arises due to oppositely charge attraction through hydrophobic interactions. The proposed method was successfully applied to quantitative determination of ETS dye in food stuff sample collected from local market.

  3. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    PubMed

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-rangemore » quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.« less

  5. One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging.

    PubMed

    Jana, Jayasmita; Ganguly, Mainak; Das, Bodhisatwa; Dhara, Santanu; Negishi, Yuichi; Pal, Tarasankar

    2016-04-01

    We report a simple one-pot synthesis of highly fluorescent carbon dots (CDs) via modified hydrothermal (MHT) treatment of alkaline solution of dopamine and cysteine. These CDs (λex=320 nm, λem=390 nm, and quantum yield ∼ 5.1%) are of ∼ 2-3 nm in diameter. Further attempt of synthesizing CDs in some common water-miscible solvents ends up the fact that the MHT product from acetone medium is nonfluorescent. However, CDs, produced in aqueous medium, are so stable that they can be dried as a deliverable solid (WCD) without any alteration of fluorescing property if reversibly dispersed in water. Fluorescence of WCD is quenched selectively in acetone. Quenching occurs presumably due to the disruption of radiative recombination along with the hindrance in quantum confinement of the emissive energy traps to the particle surface. Successive quenching of fluorescence of WCD in different acetone concentration admixed in water paves the way to selective acetone sensing (LOD=8.75 × 10(-7) M). The synthesized CDs (in aqueous medium) are cytocompatible and are efficient fluorescent probe for cell imaging. Only living cells are recognized exclusively from fluorescence imaging leaving aside dead cells, while cells are treated with CDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles

    PubMed Central

    Fan, Chunhai; Wang, Shu; Hong, Janice W.; Bazan, Guillermo C.; Plaxco, Kevin W.; Heeger, Alan J.

    2003-01-01

    Gold nanoparticles quench the fluorescence of cationic polyfluorene with Stern–Volmer constants (KSV) approaching 1011 M—1, several orders of magnitude larger than any previously reported conjugated polymer–quencher pair and 9–10 orders of magnitude larger than small molecule dye–quencher pairs. The dependence of KSV on ionic strength, charge and conjugation length of the polymer, and the dimensions (and thus optical properties) of the nanoparticles suggests that three factors account for this extraordinary efficiency: (i) amplification of the quenching via rapid internal energy or electron transfer, (ii) electrostatic interactions between the cationic polymer and anionic nanoparticles, and (iii) the ability of gold nanoparticles to quench via efficient energy transfer. As a result of this extraordinarily high KSV, quenching can be observed even at subpicomolar concentrations of nanoparticles, suggesting that the combination of conjugated polymers with these nanomaterials can potentially lead to improved sensitivity in optical biosensors. PMID:12750470

  7. Anomalous fluorescence enhancement and fluorescence quenching of graphene quantum dots by single walled carbon nanotubes.

    PubMed

    Das, Ruma; Rajender, Gone; Giri, P K

    2018-02-07

    We explore the mechanism of the fluorescence enhancement and fluorescence quenching effect of single walled carbon nanotubes (SWCNTs) on highly fluorescent graphene quantum dots (GQDs) over a wide range of concentrations of SWCNTs. At very low concentrations of SWCNTs, the fluorescence intensity of the GQDs is enhanced, while at higher concentrations, systematic quenching of fluorescence is observed. The nature of the Stern-Volmer plot for the latter case was found to be non-linear indicating a combined effect of dynamic and static quenching. The contribution of the dynamic quenching component was assessed through the fluorescence lifetime measurements. The contribution of static quenching is confirmed from the red shift of the fluorescence spectra of the GQDs after addition of SWCNTs. The fluorescence intensity is first enhanced at very low concentration due to improved dispersion and higher absorption by GQDs, while at higher concentration, the fluorescence of GQDs is quenched due to the complex formation and associated reduction of the radiative sites of the GQDs, which is confirmed from time-resolved fluorescence measurements. Laser confocal microscopy imaging provides direct evidence of the enhancement and quenching of fluorescence at low and high concentrations of SWCNTs, respectively. This study provides an important insight into tuning the fluorescence of GQDs and understanding the interaction between GQDs and different CNTs, which is important for bio-imaging and drug delivery applications.

  8. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio

    NASA Astrophysics Data System (ADS)

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-01

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  9. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio.

    PubMed

    Li, Chong; Yan, Hui; Zhao, Ling-Xi; Zhang, Guo-Feng; Hu, Zhe; Huang, Zhen-Li; Zhu, Ming-Qiang

    2014-12-12

    Photoswitchable fluorescent diarylethenes are promising in molecular optical memory and photonic devices. However, the performance of current diarylethenes is far from satisfactory because of the scarcity of high-speed switching capability and large fluorescence on-off ratio. Here we report a trident perylenemonoimide dyad modified by triple dithienylethenes whose photochromic fluorescence quenching ratio at the photostationary state exceeds 10,000 and the fluorescence quenching efficiency is close to 100% within seconds of ultraviolet irradiation. The highly sensitive fluorescence on/off switching of the trident dyad enables recyclable fluorescence patterning and all-optical transistors. The prototype optical device based on the trident dyad enables the optical switching of incident light and conversion from incident light wavelength to transmitted light wavelength, which is all-optically controlled, reversible and wavelength-convertible. In addition, the trident dyad-staining block copolymer vesicles are observed via optical nanoimaging with a sub-100 nm resolution, portending a potential prospect of the dithienylethene dyad in super-resolution imaging.

  10. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer.

    PubMed

    Wang, Beibei; Wang, Shujun; Wang, Yanfang; Lv, Yan; Wu, Hao; Ma, Xiaojun; Tan, Mingqian

    2016-01-01

    To prepare fluorescent carbon dots for loading cationic anticancer drug through donor-quenched nanosurface energy transfer in visible sensing of drug release. Highly fluorescent carbon dots (CDs) were prepared by a facile hydrothermal approach from citric acid and o-phenylenediamine. The obtained CDs showed a high quantum yield of 46 % and exhibited good cytocompatibility even at 1 mg/ml. The cationic anticancer drug doxorubicin (DOX) can be loaded onto the negatively charged CDs through electrostatic interactions. Additionally, the fluorescent CDs feature reversible donor-quenched mode nanosurface energy transfer. When loading the energy receptor DOX, the donor CDs' fluorescence was switched "off", while it turned "on" again after DOX release from the surface through endocytic uptake. Most DOX molecules were released from the CDs after 6 h incubation and entered cell nuclear region after 8 h, suggesting the drug delivery system may have potential for visible sensing in drug release.

  11. Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots

    NASA Astrophysics Data System (ADS)

    Yuan, Yusheng; Zhao, Xin; Qiao, Man; Zhu, Jinghui; Liu, Shaopu; Yang, Jidong; Hu, Xiaoli

    2016-10-01

    Fluorescent carbon dots was prepared by heating N-(2-hydroxyethyl)ethylene diaminetriacetic acid in air. The carbon dots were not only highly soluble in water but also uniform in size, and possessed strong blue fluorescence and excitation wavelength-dependent emission properties with the maximum excitation and emission wavelength at 366 nm and 423 nm, respectively. Food colorant sunset yellow whose excitation and emission wavelength at 303 nm and 430 nm could selectively quench the fluorescence of carbon dots, efficient fluorescent resonance energy transfer between the carbon dots and sunset yellow is achieved. This was exploited to design a method for the determination of sunset yellow in the concentration range from 0.3 to 8.0 μmol L- 1, with a limit of detection (3 σ/k) of 79.6 nmol L- 1. Furthermore the fluorimetric detection method was established and validated for sunset yellow in soft drinks samples with satisfactory results.

  12. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects.

    PubMed

    Sugawa, Kosuke; Tamura, Takahiro; Tahara, Hironobu; Yamaguchi, Daisuke; Akiyama, Tsuyoshi; Otsuki, Joe; Kusaka, Yasuyuki; Fukuda, Nobuko; Ushijima, Hirobumi

    2013-11-26

    Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.

  13. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.

    PubMed

    Stöhr, Katharina; Siegberg, Daniel; Ehrhard, Tanja; Lymperopoulos, Konstantinos; Öz, Simin; Schulmeister, Sonja; Pfeifer, Andrea C; Bachmann, Julie; Klingmüller, Ursula; Sourjik, Victor; Herten, Dirk-Peter

    2010-10-01

    Recent developments in fluorescence microscopy raise the demands for bright and photostable fluorescent tags for specific and background free labeling in living cells. Aside from fluorescent proteins and other tagging methods, labeling of SNAP-tagged proteins has become available thereby increasing the pool of potentially applicable fluorescent dyes for specific labeling of proteins. Here, we report on novel conjugates of benzylguanine (BG) which are quenched in their fluorescence and become highly fluorescent upon labeling of the SNAP-tag, the commercial variant of the human O(6)-alkylguanosyltransferase (hAGT). We identified four conjugates showing a strong increase, i.e., >10-fold, in fluorescence intensity upon labeling of SNAP-tag in vitro. Moreover, we screened a subset of nine BG-dye conjugates in living Escherichia coli and found them all suited for labeling of the SNAP-tag. Here, quenched BG-dye conjugates yield a higher specificity due to reduced contribution from excess conjugate to the fluorescence signal. We further extended the application of these conjugates by labeling a SNAP-tag fusion of the Tar chemoreceptor in live E. coli cells and the eukaryotic transcription factor STAT5b in NIH 3T3 mouse fibroblast cells. Aside from the labeling efficiency and specificity in living cells, we discuss possible mechanisms that might be responsible for the changes in fluorescence emission upon labeling of the SNAP-tag, as well as problems we encountered with nonspecific labeling with certain conjugates in eukaryotic cells.

  14. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets.

    PubMed

    Zhang, Yunyi; Li, Yongxin; Zhang, Cuiyun; Zhang, Qingfeng; Huang, Xinan; Yang, Meiding; Shahzad, Sohail Anjum; Lo, Kenneth Kam-Wing; Yu, Cong; Jiang, Shichun

    2017-08-01

    A fluorescence turn-on assay for alkaline phosphatase (ALP) activity is developed through the controlled release of polyethyleneimine-capped copper nanoclusters (PEI-capped CuNCs) from the MnO 2 nanosheets. In an aqueous solution, the positively charged PEI-capped CuNCs could be adsorbed onto the surface of the negatively charged MnO 2 nanosheets. Such adsorption through favorable electrostatic interactions could efficiently quench the nanocluster fluorescence emission via resonance energy transfer from the PEI-capped CuNCs to the MnO 2 nanosheets. 2-Phospho-L-ascorbic acid (AAP) could be hydrolyzed to L-ascorbic acid (AA) in the presence of ALP. AA could reduce MnO 2 into Mn 2+ and trigger the disintegration of the MnO 2 nanosheets. As a result, the CuNCs were released and the quenched fluorescence was recovered efficiently. The detection strategy is simple, inexpensive, sensitive, selective, with low toxicity, and has better biocompatibility. The newly fabricated biosensor for ALP activity will potentially make it a robust candidate for numerous biological and biomedical applications.

  15. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  16. Polydopamine Nanotubes as an Effective Fluorescent Quencher for Highly Sensitive and Selective Detection of Biomolecules Assisted with Exonuclease III Amplification.

    PubMed

    Fan, Daoqing; Zhu, Xiaoqing; Zhai, Qingfeng; Wang, Erkang; Dong, Shaojun

    2016-09-20

    In this work, the effective fluorescence quenching ability of polydopamine nanotubes (PDANTs) toward various fluorescent dyes was studied and further applied to fluorescent biosensing for the first time. The PDANTs could quench the fluorophores with different emission frequencies, aminomethylcoumarin acetate (AMCA), 6-carboxyfluorescein (FAM), 6-carboxytetramethylrhodamine (TAMRA), and Cy5. All the quenching efficiencies reached to more than 97%. Taking advantage of PDANTs' different affinities toward ssDNA and dsDNA and utilizing the complex of FAM-labeled ssDNA and PDANTs as a sensing platform, we achieved highly sensitive and selective detection of human immunodeficiency virus (HIV) DNA and adenosine triphosphate (ATP) assisted with Exonuclease III amplification. The limits of detection (LODs) of HIV DNA and ATP reached to 3.5 pM and 150 nM, respectively, which were all lower than that of previous nanoquenchers with Exo III amplification, and the platform also presented good applicability in biological samples. Fluorescent sensing applications of this nanotube enlightened other targets detection based upon it and enriched the building blocks of fluorescent sensing platforms. This polydopamine nanotube also possesses excellent biocompatibility and biodegradability, which is suitable for future drug delivery, cell imaging, and other biological applications.

  17. Monte Carlo treatment of resonance-radiation imprisonment in fluorescent lamps—revisited

    NASA Astrophysics Data System (ADS)

    Anderson, James B.

    2016-12-01

    We reported in 1985 a Monte Carlo treatment of the imprisonment of the 253.7 nm resonance radiation from mercury in the mercury-argon discharge of fluorescent lamps. The calculated spectra of the emitted radiation were found in good agreement with measured spectra. The addition of the isotope mercury-196 to natural mercury was found, also in agreement with experiments, to increase lamp efficiency. In this paper we report the extension of the earlier work with increased accuracy, analysis of photon exit-time distributions, recycling of energy released in quenching, analysis of dynamic similarity for different lamp sizes, variation of Mrozowski transfer rates, prediction and analysis of the hyperfine ultra-violet spectra, and optimization of tailored mercury isotope mixtures for increased lamp efficiency. The spectra were found insensitive to the extent of quenching and recycling. The optimized mixtures were found to increase efficiencies by as much as 5% for several lamp configurations. Optimization without increasing the mercury-196 fraction was found to increase efficiencies by nearly 1% for several configurations.

  18. Influence of the Diadinoxanthin Pool Size on Photoprotection in the Marine Planktonic Diatom Phaeodactylum tricornutum1

    PubMed Central

    Lavaud, Johann; Rousseau, Bernard; van Gorkom, Hans J.; Etienne, Anne-Lise

    2002-01-01

    The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (Fm, PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (Fo, PSII centers open) decreased the quantum efficiency of PSII proportionally. For both Fm and Fo, the non-photochemical quenching expressed as F/F′ − 1 (with F′ the quenched level) was proportional to the DT concentration. However, the quenching of Fo relative to that of Fm was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters. PMID:12114593

  19. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ebru; Bayraktutan, Tuğba; Acar, Murat; Toprak, Mahmut

    2013-01-01

    In this study, the fluorescence quenching of fluorescein by safranine T in liposome media had been investigated systematically by fluorescence spectroscopy, UV-vis absorption spectroscopy and fluorescence decay lifetime measurements. The spectroscopic data were analyzed using a Stern-Volmer equation to determine the quenching process. The experimental results showed that the intrinsic fluorescence of fluorescein was strongly quenched by safranine T, and that the quenching mechanism was considered as static quenching by forming a ground-complex. The Stern-Volmer quenching constant Ksv, and the bimolecular quenching constant Kq were estimated. The distances between the donor (fluorescein) and the acceptor (safranine T) were calculated according to the Förster non-radiation energy transfer theory. In addition, the partition coefficient of the safranine T (Kp) in the L-egg lecithin phosphatidylcholine liposomes was also calculated by utilizing the fluorescence quenching.

  20. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Highly Efficient Multiple-Anchored Fluorescent Probe for the Detection of Aniline Vapor Based on Synergistic Effect: Chemical Reaction and PET.

    PubMed

    Jiao, Zinuo; Zhang, Yu; Xu, Wei; Zhang, Xiangtao; Jiang, Haibo; Wu, Pengcheng; Fu, Yanyan; He, Qingguo; Cao, Huimin; Cheng, Jiangong

    2017-05-26

    A multiple-anchored fluorescent probe ((((hexane-1,6-diylbis(2,7-bis(4-formyl)-phenyl)-9H-fluorine-9,9-diyl))-bis(hexane-6,1-diyl))-bis(9H-carbazole-9,3,6-triyl))-tetrakis(benzene-4,1-diyl))-tetraformyl-(8FP-2F) with eight aldehyde groups was designed and synthesized. The molecule has four branches and highly twisted structure. Furthermore, it tends to self-assemble into nanospheres, which is beneficial for gaseous analyte penetration and high fluorescence quantum efficiency. Among gaseous analytes, detection of aniline vapor is extraordinarily important in the control of environmental issues and human diseases. Herein, 8FP-2F was introduced to detect aniline vapor with distinguished sensitivity and selectivity via simple Schiff base reaction at room temperature. After exposure to saturate aniline vapor, the 89% fluorescence of 8FP-2F was quenched in 50 s and the detection limit was as low as 3 ppb. Further study showed the suitable HOMO/LUMO energy levels and matched orbital symmetry between probe and aniline molecules ensured chemical reaction and PET process work together. The synergistic effect resulted in a significant sensing performance and fluorescence quenching toward aniline vapor. Moreover, the multiple active sites structure of 8FP-2F means it could be applied for constructing many interesting structures and highly efficient organic optoelectronic functional materials.

  2. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  3. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    PubMed

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  4. Sensing and imaging of oxygen with parts per billion limits of detection and based on the quenching of the delayed fluorescence of (13)C70 fullerene in polymer hosts.

    PubMed

    Kochmann, Sven; Baleizão, Carlos; Berberan-Santos, Mário N; Wolfbeis, Otto S

    2013-02-05

    We report on a new method for sensing trace oxygen in the gas phase. It is based on the extreme efficiency of the quenching of the thermally activated delayed fluorescence of isotopically enriched carbon-13 fullerene C(70) ((13)C(70)). This fullerene was dissolved in polymer matrixes of varying oxygen permeability, viz., polystyrene (PS), ethyl cellulose (EC) and an organically modified silica gel ("ormosil"; OS). The sensor films (5-10 μm thick), on photoexcitation at 470 nm, display a strong delayed photoluminescence with peaks between 670 and 700 nm. Its quenching by molecular oxygen was studied at 25 and 60 °C and at concentrations from zero up to 150 ppmv of oxygen in nitrogen. The rapid lifetime determination (RLD) method was applied to determine oxygen-dependent lifetimes and for fluorescence lifetime imaging of oxygen. The lower limits of detection (at 1% quenching) vary with the polymer used (EC ∼250 ppbv, OS ∼320 ppbv, PS ∼530 ppbv at 25 °C) and with temperature. The oxygen sensors reported here are the most sensitive ones described so far.

  5. Distance-dependent Fluorescence Quenching and Binding of CdSe Quantum Dots by Functionalized Nitroxide Radicals

    PubMed Central

    Tansakul, Chittreeya; Lilie, Erin; Walter, Eric D.; Rivera, Frank; Wolcott, Abraham; Zhang, Jin Z.; Millhauser, Glenn L.

    2010-01-01

    Quantum dot (QD) fluorescence is effectively quenched at low concentration by nitroxides bearing amine or carboxylic acid ligands. The association constants and fluorescence quenching of CdSe QDs with these derivatized nitroxides have been examined using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The EPR spectra in the non-protic solvent toluene are extremely sensitive to intermolecular and intramolecular hydrogen bonding of the functionalized nitroxides. Fluorescence measurements show that quenching of QD luminescence is nonlinear, with a strong dependence on the distance between the radical and the QD. The quenched fluorescence is restored when the surface-bound nitroxides are converted to hydroxylamines by mild reducing agents, or trapped by carbon radicals to form alkoxyamines. EPR studies indicate that photoreduction of the nitroxide occurs in toluene solution upon photoexcitation at 365 nm. However, photolysis in benzene solution gives no photoreduction, suggesting that photoreduction in toluene is independent of the quenching mechanism. The fluorescence quenching of QDs by nitroxide binding is a reversible process. PMID:20473339

  6. Hybridization-based biosensor containing hairpin probes and use thereof

    DOEpatents

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  7. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.

    PubMed

    Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po

    2018-01-16

    A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.

  8. In depth analysis of the quenching of three fluorene-phenylene-based cationic conjugated polyelectrolytes by DNA and DNA bases.

    PubMed

    Davies, Matthew L; Douglas, Peter; Burrows, Hugh D; Martincigh, Bice; Miguel, Maria da Graça; Scherf, Ullrich; Mallavia, Ricardo; Douglas, Alastair

    2014-01-16

    The interaction of three cationic poly {9,9-bis[N,N-(trimethylammonium)hexyl]fluorene-co-1,4-phenylene} polymers with average chain lengths of ∼6, 12, and 100 repeat units (PFP-NR36(I),12(Br),100(Br)) with both double and single stranded, short and long, DNA and DNA bases have been studied by steady state and time-resolved fluorescence techniques. Fluorescence of PFP-NR3 polymers is quenched with high efficiency by DNA (both double and single stranded) and DNA bases. The resulting quenching plots are sigmoidal and are not accurately described by using a Stern-Volmer quenching mechanism. Here, the quenching mechanism is well modeled in terms of an equilibrium in which a PFP-NR3/DNA aggregate complex is formed which brings polymer chains into close enough proximity to allow interchain excitation energy migration and quenching at aggregate or DNA base traps. Such an analysis gives equilibrium constants of 8.4 × 10(6) (±1.2 × 10(6)) M(-1) for short-dsDNA and 8.6 × 10(6) (±1.7 × 10(6)) M(-1) for short-ssDNA with PFP-NR36(I).

  9. Intra- and intermolecular fluorescence quenching of N-activated 4,5-dimethoxyphthalimides by sulfides, amines, and alkyl carboxylates.

    PubMed

    Griesbeck, Axel G; Schieffer, Stefan

    2003-02-01

    The fluorescent 4,5-dimethoxyphthalimides 1-10 were applied as sensors for intra- and intermolecular photoinduced electron transfer processes. Strong intramolecular fluorescence quenching was detected for the thioether 2 and the tertiary amine 3. The fluorescence of the carboxylic acids 4-7 is pH-dependent accounting for PET-quenching of the singlet excited phthalimide at pH > pKs. At low pH, chromophore protonation might contribute to moderate fluorescence quenching. The arylated phthalimides 9 and 10 show remarkable low fluorescence independent of pH and substituent pattern. Intermolecular fluorescence quenching was detected for the combinations of 1 with dimethyl sulfide, and 1 with triethylamine but not with metal carboxylates.

  10. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps

    NASA Astrophysics Data System (ADS)

    Ezquerra Riega, Sergio D.; Rodríguez, Hernán B.; San Román, Enrique

    2017-03-01

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  11. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect.

    PubMed

    Yan, Xu; Li, Hongxia; Han, Xiaosong; Su, Xingguang

    2015-12-15

    In this work, we develop a novel and sensitive sensor for the detection of organophosphorus pesticides based on the inner-filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs has been designed by hybridizing two differently colored CdTe QDs, in which the red emissive QDs entrapped in the silica sphere acting as the reference signal, and the green emissive QDs covalently attached on the silica surface serving as the response signal.The fluorescence of RF-QDs could be quenched by AuNPs based on IFE. Protamine could effectively turn on the fluorescence due to the electrostatic attraction between protamine and AuNPs. Trypsin can easily hydrolyze protamine, leading to the quench of the fluorescence. Then, the fluorescence could be recovered again by the addition of parathion-methyl (PM) which could inhibit the activity of trypsin. By measuring the fluorescence of RF-QDs, the inhibition efficiency of PM to trypsin activity was evaluated. Under the optimized conditions, the inhibition efficiency was proportional to the logarithm of PM concentration in the range of 0.04-400 ng mL(-1), with a detection limit of 0.018 ng mL(-1). Furthermore, the simple and convenient method had been used for PM detection in environmental and agricultural samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The mechanism and regularity of quenching the effect of bases on fluorophores: the base-quenched probe method.

    PubMed

    Mao, Huihui; Luo, Guanghua; Zhan, Yuxia; Zhang, Jun; Yao, Shuang; Yu, Yang

    2018-04-30

    The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbital of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbitals of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Furthermore, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG[combining low line] ≥ GC[combining low line] > TA[combining low line] ≥ AT[combining low line] (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMRA could be influenced by bases and are in line with this mechanism and regularity.

  13. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    PubMed

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  15. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.

    PubMed

    Tu, Renyong; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Wang, Feng; Fang, Qunling; Zhang, Zhongping

    2008-05-01

    Mn2+-doped ZnS nanocrystals with an amine-capping layer have been synthesized and used for the fluorescence detection of ultratrace 2,4,6-trinitrotoluene (TNT) by quenching the strong orange Mn2+ photoluminescence. The organic amine-capped nanocrystals can bind TNT species from solution and atmosphere by the acid-base pairing interaction between electron-rich amino ligands and electron-deficient aromatic rings. The resultant TNT anions bound onto the amino monolayer can efficiently quench the Mn2+ photoluminescence through the electron transfer from the conductive band of ZnS to the lowest unoccupied molecular orbital (LUMO) of TNT anions. The amino ligands provide an amplified response to the binding events of nitroaromatic compounds by the 2- to approximately 5-fold increase in quenching constants. Moreover, a large difference in quenching efficiency was observed for different types of nitroaromatic analytes, dependent on the affinity of nitro analytes to the amino monolayer and their electron-accepting abilities. The amine-capped nanocrystals can sensitively detect down to 1 nM TNT in solution or several parts-per-billion of TNT vapor in atmosphere. The ion-doped nanocrystal sensors reported here show a remarkable air/solution stability, high quantum yield, and strong analyte affinity and, therefore, are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  16. Fluorescence properties of 3-amino phenylboronic acid and its interaction with glucose and ZnS:Cu quantum dots.

    PubMed

    Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa

    2014-08-14

    Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters.

    PubMed

    Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang

    2017-05-15

    Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers.

    PubMed

    Gather, Malte C; Yun, Seok Hyun

    2014-12-08

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.

  19. Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7.

    PubMed

    Yang, Dandan; Liu, Mei; Xu, Jing; Yang, Chao; Wang, Xiaoxiao; Lou, Yongbing; He, Nongyue; Wang, Zhifei

    2018-08-01

    In this work, carbon nanosphere (CNS)-based fluorescence "turn off/on" aptasensor was developed for targeted detection of breast cancer cell MCF-7 by conjugation with FAM (a dye)-labeled mucin1 (MUC1) aptamer P0 (P0-FAM), which can recognize MUC1 protein overexpressed on the surface of MCF-7. Different from other carbon based fluorescence quenching materials, CNSs prepared by the carbonization of glucose not only have the high fluorescence quenching efficiency (98.8%), but also possess negligible cytotoxicity (in the concentration range of 0-1 mg/mL, which is 10 times higher than that of traditional carbon nanotubes or graphene oxide (0-100 µg/mL)). As for the detection of the mimic of the tumor antigen MUC1, the resulting fluorescence intensity increases nearly linearly in the range of 0-6 μM with the limit of detection (LOD) of 25 nM. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Suppression of Red Blood Cell Autofluorescence for Immunocytochemistry on Fixed Embryonic Mouse Tissue.

    PubMed

    Whittington, Niteace C; Wray, Susan

    2017-10-23

    Autofluorescence is a problem that interferes with immunofluorescent staining and complicates data analysis. Throughout the mouse embryo, red blood cells naturally fluoresce across multiple wavelengths, spanning the emission and excitation spectra of many commonly used fluorescent reporters, including antibodies, dyes, stains, probes, and transgenic proteins, making it difficult to distinguish assay fluorescence from endogenous fluorescence. Several tissue treatment methods have been developed to bypass this issue with varying degrees of success. Sudan Black B dye has been commonly used to quench autofluorescence, but can also introduce background fluorescence. Here we present a protocol for an alternative called TrueBlack Lipofuscin Autofluorescence Quencher. The protocol described in this unit demonstrates how TrueBlack efficiently quenches red blood cell autofluorescence across red and green wavelengths in fixed embryonic tissue without interfering with immunofluorescent signal intensity or introducing background staining. We also identify optimal incubation, concentration, and multiple usage conditions for routine immunofluorescence microscopy. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers

    PubMed Central

    Gather, Malte C.; Yun, Seok Hyun

    2015-01-01

    Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850

  2. Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700.

    PubMed

    Schlodder, Eberhard; Hussels, Martin; Cetin, Marianne; Karapetyan, Navassard V; Brecht, Marc

    2011-11-01

    Photosystem I of cyanobacteria contains different spectral pools of chlorophylls called red or long-wavelength chlorophylls that absorb at longer wavelengths than the primary electron donor P700. We measured the fluorescence spectra at the ensemble and the single-molecule level at low temperatures in the presence of oxidized and reduced P700. In accordance with the literature, it was observed that the fluorescence is quenched by P700(+). However, the efficiency of the fluorescence quenching by oxidized P700(+) was found to be extremely different for the various red states in PS I from different cyanobacteria. The emission of the longest-wavelength absorbing antenna state in PS I trimers from Thermosynechococcus elongatus (absorption maximum at 5K: ≈ 719nm; emission maximum at 5K: ≈ 740nm) was found to be strongly quenched by P700(+) similar to the reddest state in PS I trimers from Arthrospira platensis emitting at 760nm at 5K. The fluorescence of these red states is diminished by more than a factor of 10 in the presence of oxidized P700. For the first time, the emission of the reddest states in A. platensis and T. elongatus has been monitored using single-molecule fluorescence techniques. 2011 Elsevier B.V. All rights reserved.

  3. A fluorescence quenching test for the detection of flavonoid transformation.

    PubMed

    Schoefer, L; Braune, A; Blaut, M

    2001-11-13

    A novel fluorescence quenching test for the detection of flavonoid degradation by microorganisms was developed. The test is based on the ability of the flavonoids to quench the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH). Several members of the anthocyanidins, flavones, isoflavones, flavonols, flavanones, dihydroflavanones, chalcones, dihydrochalcones and catechins were tested with regard to their quenching properties. The anthocyanidins were the most potent quenchers of DPH fluorescence, while the flavanones, dihydroflavanones and dihydrochalcones, quenched the fluorescence only weakly. The catechins had no visible impact on DPH fluorescence. The developed test allows a quick and easy differentiation between flavonoid-degrading and flavonoid-non-degrading bacteria. The investigation of individual reactions of flavonoid transformation with the developed test system is also possible.

  4. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.

    PubMed

    Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R

    2016-05-01

    Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Excitation-Energy Transfer Paths from Tryptophans to Coordinated Copper Ions in Engineered Azurins: a Source of Observables for Monitoring Protein Structural Changes

    NASA Astrophysics Data System (ADS)

    Di Rocco, Giulia; Bernini, Fabrizio; Borsari, Marco; Martinelli, Ilaria; Bortolotti, Carlo Augusto; Battistuzzi, Gianantonio; Ranieri, Antonio; Caselli, Monica; Sola, Marco; Ponterini, Glauco

    2016-09-01

    The intrinsic fluorescence of recombinant proteins offers a powerful tool to detect and characterize structural changes induced by chemical or biological stimuli. We show that metal-ion binding to a hexahistidine tail can significantly broaden the range of such structurally sensitive fluorescence observables. Bipositive metal-ions as Cu2+, Ni2+ and Zn2+ bind 6xHis-tag azurin and its 6xHis-tagged R129W and W48A-R129W mutants with good efficiency and, thereby, quench their intrinsic fluorescence. Due to a much more favourable spectral overlap, the 6xHis-tag/Cu2+ complex(es) are the most efficient quenchers of both W48 and W129 emissions. Based on simple Förster-type dependence of energy-transfer efficiency on donor/acceptor distance, we can trace several excitation-energy transfer paths across the protein structure. Unexpected lifetime components in the azurin 6xHis-tag/Cu2+ complex emission decays reveal underneath complexity in the conformational landscape of these systems. The new tryptophan emission quenching paths provide additional signals for detecting and identifying protein structural changes.

  6. Fluorescence Quenching of CdSe/ZnS Quantum Dots by Using Black Hole Quencher Molecules Intermediated With Peptide for Biosensing Application.

    PubMed

    Pillai, Sreenadh Sasidharan; Yukawa, Hiroshi; Onoshima, Daisuke; Biju, Vasudevanpillai; Baba, Yoshinobu

    2015-12-17

    Quantum dots (QDs) have recently been investigated as fluorescent probes for detecting a very small number of biomolecules and live cells; however, the establishment of molecular imaging technology with on-off control of QD fluorescence remains to be established. Here we have achieved the fluorescence off state of QDs with the conjugation of black hole quencher (BHQ) molecules intermediated with peptide by using streptavidin-QDs585 and biotin-pep-BHQ-1. The fluorescence of streptavidin-QDs585 was decreased by the addition of biotin-pep-BHQ-1 in a dose-dependent manner. It has been suggested that the decrease in QDs585 fluorescence occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of fluorescence intensity and lifetime of streptavidin-QDs585 and QDs585-pep-BHQ-1. QDs585 fluorescence could be quenched by more than 60% efficiency in this system. The sequence of intermediate peptide (pep) was GPLGVRGK, which can be cleaved by matrix metalloproteinases (MMPs) produced by cancer cells. QDs585-pep-BHQ-1 is thus expected to detect the MMP production by the recovery of QDs585 fluorescence as a new bioanalytical agent for molecular imaging.

  7. A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots.

    PubMed

    Saberi, Zeinab; Rezaei, Behzad; Faroukhpour, Hossein; Ensafi, Ali Ashghar

    2018-05-17

    Cobalt oxyhydroxide (CoOOH) nanosheets are efficient fluorescence quenchers due to their specific optical properties and high surface area. The combination of CoOOH nanosheets and carbon dots (CDs) has not been used in any aptasensor based on fluorescence quenching so far. An aptamer based fluorometric assay is introduced that is making use of fluorescent CDs conjugated to the aptamer against methamphetamine (MTA), and of CoOOH nanosheets which reduce the fluorescence of the CDs as a quencher. The results revealed that the conjugated CDs with aptamers were able to enclose the CoOOH nanosheets. Consequently, fluorescence is quenched. If the aptamer on the CD binds MTA, the CDs are detached from CoOOH nanosheets. As a result, fluorescence is restored proportionally to zhe MTA concentration. The fluorometric limit of detection is 1 nM with a dynamic range from 5 to 156 nM. The method was validated by comparing the results obtained by the new method to those obtained by ion mobility spectroscopy. Theoretical studies showed that the distance between CoOOH nanosheet and C-Ds is approximately 7.6 Å which can illustrate the possibility of FRET phenomenon. The interactions of MTA and the aptamer were investigated using molecular dynamic simulation (MDS). Graphical abstract Carbon dots (C-Ds) were prepared from grape leaves, conjugated to aptamer, and adsorbed on CoOOH nanosheets. So, the fluorescence of C-Ds is quenched. On addition of MTA, fluorescence is restored.

  8. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules.

    PubMed

    Geng, Hao; Zhang, Xian-Fu

    2015-03-15

    The absorption and fluorescence spectra as well as fluorescence lifetimes of tetrasulfonated zinc phthalocyanine ZnPc(SO3Na)4 were measured in the absence and presence of four rhodamine dyes, Rhodamine B (RB), Ethyl rhodamine B (ERB), Rhodamine 6G (R6G), Rhodamine 110 (R110), and Pyronine B (PYB). The ground state complexes of phthalocyanine-(Rhodamine)2 were observed which exhibit new absorption bands. The binding constants are all very large (0.86×10(5)-0.22×10(8) M(-1)), suggesting rhodamine-phthalocyanine pairs are very good combinations for efficient selfassembly. Both the fluorescence intensity and the lifetime values of ZnPc(SO3Na)4 were decreased by the presence of rhodamines. The structural effect of rhodamines on selfassembly is significant. The ground state binding and dynamic quenching capability is PYB>R6G>ERB>RB>R110. The dynamic fluorescence quenching is due to the photoinduced electron transfer (PET). The PET rate constant is very large and in the order of 10(13) M(-1) s(-1), much greater than kf and kic (in the order of 10(8) M(-1) s(-1)), which means that the PET efficiency is almost 100%. Therefore the non-covalent Pc-rhodamine is a very good pair of donor/acceptor for potential efficient solar energy conversion. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Azide–Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination

    PubMed Central

    Mann, Victor R.; Powers, Alexander S.; Tilley, Drew C.; Sack, Jon T.; Cohen, Bruce E.

    2018-01-01

    Functionalization of nanocrystals is essential for their practical application, but synthesis on nanocrystal surfaces is limited by incompatibilities with certain key reagents. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is among the most useful methods for ligating molecules to surfaces, but has been largely useless for semiconductor quantum dots (QDs) because Cu+ ions quickly and irreversibly quench QD fluorescence. To discover non-quenching synthetic conditions for Cu-catalyzed click reactions on QD surfaces, we developed a combinatorial fluorescence assay to screen >2000 reaction conditions to maximize cycloaddition efficiency while minimizing QD quenching. We identify conditions for complete coupling without significant quenching, which are compatible with common QD polymer surfaces and various azide/alkyne pairs. Based on insight from the combinatorial screen and mechanistic studies of Cu coordination and quenching, we find that superstoichiometric concentrations of Cu can promote full coupling if accompanied by ligands that selectively compete the Cu from the QD surface but allow it to remain catalytically active. Applied to the conjugation of a K+ channel-specific peptidyl toxin to CdSe/ZnS QDs, we synthesize unquenched QD conjugates and image their specific and voltage-dependent affinity for K+ channels in live cells. PMID:29608274

  11. Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae.

    PubMed

    Wieners, Paul Christian; Mudimu, Opayi; Bilger, Wolfgang

    2018-05-30

    Desiccation-induced chlorophyll fluorescence quenching seems to be an indispensable part of desiccation resistance in the surveyed 28 green microalgal species. Lichens are desiccation tolerant meta-organisms. In the desiccated state photosynthesis is inhibited rendering the photobionts potentially sensitive to photoinhibition. As a photoprotective mechanism, strong non-radiative dissipation of absorbed light leading to quenching of chlorophyll fluorescence has been proposed. Desiccation-induced quenching affects not only variable fluorescence, but also the so-called basal fluorescence, F 0 . This phenomenon is well-known for intact lichens and some free living aero-terrestrial algae, but it was often absent in isolated lichen algae. Therefore, a thorough screening for the appearance of desiccation-induced quenching was undertaken with 13 different aero-terrestrial microalgal species and lichen photobionts. They were compared with 15 aquatic green microalgal species, among them also three marine species. We asked the following questions: Do isolated lichen algae show desiccation-induced quenching? Are aero-terrestrial algae different in this respect to aquatic algae and is the potential for desiccation-induced quenching coupled to desiccation tolerance? How variable is desiccation-induced quenching among species? Most of the aero-terrestrial algae, including all lichen photobionts, showed desiccation-induced quenching, although highly variable in extent, whereas most of the aquatic algae did not. All algae displaying quenching were also desiccation tolerant, whereas all algae unable to perform desiccation-induced quenching were desiccation intolerant. Desiccation-induced fluorescence quenching seems to be an indispensable part of desiccation resistance in the investigated species.

  12. Quenching of photoexcited states of the proteins chromophores and introduced into the protein macromolecules fluorescent probes by heavy metal ions

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Dyachuk, O. A.; Melnikov, G. V.

    2015-03-01

    We have studied the processes of quenching of photoexcited states of fluorescent probes and quenching of the fluorescence of the chromophores of human serum albumin (HSA) by heavy metal ions (HM): cations Tl+, Pb2+, Cu2+, Cd2+, and the anion of iodine (I-). We used the dye from xanthene series - eosin as a fluorescent probe. By quenching of the fluorescence of protein chromophores we found an influence of HM on the structure of proteins, resulting in a shift of the peak of the fluorescence of HSA tryptophanyl. This can be explained by proteins denaturation under the influence of heavy metals and penetration of water into the inner environment of HSA tryptophan. It was established that the constant of the quenching of the probe phosphorescence is much higher than the fluorescence, which is explained by significantly longer lifetime of the photoexcited states of fluorescent probes in the triplet state than in the singlet.

  13. Distance Mapping in Proteins Using Fluorescence Spectroscopy: The Tryptophan-Induced Quenching (TrIQ) Method

    PubMed Central

    Mansoor, Steven E.; DeWitt, Mark A.; Farrens, David L.

    2014-01-01

    Studying the interplay between protein structure and function remains a daunting task. Especially lacking are methods for measuring structural changes in real time. Here we report our most recent improvements to a method that can be used to address such questions. This method, which we now call Tryptophan induced quenching (TrIQ), provides a straightforward, sensitive and inexpensive way to address questions of conformational dynamics and short-range protein interactions. Importantly, TrIQ only occurs over relatively short distances (~5 to 15 Å), making it complementary to traditional fluorescence resonance energy transfer (FRET) methods that occur over distances too large for precise studies of protein structure. As implied in the name, TrIQ measures the efficient quenching induced in some fluorophores by tryptophan (Trp). We present here our analysis of the TrIQ effect for five different fluorophores that span a range of sizes and spectral properties. Each probe was attached to four different cysteine residues on T4 lysozyme and the extent of TrIQ caused by a nearby Trp was measured. Our results show that for smaller probes, TrIQ is distance dependent. Moreover, we also demonstrate how TrIQ data can be analyzed to determine the fraction of fluorophores involved in a static, non-fluorescent complex with Trp. Based on this analysis, our study shows that each fluorophore has a different TrIQ profile, or "sphere of quenching", which correlates with its size, rotational flexibility, and the length of attachment linker. This TrIQ-based "sphere of quenching" is unique to every Trp-probe pair and reflects the distance within which one can expect to see the TrIQ effect. It provides a straightforward, readily accessible approach for mapping distances within proteins and monitoring conformational changes using fluorescence spectroscopy. PMID:20886836

  14. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    PubMed Central

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-01-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding. PMID:24886825

  15. Recent patents on self-quenching DNA probes.

    PubMed

    Knemeyer, Jens-Peter; Marmé, Nicole

    2007-01-01

    In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.

  16. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  17. Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.

    PubMed

    Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M

    2010-05-01

    The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).

  18. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: the effect of the molecular structure revealed by a photophysical study.

    PubMed

    Zhang, Xian-Fu; Liu, Su-Ping; Shao, Xiao-Na

    2013-09-01

    The fluorescence and absorption properties of several xanthene and phthalocyanine dyes were measured in the presence and absence of chemically derived graphene (CDG) sheets. The interaction of pyronine Y (PYY) with graphene sheets was compared with that of rhodamine 6G (R6G) to reveal the effect of the molecular structure. Although the presence of the perpendicular benzene moiety in a R6G or phthalocyanine molecule does cause the difficulty for forming dye-CDG complex and make CDG less efficient in quenching the fluorescence intensity and shortening the fluorescence lifetime, it does not affect the band position of charge transfer absorption, suggesting that no molecular shape change occurred in a dye molecule caused by the interaction with CDG sheets. The spectroscopic and thermodynamic data indicated that the dye-CDG binding is of charge transfer nature, while the dynamic fluorescence quenching is due to photoinduced energy and electron transfer. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hyaluronic Acid-Modified Multifunctional Q-Graphene for Targeted Killing of Drug-Resistant Lung Cancer Cells.

    PubMed

    Luo, Yanan; Cai, Xiaoli; Li, He; Lin, Yuehe; Du, Dan

    2016-02-17

    Considering the urgent need to explore multifunctional drug delivery system for overcoming multidrug resistance, we prepared a new nanocarbon material Q-Graphene as a nanocarrier for killing drug-resistant lung cancer cells. Attributing to the introduction of hyaluronic acid and rhodamine B isothiocyanate (RBITC), the Q-Graphene-based drug delivery system was endowed with dual function of targeted drug delivery and fluorescence imaging. Additionally, doxorubicin (DOX) as a model drug was loaded on the surface of Q-Graphene via π-π stacking. Interestingly, the fluorescence of DOX was quenched by Q-Graphene due to its strong electron-accepting capability, and a significant recovery of fluorescence was observed, while DOX was released from Q-Graphene. Because of the RBITC labeling and the effect of fluorescence quenching/restoring of Q-Graphene, the uptake of nanoparticles and intracellular DOX release can be tracked. Overall, a highly promising multifunctional nanoplatform was developed for tracking and monitoring targeted drug delivery for efficiently killing drug-resistant cancer cells.

  20. On the O2(a1Δ) quenching by vibrationally excited ozone

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Heaven, M. C.

    2010-09-01

    The development of a discharge oxygen iodine laser (DOIL) requires efficient production of singlet delta oxygen (O2(a)) in electric discharge. It is important to understand the mechanisms by which O2(a) is quenched in these devices. To gain understanding of this mechanisms quenching of O2(a) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a) quenching were followed by observing the 1268 nm fluorescence of the O2 a --> X transition. Fast quenching of O2(a) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  1. Diazobenzene-containing conjugated polymers as dark quenchers.

    PubMed

    Wu, Jiatao; Tan, Ying; Xie, Yonghua; Wu, Yi; Zhao, Rui; Jiang, Yuyang; Tan, Chunyan

    2013-12-18

    The synthesis and photophysical characterization of new conjugated polymers (CPs) with alternating phenylethynylene and diazobenzene (azo-PPE) units were reported, which showed broadened absorption and no measurable fluorescence. Quenching studies showed that azo-PPEs displayed high efficiency over a wide wavelength range.

  2. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium.

    PubMed

    Fu, QiangQiang; Tang, Yong; Shi, CongYing; Zhang, XiaoLi; Xiang, JunJian; Liu, Xi

    2013-11-15

    A novel fluorescence quenching immunochromatographic sensor (ICS) was developed for detecting chromium (Cr(3+)) within 15 min utilizing the fluorescence quenching function of gold nanoparticles (Au-NPs). The sensor performed with a positive readout. When the low concentrations of Cr(3+) samples were applied, detection signals of the test line (T line) were quenched, whereas when higher concentration Cr(3+) samples (1.56 ng/mL) were applied, the detection signal of the T line appeared. The detection signal intensity of the T line increased with increasing concentrations of Cr(3+). The low detection limit of developed fluorescence quenching ICS was 1.56 ng/mL. The fluorescence quenching ICS has a linear range of detection of Cr(3+) comprising between 6.25 ng/mL to 800 ng/mL. The recoveries of the fluorescence quenching ICS to detect Cr(3+) in tap water ranged from 94.7% to 101.7%. This result indicated that the developed sensor gave higher sensitivity and reliable reproducibility. It could provide a general detection method for small analyte in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances

    PubMed Central

    Suzuki, Yoshio; Yokoyama, Kenji

    2015-01-01

    This review is confined to sensors that use fluorescence to transmit biochemical information. Fluorescence is, by far, the most frequently exploited phenomenon for chemical sensors and biosensors. Parameters that define the application of such sensors include intensity, decay time, anisotropy, quenching efficiency, and luminescence energy transfer. To achieve selective (bio)molecular recognition based on these fluorescence phenomena, various fluorescent elements such as small organic molecules, enzymes, antibodies, and oligonucleotides have been designed and synthesized over the past decades. This review describes the immense variety of fluorescent probes that have been designed for the recognitions of ions, small and large molecules, and their biological applications in terms of intracellular fluorescent imaging techniques. PMID:26095660

  4. Engineering an FMN-based iLOV protein for the detection of arsenic ions.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Lee, Chong-Soon; Yun, Hyungdon

    2017-05-15

    Over the past few decades, genetically encoded fluorescent proteins have been widely used as efficient probes to explore and investigate the roles of metal ions in biological processes. The discovery of small FMN-based fluorescent proteins, such as iLOV and FbFP, has enabled researchers to exploit these fluorescent reporter proteins for metal-sensing applications. In this study, we report the inherent binding properties of iLOV towards arsenic ions. The fluorescence quenching of iLOV was linearly related to the concentration of arsenic ions, and engineered proteins showed better sensitivity than the wild-type protein. Engineering key residues around the chromophore converted the iLOV protein into a highly sensitive sensor for As 3+ ions. iLOV N468S exhibited an improved binding affinity with a dissociation constant of 1.5 μM. Furthermore, the circular dichroism spectra indicated that the fluorescence quenching mechanism might be related to arsenic-protein complex formation. Thus, the reagentless sensing of arsenic can potentially be exploited to determine intracellular or environmental arsenic using a genetically encoded biosensing approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    PubMed

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  6. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus.

    PubMed

    Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan

    2008-01-01

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.

  7. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil.

    PubMed

    Wang, Yifan; Zhang, Xinyuan; Zhang, Xing; Meng, Qingjuan; Gao, Fengjie; Zhang, Ying

    2017-08-01

    This study was aim to investigate the interaction between soil-derived dissolved organic matter (DOM) and atrazine as a kind of pesticides during the sorption process onto black soil. According to the experimental data, the adsorption capacity of Soil + DOM, Soil and DOM were 41.80, 31.45 and 9.35 mg kg -1 , separately, which indicated that DOM significantly enhanced the adsorption efficiency of atrazine by soil. Data implied that the pseudo-second-order kinetic equation could well explain the adsorption process. The adsorption isotherms (R 2  > 0.99) had a satisfactory fit in both Langmuir and Freundlich models. Three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FT-IR) were selected to analyze the interaction between DOM and atrazine. 3D-EEM showed that humic acid-like substances were the main component of DOM. The fluorescence of DOM samples were gradually quenched with the increased of atrazine concentrations. Synchronous fluorescence spectra showed that static fluorescence quenching was the main quenching process. 2D-COS indicated that the order of the spectral changes were as following: 336 nm > 282 nm. Furthermore, the fluorescence quenching of humic-like fraction occurred earlier than that of protein-like fraction under atrazine surroundings. FT-IR spectra indicated that main compositions of soil DOM include proteins, polysaccharides and humic substances. The findings of this study are significant to reveal DOM played an important role in the environmental fate of pesticides during sorption process onto black soil and also provide more useful information for understanding the interaction between DOM and pesticides by using spectral responses. Copyright © 2017. Published by Elsevier Ltd.

  8. On the use of nonfluorescent dye labeled ligands in FRET-based receptor binding studies.

    PubMed

    Tahtaoui, Chouaib; Guillier, Fabrice; Klotz, Philippe; Galzi, Jean-Luc; Hibert, Marcel; Ilien, Brigitte

    2005-12-01

    The efficiency of fluorescence resonance energy transfer (FRET) is dependent upon donor-acceptor proximity and spectral overlap, whether the acceptor partner is fluorescent or not. We report here on the design, synthesis, and characterization of two novel pirenzepine derivatives that were coupled to patent blue VF and pinacyanol dyes. These nonfluorescent compounds, when added to cells stably expressing enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors, promote EGFP fluorescence extinction in a time-, concentration-, and atropine-dependent manner. They display nanomolar affinity for the muscarinic receptor, determined using either FRET or classical radioligand binding conditions. We provide evidence that these compounds behave as potent acceptors of energy from excited EGFP with quenching efficiencies comparable to those of analogous fluorescent bodipy or rhodamine red pirenzepine derivatives. The advantages they offer over fluorescent ligands are illustrated and discussed in terms of reliability, sensitivity, and wider applicability of FRET-based receptor binding assays.

  9. A Novel Sensitive Luminescence Probe Microspheres for Rapid and Efficient Detection of τ-Fluvalinate in Taihu Lake

    PubMed Central

    Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng

    2017-01-01

    Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402

  10. [Interaction between strychnine and bovine serum albumin].

    PubMed

    Zhao, Jin; Wang, Zhi; Wu, Qiu-hua; Yang, Xiu-min; Wang, Chun; Hu, Yan-xue

    2006-07-01

    To study the interaction between strychnine and bovine serum albumin. Fluorescence spectroscopy and ultraviolet spectroscopy were used. The static quenching and the non-radiation energy transfer are the two main reasons to leading the fluorescence quenching of BSA. The apparent combining constants (K(A)) between strychnine and BSA are 3.72 x 10(3) at 27 degrees C, 4.27 x 10(3) at 37 degrees C, 4.47 x 10(3) at 47 degrees C and the combining sites are 1.01 +/- 0.03. The combining distance (r = 3.795 nm) and energy transfer efficiency (E = 0.0338) are obtained by Förster's non-radiation energy transfer mechanism. The interaction between strychnine and BSA was driven mainly by hydrophobic force.

  11. Spectroscopy of Rb{sub 2} dimers in solid {sup 4}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroshkin, P.; Hofer, A.; Ulzega, S.

    We present experimental and theoretical studies of the absorption, emission, and photodissociation spectra of Rb{sub 2} molecules in solid helium. We have identified 11 absorption bands of Rb{sub 2}. All laser-excited molecular states are quenched by the interaction with the He matrix. The quenching results in efficient population of a metastable (1) {sup 3}{pi}{sub u} state, which emits fluorescence at 1042 nm. In order to explain the fluorescence at the forbidden transition and its time dependence we propose a new molecular exciplex Rb{sub 2}({sup 3}{pi}{sub u})He{sub 2}. We have also found evidence for the formation of diatomic bubble states followingmore » photodissociation of Rb{sub 2}.« less

  12. "Open-Box" Approach to Measuring Fluorescence Quenching Using an iPad Screen and Digital SLR Camera

    ERIC Educational Resources Information Center

    Koenig, Michael H.; Yi, Eun P.; Sandridge, Matthew J.; Mathew, Alexander S.; Demas, James N.

    2015-01-01

    Fluorescence quenching is an analytical technique and a common undergraduate laboratory exercise. Unfortunately, a typical quenching experiment requires the use of an expensive fluorometer that measures the relative fluorescence intensity of a single sample in a closed compartment unseen by the experimenter. To overcome these shortcomings, we…

  13. Direct comparison of single- and multi-walled carbon nanotubes in fluorescence quenching phenomenon

    NASA Astrophysics Data System (ADS)

    Oura, Shusuke; Umemura, Kazuo

    2018-03-01

    Here, we report the fluorescence quenching ability of single-stranded DNA (ssDNA)-wrapped single- and multi-walled carbon nanotubes (ssDNA-SWNTs and ssDNA-MWNTs, respectively) using fluorescein dye-labeled ssDNA (Fluor-ssDNA). To compare the quenching abilities of SWNTs and MWNTs, we measured the quenching ratios of fluorescence emission from fluorescein when Fluor-ssDNA reacted with the hybrids of 30-mers of thymine (T30) and SWNTs or MWNTs (T30-SWNTs and T30-MWNTs, respectively). The fluorescence quenching ratios of Fluor-T30 in SWNT and MWNT samples were 28 ± 3.1 and 36 ± 2.0% relative to free fluorescein at the same concentration, respectively. On the other hand, those of Fluor-A30 with SWNT and MWNT hybrids were 11 ± 1.9 and 32 ± 1.9%, respectively. Our results suggest that although the fluorescence quenching ability of MWNT was greater than that of SWNT, SWNT quenching ratios were more sensitive to the base sequences of Fluor-ssDNA.

  14. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive.

    PubMed

    Dutta, Priyanka; Saikia, Dilip; Adhikary, Nirab Chandra; Sarma, Neelotpal Sen

    2015-11-11

    This work reports the development of highly fluorescent materials for the selective and efficient detection of picric acid explosive in the nanomolar range by fluorescence quenching phenomenon. Poly(vinyl alcohol) grafted polyaniline (PPA) and its nanocomposites with 2-mercaptosuccinic acid (MSA)-capped CdTe quantum dots (PPA-Q) and with MSA-capped CdTe/ZnS core/shell quantum dots (PPA-CSQ) are synthesized in a single step free radical polymerization reaction. The thermal stability and photo stability of the polymer increases in the order of PPA < PPA-Q < PPA-CSQ. The polymers show remarkably high selectivity and efficient sensitivity toward picric acid, and the quenching efficiency for PPA-CSQ reaches up to 99%. The detection limits of PPA, PPA-Q, and PPA-CSQ for picric acid are found to be 23, 1.6, and 0.65 nM, respectively, which are remarkably low. The mechanism operating in the quenching phenomenon is proposed to be a combination of a strong inner filter effect and ground state electrostatic interaction between the polymers and picric acid. A portable and cost-effective electronic device for the visual detection of picric acid by the sensory system is successfully fabricated. The device is further employed for quantitative detection of picric acid in real water samples.

  15. Fluorescence quenching effects of antibiotics on the main components of dissolved organic matter.

    PubMed

    Yan, Peng-Fei; Hu, Zhen-Hu; Yu, Han-Qing; Li, Wei-Hua; Liu, Li

    2016-03-01

    Dissolved organic matter (DOM) in wastewater can be characterized using fluorescence excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis. Wastewater from animal farms or pharmaceutical plants usually contains high concentration of antibiotics. In this study, the quenching effect of antibiotics on the typical components of DOM was explored using fluorescence EEM-PARAFAC analysis. Four antibiotics (roxarsone, sulfaquinoxaline sodium, oxytetracycline, and erythromycin) at the concentration of 0.5∼4.0 mg/L and three typical components of DOM (tyrosine, tryptophan, and humic acid) were selected. Fluorescence quenching effects were observed with the addition of antibiotics. Among these four antibiotics, roxarsone (2.9∼20.2 %), sulfaquinoxaline sodium (0∼32.0 %), and oxytetracycline (0∼41.8 %) led to a stronger quenching effect than erythromycin (0∼8.0 %). From the side of DOM, tyrosine and tryptophan (0.5∼41.8 %) exhibited a similar quenching effect, but they were higher than humic acids (0∼20.2 %) at the same concentration of antibiotics. For humic acid, a significant quenching effect was observed only with the addition of roxarsone. This might be the first report about the fluorescence quenching effect caused by antibiotics. The results from this study confirmed the interference of antibiotics on the fluorescence intensity of the main components of DOM and highlighted the importance of correcting fluorescence data in the wastewater containing antibiotics.

  16. Characteristics of the isomeric flavonoids apigenin and genistein binding to hemoglobin by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Yuan, Jiang-Lan; Liu, Hui; Kang, Xu; Lv, Zhong; Zou, Guo-Lin

    2008-11-01

    Apigenin (Ap) and genistein (Ge), a couple of isomeric flavonoids with extensive bioactivities, are the most common dietary ingredients. They have been widely investigated due to their potential therapeutic actions for some diseases. In our work, binding characteristics of Ap and Ge to hemoglobin (Hb) were analyzed with fluorescence spectroscopy, circular dichroism (CD) and UV-vis absorption spectroscopy. The results indicated that Ap and Ge caused strong fluorescence quenching of Hb by static quenching mechanism, but their quenching efficiency and mechanisms were different. The binding site n suggested that there was a single binding site in Hb for Ap and Ge. The results of synchronous fluorescence showed that the microenvironment around Tyr residues of Hb had a slight trend of polarity decreasing, but the polarity around Trp residues increased by adding Ap. Results of CD indicated that the Ap and Ge did not changed the secondary structure of Hb. According to the theory of Förster resonance energy transfer, the binding distance r between Trp 37 and Ap/Ge was predicted to be 3.4 nm and 3.32 nm, respectively. The affinity of Ge toward Hb was higher than that of Ap.

  17. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  18. Spectroscopic analyses on interaction of o-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and o-Vanillin-L-Levodopa Schiff Bases with bovine serum albumin (BSA).

    PubMed

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin-D-Phenylalanine (o-VDP), o-Vanillin-L-Tyrosine (o-VLT) and o-Vanillin-L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant (K(q)), apparent quenching constant (K(sv)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)) as well as binding site number (n) were obtained. In addition, the binding distance (r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA>o-VLT-BSA>o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2017-05-01

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  20. Determination of the affinity of drugs toward serum albumin by measurement of the quenching of the intrinsic tryptophan fluorescence of the protein.

    PubMed

    Epps, D E; Raub, T J; Caiolfa, V; Chiari, A; Zamai, M

    1999-01-01

    Binding of new chemical entities to serum proteins is an issue confronting pharmaceutical companies during development of potential therapeutic agents. Most drugs bind to the most abundant plasma protein, human serum albumin (HSA), at two major binding sites. Excepting fluorescence spectroscopy, existing methods for assaying drug binding to serum albumin are insensitive to higher-affinity compounds and can be labour-intensive, time-consuming, and usually require compound-specific assays. This led us to examine alternative ways to measure drug-albumin interaction. One method described here uses fluorescence quenching of the single tryptophan (Trp) residue in HSA excited at 295 nm to measure drug-binding affinity. Unfortunately, many compounds absorb, fluoresce, or both, in this UV wavelength region of the spectrum. Several types of binding phenomenon and spectral interference were identified by use of six structurally unrelated compounds and the equations necessary to make corrections mathematically were derived and applied to calculate binding constants accurately. The general cases were: direct quenching of Trp fluorescence by optically transparent ligands with low or high affinities; binding of optically transparent, non-fluorescent ligands to two specific sites where both sites or only one site result in Trp fluorescence quenching; and chromophores whose absorption either overlaps the Trp emission and quenches by energy transfer or absorbs light at the Trp fluorescence excitation wavelength producing absorptive screening as well as fluorescence quenching. Unless identification of the site specificity of drug binding to serum albumin is desired, quenching of the Trp fluorescence of albumin by titration with ligand is a rapid and facile method for determining the binding affinities of drugs for serum albumin.

  1. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.

    PubMed

    Townsend, Alexandra J; Saccon, Francesco; Giovagnetti, Vasco; Wilson, Sam; Ungerer, Petra; Ruban, Alexander V

    2018-03-13

    Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679 nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Fluorescence quenching of human orosomucoid. Accessibility to drugs and small quenching agents.

    PubMed Central

    Friedman, M L; Schlueter, K T; Kirley, T L; Halsall, H B

    1985-01-01

    The fluorescence behaviour of human orosomucoid was investigated. The intrinsic fluorescence was more accessible to acrylamide than to the slightly larger succinimide, indicating limited accessibility to part of the tryptophan population. Although I- showed almost no quenching, that of Cs+ was enhanced, and suggested a region of negative charge proximal to an emitting tryptophan residue. Removal of more than 90% of sialic acid from the glycan chains led to no change in the Cs+, I-, succinimide or acrylamide quenching, indicating that the negatively charged region originates with the protein core. Quenching as a function of pH and temperature supported this view. The binding of chlorpromazine monitored by fluorescence quenching, in the presence and in the absence of the small quenching probes (above), led to a model of its binding domain on orosomucoid that includes two tryptophan residues relatively shielded from the bulk solvent, with the third tryptophan residue being on the periphery of the domain, or affected allotopically and near the negatively charged field. PMID:4091825

  3. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin.

    PubMed

    Sannaikar, M S; Inamdar, Laxmi S; Pujar, G H; Wari, M N; Balasinor, Nafisa H; Inamdar, S R

    2018-05-01

    Polyethylene glycol (PEG) surface modified biocompatible InP/ZnS quantum dots (QDs) act as a potential alternative for conventional carcinogenic cadmium-based quantum dots for in vivo and in vitro studies. Comprehensively, we studied the interaction between a model protein bovine serum albumin (BSA) and PEGylated toxic free InP/ZnS QDs using various spectroscopic tools such as absorption, fluorescence quenching, time resolved and synchronous fluorescence spectroscopic measurements. These studies principally show that tryptophan (Trp) residues of BSA have preferable binding affinity towards PEG-InP/ZnS QDs surface and a blue shift in Trp fluorescence emission is a signature of conformational changes in its hydrophobic microenvironment. Photoluminescence (PL) intensity of Trp is quenched by ground state complex formation (static quenching) at room temperature. However, InP/ZnS@BSA conjugates become unstable with increasing temperature and PL intensity of Trp is quenched via dynamic quenching by PEG-InP/ZnS QDs. Experimentally determined thermodynamic parameters for these conjugates have shown spontaneity, entropy driven and exothermic nature of bio-conjugation. The calculated binding affinity (n ≅ 1, Hill coefficient) suggest that the affinity of InP/ZnS QDs for a BSA protein is not dependent on whether or not other BSA proteins are already bound to the QD surface. Energy transfer efficiency (E), Trp residue to InP/ZnS QDs distances and energy transfer rate (k T ) were all obtained from FÖrster resonance energy. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2018-03-01

    The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH = 7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.

  5. Photoinduced changes in photosystem II pigments

    NASA Astrophysics Data System (ADS)

    Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  6. Two-dimensional fluorescence correlation spectroscopy: resolution of fluorescence of tryptophan residues in horse heart myoglobin.

    PubMed

    Nakashima, Kenichi; Yuda, Kazuki; Ozaki, Yukihiro; Noda, Isao

    2003-11-01

    Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve fluorescence of two tryptophan (Trp) residues in horse heart myoglobin. Fluorescence quenching is employed as a perturbation mode for causing intensity changes in the fluorescence (quenching perturbation). Two kinds of quenchers, iodide ion and acrylamide, are used for inducing fluorescence intensity change. This technique works because the Trp residue located at the 7th position (W7) is known to be easily accessible to the quencher, whereas that located at the 14th position (W14) is not. By this technique, the fluorescence spectra of the two Trp residues were clearly resolved. From asynchronous maps, it was also shown that the quenching of W7 fluorescence is brought about prior to the quenching of W14 fluorescence. This result is consistent with the structure of horse heart myoglobin that was proposed earlier. Furthermore, it was elucidated that the present 2D analysis is not interfered with by Raman bands of the solvents, which sometimes brings difficulty into conventional fluorescence analysis.

  7. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.

    PubMed

    Yahyaoui, W; Harnois, J; Carpentier, R

    1998-11-27

    When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.

  8. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  9. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  10. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  11. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-01

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k

  12. Size dependent studies of metal nanoparticles with bio-fluorophores

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Ballary, Steffy; George, Sajan D.; Chidangil, Santhosh

    2017-06-01

    Interaction of noble metal nanoparticles (NPs) with fluorophores has been an important research area in the field of material science and biomedical field. In the proximity of a metal nanoparticle, there is a quenching or enhancement in the intrinsic fluorescence of the fluorophore . The conditional quenching of the fluorescence can be used for negative sensing whereas enhancement in the fluorescence can be used to gain greater sensitivity and high signal to noise ratio in the molecular sensing/imaging. The current work deals with the systematic studies to understand the fluorescence quenching for few bio-fluorophores (NADH and FAD) when interacted with different sized silver nano-particles of (10nm, 40nm and 100nm). Home assembled Laser Induced Fluorescence (LIF) set-up was used to study the fluorescence quenching of NADH and FAD for different sized silver nanoparticles.

  13. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  14. Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization.

    PubMed

    Alarcón, Emilio; Edwards, Ana Maria; Aspee, Alexis; Moran, Faustino E; Borsarelli, Claudio D; Lissi, Eduardo A; Gonzalez-Nilo, Danilo; Poblete, Horacio; Scaiano, J C

    2010-01-01

    The photophysics and photochemistry of rose bengal (RB) and methylene blue (MB) bound to human serum albumin (HSA) have been investigated under a variety of experimental conditions. Distribution of the dyes between the external solvent and the protein has been estimated by physical separation and fluorescence measurements. The main localization of protein-bound dye molecules was estimated by the intrinsic fluorescence quenching, displacement of fluorescent probes bound to specific protein sites, and by docking modelling. All the data indicate that, at low occupation numbers, RB binds strongly to the HSA site I, while MB localizes predominantly in the protein binding site II. This different localization explains the observed differences in the dyes' photochemical behaviour. In particular, the environment provided by site I is less polar and considerably less accessible to oxygen. The localization of RB in site I also leads to an efficient quenching of the intrinsic protein fluorescence (ascribed to the nearby Trp residue) and the generation of intra-protein singlet oxygen, whose behaviour is different to that observed in the external solvent or when it is generated by bound MB.

  15. Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-03-01

    The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.

  16. Structure-matched Phthalocyanine Ion Pair as a Red-emitting Fluorescent Optical Probe for the Analysis of Sodium Dodecylbenzenesulfonate with High Specificity and Sensitivity.

    PubMed

    Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui

    2016-01-01

    We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.

  17. Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves.

    PubMed

    Giovagnetti, Vasco; Ruban, Alexander V

    2015-11-01

    Higher plants possess a set of interconnected processes to regulate light harvesting. Non-photochemical quenching of chlorophyll a fluorescence (NPQ) is the fastest process activated to protect the photosystem (PS) II from the absorption of excess light energy. However, damage of PSII reaction centers (RCIIs) is often inevitable, a phenomenon known as photoinhibition. Both NPQ and photoinhibition undermine PSII quantum yield (ΦPSII). Recently, we devised a fluorescence-based methodology that uses the coefficient of photochemical quenching measured in the dark following illumination (qPd) to assess the intactness of RCIIs. This procedure enables to express ΦPSII as a function (ƒ) of NPQ and qPd, ΦPSII=ƒ(NPQ,qPd), thus allowing to efficiently discern between the effects of protective NPQ and photoinhibition upon the efficiency of electron transport. In this study, we addressed the relationship between qPd and ΦPSII measured by photosynthetic oxygen evolution in intact leaves of Arabidopsis. We found a linear correlation between qPd and ΦPSII of oxygen evolution (as well as Fv/Fm). This relates to the fact that qPd reflects the onset of photoinhibition. These results further demonstrate the validity of the qPd parameter and underlying theory in quantitatively assessing PSII efficiency solely by using this effective and simple fluorescence technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fluorescence from a single Symbiodinium cell

    NASA Astrophysics Data System (ADS)

    Guzman, Christine; Han, Xue; Shoguchi, Eiichi; Chormaic, Síle Nic

    2018-07-01

    The partnership between coral and its algal symbionts, Symbiodinium, is crucial to the global environment. Yet, the regulatory process within the photosynthetic machinery of Symbiodinium is still not clearly understood. Here, we studied the influence of light stress from focussed red and blue lasers on single Symbiodinium cells. Fluorescence signals were measured to show cell response. Increasing the incident laser power or the exposure time resulted in an increase followed by a decline in fluorescence intensity. The trend of fluorescence intensity changes was associated with mechanisms of light use efficiency, non-photochemical quenching, photoinhibition, and repair of the cell. Our study provides new approaches to studying the photobiology and physiology of Symbiodinium cells.

  19. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB.

    PubMed

    Liang, Junfei; Wei, Ran; He, Shuai; Liu, Yikan; Guo, Lin; Li, Lidong

    2013-03-21

    Oncoprotein platelet derived growth factor-BB (PDGF-BB) is one of the most critical growth factors that regulates tumor growth and division. In this work, a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for PDGF-BB detection based on the assembly of dye-labeled aptamer and graphene oxide (GO) is developed for the first time. Due to the non-covalent assembly between aptamer and GO, fluorescence quenching of the dye takes place because of FRET. In the presence of PDGF-BB, the binding between aptamer and PDGF-BB will disturb the interaction between aptamer and GO, and release the dye-labeled aptamer from the GO surface, resulting in restoration of the fluorophore fluorescence. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of GO, the GO aptasensor exhibits extraordinarily high sensitivity. We also demonstrate that two highly related molecular variants of PDGF (AA, AB) can be distinguished from PDGF-BB, which indicates the aptasensor has excellent selectivity. Such an aptasensor opens a rapid, selective and sensitive route for the detection of PDGF-BB and provides a promising strategy for other cancer-related proteins detections.

  20. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study.

    PubMed

    Makarska-Bialokoz, Magdalena

    2018-03-15

    The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH=7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    PubMed

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR.

    PubMed

    Sidstedt, Maja; Hedman, Johannes; Romsos, Erica L; Waitara, Leticia; Wadsö, Lars; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter

    2018-04-01

    Blood samples are widely used for PCR-based DNA analysis in fields such as diagnosis of infectious diseases, cancer diagnostics, and forensic genetics. In this study, the mechanisms behind blood-induced PCR inhibition were evaluated by use of whole blood as well as known PCR-inhibitory molecules in both digital PCR and real-time PCR. Also, electrophoretic mobility shift assay was applied to investigate interactions between inhibitory proteins and DNA, and isothermal titration calorimetry was used to directly measure effects on DNA polymerase activity. Whole blood caused a decrease in the number of positive digital PCR reactions, lowered amplification efficiency, and caused severe quenching of the fluorescence of the passive reference dye 6-carboxy-X-rhodamine as well as the double-stranded DNA binding dye EvaGreen. Immunoglobulin G was found to bind to single-stranded genomic DNA, leading to increased quantification cycle values. Hemoglobin affected the DNA polymerase activity and thus lowered the amplification efficiency. Hemoglobin and hematin were shown to be the molecules in blood responsible for the fluorescence quenching. In conclusion, hemoglobin and immunoglobulin G are the two major PCR inhibitors in blood, where the first affects amplification through a direct effect on the DNA polymerase activity and quenches the fluorescence of free dye molecules, and the latter binds to single-stranded genomic DNA, hindering DNA polymerization in the first few PCR cycles. Graphical abstract PCR inhibition mechanisms of hemoglobin and immunoglobulin G (IgG). Cq quantification cycle, dsDNA double-stranded DNA, ssDNA single-stranded DNA.

  3. Reconsideration of the Detection and Fluorescence Mechanism of a Pyrene-Based Chemosensor for TNT.

    PubMed

    Lu, Meiheng; Zhou, Panwang; Ma, Yinhua; Tang, Zhe; Yang, Yanqiang; Han, Keli

    2018-02-08

    The rapid detection of chemical explosives is crucial for national security and public safety, and the investigation of sensing mechanisms is important for designing highly efficient chemosensors. This study theoretically investigates the detection and fluorescence mechanism of a newly synthesized pyrene-based chemosensor for the detection of trinitrotoluene (TNT) through density-functional-theory (DFT) and time-dependent density-functional-theory (TDDFT) methods and suggests a different interaction product of the probe and TNT from previously reported ones [ Mosca et al. J. Am. Chem. Soc. 2015 , 137 , 7967 ]. Instead of forming Meisenheimer complexes, the energies of which are beyond those of the reactants, a low-energy product generated by a π-π-stacking interaction is more rational and favorable. The fluorescence-quenching property further confirms that the π-π-stacking product is the predicted one rather than luminescent Meisenheimer complexes. Frontier-molecular-orbital (FMO)-analysis results show that photoinduced electron transfer (PET) is the mechanism underlying the luminescence quenching of the probe upon exposure to TNT.

  4. Studies on the interaction between 7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one and cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Kuriakose, Alina C.; Pradeep, C.; Nampoori, V. P. N.; Thomas, Sheenu

    2018-04-01

    Quantum dots (QDs) are well known for their optical properties which differ from those of bulk semiconductors. Herein, we have created an energy transfer platform that combines CdS QDs with a coumarin based dye C485 [7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one]. Spectroscopic studies of energy transfer between the dye donor and CdS QDs as acceptors reveal the occurrence of dynamic quenching. Analysis of the steady-state and time resolved fluorescence measurements of C485 in the presence of CdS QDs infers fluorescence resonance (Förster type) energy transfer (FRET) as responsible for the quenching phenomena. The energy transfer efficiency as well as energy transfer distance for the donor-acceptor pair is calculated using steady-state fluorescence method. Luminescence enhancement of CdS QDs play a critical role in device performance for solar applications and also in the field of biological applications.

  5. Novel DNA probes with low background and high hybridization-triggered fluorescence.

    PubMed

    Lukhtanov, Eugeny A; Lokhov, Sergey G; Gorn, Vladimir V; Podyminogin, Mikhail A; Mahoney, Walt

    2007-01-01

    Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5'-end and a non-fluorescent quencher at the 3'-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2-4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB-quencher interaction and concealment of the MGB moiety inside the minor groove.

  6. Novel DNA probes with low background and high hybridization-triggered fluorescence

    PubMed Central

    Lukhtanov, Eugeny A.; Lokhov, Sergey G.; Gorn, Vladimir V.; Podyminogin, Mikhail A.; Mahoney, Walt

    2007-01-01

    Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove. PMID:17259212

  7. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore.

    PubMed

    Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal

    2016-05-01

    In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.

  8. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  9. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a

  10. Carbon-Dots-Based Lab-On-a-Nanoparticle Approach for the Detection and Differentiation of Antibiotics.

    PubMed

    Qiao, Li'na; Qian, Sihua; Wang, Yuhui; Yan, Shifeng; Lin, Hengwei

    2018-03-26

    Fluorescent carbon dots (CDs) have received considerable attention in recent years due to their superior optical properties. To take further advantages of these unique features, herein, a CDs-based "lab-on-a-nanoparticle" approach for the detection and discrimination of antibiotics is developed. The sensing platform was designed based on the different channel's fluorescence recoveries or further quenching of the full-color emissive CDs (F-CDs) and metal ion ensembles upon the addition of antibiotics. The F-CDs exhibited unusually comparable emission intensity nearly across the entire visible spectrum even as the excitation wavelength is shifted, making it very suitable for the construction of multi-channel sensing systems. The sensing platform was fabricated on the basis of the competing interaction of metal ions with the F-CDs and antibiotics. Three metal ions (i.e., Cu 2+ , Ce 3+ and Eu 3+ ) can efficiently quench the fluorescence of the F-CDs. Upon the addition of antibiotics, the fluorescent intensities either recovered at different emission wavelengths or were further quenched to various degrees. The fluorescence response patterns at different emission wavelength were characteristic for each antibiotic and can be quantitatively differentiated by standard statistical methods (e.g., hierarchical clustering analysis and principal component analysis). Moreover, as an example, the proposed method was applied for quantitative detection of oxytetracycline with a limit of detection to be 0.06 μm. Finally, the sensing system was successfully employed for residual antibiotics detection and identification in real food samples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    NASA Astrophysics Data System (ADS)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  12. A fluorescence study of the molecular interactions of harmane with the nucleobases, their nucleosides and mononucleotides.

    PubMed

    Balón, M; Muñoz, M A; Carmona, C; Guardado, P; Galán, M

    1999-07-19

    Fluorescence binding studies of harmane to the elemental components of the nucleic acids were undertaken to investigate the origin of the interaction between the drug and DNA. Most of the tested substrates have been found to induce hypochromism in the absorption spectrum of harmane and to quench its fluorescence. The quenching process induced by the nucleobases and their nucleosides is mainly due to the formation of ground state 1:1 complexes. However, in the case of the mononucleotides a dynamic quenching component is also observed. This quenching component is likely due to the excited state interaction of harmane with the phosphate group of the nucleotides. UV-vis spectral changes and quenching measurements have been used to quantify the ground state association constants of the complexes and the quenching rate constants.

  13. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching.

    PubMed

    Meaney, Melissa S; McGuffin, Victoria L

    2008-03-03

    Previous studies have indicated that nitrated explosives may be detected by fluorescence quenching of pyrene and related compounds. The use of pyrene, however, invokes numerous health and waste disposal hazards. In the present study, ten safer fluorophores are identified for quenching detection of target nitrated compounds. Initially, Stern-Volmer constants are measured for each fluorophore with nitrobenzene and 4-nitrotoluene to determine the sensitivity of the quenching interaction. For quenching constants greater than 50 M(-1), sensitivity and selectivity are investigated further using an extended set of target quenchers. Nitromethane, nitrobenzene, 4-nitrotoluene, and 2,6-dinitrotoluene are chosen to represent nitrated explosives and their degradation products; aniline, benzoic acid, and phenol are chosen to represent potential interfering compounds. Among the fluorophores investigated, purpurin, malachite green, and phenol red demonstrate the greatest sensitivity and selectivity for nitrated compounds. Correlation of the quenching rate constants for these fluorophores to Rehm-Weller theory suggests an electron-transfer quenching mechanism. As a result of the large quenching constants, purpurin, malachite green, and phenol red are the most promising for future detection of nitrated explosives via fluorescence quenching.

  14. A coumarin-based "turn-on" fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties.

    PubMed

    Guha, Subarna; Lohar, Sisir; Sahana, Animesh; Banerjee, Arnab; Safin, Damir A; Babashkina, Maria G; Mitoraj, Mariusz P; Bolte, Michael; Garcia, Yann; Mukhopadhyay, Subhra Kanti; Das, Debasis

    2013-07-28

    An efficient Al(3+) receptor, 6-(2-hydroxybenzylideneamino)-2H-chromen-2-one (HBC), has been synthesized by condensing salicylaldehyde with 6-aminocoumarin. The molecular structure of HBC has been determined by a single crystal X-ray analysis. It was established that in the presence of Al(3+), HBC shows 25 fold enhancement of fluorescence intensity which might be attributed to the chelation-enhanced fluorescence (CHEF) process. HBC binds Al(NO3)3 in a 1 : 1 stoichiometry with a binding constant (K) of 7.9 × 10(4) M(-1). Fe(3+) and Mn(2+) quench the emission intensity of the [HBC + Al(3+)] system to an insignificant extent at a concentration 10 times higher compared to that of Al(3+). HBC is highly efficient in the detection of intracellular Al(3+) under a fluorescence microscope.

  15. Determination of torasemide by fluorescence quenching method with some dihalogenated fluorescein dyes as probes

    NASA Astrophysics Data System (ADS)

    Cui, Zhiping; Liu, Shaopu; Liu, Zhongfang; Li, Yuanfang; Hu, Xiaoli; Tian, Jing

    2013-10-01

    A novel fluorescence quenching method for the determination of torasemide (TOR) with some dihalogenated fluorescein dyes as fluorescence probes was developed. In acidulous medium, TOR could interact with some dihalogenated fluorescein dyes such as dichlorofluorescein (DCF), dibromofluorescein (DBF) and diiodofluorescein (DIF) to form binary complexes, which could lead to fluorescence quenching of above dihalogenated fluorescein dyes. The maximum fluorescence emission wavelengths were located at 532 nm (TOR-DCF), 535 nm (TOR-DBF) and 554 nm (TOR-DIF). The relative fluorescence intensities (ΔF = F0 - F) were proportional to the concentration of TOR in certain ranges. The detection limits were 4.8 ng mL-1 for TOR-DCF system, 9.8 ng mL-1 for TOR-DBF system and 35.1 ng mL-1 for TOR-DIF system. The optimum reaction conditions, influencing factors were studied; and the effect of coexisting substances was investigated owing to the highest sensitivity of TOR-DCF system. In addition, the reaction mechanism, composition and structure of the complex were discussed by quantum chemical calculation and Job's method. The fluorescence quenching of dihalogenated fluorescein dyes by TOR was a static quenching process judging from the effect of temperature and the Stern-Volmer plots. The method was satisfactorily applied to the determination of TOR in tablets and human urine samples.

  16. Study on the interaction between cinnamic acid and lysozyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Mei; Chen, Jian; Zhou, Qiu-Hua; Shi, Yue-Qin; Wang, Yan-Qing

    2011-02-01

    The interaction between lysozyme and cinnamic acid was investigated systematically by ultraviolet-vis absorbance, circular dichroism, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques at pH 7.40. The binding constants, quenching mechanism, and the number of binding sites were determined by the quenching of lysozyme fluorescence in presence of cinnamic acid. The results showed that the fluorescence quenching of lysozyme by cinnamic acid was a result of the formation of cinnamic acid-lysozyme complex. The hydrophobic and electrostatic interactions played major roles in stabilizing the complex; the distance r between donor and acceptor was obtained to be 2.07 nm according to Förster's theory; the effect of cinnamic acid on the conformation of lysozyme was analyzed using synchronous fluorescence, circular dichroism and three-dimensional fluorescence spectra.

  17. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching

    PubMed Central

    Wilk, Laura; Grunwald, Matthias; Liao, Pen-Nan; Walla, Peter Jomo; Kühlbrandt, Werner

    2013-01-01

    The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we have tested the individual contributions of PSII complexes and Zea to chlorophyll (Chl) fluorescence quenching in a membrane environment. We demonstrate that PsbS is stable in the absence of pigments in vitro. Significant Chl fluorescence quenching of reconstituted LHC-II was observed in the presence of PsbS and Zea, although neither Zea nor PsbS alone was sufficient to induce the same quenching. Coreconstitution with PsbS resulted in the formation of LHC-II/PsbS heterodimers, indicating their direct interaction in the lipid bilayer. Two-photon excitation measurements on liposomes containing LHC-II, PsbS, and Zea showed an increase of electronic interactions between carotenoid S1 and Chl states, , that correlated directly with Chl fluorescence quenching. These findings are in agreement with a carotenoid-dependent Chl fluorescence quenching by direct interactions of LHCs of PSII with PsbS monomers. PMID:23509270

  18. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    PubMed

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  19. The role of energy losses in photosynthetic light harvesting

    NASA Astrophysics Data System (ADS)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  20. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOEpatents

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  1. Characterization of humic acids by two-dimensional correlation fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Xing, Shaoyong; Gong, Yongkuan; Miyajima, Toru

    2008-07-01

    We have investigated interaction between humic acids and heavy metal ions by fluorescence spectroscopy. The humic acids examined are Aldrich humic acid (AHA) and Dando humic acid (DHA), and heavy metal ions are Cu 2+ and Pb 2+. The binding constants between the humic acids and the heavy metal ions are obtained by a conventional fluorescence quenching technique. The two prominent bands in the fluorescence spectra of the humic acids give different binding constants, implying that the two bands are originated from different fluorescent species in the matrices of the humic acids. This was confirmed by two-dimensional correlation analysis based on the quenching perturbation on the fluorescence spectra. Two prominent cross peaks corresponding to the two fluorescence bands are obtained in the asynchronous maps, indicating that the two fluorescence bands belong to different species. The order of the response of the two fluorescence bands to the quenching perturbation is also elucidated based on Noda's rule.

  2. Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes.

    PubMed

    Wang, Dan Ohtan; Okamoto, Akimitsu

    2015-01-01

    Engineered probes to adapt new photochemical properties upon recognition of target nucleic acids offer powerful tools to DNA and RNA visualization technologies. Herein, we describe a rapid and effective visualization method of nucleic acids in both fixed and living cells with hybridization-sensitive fluorescent oligonucleotide probes. These probes are efficiently quenched in an aqueous environment due to the homodimeric, excitonic interactions between fluorophores but become highly fluorescent upon hybridization to DNA or RNA with complementary sequences. The fast hybridization kinetics and quick fluorescence activation of the new probes allow applications to simplify the conventional fluorescent in situ hybridization protocols and reduce the amount of time to process the samples. Furthermore, hybridization-sensitive fluorescence emission of the probes allows monitoring dynamic behaviors of RNA in living cells.

  3. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    NASA Astrophysics Data System (ADS)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  4. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    PubMed

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  5. Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: A fluorescent sensor for Cu²⁺ with zero background signals.

    PubMed

    Long, Lingliang; Wu, Yanjun; Wang, Lin; Gong, Aihua; Hu, Rongfeng; Zhang, Chi

    2016-02-18

    The reaction-based fluorescent sensors have attracted increasing attention in the past decades. However, the application of these sensors for accurate sensing was significantly retarded by the background fluorescence from the sensors themselves. In this work, we demonstrated a novel strategy that the background fluorescence of the sensor could be completely eliminated by the combined effect of multiple fluorescence quenching groups. Based on this new strategy, as proof-of-principle study, a fluorescent sensor (CuFS) for Cu(2+) was judiciously developed. In CuFS, three types of fluorescence quenching groups were directly tethered to a commonly used coumarin fluorophore. The fluorescence of coumarin fluorophore in CuFS was completely suppressed by the combined effect of these fluorescence quenching groups. Upon treatment with 22 μM Cu(2+), sensor CuFS achieved a dramatic fluorescence enhancement (fluorescence intensity enhanced up to 811-fold) centered at 469 nm. The detection limits was determined to be 12.3 nM. The fluorescence intensity enhancement also showed a good linearity with the Cu(2+) concentration in the range of 12.3 nM to 2 μM. By fabricating test strips, sensor CuFS can be utilized as a simple tool to detect Cu(2+) in water samples. Furthermore, the fluorescent sensor was successfully applied in detecting different concentration of Cu(2+) in living cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM.

    PubMed

    Tan, Jie; Lai, Zongqiang; Zhong, Liping; Zhang, Zhenghua; Zheng, Rong; Su, Jing; Huang, Yong; Huang, Panpan; Song, Hui; Yang, Nuo; Zhou, Sufang; Zhao, Yongxiang

    2018-04-01

    A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluorescence is almost all quenched. Conversely, when the CCRF-CEM cells are added, the quenched fluorescence can be recovered rapidly and significantly. Therefore, based on the change of fluorescence signals, we can detect the number of CCRF-CEM cells in a wide range from 1 × 10 2 to 1 × 10 7  cells/mL with a limit of detection (LOD) of 10 cells/mL. Therefore, this strategy of graphene oxide-based fluorescent aptasensor may be promising for the detection of cancer.

  7. Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy.

    PubMed

    Chow, Sun Y S; Wong, Roy C H; Zhao, Shirui; Lo, Pui-Chi; Ng, Dennis K P

    2018-04-17

    A series of disulfide-linked dendritic phthalocyanines were synthesized by using the Cu I -catalyzed alkyne-azide cycloaddition reaction as the key step. Whereas these compounds were essentially nonaggregated in N,N-dimethylformamide, they were stacked in citrate solution (pH 7.4, with 1 % Cremophor EL), as shown by the broad appearance of their Q-band absorption. Having two-to-six zinc(II) phthalocyanine units in a molecule, these compounds were significantly self-quenched, particularly in citrate solution. Both the fluorescence intensity and singlet-oxygen generation efficiency were significantly lower than those of the monomeric counterparts, and the self-quenching efficiency increased as the number of phthalocyanine units increased. Upon interaction with 5 mm glutathione (GSH) in citrate solution, the fluorescence intensity of these compounds increased as a result of cleavage of the disulfide linkages and separation of the phthalocyanine units, which thereby reduced the self-quenching effect. The "on/off" ratios were found to be 7, 18, 23, and 21 for the dimeric (PC2), trimeric (PC3), tetrameric (PC4), and hexameric (PC6) systems, respectively. GSH also enhanced the fluorescence emission inside human colon adenocarcinoma HT29 cells and promoted the formation of singlet oxygen of these compounds. Upon irradiation, their half maximal inhibitory concentration (IC 50 ) values were found to be in the range of 0.18 to 0.38 μm. Finally, the biodistribution and activation of PC2 and PC6 were also examined in HT29 tumor-bearing nude mice. For both compounds, the fluorescence intensity per unit area at the tumor was found to grow gradually during the first 24 h. Whereas the intensity then dropped for PC2, the intensity for PC6 remained steady over the following 6 d, which might have been a result of the enhanced permeability and retention effect arising from the larger molecular mass of the hexameric system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Resonance energy transfer: Dye to metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: him-lax3@yahoo.com

    2015-06-24

    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  9. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.

    PubMed

    Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang

    2018-07-05

    A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Activation of the surface dark-layer to enhance upconversion in a thermal field

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Wen, Shihui; Liao, Jiayan; Clarke, Christian; Tawfik, Sherif Abdulkader; Ren, Wei; Mi, Chao; Wang, Fan; Jin, Dayong

    2018-03-01

    Thermal quenching, in which light emission experiences a loss with increasing temperature, broadly limits luminescent efficiency at higher temperature in optical materials, such as lighting phosphors1-3 and fluorescent probes4-6. Thermal quenching is commonly caused by the increased activity of phonons that leverages the non-radiative relaxation pathways. Here, we report a kind of heat-favourable phonons existing at the surface of lanthanide-doped upconversion nanomaterials to combat thermal quenching. It favours energy transfer from sensitizers to activators to pump up the intermediate excited-state upconversion process. We identify that the oxygen moiety chelating Yb3+ ions, [Yb...O], is the key underpinning this enhancement. We demonstrate an approximately 2,000-fold enhancement in blue emission for 9.7 nm Yb3+-Tm3+ co-doped nanoparticles at 453 K. This strategy not only provides a powerful solution to illuminate the dark layer of ultra-small upconversion nanoparticles, but also suggests a new pathway to build high-efficiency upconversion systems.

  11. Effect of divalent ions on the optical emission behavior of protein thin films

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2016-05-01

    Photoluminescence behaviors of proteinthin film, bovine serum albumin (BSA) have been studied in the presence of three divalent ions (Mg2+, Ca2+ and Ba2+) at different temperatures using fluorescence spectroscopy. Film thickness and morphology have been studied using atomic force microscopy. Variation of different physicochemical parameters like temperature, solvent polarity, pH, ionic strength, substrate binding etc. can make conformational changes in the protein structure and hence influences the emission behavior.In thin film conformation of BSA, dynamic quenching behavior has beenidentified in the presence of all the three divalent ions at pH≈ 5.5. Depending upon the charge density of the divalent ions interaction with protein molecules modifies and as a result quenching efficiency varies. Also after heat treatment, conformation of the protein molecules changes and as a result the quenching efficiency enhances than that of the unheated films. Studies on such protein-ion interactions and conformational variation may explore various functions of protein when it will adsorb on soft surfaces like membranes, vesicles, etc.

  12. Two-channel dansyl/tryptophan emitters with a cholic acid bridge as reporters for local hydrophobicity within supramolecular systems based on bile salts.

    PubMed

    Gomez-Mendoza, M; Marin, M Luisa; Miranda, Miguel A

    2014-11-14

    The aim of the present work is to develop two-channel emitters to probe local hydrophobicity by means of fluorescence quenching within different biomimetic supramolecular environments. To achieve this goal, the dansyl (Dns) and tryptophan (Trp) fluorophores have been covalently attached to cholic acid (CA) in order to ensure simultaneous incorporation of the two emitting units into the same compartment. In principle, the two fluorophores of the synthesized Dns-CA-Trp probes could either exhibit an orthogonal behavior or display excited state interactions. The fluorescence spectra of 3β-Dns-CA-Trp showed a residual Trp emission band at ca. 350 nm and an enhanced Dns maximum in the 500-550 nm region. This reveals a partial intramolecular energy transfer, which is consistent with the Dns and Trp singlet energies. Thus, the two photoactive units are not orthogonal; nevertheless, 3β-Dns-CA-Trp seems appropriate as a two-channel reporter for the supramolecular systems of interest. Fluorescence quenching of 3β-Dns-CA-Trp by iodide (which remains essentially in bulk water) was examined within sodium cholate, sodium taurocholate, sodium deoxycholate and mixed micelles. Interestingly, a decrease in the emission intensity of the two bands was observed with increasing iodide concentrations. The most remarkable effect was observed for mixed micelles, where the quenching rate constants were one order of magnitude lower than in solution. As anticipated, the quenching efficiency by iodide decreased with increasing hydrophobicity of the microenvironment, a trend that can be correlated with the relative accessibility of the probe to the ionic quencher.

  13. Using Quenching to Detect Corrosion on Sculptural Metalwork: A Real-World Application of Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Hensen, Cory; Clare, Tami Lasseter; Barbera, Jack

    2018-01-01

    Fluorescence spectroscopy experiments are a frequently taught as part of upper-division teaching laboratories. To expose undergraduate students to an applied fluorescence technique, a corrosion detection method, using quenching, was adapted from authentic research for an instrumental analysis laboratory. In the experiment, students acquire…

  14. A Metal-Polydopamine Framework (MPDA) as an Effective Fluorescent Quencher for Highly Sensitive Detection of Hg (II) And Ag (I) ions Through Exonuclease III Activity.

    PubMed

    Ravikumar, Ayyanu; Panneerselvam, Perumal; Morad, Norhashimah

    2018-05-24

    In this paper, we propose a metal-polydopamine framework (MPDA) with specific molecular probe which appears to be the most promising approach to a strong fluorescence quencher. The MPDA framework quenching ability towards various organic fluorophore such as aminoethylcomarin acetate (AMCA), 6-carboxyfluorescein (FAM), carboxyteramethylrhodamine (TAMRA) and Cy5 are used to establish a fluorescent biosensor that can selectively recognize Hg2+ and Ag+ ion. The fluorescent quenching efficiency was sufficient to achieve more than 96%. The MPDA framework also exhibits different affinities with ssDNA and dsDNA. In addition, the FAM labelled ssDNA was adsorbed onto MPDA framework, based on their interaction with the complex formed between MPDA frameworks/ssDNA taken as a sensing platform. By taking advantage of this sensor highly sensitive and selective determination of Hg2+and Ag+ ions is achieved through Exonuclease III signal amplification activity. The detection limits of Hg2+and Ag+ achieved to be 1.2 pM and 34 pM respectively, were compared to co-existing metal ions and GO based sensors. Furthermore, the potential applications of this study establish the highly sensitive fluorescence detection targets in environmental and biological fields.

  15. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor.

    PubMed

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-14

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.

  16. Light-Induced Fluorescence Modulation of Quantum Dot-Crystal Violet Conjugates: Stochastic Off-On-Off Cycles for Multicolor Patterning and Super-Resolution.

    PubMed

    Jung, Sungwook; Park, Joonhyuck; Bang, Jiwon; Kim, Jae-Yeol; Kim, Cheolhee; Jeon, Yongmoon; Lee, Seung Hwan; Jin, Ho; Choi, Sukyung; Kim, Bomi; Lee, Woo Jin; Pack, Chan-Gi; Lee, Jong-Bong; Lee, Nam Ki; Kim, Sungjee

    2017-06-07

    Photoswitching or modulation of quantum dots (QDs) can be promising for many fields that include display, memory, and super-resolution imaging. However, such modulations have mostly relied on photomodulations of conjugated molecules in QD vicinity, which typically require high power of high energy photons at UV. We report a visible light-induced facile modulation route for QD-dye conjugates. QD crystal violets conjugates (QD-CVs) were prepared and the crystal violet (CV) molecules on QD quenched the fluorescence efficiently. The fluorescence of QD-CVs showed a single cycle of emission burst as they go through three stages of (i) initially quenched "off" to (ii) photoactivated "on" as the result of chemical change of CVs induced by photoelectrons from QD and (iii) back to photodarkened "off" by radical-associated reactions. Multicolor on-demand photopatterning was demonstrated using QD-CV solid films. QD-CVs were introduced into cells, and excitation with visible light yielded photomodulation from "off" to "on" and "off" by nearly ten fold. Individual photoluminescence dynamics of QD-CVs was investigated using fluorescence correlation spectroscopy and single QD emission analysis, which revealed temporally stochastic photoactivations and photodarkenings. Exploiting the stochastic fluorescence burst of QD-CVs, simultaneous multicolor super-resolution localizations were demonstrated.

  17. Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water.

    PubMed

    Huang, Wei; Smarsly, Emanuel; Han, Jinsong; Bender, Markus; Seehafer, Kai; Wacker, Irene; Schröder, Rasmus R; Bunz, Uwe H F

    2017-01-25

    We report two hyperbranched conjugated polymers (HCP) with truxene units as core and 1,4-didodecyl-2,5-diethynylbenzene as well as 1,4-bis(dodecyloxy)-2,5-diethynylbenzene as comonomers. Two analogous poly(para-phenyleneethynylene)s (PPE) are also prepared as comparison to demonstrate the difference between the truxene and the phenyl moieties in their optical properties and their sensing performance. The four polymers are tested for nitroaromatic analytes and display different fluorescence quenching responses. The quenching efficiencies are dependent upon the spectral overlap between the absorbance of the analyte and the emission of the fluorescent polymer. Optical fingerprints are obtained, based on the unique response patterns of the analytes toward the polymers. With this small sensor array, one can distinguish nine nitroaromatic analytes with 100% accuracy. The amphiphilic polymer F127 (a polyethylene glycol-polypropylene glycol block copolymer) carries the hydrophobic HCPs and self-assembles into micelles in water, forming highly fluorescent HCP micelles. The micelle-bound conjugated polymers detect nitroaromatic analytes effectively in water and show an increased sensitivity compared to the sensing of nitroaromatics in organic solvents. The nitroarenes are also discriminated in water using this four-element chemical tongue.

  18. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    PubMed

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2018-02-15

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Novel Spectrofluorimetric Method for the Determination of Perindopril Erbumine Based on Fluorescence Quenching of Rhodamine B.

    PubMed

    Fael, Hanan; Sakur, Amir Al-Haj

    2015-11-01

    A novel, simple and specific spectrofluorimetric method was developed and validated for the determination of perindopril erbumine (PDE). The method is based on the fluorescence quenching of Rhodamine B upon adding perindopril erbumine. The quenched fluorescence was monitored at 578 nm after excitation at 500 nm. The optimization of the reaction conditions such as the solvent, reagent concentration, and reaction time were investigated. Under the optimum conditions, the fluorescence quenching was linear over a concentration range of 1.0-6.0 μg/mL. The proposed method was fully validated and successfully applied to the analysis of perindopril erbumine in pure form and tablets. Statistical comparison of the results obtained by the developed and reference methods revealed no significant differences between the methods compared in terms of accuracy and precision. The method was shown to be highly specific in the presence of indapamide, a diuretic that is commonly combined with perindopril erbumine. The mechanism of rhodamine B quenching was also discussed.

  20. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  1. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo.

    PubMed

    Tansi, Felista L; Rüger, Ronny; Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kaiser, Werner A; Hilger, Ingrid

    2013-11-11

    In the past decade, there has been significant progress in the development of water soluble near-infrared fluorochromes for use in a wide range of imaging applications. Fluorochromes with high photo and thermal stability, sensitivity, adequate pharmacological properties and absorption/emission maxima within the near infrared window (650-900 nm) are highly desired for in vivo imaging, since biological tissues show very low absorption and auto-fluorescence at this spectrum window. Taking these properties into consideration, a myriad of promising near infrared fluorescent probes has been developed recently. However, a hallmark of most of these probes is a rapid clearance in vivo, which hampers their application. It is hypothesized that encapsulation of the near infrared fluorescent dye DY-676-COOH, which undergoes fluorescence quenching at high concentrations, in the aqueous interior of liposomes will result in protection and fluorescence quenching, which upon degradation by phagocytes in vivo will lead to fluorescence activation and enable imaging of inflammation. Liposomes prepared with high concentrations of DY-676-COOH reveal strong fluorescence quenching. It is demonstrated that the non-targeted PEGylated fluorescence-activatable liposomes are taken up predominantly by phagocytosis and degraded in lysosomes. Furthermore, in zymosan-induced edema models in mice, the liposomes are taken up by monocytes and macrophages which migrate to the sites of inflammation. Opposed to free DY-676-COOH, prolonged stability and retention of liposomal-DY-676-COOH is reflected in a significant increase in fluorescence intensity of edema. Thus, protected delivery and fluorescence quenching make the DY-676-COOH-loaded liposomes a highly promising contrast agent for in vivo optical imaging of inflammatory diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  3. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Stefan, E-mail: stefan.kuhn84@googlemail.com; Tiegel, Mirko; Herrmann, Andreas

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information aboutmore » the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.« less

  4. Multispectroscopic and bioimaging approach for the interaction of rhodamine 6G capped gold nanoparticles with bovine serum albumin.

    PubMed

    Manjubaashini, N; Kesavan, Mookkandi Palsamy; Rajesh, Jegathalaprathaban; Daniel Thangadurai, T

    2018-06-01

    Binding interaction of Bovine Serum Albumin (BSA) with newly prepared rhodamine 6G-capped gold nanoparticles (Rh6G-Au NPs) under physiological conditions (pH 7.2) was investigated by a wide range of photophysical techniques. Rh6G-Au NPs caused the static quenching of the intrinsic fluorescence of BSA that resulted from the formation of ground-state complex between BSA and Rh6G-Au NPs. The binding constant from fluorescence quenching method (K a  = 1.04 × 10 4  L mol -1 ; LoD = 14.0 μM) is in accordance with apparent association constant (K app  = 1.14 × 10 1  M -1 ), which is obtained from absorption spectral studies. Förster resonance energy transfer (FRET) efficiency between the tryptophan (Trp) residue of BSA and fluorophore of Rh6G-Au NPs during the interaction was calculated to be 90%. The free energy change (ΔG = -23.07 kJ/mol) of BSA-Rh6G-Au NPs complex was calculated based on modified Stern-Volmer Plot. The time-resolved fluorescence analysis confirmed that quenching of BSA follows static mechanism through the formation of ground state complex. Furthermore, synchronous and three-dimensional fluorescence measurement, Raman spectral analysis and Circular Dichroism spectrum results corroborate the strong binding between Rh6G-Au NPs and BSA, which causes the conformational changes on BSA molecule. In addition, fluorescence imaging experiments of BSA in living human breast cancer (HeLa) cells was successfully demonstrated, which articulated the value of Rh6G-Au NPs practical applications in biological systems. Copyright © 2018. Published by Elsevier B.V.

  5. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  6. Exciplexes and conical intersections lead to fluorescence quenching in π-stacked dimers of 2-aminopurine with natural purine nucleobases†

    PubMed Central

    Liang, JingXin; Nguyen, Quynh L.; Matsika, Spiridoula

    2016-01-01

    Fluorescent analogues of the natural DNA bases are useful in the study of nucleic acids’ structure and dynamics. 2-Aminopurine (2AP) is a widely used analogue with environmentally sensitive fluorescence behavior. The quantum yield of 2AP has been found to be significantly decreased when engaged in π-stacking interactions with the native bases. We present a theoretical study on fluorescence quenching mechanisms in dimers of 2AP π-stacked with adenine or guanine as in natural DNA. Relaxation pathways on the potential energy surfaces of the first excited states have been computed and reveal the importance of exciplexes and conical intersections in the fluorescence quenching process. PMID:23625036

  7. pH-Responsive Fluorescence Enhancement in Graphene Oxide-Naphthalimide Nanoconjugates: A Fluorescence Turn-On Sensor for Acetylcholine.

    PubMed

    Mangalath, Sreejith; Abraham, Silja; Joseph, Joshy

    2017-08-22

    A pH-sensitive, fluorescence "turn-on" sensor based on a graphene oxide-naphthalimide (GO-NI) nanoconjugate for the detection of acetylcholine (ACh) by monitoring the enzymatic activity of acetylcholinesterase (AChE) in aqueous solution is reported. These nanoconjugates were synthesized by covalently anchoring picolyl-substituted NI derivatives on the GO/reduced GO surface through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling strategy, and the morphological and photophysical properties were studied in detail. Synergistic effects of π-π interactions between GO and the NI chromophore, and efficient photoinduced electron- and energy-transfer processes, were responsible for the strong quenching of fluorescence of these nanoconjugates, which were perturbed under acidic pH conditions, leading to significant enhancement of fluorescence emission. This nanoconjugate was successfully employed for the efficient sensing of pH changes caused by the enzymatic activity of AChE, thereby demonstrating its utility as a fluorescence turn-on sensor for ACh in the neurophysiological range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.

    PubMed

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Aghaee, Elham; Ghasemi, Jahan B

    2016-10-01

    The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV-Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster's non-radiative energy transfer theory and were equal to 41.1% and 2.11nm. The collected UV-Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand. Molecular modeling results showed that VB6-BSA complex formed not only on the basis of electrostatic forces, but also on the basis of π-π staking and hydrogen bond. There was an excellent agreement between the experimental and computational results. The results presented in this paper, will offer a reference for detailed and systematic studies on the biological effects and action mechanism of small molecules with proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Investigating structure-property relationships of biomineralized calcium phosphate compounds as fluorescent quenching-recovery platform

    NASA Astrophysics Data System (ADS)

    Wang, Liuzheng; He, Xiang; Zhang, Wei; Liu, Yong; Banks, Craig E.; Zhang, Ying

    2018-02-01

    The structure-property relationship between biomineralized calcium phosphate compounds upon a fluorescent quenching-recovery platform and their distinct crystalline structure and surficial functional groups are investigated. A fluorescence-based sensing platform is shown to be viable for the sensing of 8-hydroxy-2-deoxy-guanosine in simulated systems.

  10. "Super-quenching" state protects Symbiodinium from thermal stress - Implications for coral bleaching.

    PubMed

    Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R

    2016-06-01

    The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching. Copyright © 2016. Published by Elsevier B.V.

  11. Ensemble and Single-Molecule Studies on Fluorescence Quenching in Transition Metal Bipyridine-Complexes

    PubMed Central

    Brox, Dominik; Kiel, Alexander; Wörner, Svenja Johanna; Pernpointner, Markus; Comba, Peter; Martin, Bodo; Herten, Dirk-Peter

    2013-01-01

    Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer. PMID:23483966

  12. Chemical reactivation of fluorescein isothiocyanate immunofluorescence-labeled resin-embedded samples

    NASA Astrophysics Data System (ADS)

    Li, Longhui; Rao, Gong; Lv, Xiaohua; Chen, Ruixi; Cheng, Xiaofeng; Wang, Xiaojun; Zeng, Shaoqun; Liu, Xiuli

    2018-02-01

    Resin embedding is widely used and facilitates microscopic imaging of biological tissues. In contrast, quenching of fluorescence during embedding process hinders the application of resin embedding for imaging of fluorescence-labeled samples. For samples expressing fluorescent proteins, it has been demonstrated that the weakened fluorescence could be recovered by reactivating the fluorophore with alkaline buffer. We extended this idea to immunofluorescence-labeling technology. We showed that the fluorescence of pH-sensitive fluorescein isothiocyanate (FITC) was quenched after resin embedding but reactivated after treating by alkaline buffer. We observed 138.5% fluorescence preservation ratio of reactivated state, sixfold compared with the quenched state in embedding resin, which indicated its application for fluorescence imaging of high signal-to-background ratio. Furthermore, we analyzed the chemical reactivation mechanism of FITC fluorophore. This work would show a way for high-resolution imaging of immunofluorescence-labeled samples embedded in resin.

  13. Workshop Proceedings of the Conference on Solid State Tunable Lasers Held at Hampton, Virginia on 13-15 June 1984.

    DTIC Science & Technology

    1985-07-01

    87 Trivalent Cerium Doped Crystals as Tunable Laser Systems: Two Bad Apples Douglas S. Hamilton...161 Theory of Fluorescence Quenching in Low-Field Chromium ... trivalent types of luminescent centers can be grown. Mostly high quantum efficiencies at room-temperature are observed. Pulsed room-temperature lasing

  14. Determination of emodin by hexadecyl trimethyl ammonium bromide sensitized fluorescence quenching method of the derivatives of calix[4]arene

    NASA Astrophysics Data System (ADS)

    Ma, Lina; Zhu, Xiashi

    2012-09-01

    The fluorescence quenching effect of emodin (EMO) on the derivatives of p-tert-butyl-calix[4]arene with o-phenanthroline (TBCP) in 1.0% hexadecyl trimethyl ammonium bromide (CTAB) medium was investigated. The fluorescence of TBCP was quenched by EMO due to the formation of the weak fluorescent inclusion complex (EOM-TBCP), and the fluorescence quenching (ΔF = FTBCP-FEMO-TBCP) was sensitized in CTAB. Under the optimal conditions, the linear range of calibration curve for the determination of EMO was 1.17-23.40 μg/mL. The detection limit estimated and RSD was 0.34 μg/mL, 3.63% (n = 3, c = 4.74 μg/mL). The quantum yield Yu of TBCP was approximately 2.0 times higher in the presence of CTAB than that in the absence of CTAB. The method has been applied for the determination of EMO in samples with satisfactory results.

  15. Interaction of Human Hemoglobin with Methotrexate

    NASA Astrophysics Data System (ADS)

    Zaharia, M.; Gradinaru, R.

    2015-05-01

    This study focuses on the interaction between methotrexate and human hemoglobin using steady-state ultraviolet-visible and fluorescence quenching methods. Fluorescence quenching was found to be valuable in assessing drug binding to hemoglobin. The quenching of methotrexate is slightly smaller than the quenching observed with related analogs (dihydrofolate and tetrahydrofolate). The quenching studies were performed at four different temperatures and various pH values. The number of binding sites for tryptophan is ~1. Parameter-dependent assays revealed that electrostatic forces play an essential role in the methotrexate-hemoglobin interaction. Furthermore, the complex was easily eluted using gel filtration chromatography.

  16. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes.

    PubMed

    Taghdisi, Seyed Mohammad; Emrani, Somayeh Sarreshtehdar; Tabrizian, Kaveh; Ramezani, Mohammad; Abnous, Khalil; Emrani, Ahmad Sarreshtehdar

    2014-05-01

    Lead contamination is a serious environmental problem with toxic effects in human. Here, we developed a simple and sensitive sensing method employing ATTO 647N/aptamer-SWNT ensemble for detection of Pb(2+). This method is based on the super quenching capability of single-walled carbon nanotubes (SWNTs), high affinity of the aptamer toward Pb(2+) and different propensities of ATTO 647N-aptamer and ATTO 647N-aptamer/Pb(2+) complex for adsorption on SWNTs. In the absence of Pb(2+), the fluorescence of ATTO 647N-aptamer is efficiently quenched by SWNTs. Upon addition of Pb(2+), the aptamer binds to its target, leading to the formation of a G-quadruplex/Pb(2+) complex and does not interact with SWNTs and ATTO 647N-aptamer starts fluorescing. This sensor exhibited a high selectivity toward Pb(2+) and a limit of detection (LOD) as low as 0.42 nM was obtained. Also this sensor could be applied for detection of Pb(2+) ions in tap water and biological sample like serum with high sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Highly sensitive fluorescence and SERS detection of azide through a simple click reaction of 8-chloroquinoline and phenylacetylene.

    PubMed

    Zeng, Qing; Ye, Lingling; Ma, Lu; Yin, Wenqing; Li, Tingsheng; Liang, Aihui; Jiang, Zhiliang

    2015-05-01

    In 0.19 mol/L acetic acid (HAc), a click reaction of 8-chloroquinoline/azide/phenylacetylene take places in aqueous solution without Cu(I) as a catalyst. 8-Chloroquinoline (CQN) exhibited a strong fluorescence peak at 430 nm that was quenched linearly as the concentration of azide increased from 20 to 1000 ng/mL. This quenching was due to consumption of CQN in the click reaction and a decrease in the number of efficiently excited photons due to the presence of triazole-quinoline ramification molecules with strong hydrophobicity. Using blue nanosilver sol as the substrate, CQN absorbed onto the surface of nanosilver particles, showing a strong surface-enhanced Raman scattering (SERS) peak at 1585 cm(-1) that decreased linearly as the azide concentration increased from 8 to 500 ng/mL; the detection limit was 4 ng/mL. Thus, two new, simple and sensitive fluorescence and SERS methods have been developed for the determination of azide via the click reaction. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Determination of copper (II) in foodstuffs based on its quenching effect on the fluorescence of N,N'-bis(pyridoxal phosphate)-o-phenylenediamine.

    PubMed

    Xu, Canhui; Liao, Lifu; He, Yunfei; Wu, Rurong; Li, Shijun; Yang, Yanyan

    2015-01-01

    A Schiff base-type fluorescence probe was prepared for the detection of copper (II) in foodstuffs. The probe is N,N'-bis(pyridoxal phosphate)-o-phenylenediamine (BPPP). It was synthesized by utilizing the Schiff base condensation reaction of pyridoxal 5-phosphate with 1,2-phenylenediamine. BPPP has the properties of high fluorescence stability, good water solubility and low toxicity. Its maximum excitation wavelength and maximum fluorescence emission wavelength are at 389 and 448 nm, respectively. When BPPP coexists with copper (II), its fluorescence is dramatically quenched. Under a certain condition, the fluorescence intensity decreased proportionally to the concentration of copper (II) by the quenching effect. Based on this fact, we established a fluorescence quenching method for the determination of copper (II). Under optimal conditions a linear range was found to be 0.5-50 ng/mL with a detection limit of 0.2 ng/mL. The method has been applied to determine copper (II) in foodstuff samples and the analytical results show good agreement with that obtained from atomic absorption spectrometry method. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fluorescence study on the interaction of human serum albumin with Butein in liposomes

    NASA Astrophysics Data System (ADS)

    Toprak, Mahmut

    2016-02-01

    The interaction of Butein with human serum albumin in L-egg lecithin phosphatidycholine (PC) liposome has been investigated by fluorescence and absorption spectroscopy. The results of the fluorescence measurement indicated that Butein effectively quenched the intrinsic fluorescence of HSA via static quenching. The Stern-Volmer plots in all the liposome solutions showed a positive deviation from the linearity. According to the thermodynamic parameters, the hydrophobic interactions appeared be the major interaction forces between Butein and HSA. The effect of Butein on the conformation of HSA was also investigated by the synchronous fluorescence under the same experimental conditions. In addition, the partition coefficient of the Butein in the PC liposomes was also determined by using the fluorescence quenching process. The obtained results can be of biological significance in pharmacology and clinical medicine.

  20. Quenching mechanism of Zn(salicylaldimine) by nitroaromatics.

    PubMed

    Germain, Meaghan E; Vargo, Thomas R; McClure, Beth Anne; Rack, Jeffrey J; Van Patten, P Gregory; Odoi, Michael; Knapp, Michael J

    2008-07-21

    Nitroaromatics and nitroalkanes quench the fluorescence of Zn(Salophen) (H2Salophen = N,N'-phenylene-bis-(3,5-di- tert-butylsalicylideneimine); ZnL(R)) complexes. A structurally related family of ZnL(R) complexes (R = OMe, di-tBu, tBu, Cl, NO2) were prepared, and the mechanisms of fluorescence quenching by nitroaromatics were studied by a combined kinetics and spectroscopic approach. The fluorescent quantum yields for ZnL(R) were generally high (Phi approximately 0.3) with sub-nanosecond fluorescence lifetimes. The fluorescence of ZnL(R) was quenched by nitroaromatic compounds by a mixture of static and dynamic pathways, reflecting the ZnL(R) ligand bulk and reduction potential. Steady-state Stern-Volmer plots were curved for ZnL(R) with less-bulky substituents (R = OMe, NO2), suggesting that both static and dynamic pathways were important for quenching. Transient Stern-Volmer data indicated that the dynamic pathway dominated quenching for ZnL(R) with bulky substituents (R = tBu, DtBu). The quenching rate constants with varied nitroaromatics (ArNO2) followed the driving force dependence predicted for bimolecular electron transfer: ZnL* + ArNO2 --> ZnL(+) + ArNO2(-). A treatment of the diffusion-corrected quenching rates with Marcus theory yielded a modest reorganization energy (lambda = 25 kcal/mol), and a small self-exchange reorganization energy for ZnL*/ZnL(+) (ca. 20 kcal/mol) was estimated from the Marcus cross-relation, suggesting that metal phenoxyls may be robust biological redox cofactors. Electronic structure calculations indicated very small changes in bond distances for the ZnL --> ZnL(+) oxidation, suggesting that solvation was the dominant contributor to the observed reorganization energy. These mechanistic insights provide information that will be helpful to further develop ZnL(R) as sensors, as well as for potential photoinduced charge transfer chemistry.

  1. Annihilation limit of a visible-to-UV photon upconversion composition ascertained from transient absorption kinetics.

    PubMed

    Deng, Fan; Blumhoff, Jörg; Castellano, Felix N

    2013-05-30

    Noncoherent sensitized green-to-near-visible upconversion has been achieved utilizing palladium(II) octaethylporphyrin (PdOEP) as the triplet sensitizer and anthracene as the energy acceptor/annihilator in vacuum degassed toluene. Selective 547 nm excitation of PdOEP with incident irradiance as low as 600 μW/cm(2) results in the observation of anthryl fluorescence at higher energy. Stern-Volmer analysis of the dynamic phosphorescence quenching of PdOEP by anthracene possesses an extremely large K(SV) of 810,000 M(-1), yielding a triplet-triplet energy transfer quenching constant of 3.3 × 10(9) M(-1) s(-1). Clear evidence for the subsequent triplet-triplet annihilation (TTA) of anthracene was afforded by numerous experiments, one of the most compelling was an excitation scan illustrating that the Q-band absorption features of PdOEP are solely responsible for sensitizing the anti-Stokes fluorescence. The upconverted emission intensity with respect to the excitation power was shown to vary between quadratic and linear using either coherent or noncoherent light sources, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Time-resolved experiments directly comparing the total integrated anthracene intensity/time fluorescence data produced through upconversion (λ(ex) = 547 nm, delayed signal) and with direct excitation (λ(ex) = 355 nm, prompt signal) under conditions where the laser pulse is completely absorbed by the sample reveal annihilation efficiencies of approximately 40%. Similarly, the delayed fluorescence kinetic analysis reported by Schmidt and co-workers (J. Phys. Chem. Lett. 2010, 1, 1795-1799) was used to reveal the maximum possible efficiency from a model red-to-yellow upconverting composition and this treatment was applied to the anthryl triplet absorption decay transients of anthracene measured for the PdOEP/anthracene composition at 430 nm. From this analysis approximately 50% of the anthryl triplets that decay by TTA produce singlet fluorescence, consistent with the notion that annihilation spin statistics does not impose efficiency limits on upconversion photochemistry.

  2. Interactions between natural organic ligands and trace metals studied by fluorescence lifetime and fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Nouhi, Ayoub; Hajjoul, Houssam; Redon, Roland; Gagné, Jean-Pierre; Mounier, Stéphane

    2017-04-01

    Improved insight on the interactions between natural organic ligands and trace metals is of paramount importance for better understanding transport and toxicity pathways of metal ions in the environment. Fluorescence spectroscopy allows introspecting ligands-metals interactions. Time-resolved laser fluorescence spectroscopy (TRLFS) measures fluorophore lifetime probing the local molecular environment. Excitation Emission Fluorescence Matrices (EEFMs) and their statistical treatment : parallel factor analysis (PARAFAC) using PROGMEEF Matlab homemade program, can give insight on the number or nature of organic fluorophores involved in the interactions. Quenching of fluorescence by metals can occur following two processes: dynamic and static quenching (Lakowicz, 2013). In the first case, quenching is caused by physical collisions among molecules and in the second case fluorophores can form nonfluorescent complexes with quenchers. It is possible to identify the different mechanisms because each type of quenching corresponds to a different mathematical model (Lakowicz, 2013; Valeur and Berberan-Santos, 2012). In TRLFS, the study of fluorescence decay's laws induced by nanosecond pulsed laser will allow to exactly qualify the type of interaction. The crucial point of the temporal deconvolution will be the evaluation of the best fitting between the different physical models and the decays measured. From the most suitable time decay model, it will be possible to deduce the quenching which modifies the fluorescence. The aim of this study was to characterize interactions between natural organic ligands and trace metals using fluorescence tools to evaluate the fluorescence lifetime of the fluorophore, the occurrence of quenching in presence of metal, discuss its mechanism and estimate conditional stability constants if a complex organic ligand-metal is formed. This study has been done in two steps. First, we have examined the interactions between salicylic acid and copper in order to calibrate our assays and compare our results with literature. Several studies have shown that static quenching occurs in that case (Brun and Schröder, 1975; Lavrik and Mulloev, 2010; Ventry et al., 1991; Babko, 1968). Indeed, after processing the EEFMs and TRLFS data, we found a fluorescence intensity decay by about 50% and a constant lifetime for the fluorophore suggesting a static quenching, in agreement with the literature. In the second step, we have studied the interactions between metal and different types of natural organic matters. In this case, EEMFs and TRLFS experiments were done on samples prepared by dissolving copper in four different fractions of organic matter extracted from estuarine water (St. Lawrence Estuary, Canada). Organic matter was obtained using DAX-8 and XAD-4 resins in series. Humic and fulvic acids are obtained following the IHSS protocol. The results of interaction between humic substances and copper gathered after processing data on PROGMEEF have shown a fluorescence intensity decay by about 57% for the first component and 88% for the second component. The fluorescence lifetime for both components were close to 2 ns and 6 ns respectively and the pH range was stable and close to 6. This means that a static quenching takes place in this case in agreement with the literature. Our study also focused on the investigation of complexation of organic matter by other metals in particular Aluminum, Arsenic, Europium and Uranium.

  3. Determination of ethambutol by a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Ying; Yang, Ji-Yuan; Du, Li-Ming; Wu, Hao; Li, Chang-Feng

    2011-08-01

    The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (Δ F) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL -1, with a correlation coefficient ( r) of 0.9997. The detection limit is 1.7 ng mL -1. The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.

  4. "ICT-not-quenching" near infrared ratiometric fluorescent detection of picric acid in aqueous media.

    PubMed

    Xu, Yongqian; Li, Benhao; Li, Weiwei; Zhao, Jie; Sun, Shiguo; Pang, Yi

    2013-05-25

    The first "off-on" and ratiometric fluorescent method based on ICT mechanism for picric acid (PA) recognition in the near infrared region was constructed. Key advantages of the unique molecular architecture can fulfil the ratiometric response to electron-deficient featured PA which inclines to quench fluorescence of all reported sensors for PA.

  5. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  6. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    PubMed Central

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  7. Poly(o-phenylenediamine) colloid-quenched fluorescent oligonucleotide as a probe for fluorescence-enhanced nucleic acid detection.

    PubMed

    Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping

    2011-02-01

    In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch.

  8. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    PubMed Central

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  9. Study of fluorescence quenching due to 2, 3, 5, 6-tetrafluoro-7, 7', 8, 8'-tetracyano quinodimethane and its solid state diffusion analysis using photoluminescence spectroscopy.

    PubMed

    Tyagi, Priyanka; Tuli, Suneet; Srivastava, Ritu

    2015-02-07

    In this work, we have studied the fluorescence quenching and solid state diffusion of 2, 3, 5, 6-tetrafluoro-7,  7',  8,  8'-tetracyano quinodimethane (F4-TCNQ) using photoluminescence (PL) spectroscopy. Quenching studies were performed with tris (8-hydroxyquinolinato) aluminum (Alq3) in solid state samples. Thickness of F4-TCNQ was varied in order to realize different concentrations and study the effect of concentration. PL intensity has reduced with the increase in F4-TCNQ thicknesses. Stern-Volmer and bimolecular quenching constants were evaluated to be 13.8 M(-1) and 8.7 × 10(8) M(-1) s(-1), respectively. The quenching mechanism was found to be of static type, which was inferred by the independent nature of excited state life time from the F4-TCNQ thickness. Further, solid state diffusion of F4-TCNQ was studied by placing a spacing layer of α-NPD between F4-TCNQ and Alq3, and its thickness was varied to probe the diffusion length. PL intensity was found to increase with the increase in this thickness. Quenching efficiency was evaluated as a function of distance between F4-TCNQ and Alq3. These studies were performed for the samples having 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ to study the thickness dependence of diffusion length. Diffusion lengths were evaluated to be 12.5, 15, and 20 nm for 1, 2.5, and 5.5 nm thicknesses of F4-TCNQ. These diffusion lengths were found to be very close to that of determined by secondary ion mass spectroscopy technique.

  10. Regulation of photosystem I light harvesting by zeaxanthin

    PubMed Central

    Ballottari, Matteo; Alcocer, Marcelo J. P.; D’Andrea, Cosimo; Viola, Daniele; Ahn, Tae Kyu; Petrozza, Annamaria; Polli, Dario; Fleming, Graham R.; Cerullo, Giulio; Bassi, Roberto

    2014-01-01

    In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI–LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI–LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI–LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly. PMID:24872450

  11. Regulation of photosystem I light harvesting by zeaxanthin

    DOE PAGES

    Ballottari, Matteo; Alcocer, Marcelo J. P.; D'Andrea, Cosimo; ...

    2014-05-28

    In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this paper we investigated the effect of zeaxanthin binding on photoprotection of PSI–LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin)more » and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI–LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. Finally, we propose that, upon acclimation to high light, PSI–LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.« less

  12. To reveal the nature of interactions of human hemoglobin with gold nanoparticles having two different morphologies (sphere and star-shaped) by using various spectroscopic techniques.

    PubMed

    Chakraborty, Madhurima; Paul, Somnath; Mitra, Ishani; Bardhan, Munmun; Bose, Mridul; Saha, Abhijit; Ganguly, Tapan

    2018-01-01

    The nature of interactions between heme protein human hemoglobin (HHb) and gold nanoparticles of two different morphologies that is GNP (spherical) and GNS (star-shaped) have been investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, resonance light scattering (RLS), time resolved fluorescence, FT-IR, and circular dichroism (CD) techniques under physiological condition of pH ~7 at ambient and different temperatures. Analysis of the steady state fluorescence quenching of HHb in aqueous solution in the presence of GNP and GNS suggests that the nature of the quenching is of static type. The static nature of the quenching is also confirmed from time resolved data. The static type of quenching also indicates the possibility of formation of ground state complex for both HHb-GNP and HHb-GNS systems. From the measurements of Stern-Volmer (SV) constants K SV and binding constants, K A and number of binding sites it appears that HHb forms stronger binding with GNP relative to GNS. Analysis of the thermodynamic parameters indicates that the formation of HHb-GNP and HHb-GNS complexes are spontaneous molecular interaction processes (∆G<0). In both cases hydrogen bonding and van der Waals interactions play a dominant role (∆H<0, ∆S<0). Synchronous fluorescence spectroscopy further reveals that the ground state complex formations of HHb-GNP and HHb-GNS preferably occur by binding with the amino acid tyrosine through hydrogen bonding interactions. Moreover the α-helicity contents of the proteins as obtained from the circular dichroism (CD) spectra appears to be marginally reduced by increasing concentrations of GNP and GNS and the α-helical structures of HHb retain its identity as native secondary structure in spite of complex formations with GNP or GNS. These findings demonstrate the efficiency of biomedical applications of GNP and GNS nanoparticles as well as in elucidating their mechanisms of action as drugs or drug delivery systems in human. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. [Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage].

    PubMed

    Lin, Lu; Tang, Yun; Zhang, Ji-tao; Yan, Wan-li; Xiao, Jian-hong; Ding, Chao; Dong, Chuan; Ji, Zeng-shun

    2015-07-01

    Impacts of different substrate water potentials (SWP) on leaf gas exchange and chlorophyll fluorescence parameters of greenhouse cucumber during its post-flowering growth stage were analyzed in this study. The results demonstrated that -10 and -30 kPa were the critical values for initiating stomatal and non-stomatal limitation of drought stress, respectively. During the stage of no drought stress (-10 kPa < SWP ≤ 0 kPa), gas exchange parameters and chlorophyll fluorescence parameters were not different significantly among treatments. During the stage of stomatal limitation of drought stress (-30 kPa

  14. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant species. In addition, the potential use of chlorophyll fluorescence for both basic research and diagnostic physiology in space biology is presented.

  15. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    NASA Astrophysics Data System (ADS)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  16. Preparation and Characterization of Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow, cascade blue, and 5-(2-aminoethyl)aminonapthalene-l-sulfonic acid (EDANS) have been attached to the side chain carboxyl of asp101 using a carbodiimide coupling procedure. asp101 lies within the active site cleft, and it is believed that the probes are at least partially "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to hisl5, located on the "back side" of the molecule relative to the active site. The fluorescently labeled protein is readily purified from the starting material by cation exchange chromatography. All the derivatives fluoresce in both the solution and the crystalline states. Fluorescence characterization has focused on determining the bound probe quantum yields, lifetimes, absorption and emission spectra, and quenching by added solutes in comparison to the free probe. No appreciable changes are found in the lifetimes of any of the probes except for cascade blue, where Tau(sub free) = 3.52 ns vrs Tau(sub bound) = 2.8 ns. Spectral shifts are found in most cases. Particularly strong quenching upon binding is found in the case of the cascade blue derivative, likely due to probe interactions with the active site cleft. While none of the asp101 bound probes are well quenched by commonly employed solutes, such as potassium and sodium iodide, acrylamide, primuline, the chloride salts of manganese, cesium, and cobalt, trifluoroacetamide, trichloroethanol, and thallium iodide, in those cases where quenching is observed the bound probe is less efficiently quenched relative to the free probe. This indicates that the bound probes are less accessible to the bulk solution, an expected finding for attachment within the active site cleft. Attempts have been made to bind other molecules to these sites, with varying success. Interestingly, all three probes contain one or more sulfonate ((Ar-S03)-) groups. We have not been successful in binding analogous probes without sulfate groups such as pyrene, or with derivatized sulfonate groups such as dansyl type probes, analogous to MANS but where the sulfonate group is derivatized, Ar-S02-N2C2H7. None of the probes is rigidly bound to the protein, i.e., they all have a probe motion superimposed on that of the protein.

  17. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of themore » dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)« less

  18. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.

  19. A Fluorescence Quenching Assay Based on Molecular Beacon Formation through a Ligase Detection Reaction for Facile and Rapid Detection of Point Mutations.

    PubMed

    Sawamura, Kensuke; Hashimoto, Masahiko

    2017-01-01

    A fluorescence quenching assay based on a ligase detection reaction was developed for facile and rapid detection of point mutations present in a mixed population of non-variant DNA. If the test DNA carried a targeted mutation, then the two allele-specific primers were ligated to form a molecular beacon resulting in the expected fluorescence quenching signatures. Using this method, we successfully detected as low as 5% mutant DNA in a mixture of wild-type DNA (t test at 99% confidence level).

  20. Highly efficient exciplex formation via radical ion pair recombination in X-irradiated alkane solutions for luminophores with short fluorescence lifetimes.

    PubMed

    Melnikov, Anatoly R; Kalneus, Evgeny V; Korolev, Valeri V; Dranov, Igor G; Kruppa, Alexander I; Stass, Dmitri V

    2014-08-01

    X-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively. The exciplex emission band is sensitive to an external magnetic field and exerts a very large observed magnetic field effect of up to 20%, the maximum possible value under the conditions of the described experiment.

  1. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    NASA Astrophysics Data System (ADS)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  2. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-01

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01136e

  3. O2(a1Δ) Quenching In The O/O2/O3 System

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-10-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ)+O+M→2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2a1Δ-X3∑ transition. Fast quenching of O2(a1Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  4. Some fluorescence properties of dimethylaminochalcone and its novel cyclic analogues

    NASA Astrophysics Data System (ADS)

    Tomečková, Vladimíra; Poškrobová, Martina; Štefanišinová, Miroslava; Perjési, Pál

    2009-12-01

    This paper demonstrates the basic character (polarity, solubility, colour, absorption and fluorescence quantum yield) of synthetic dimethylaminochalcone ( 1) and its cyclic analogues measured in toluene, chloroform, dimethylsulfoxide and ethanol, which have been studied by absorption and fluorescence spectroscopy. The biologically active dye 4'-dimethylaminochalcone ( 1b) and its less flexible analogues 4-dimethylaminoindanone ( 2b), -tetralone ( 3b), and -benzosuberone ( 4b) are lipophilic molecules that displayed the best solubility in toluene and chloroform. The highest fluorescence and quantum yields of compounds 1 and 2 have been obtained in DMSO and chloroform. Quenching effect of fluorescence compounds ( 1- 4) has been studied in the mixture of the most polar organic solvents DMSO and water. In the presence of water, fluorescence of compound 1 has been quenched the best from all studied chalcones and emission maxima of molecules 1- 4 have been shifted to the longer wavelengths. Quenching effect of fluorescence by water was in order 1 > 2 > 3 > 4.

  5. Fluorescence self-quenching assay for the detection of target collagen sequences using a short probe peptide.

    PubMed

    Nian, Linge; Hu, Yue; Fu, Caihong; Song, Chen; Wang, Jie; Xiao, Jianxi

    2018-01-01

    The development of novel assays to detect collagen fragments is of utmost importance for diagnostic, prognostic and therapeutic decisions in various collagen-related diseases, and one essential question is to discover probe peptides that can specifically recognize target collagen sequences. Herein we have developed the fluorescence self-quenching assay as a convenient tool to screen the capability of a series of fluorescent probe peptides of variable lengths to bind with target collagen peptides. We have revealed that the targeting ability of probe peptides is length-dependent, and have discovered a relatively short probe peptide FAM-G(POG) 8 capable to identify the target peptide. We have further demonstrated that fluorescence self-quenching assay together with this short probe peptide can be applied to specifically detect the desired collagen fragment in complex biological media. Fluorescence self-quenching assay provides a powerful new tool to discover effective peptides for the recognition of collagen biomarkers, and it may have great potential to identify probe peptides for various protein biomarkers involved in pathological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These considerations suggest that the so called “lossy surface waves” which quench fluorescence are due to induced electron oscillations which cannot radiate to the far-field because wavevector matching is not possible. We suggest that the energy from the fluorophores thought to be lost by lossy surface waves can be recovered as emission by adjustment of the sample to allow wavevector matching. The RP model provides a rational approach for designing fluorophore–metal configurations with the desired emissive properties and a basis for nanophotonic fluorophore technology. PMID:15691498

  7. P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis.

    PubMed

    Schlodder, Eberhard; Cetin, Marianne; Byrdin, Martin; Terekhova, Irina V; Karapetyan, Navassard V

    2005-01-07

    The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.

  8. The interaction of the excited states of safranine-O with low generation carboxyl terminated PAMAM dendrimers in an aqueous medium.

    PubMed

    Militello, M Paula; Altamirano, Marcela S; Bertolotti, Sonia G; Previtali, Carlos M

    2018-05-16

    The interaction of the singlet and triplet excited states of the synthetic dye safranine-O with carboxyl-terminated poly(amidoamine) (PAMAM) dendrimers was investigated in a buffer solution at pH 8. Low half-generation PAMAM dendrimers (G -0.5; G +0.5: G 1.5) were employed. The UV-vis absorption spectrum of the dye presents only a very small red shift in the presence of dendrimers. Fluorescence quenching was detected and it was interpreted by a static mechanism in terms of the association of the dye with the dendrimer. Laser flash photolysis experiments were carried out and transient absorption spectra of the triplet and radicals were obtained. The triplet state is quenched by the dendrimers with rate constants well below the diffusional limit. The quenching process was characterized as an electron transfer process and the quantum yield of radicals was estimated. It was found that radicals are formed with a high efficiency in the triplet quenching reaction.

  9. Bioanalytical Applications of Fluorenscence Quenching.

    DTIC Science & Technology

    1986-02-10

    fluorescence is observed. Thus, ’ the enzymes (in this case phosphorylase C) which can hydrolyze the lecithin , can be determined by measuring the released...encapsulated in lecithin liposomes. In this manner the fluorescence is self-quenched. When the liposomes are disrupted, the dye is released and

  10. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer

    NASA Astrophysics Data System (ADS)

    Park, Dongjin; Ahn, Kyung-Ohk; Jeong, Kyung-Chae; Choi, Yongdoo

    2016-05-01

    Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.

  11. Channeling Excitons to Emissive Defect Sites in Carbon Nanotube Semiconductors beyond the Dilute Regime.

    PubMed

    Powell, Lyndsey R; Piao, Yanmei; Ng, Allen L; Wang, YuHuang

    2018-06-07

    The exciton photoluminescence of carbon nanotube semiconductors has been intensively exploited for bioimaging, anticounterfeiting, photodetection, and quantum information science. However, at high concentrations, photoluminescence is lost to self-quenching because of the nearly complete overlap of the absorption and emissive states (∼10 meV Stokes shift). Here we show that by introducing sparse fluorescent quantum defects via covalent chemistry, self-quenching can be efficiently bypassed by means of the new emission route. The defect photoluminescence is significantly red-shifted by 190 meV for p-nitroaryl tailored (6,5)-single-walled carbon nanotubes (SWCNTs) from the native emission of the nanotube. Notably, the defect photoluminescence is more than 34 times brighter than the native photoluminescence of unfunctionalized SWCNTs in the most concentrated nanotube solution tested (2.7 × 10 14 nanotubes/mL). Moreover, we show that defect photoluminescence is more resistant to self-quenching than the native state in a dense film, which is the upper limit of concentration. Our findings open opportunities to harness nanotube excitons in highly concentrated systems for applications where photoluminescence brightness and light-collecting efficiency are mutually important.

  12. An Iodine Fluorescence Quenching Clock Reaction

    ERIC Educational Resources Information Center

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  13. Does Cu(acac)2 Quench Benzene Fluorescence? A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Marciniak, Bronislaw

    1986-01-01

    Describes a laboratory experiment in which benzene fluorescence is quenched by bis(acetylacetonato) copper(II). Discusses how this experiment can demonstrate a special technique used in the field of photochemistry. Provides an outline of the experimental procedure and discusses its results. (TW)

  14. High-speed fluorescent thermal imaging of quench propagation in high temperature superconductor tapes

    NASA Astrophysics Data System (ADS)

    Gyuráki, Roland; Sirois, Frédéric; Grilli, Francesco

    2018-07-01

    Fluorescent microthermographic imaging, a method using rare-earth fluorescent coatings with temperature dependent light emission, was used for quench investigation in high temperature superconductors (HTS). A fluorophore was embedded in a polymer matrix and used as a coating on top of an HTS tape, while being excited with UV light and recorded with a high-speed camera. Simultaneously, the tape was pulsed with high amplitude, short duration DC current, and brought to quench with the help of a localised defect. The Joule heating during a quench influences the fluorescent light intensity emitted from the coating, and by recording the local variations in this intensity over time, the heating of the tape can be visualised and the developed temperatures can be calculated. In this paper, the fluorophore europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] (EuTFC) provided sufficient temperature sensitivity and a usable temperature range from 77-260 K. With the help of 2500 image captures per second, the normal zone development was imaged in a 20 μm copper stabilised HTS tape held in a liquid nitrogen bath, and using a calibration curve, the temperatures reached during the quench have been calculated.

  15. Probing the mechanism of interaction of metoprolol succinate with human serum albumin by spectroscopic and molecular docking analysis.

    PubMed

    Pawar, Suma K; Jaldappagari, Seetharamappa

    2017-09-01

    In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Diketo modification of curcumin affects its interaction with human serum albumin.

    PubMed

    Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K

    2018-06-15

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Diketo modification of curcumin affects its interaction with human serum albumin

    NASA Astrophysics Data System (ADS)

    Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.

    2018-06-01

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.

  18. Changes in fluorescent emission of cationic fluorophores in the presence of n-alkanes and alcohols in different polarity solvents

    NASA Astrophysics Data System (ADS)

    Delgado-Camón, Arantzazu; Garriga, Rosa; Mateos, Elena; Cebolla, Vicente L.; Galbán, Javier; Membrado, Luis; Marcos, Susana de; Gálvez, Eva M.

    2011-01-01

    Berberine and coralyne experience either fluorescence enhancement or quenching when long hydrocarbon chain compounds (e.g., n-alkanes or alcohols) are added to their solutions, depending on solvent polarity. In polar solvents, as methanol or acetonitrile, the added compounds provide an apolar microenvironment that hinders alternative relaxation mechanisms, favouring fluorescence emission. However, alkane additions produce quenching in dichloromethane, which has been explained taking into account ion pairing between cationic fluorophore and counterion. The strong quenching measured after alcohol additions in dichloromethane suggests reversed micelle formation. Procedures and results described here may find practical applications in the development of analytical methods.

  19. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA?

    NASA Astrophysics Data System (ADS)

    Wei, Xin Lin; Xiao, Jian Bo; Wang, Yuanfeng; Bai, Yalong

    2010-01-01

    There are several models by means of quenching fluorescence of BSA to determine the binding parameters. The binding parameters obtained from different models are quite different from each other. Which model is suitable to study the interaction between trans-resveratrol and BSA? Herein, twelve models based fluorescence quenching of BSA were compared. The number of binding sites increasing with increased binding constant for similar compounds binding to BSA maybe one approach to resolve this question. For example, here eleven flavonoids were tested to illustrate that the double logarithm regression curve is suitable to study binding polyphenols to BSA.

  20. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    PubMed

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  1. Interpenetrated Binary Supramolecular Nanofibers for Sensitive Fluorescence Detection of Six Classes of Explosives.

    PubMed

    Xiong, Wei; Zhu, Qijian; Gong, Yanjun; Wang, Chen; Che, Yanke; Zhao, Jincai

    2018-04-03

    In this work, we develop a sequential self-assembly approach to fabricate interpenetrated binary supramolecular nanofibers consisting of carbazole oligomer 1-cobalt(II) (1-Co 2+ ) coordination nanofibers and oligomer 2 nanofibers for the sensitive detection of six classes of explosives. When exposed to peroxide explosives (e.g., H 2 O 2 ), Co 2+ in 1-Co 2+ coordination nanofibers can be reduced to Co + that can transfer an electron to the excited 2 nanofibers and thereby quench their fluorescence. On the other hand, when exposed to the other five classes of explosives, the excited 2 nanofibers can transfer an electron to explosives to quench their fluorescence. On the basis of the distinct fluorescence quenching mechanisms, six classes of explosives can be sensitively detected. Herein, we provide a new strategy to design broad-band fluorescence sensors for a rich identification of threats.

  2. Interaction of Chelerythrine with Keyhole Limpet Hemocyanin: a Fluorescence Spectroscopy and Molecular Docking Study

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Long, R. Q.; Wang, Y. H.; Chen, C. L.

    2018-05-01

    The quenching mechanism between chelerythrine (CHE) and keyhole limpet hemocyanin (KLH) was investigated using fluorescence spectroscopy and molecular docking. The experiments were conducted at three different temperatures (293, 298, and 303 K). The results revealed that the intrinsic fluorescence of KLH was strongly quenched by CHE through a static quenching mechanism. The thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction were calculated, indicating that the interaction between CHE and KLH was spontaneous and that van der Waals forces and hydrogen bond formation played major roles in the binding process. The intrinsic fluorescence of the tyrosine and tryptophan residues in KLH was studied by synchronous fluorescence, which suggested that CHE changed the conformation of KLH. Finally, molecular docking was used to obtain detailed information on the binding sites and binding affinities between CHE and KLH.

  3. Blending DNA binding dyes to improve detection in real-time PCR.

    PubMed

    Jansson, Linda; Koliana, Marianne; Sidstedt, Maja; Hedman, Johannes

    2017-03-01

    The success of real-time PCR (qPCR) analysis is partly limited by the presence of inhibitory compounds in the nucleic acid samples. For example, humic acid (HA) from soil and aqueous sediment interferes with amplification and also quenches the fluorescence of double-stranded (ds) DNA binding dyes, thus hindering amplicon detection. We aimed to counteract the HA fluorescence quenching effect by blending complementary dsDNA binding dyes, thereby elevating the dye saturation levels and increasing the fluorescence signals. A blend of the four dyes EvaGreen, ResoLight, SYBR Green and SYTO9 gave significantly higher fluorescence intensities in the presence and absence of HA, compared with the dyes applied separately and two-dye blends. We propose blending of dyes as a generally applicable means for elevating qPCR fluorescence signals and thus enabling detection in the presence of quenching substances.

  4. CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form

    NASA Astrophysics Data System (ADS)

    Vaishnavi, E.; Renganathan, R.

    2013-11-01

    We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14 μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15 μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%.

  5. Determination of trace aluminum by fluorescence quenching method based on catalysis of potassium chlorate oxidizing alizarin red

    NASA Astrophysics Data System (ADS)

    Shao-Qin, Lin; Xuan, Lin; Shi-Rong, Hu; Li-Qing, Zeng; Yan, Wang; Li, Chen; Jia-Ming, Liu; Long-Di, Li

    2005-11-01

    A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 °C for 30 min and Al 3+ can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.040-4.00 ng l -1 with a detection limit of 5.3 pg l -1. The regression equation can be expressed as Δ If = 8.731 + 21.73 c (ng l -1), with the correlation coefficient r = 0.9992 ( n = 6). This sensitive, rapid and accurate method has been applied to the determination of trace aluminum(III) in human hair and tea samples successfully. What is more, the mechanism of catalyzing potassium chlorate oxidizing alizarin red by the fluorescence quenching method is also discussed.

  6. Determination of trace aluminum by fluorescence quenching method based on catalysis of potassium chlorate oxidizing alizarin red.

    PubMed

    Shao-Qin, Lin; Xuan, Lin; Shi-Rong, Hu; Li-Qing, Zeng; Yan, Wang; Li, Chen; Jia-Ming, Liu; Long-Di, Li

    2005-11-01

    A new method for the determination of trace aluminum has been proposed. It is based on the fact that alizarin red can emit strong and stable fluorescence at 80 degrees C for 30 min and Al(3+) can effectively catalyze potassium chlorate oxidizing alizarin red to form non-fluorescence complex which cause the fluorescence quenching. The linear dynamic range of this method is 0.040-4.00 ngl(-1) with a detection limit of 5.3 pgl(-1). The regression equation can be expressed as DeltaI(f)=8.731+21.73c(Al(3+)) (ngl(-1)), with the correlation coefficient r=0.9992 (n=6). This sensitive, rapid and accurate method has been applied to the determination of trace aluminum(III) in human hair and tea samples successfully. What is more, the mechanism of catalyzing potassium chlorate oxidizing alizarin red by the fluorescence quenching method is also discussed.

  7. CdTe quantum dot as a fluorescence probe for vitamin B(12) in dosage form.

    PubMed

    Vaishnavi, E; Renganathan, R

    2013-11-01

    We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Quenching of the fluorescence of NO2

    NASA Technical Reports Server (NTRS)

    Braslavsky, S.; Heicklen, J.

    1972-01-01

    The fluorescence yield of NO2 was monitored at 25 C with incident wavelengths of 4047, 4358, and 4800A at fluorescence wavelengths of 4860, 5577, and 6300A. The NO2 pressure was varied between 0.004 and 0.080 torr. Measurements were taken both in the absence of foreign gases and in the presence of up to 30 torr. He, N2, and O2 at each NO2 pressure. In the absence of foreign gases, the self quenching follows a Stern-Volmer quenching mechanism, but foreign-gas quenching shows marked deviations from this mechanism. Both from lifetime and kinetic considerations, it is argued that the electronic state formed by absorption of the radiation cannot be the emitting state. Emission occurs from several vibrational levels of the emitting state, the various vibrational levels being formed by collisional cascade reactions. The appropriate quenching rate constant ratios were measured and tabulated. Even the two electronic state mechanism is insufficient to explain all the observations.

  9. Quantitative Imaging in Laboratory: Fast Kinetics and Fluorescence Quenching

    ERIC Educational Resources Information Center

    Cumberbatch, Tanya; Hanley, Quentin S.

    2007-01-01

    The process of quantitative imaging, which is very commonly used in laboratory, is shown to be very useful for studying the fast kinetics and fluorescence quenching of many experiments. The imaging technique is extremely cheap and hence can be used in many absorption and luminescence experiments.

  10. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives.

    PubMed

    Gao, Meng; Tang, Ben Zhong

    2017-10-27

    Fluorescent sensors with advantages of excellent sensitivity, rapid response, and easy operation are emerging as powerful tools in environmental monitoring, biological research, and disease diagnosis. However, conventional fluorophores featured with π-planar structures usually suffer from serious self-quenching in the aggregated state, poor photostability, and small Stokes' shift. In contrast to conventional aggregation-caused quenching (ACQ) fluorophores, the newly emerged aggregation-induced emission fluorogens (AIEgens) are featured with high emission efficiency in the aggregated state, which provide unique opportunities for various sensing applications with advantages of high signal-to-noise ratio, strong photostability, and large Stokes' shift. In this review, we will first briefly give an introduction of the AIE concept and the turn-on sensing principles. Then, we will discuss the recent examples of AIE sensors according to types of analytes. Finally, we will give a perspective on the future developments of AIE sensors. We hope this review will inspire more endeavors to devote to this emerging world.

  11. The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings.

    PubMed

    Zhou, Jian; Jiang, Zeping; Ma, Jie; Yang, Lifeng; Wei, Yuan

    2017-04-01

    In this experiment, the effects of different lead (Pb) concentrations (0, 200, 600, 1000, 1400 mg kg -1 ) on photosynthesis and chlorophyll fluorescence in Robinia pseudoacacia seedlings were examined. As Pb concentration increased, chlorophyll a, chlorophyll b, total chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance (g s ), and mesophyll intercellular carbon dioxide concentration were gradually reduced. Maximal photochemical efficiency, photochemical quenching, and quantum yield also decreased. However, the initial fluorescence and nonphotochemical quenching gradually increased. Chloroplasts swelled owing to local plasmolysis and lost most of their starch content, and their thylakoid lamellae gradually became disordered and loosely packed. When the chloroplast envelope was lost under high Pb stress (≥1000 mg kg -1 ), lipid globules were released into the surrounding mesophyll cell. Multiple regression analysis showed that g s and inactivity of the PSII reaction center had the greatest effect on photosynthetic function, whereas inhibition of electron transport had minimal effects on black locust seedlings under Pb stress.

  12. Direct detection of RDX vapor using a conjugated polymer network.

    PubMed

    Gopalakrishnan, Deepti; Dichtel, William R

    2013-06-05

    1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) is a principal component of plastic explosives used in acts of terrorism and within improvised explosive devices, among others. Approaches to detect RDX compatible with remote, "stand-off" sampling that do not require preconcentration strategies, such as the swabs commonly employed in airports, will benefit military and civilian security. Such detection remains a significant challenge because RDX is 10(3) less volatile than 1,3,5-trinitrotoluene (TNT), corresponding to a parts-per-trillion vapor pressure under ambient conditions. Therefore, while fluorescence quenching of conjugated polymers is sufficiently sensitive to detect TNT vapors, RDX vapor detection is undemonstrated. Here we report a cross-linked phenylene vinylene polymer network whose fluorescence is quenched by trace amounts of RDX introduced from solution or the vapor phase. Fluorescence quenching is reduced, but remains significant, when partially degraded RDX is employed, suggesting that the polymer responds to RDX itself. The polymer network also responds to TNT and PETN similarly introduced from solution or the vapor phase. Pure solvents, volatile amines, and the outgassed vapors from lipstick or sunscreen do not quench polymer fluorescence. The established success of TNT sensors based on fluorescence quenching makes this a material of interest for real-world explosive sensors and will motivate further interest in cross-linked polymers and framework materials for sensing applications.

  13. Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane.

    PubMed

    Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G

    2010-01-01

    A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.

  14. [Study of the interaction mechanism between brodifacoum and DNA by spectroscopy].

    PubMed

    Duan, Yun-qing; Min, Shun-geng

    2009-04-01

    The interaction between brodifacoum (3-[3-(4'-bromophenyl-4) 1,2,3,4-tetralin-10]-4-hydroxyl-coumarin) (BDF), an anticoagulant rodenticide, and calf thymus DNA (ct-DNA) was studied by UV spectrum and fluorescence spectrum. The results were summarized as follows: There was a hypochromic effect of low concentration ct-DNA on the UV spectra. The fluorescence quenching studies showed a regular decrease in the fluorescence intensity after addition of ct-DNA by the static quenching mode with a quenching constant (Ksv) of 1.21 x 10(4) L x mol(-1) at 27 degrees C. The BDF possibly bonded to ct-DNA mainly via Van der Waals forces by the corresponding thermodynamics parameter. KI quenching experiment found that there was not obvious protection of ct-DNA to BDF. The fluorescence intensity of BDF/ct-DNA system changed with the variation in ionic strength Quenching of ct-DNA on the fluorescence of BDF/beta-CD inclusion complex was reduced in contrast with the free BDF, which showed that beta-CD could provide BDF with protection. So the comprehensive interaction mode of BDF with ct-DNA may be the groove binding by the above results. It was indicated that there had been static-electro interaction between BDF and ct-DNA at the same time. The conjunct action of Van der Waals forces and electrostatic attraction favorably provide BDF bonding interaction in the groove of ct-DNA.

  15. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems.

    PubMed

    Ware, Maxwell A; Giovagnetti, Vasco; Belgio, Erica; Ruban, Alexander V

    2015-11-01

    Plants with varying levels of PsbS protein were grown on lincomycin. Enhanced levels of non-photochemical fluorescence quenching (NPQ) in over-expressers of the protein have been observed. This was accompanied by increased amplitude of the irreversible NPQ component, qI, previously considered to reflect mainly photoinhibition of PSII reaction centres (RCII). However, since RCIIs were largely absent the observed qI is likely to originate from the LHCII antenna. In chloroplasts of over-expressers of PsbS grown on lincomycin an abnormally large NPQ (∼7) was characterised by a 0.34 ns average chlorophyll fluorescence lifetime. Yet the lifetime in the Fm state was similar to that of wild-type plants. 77K fluorescence emission spectra revealed a specific 700 nm peak typical of LHCII aggregates as well as quenching of the PSI fluorescence at 730 nm. The aggregated state manifested itself as a clear change in the distance between LHCII complexes detected by freeze-fracture electron microscopy. Grana thylakoids in the quenched state revealed 3 times more aggregated LHCII particles compared to the dark-adapted state. Overall, the results directly demonstrate the importance of LHCII aggregation in the NPQ mechanism and show that the PSII supercomplex structure plays no role in formation of the observed quenching. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples

    PubMed Central

    2011-01-01

    Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640

  17. Mechanism Underlying the Nucleobase-Distinguishing Ability of Benzopyridopyrimidine (BPP).

    PubMed

    Kochman, Michał A; Bil, Andrzej; Miller, R J Dwayne

    2017-11-02

    Benzopyridopyrimidine (BPP) is a fluorescent nucleobase analogue capable of forming base pairs with adenine (A) and guanine (G) at different sites. When incorporated into oligodeoxynucleotides, it is capable of differentiating between the two purine nucleobases by virtue of the fact that its fluorescence is largely quenched when it is base-paired to guanine, whereas base-pairing to adenine causes only a slight reduction of the fluorescence quantum yield. In the present article, the photophysics of BPP is investigated through computer simulations. BPP is found to be a good charge acceptor, as demonstrated by its positive and appreciably large electron affinity. The selective quenching process is attributed to charge transfer (CT) from the purine nucleobase, which is predicted to be efficient in the BPP-G base pair, but essentially inoperative in the BPP-A base pair. The CT process owes its high selectivity to a combination of two factors: the ionization potential of guanine is lower than that of adenine, and less obviously, the site occupied by guanine enables a greater stabilization of the CT state through electrostatic interactions than the one occupied by adenine. The case of BPP illustrates that molecular recognition via hydrogen bonding can enhance the selectivity of photoinduced CT processes.

  18. The interaction of C.I. acid red 27 with human hemoglobin in solution.

    PubMed

    Wang, Yan-Qing; Zhang, Hong-Mei; Tang, Bo-Ping

    2010-08-02

    The nature of the interaction between human hemoglobin and C.I. acid red 27 was investigated systematically by ultraviolet-vis absorbance, circular dichroism, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques at pH 7.40. The quenching mechanism, binding constants, and the number of binding sites were determined by the quenching of human hemoglobin fluorescence in presence of C.I. acid red 27. The results showed that the nature of the quenching was of static type and the process of binding acid red 27 on human hemoglobin was a spontaneous molecular interaction procedure. The electrostatic and hydrophobic interactions played a major role in stabilizing the complex; The distance r between donor and acceptor was obtained to be 4.40 nm according to Förster's theory; The effect of acid red 27 on the conformation of human hemoglobin was analyzed using synchronous fluorescence, circular dichroism and three-dimensional fluorescence spectra. 2010 Elsevier B.V. All rights reserved.

  19. A study of the interaction between malachite green and lysozyme by steady-state fluorescence.

    PubMed

    Ding, Fei; Liu, Wei; Liu, Feng; Li, Zhi-Yuan; Sun, Ying

    2009-09-01

    The interaction of a N-methylated diaminotriphenylmethane dye, malachite green, with lysozyme was investigated by fluorescence spectroscopic techniques under physiological conditions. The binding parameters have been evaluated by fluorescence quenching methods. The results revealed that malachite green caused the fluorescence quenching of lysozyme through a static quenching procedure. The thermodynamic parameters like DeltaH and DeltaS were calculated to be -15.33 kJ mol(-1) and 19.47 J mol(-1) K(-1) according to van't Hoff equation, respectively, which proves main interaction between malachite green and lysozyme is hydrophobic forces and hydrogen bond contact. The distance r between donor (lysozyme) and acceptor (malachite green) was obtained to be 3.82 nm according to Frster's theory. The results of synchronous fluorescence, UV/vis and three-dimensional fluorescence spectra showed that binding of malachite green with lysozyme can induce conformational changes in lysozyme. In addition, the effects of common ions on the constants of lysozyme-malachite green complex were also discussed.

  20. A universal aptameric biosensor: Multiplexed detection of small analytes via aggregated perylene-based broad-spectrum quencher.

    PubMed

    Hu, Rong; Zhang, Xi; Xu, Qiang; Lu, Dan-Qing; Yang, Yun-Hui; Xu, Quan-Qing; Ruan, Qiong; Mo, Liu-Ting; Zhang, Xiao-Bing

    2017-06-15

    A universal aptameric system based on the taking advantage of double-stranded DNA/perylene diimide (dsDNA/PDI) as the signal probe was developed for multiplexed detection of small molecules. Aptamers are single-stranded DNA or RNA oligonucleotides which are selected in vitro by a process known as systematic evolution of ligands by exponential enrichment. In this work, we synthesized a new kind of PDI and reported this aggregated PDI could quench the double-stranded DNA (dsDNA)-labeled fluorophores with a high quenching efficiency. The quenching efficiencies on the fluorescence of FAM, TAMRA and Cy5 could reach to 98.3%±0.9%, 97.2%±0.6% and 98.1%±1.1%, respectively. This broad-spectrum quencher was then adopted to construct a multicolor biosensor via a label-free approach. A structure-switching-triggered enzymatic recycling amplification was employed for signal amplification. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity towards small analytes. For other targets, changing the corresponding aptamer can achieve the goal. The quencher did not interfere with the catalytic activity of nuclease. The biosensor could be manipulated with similar sensitivity no matter in pre-addition or post-addition manner. Moreover, simultaneous and multiplexed analysis of several small molecules in homogeneous solution was achieved, demonstrating its potential application in the rapid screening of multiple biotargets. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection.

    PubMed

    Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin

    2018-02-06

    Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.

  2. Spectroscopic investigation of the interaction of water-soluble azocalix[4]arenes with bovine serum albumin.

    PubMed

    Fan, Ping; Wan, Lu; Shang, Yunshan; Wang, Jun; Liu, Yulong; Sun, Xiaoyu; Chen, Chen

    2015-02-01

    In this work, three hydrosoluble azocalix[4]arene derivatives, 5-(o-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (o-MAC-Calix), 5-(m-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (m-MAC-Calix) and 5-(p-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (p-MAC-Calix) were synthesized. Their structures were characterized by infrared spectrum (IR), nuclear magnetic resonance spectrum (1H NMR and 13C NMR) and mass spectrum (MS). The interactions between these compounds and bovine serum albumin (BSA) were studied by fluorescence spectroscopy, UV-vis spectrophotometry and circular dichroic spectroscopy. According to experimental results, three azocalix[4]arene derivatives can efficiently bind to BSA molecules and the o-MAC-Calix displays more efficient interactions with BSA molecules than m-MAC-Calix and p-MAC-Calix. Molecular docking showed that the o-MAC-Calix was embedded in the hydrophobic cavity of helical structure of BSA molecular and the tryptophan (Trp) residue of BSA molecular had strong interaction with o-MAC-Calix. The fluorescence quenching of BSA caused by azocalix[4]arene derivatives is attributed to the static quenching process. In addition, the synchronous fluorescence spectroscopy indicates that these azocalix[4]arene derivatives are more accessible to Trp residues of BSA molecules than the tyrosine (Tyr) residues. The circular dichroic spectroscopy further verified the binding of azocalix[4]arene derivatives and BSA. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Kinetics of end-to-end collision in short single-stranded nucleic acids.

    PubMed

    Wang, Xiaojuan; Nau, Werner M

    2004-01-28

    A novel fluorescence-based method, which entails contact quenching of the long-lived fluorescent state of 2,3-diazabicyclo[2.2.2]-oct-2-ene (DBO), was employed to measure the kinetics of end-to-end collision in short single-stranded oligodeoxyribonucleotides of the type 5'-DBO-(X)n-dG with X = dA, dC, dT, or dU and n = 2 or 4. The fluorophore was covalently attached to the 5' end and dG was introduced as an efficient intrinsic quencher at the 3' terminus. The end-to-end collision rates, which can be directly related to the efficiency of intramolecular fluorescence quenching, ranged from 0.1 to 9.0 x 10(6) s(-1). They were strongly dependent on the strand length, the base sequence, as well as the temperature. Oligonucleotides containing dA in the backbone displayed much slower collision rates and significantly higher positive activation energies than strands composed of pyrimidine bases, suggesting a higher intrinsic rigidity of oligoadenylate. Comparison of the measured collision rates in short single-stranded oligodeoxyribonucleotides with the previously reported kinetics of hairpin formation indicates that the intramolecular collision is significantly faster than the nucleation step of hairpin closing. This is consistent with the configurational diffusion model suggested by Ansari et al. (Ansari, A.; Kuznetsov, S. V.; Shen, Y. Proc.Natl. Acad. Sci. USA 2001, 98, 7771-7776), in which the formation of misfolded loops is thought to slow hairpin formation.

  4. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes

    PubMed Central

    Ren, Xiaomei; El-Sagheer, Afaf H.; Brown, Tom

    2016-01-01

    A sterically undemanding azide analogue of dTTP (AHP dUTP) with an alkyl chain and ethynyl attachment to the nucleobase was designed and incorporated into DNA by primer extension, reverse transcription and polymerase chain reaction (PCR). An azide-modified 523 bp PCR amplicon with all 335 thymidines replaced by AHP dU was shown to be a perfect copy of the template from which it was amplified. Replacement of thymidine with AHP dU increases duplex stability, accounting in part for the high incorporation efficiency of the azide-modified triphosphate. Single-stranded azide-labelled DNA was conveniently prepared from PCR products by λ-exonuclease digestion and streptavidin magnetic bead isolation. Efficient fluorescent labelling of single and double-stranded DNA was carried out using dyes functionalized with bicyclo[6.1.0]non-4-yne (BCN) via the strain-promoted alkyne-azide cycloaddition (SPAAC) reaction. This revealed that the degree of labelling must be carefully controlled to achieve optimum fluorescence and avoid fluorescence quenching. Dual-coloured probes were obtained in a single tube fluorescent labelling reaction; and varying the ratios of the two dyes provides a simple method to prepare DNA probes with unique fluorescent signatures. AHP dUTP is a versatile clickable nucleotide with potentially wide applications in biology and nanotechnology including single molecule studies and synthesis of modified aptamer libraries via SELEX. PMID:26819406

  5. Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance

    NASA Astrophysics Data System (ADS)

    Li, Shihui; Li, Daojin

    2011-11-01

    The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC ( CBZC/ CLys < 9) and a combined quenching process at higher concentration of BZC ( CBZC/ CLys > 9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn 2+ on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied.

  6. Unusual Fluorescent Responses of Morpholine-functionalized Fluorescent Probes to pH via Manipulation of BODIPY’s HOMO and LUMO Energy Orbitals for Intracellular pH Detection

    PubMed Central

    Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying

    2016-01-01

    Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822

  7. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores.

    PubMed

    Chen, Li; Yang, Guancao; Wu, Ping; Cai, Chenxin

    2017-10-15

    This work reports a convenient and real-time assay of alkaline phosphatase (ALP) in living cells based on a fluorescence quench-recovery process at a physiological pH using the boron-doped graphene quantum dots (BGQDs) as fluorophore. The fluorescence of BGQDs is found to be effectively quenched by Ce 3+ ions because of the coordination of Ce 3+ ions with the carboxyl group of BGQDs. Upon addition of adenosine triphosphate (ATP) into the system, the quenched fluorescence can be recovered by the ALP-positive expressed cells (such as MCF-7 cells) due to the removal of Ce 3+ ions from BGQDs surface by phosphate ions, which are generated from ATP under catalytic hydrolysis of ALP that expressed in cells. The extent of fluorescence signal recovery depends on the level of ALP in cells, which establishes the basis of ALP assay in living cells. This approach can also be used for specific discrimination of the ALP expression levels in different type of cells and thus sensitive detection of those ALP-positive expressed cells (for example MCF-7 cells) at a very low abundance (10±5 cells mL -1 ). The advantages of this approach are that it has high sensitivity because of the significant suppression of the background due to the Ce 3+ ion quenching the fluorescence of BGQDs, and has the ability of avoiding false signals arising from the nonspecific adsorption of non-target proteins because it operates via a fluorescence quench-recovery process. In addition, it can be extended to other enzyme systems, such as ATP-related kinases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fluorescence quenching as an indirect detection method for nitrated explosives.

    PubMed

    Goodpaster, J V; McGuffin, V L

    2001-05-01

    A novel approach based on fluorescence quenching is presented for the analysis of nitrated explosives. Seventeen common explosives and their degradation products are shown to be potent quenchers of pyrene, having Stern-Volmer constants that generally increase with the degree of nitration. Aromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) are more effective quenchers than aliphatic or nitramine explosives. In addition, nitroaromatic explosives are found to have unique interactions with pyrene that lead to a wavelength dependence of their Stern-Volmer constants. This phenomenon allows for their differentiation from other nitrated explosives. The fluorescence quenching method is then applied to the determination of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine(HMX), 2,4,6-TNT, nitromethane, and ammonium nitrate in various commercial explosive samples. The samples are separated by capillary liquid chromatography with post-column addition of the pyrene solution and detection by laser-induced fluorescence. The indirect fluorescence quenching method shows increased sensitivity and selectivity over traditional UV-visible absorbance as well as the ability to detect a wider range of organic and inorganic nitrated compounds.

  9. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  10. A G-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples.

    PubMed

    Li, Qian; Li, Shuaihua; Chen, Xiu; Bian, Liujiao

    2017-09-01

    A basket-type G-quadruplex (GQ) fluorescent oligonucleotide (OND) probe is designed to detect iodides dependent on thymine-Hg(II)-thymine (T-Hg(II)-T) base pairs and the intrinsic fluorescence quenching capacity of GQ. In the presence of Hg(II) ions (Hg 2+ ), the two hexachloro-fluorescein-labeled ONDs form a hairpin structure and the fluorophores are dragged close to the GQ, leading to fluorescence quenching of the probe due to photoinduced electron transfer. Upon addition of iodide anions, Hg 2+ are extracted from T-Hg(II)-T complexes which attributes to the stronger binding with iodide anions, resulting in the fluorescence recovery. Through performing the fluorescence quenching and recovery processes, this probe developed a fluorescence turn-on sensor for iodide anions determination over a linear range of 20-200nmol/L with a limit of detection of 5nmol/L. The practical use of the turn-on technology was demonstrated by its application in determination of iodides in water, food, pharmaceutical products and biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bistetrazine-cyanines as double-clicking fluorogenic two-point binder or crosslinker probes.

    PubMed

    Kormos, Attila; Koehler, Christine; Fodor, Eszter; Rutkai, Zsófia; Martin, Maddison; Mező, Gábor; Lemke, Edward; Kele, Péter

    2018-04-20

    Fluorogenic probes are capable of minimizing background fluorescence of unreacted and non-specifically adsorbed reagents. The preceding years have brought substantial developments in the design and synthesis of bioorthogonally applicable fluorogenic systems mainly based on the quenching effects of azide and tetrazine moieties. The modulation power exerted by these bioorthogonal motifs typically becomes less efficient on more conjugated systems, i.e. on probes with red-shifted emission wavelength. In order to reach efficient quenching, i.e. fluorogenicity even in the red range of the spectrum, We present the synthesis, fluorogenic and conjugation characterization of bistetrazine-cyanine probes with emission maxima between 600-620 nm. The probes can bind to genetically altered proteins harboring an 11-amino acid peptide tag with two appending cyclooctyne motifs. Moreover, we also demonstrate the use of these bistetrazines as fluorogenic, covalent cross-linkers between monocyclooctynylated proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and characterization of monoisomeric 1,8,15,22-substituted (A3B and A2B2) phthalocyanines and phthalocyanine-fullerene dyads.

    PubMed

    Ranta, Jenni; Kumpulainen, Tatu; Lemmetyinen, Helge; Efimov, Alexander

    2010-08-06

    Synthesis and characterization of three phthalocyanine-fullerene (Pc-C(60)) dyads, corresponding monoisomeric phthalocyanines (Pc), and building blocks, phthalonitriles, are described. Six novel bisaryl phthalonitriles were prepared by the Suzuki-Miyaura coupling reaction from trifluoromethanesulfonic acid 2,3-dicyanophenyl ester and various oxaborolanes. Two phthalonitriles were selected for the synthesis of A(3)B- and A(2)B(2)-type phthalocyanines. Phthalonitrile 4 has a bulky 3,5-di-tert-butylphenyl substituent at the alpha-phthalo position, which forces only one regioisomer to form and greatly increases the solubility of phthalocyanine. Phthalonitrile 8 has a 3-phenylpropanol side chain at the alpha-position making further modifications of the side group possible. Synthesized monoisomeric A(3)B- and A(2)B(2)-type phthalocyanines are modified by attachment of malonic residues. Finally, fullerene is covalently linked to phthalocyanine with one or two malonic bridges to produce Pc-C(60) dyads. Due to the monoisomeric structure and increased solubility of phthalocyanines, the quality of NMR spectra of the compounds is enhanced significantly, making detailed NMR analysis of the structures possible. The synthesized dyads have different orientations of phthalocyanine and fullerene, which strongly influence the electron transfer (ET) from phthalocyanine to fullerene moiety. Fluorescence quenchings of the dyads were measured in both polar and nonpolar solvents, and in all cases, the quenching was more efficient in the polar environment. As expected, most efficient fluorescence quenching was observed for dyad 20b, with two linkers and phthalocyanine and fullerene in face-to-face orientation.

  13. Functionalization of Polymers with Fluorescent and Neutron Sensitive Groups for Efficient Neutron and Gamma Detection

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Yemam, Henok; Remedes, Tyler; Stuntz, Jack; Koldemir, Unsal; Sellinger, Alan; Greife, Uwe

    2015-10-01

    This presentation will review the efforts made by an interdisciplinary development project aimed at cost-effective, thermal neutron sensitive, plastic scintillators as part of the communities efforts towards replacing 3He based detectors. Colorado School of Mines researchers with backgrounds in Physics and Chemistry have worked on the incorporation of 10B in plastics through admixture of various commercial and novel dopants developed at CSM. In addition, new fluorescent dopants have been developed for plastic scintillators in an effort towards better understanding quenching effects and scintillator response to thermal neutrons via pulse shape discrimination methods. Results on transparent samples using fluorescent spectroscopy and gamma/neutron excitation will be presented. Funded via Department of Homeland Security - Domestic Nuclear Detection Office.

  14. Modeling the Concentrations and Efficiencies for the Interacting Species of Pyropheophorbide Methyl Ester-Copper Association

    NASA Astrophysics Data System (ADS)

    Al-Omari, S.

    2013-07-01

    The interaction between pyropheophorbide methyl ester (PPME) and Cu2+ was investigated using UV-vis and fluorescence spectrscopy. Study of the binding interaction between PPME and Cu2+ could contribute to understanding of its pharmacokinetics and pharmacodynamics. Parameters of the static and dynamic fluorescence quenching of PPME-Cu2+ association were calculated at different temperatures. For binding site of 1:1 at 299 K, the static binding constant (kS), the static isosbestic concentration (CS{ iso}), the dynamic binding constant (kD), and the dynamic isosbestic concentration (CD{ iso }) are, respectively, 61 M-1, 0.0164 M, 75 M-1, and 0.0133 M. The concentrations and efficiencies of the intermediates species were modeled. Satisfactory correspondence between the experimental and calculated results was found.

  15. Emission turn-on and solubility turn-off in conjugated polymers: one- and two-photon-induced removal of fluorescence-quenching solubilizing groups.

    PubMed

    Schelkle, Korwin M; Becht, Steffy; Faraji, Shirin; Petzoldt, Martin; Müllen, Klaus; Buckup, Tiago; Dreuw, Andreas; Motzkus, Marcus; Hamburger, Manuel

    2015-01-01

    The synthesis of highly efficient two-photon uncaging groups and their potential use in functional conjugated polymers for post-polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two-photon process through a combination of exceptionally high two-photon absorption cross-sections and high reaction quantum yields. Furthermore, π-conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn-on of the fluorescence while solubility of the π-conjugated materials is drastically reduced. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.

    PubMed

    Long, Yun; Hedley, Gordon J; Ruseckas, Arvydas; Chowdhury, Mithun; Roland, Thomas; Serrano, Luis A; Cooke, Graeme; Samuel, Ifor D W

    2017-05-03

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh 2 ) 2 . Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton-exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10 -3 to 3.6 × 10 -3 cm 2 s -1 , resulting in an enhancement of the mean two-dimensional exciton diffusion length (L D = (4Dτ) 1/2 ) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions.

  17. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material

    PubMed Central

    2017-01-01

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh2)2. Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton–exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10–3 to 3.6 × 10–3 cm2 s–1, resulting in an enhancement of the mean two-dimensional exciton diffusion length (LD = (4Dτ)1/2) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions. PMID:28358189

  18. Structural Implications of Fluorescence Quenching in the Shaker K+ Channel

    PubMed Central

    Cha, Albert; Bezanilla, Francisco

    1998-01-01

    When attached to specific sites near the S4 segment of the nonconducting (W434F) Shaker potassium channel, the fluorescent probe tetramethylrhodamine maleimide undergoes voltage-dependent changes in intensity that correlate with the movement of the voltage sensor (Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Science. 271:213–216; Cha, A., and F. Bezanilla. 1997. Neuron. 19:1127–1140). The characteristics of this voltage-dependent fluorescence quenching are different in a conducting version of the channel with a different pore substitution (T449Y). Blocking the pore of the T449Y construct with either tetraethylammonium or agitoxin removes a fluorescence component that correlates with the voltage dependence but not the kinetics of ionic activation. This pore-mediated modulation of the fluorescence quenching near the S4 segment suggests that the fluorophore is affected by the state of the external pore. In addition, this modulation may reflect conformational changes associated with channel opening that are prevented by tetraethylammonium or agitoxin. Studies of pH titration, collisional quenchers, and anisotropy indicate that fluorophores attached to residues near the S4 segment are constrained by a nearby region of protein. The mechanism of fluorescence quenching near the S4 segment does not involve either reorientation of the fluorophore or a voltage-dependent excitation shift and is different from the quenching mechanism observed at a site near the S2 segment. Taken together, these results suggest that the extracellular portion of the S4 segment resides in an aqueous protein vestibule and is influenced by the state of the external pore. PMID:9758859

  19. Selective detection of Fe2+ by combination of CePO4:Tb3+ nanocrystal-H2O2 hybrid system with synchronous fluorescence scan technique.

    PubMed

    Chen, Hongqi; Ren, Jicun

    2012-04-21

    A new method for quenching kinetic discrimination of Fe(2+) and Fe(3+), and sensitive detection of trace amount of Fe(2+) was developed by using synchronous fluorescence scan technique. The principle of this assay is based on the quenching kinetic discrimination of Fe(2+) and Fe(3+) in CePO(4):Tb(3+) nanocrytals-H(2)O(2) hybrid system and the Fenton reaction between Fe(2+) and H(2)O(2). Stable, water-soluble and well-dispersible CePO(4):Tb(3+) nanocrystals were synthesized in aqueous solutions, and characterized by transmission electron microscopy (TEM) and electron diffraction spectroscopy (EDS). We found that both Fe(2+) and Fe(3+) could quench the synchronous fluorescence of CePO(4):Tb(3+) nanocrytals-H(2)O(2) system, but their quenching kinetics velocities were quite different. In the presence of Fe(3+), the synchronous fluorescent intensity was unchanged after only one minute, but in the presence of Fe(2+), the synchronous fluorescent intensity decreased slowly until 28 min later. The Fenton reaction between Fe(2+) and H(2)O(2) resulted in hydroxyl radicals which effectively quenched the synchronous fluorescence of the CePO(4):Tb(3+) nanocrystals due to the oxidation of Ce(3+) into Ce(4+) by hydroxyl radicals. Under optimum conditions, the linear range for Fe(2+) is 3 nM-2 μM, and the limit of detection is 2.0 nM. The method was used to analyze water samples.

  20. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.

    PubMed

    Zhang, Jian Rong; Yue, Yuan Yuan; Luo, Hong Qun; Li, Nian Bing

    2016-02-07

    Picric acid (PA) explosive is a hazard to public safety and health, so the sensitive and selective detection of PA is very important. In the present work, polyethyleneimine stabilized Ag nanoclusters were successfully used for the sensitive and selective quantification of PA on the basis of fluorescence quenching. The quenching efficiency of Ag nanoclusters is proportional to the concentration of PA and the logarithm of PA concentration over two different concentration ranges (1.0 nM-1 μM for the former and 0.25-20 μM for the latter), thus the proposed quantitative strategy for PA provides a wide linear range of 1.0 nM-20 μM. The detection limit based on 3σ/K is 0.1 nM. The quenching mechanism of Ag nanoclusters by PA is discussed in detail. The results indicate that the selective detection of PA over other nitroaromatics including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), p-nitrotoluene (p-NT), m-dinitrobenzene (m-DNB), and nitrobenzene (NB), is due to the electron transfer and energy transfer between PA and polyethyleneimine-capped Ag nanoclusters. In addition, the experimental data obtained for the analysis of artificial samples show that the proposed PA sensor is potentially applicable in the determination of trace PA explosive in real samples.

  1. Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation.

    PubMed

    Kashida, Hiromu; Yamaguchi, Kyohei; Hara, Yuichi; Asanuma, Hiroyuki

    2012-07-15

    In this study, we synthesized a simple but efficient quencher-free molecular beacon tethering 7-hydroxycoumarin on D-threoninol based on its pK(a) change. The pK(a) of 7-hydroxycoumarin in a single strand was determined as 8.8, whereas that intercalated in the duplex was over 10. This large pK(a) shift (more than 1.2) upon hybridization could be attributed to the anionic and hydrophobic microenvironment inside the DNA duplex. Because 7-hydroxycoumarin quenches its fluorescence upon protonation, the emission intensity of the duplex at pH 8.5 was 1/15 that of the single strand. We applied this quenching mechanism to the preparation of a quencher-free molecular beacon by introducing the dye into the middle of the stem part. In the absence of the target, the stem region formed a duplex and fluorescence was quenched. However, when the target was added, the molecular beacon opened and the dye was deprotonated. As a result, the emission intensity of the molecular beacon with the target was 10 times higher than that without the target. Accordingly, a quencher-free molecular beacon utilizing the pK(a) change was successfully developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films.

    PubMed

    Anni, M; Rella, R

    2010-02-04

    We investigated the fluorescence (FL) dependence on the environment oxygen content of poly(9,9-dioctylfluorene) (PF8) thin films. We show that the PF8 interactions with oxygen are not limited to the known irreversible photo-oxidation, resulting in the formation of Keto defects, but also reversible FL quenching is observed. This effect, which is stronger for the Keto defects than for the PF8, has been exploited for the realization of a prototype oxygen sensor based on FL quenching. The sensing sensitivity of Keto defects is comparable with the state of the art organic oxygen sensors based on phosphorescence quenching.

  3. Dynamic quenching study of 2-amino-3-bromo-1,4-naphthoquinone by titanium dioxide nano particles in solution (methanol).

    PubMed

    Pushpam, S; Kottaisamy, M; Ramakrishnan, V

    2013-10-01

    The dependence of fluorescence emission of 2-amino-3-bromo-1,4-naphthoquinone on titanium dioxide (TiO2) in methanol has been investigated. The increase in TiO2 concentration causes a decrease in the fluorescence intensity of 2-amino-3-bromo-1,4-naphthoquinone. A linear Stern-Volmer plot in this study indicates the presence of dynamic quenching. The quenching and association constants have been calculated. The quenching process is due to the electron transfer from 2-amino-3-bromo-1,4-naphthoquinone to TiO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Lifetime and linewidth of individual quantum dots interfaced with graphene.

    PubMed

    Miao, Xin; Gosztola, David J; Sumant, Anirudha V; Grebel, Haim

    2018-04-19

    We report on luminescence lifetimes and linewidths from an array of individual quantum dots (QDs) that were either interfaced with graphene surface guides or dispersed on aluminum electrodes. The observed fluorescence quenching is consistent with screening by charge carriers. Fluorescence quenching is typically mentioned as a sign that chromophores are interfacing with a conductive surface (metal or graphene); we find that the QDs interfaced with the metal film exhibit shortened lifetime and line-broadening but not necessarily fluorescence quenching as the latter may be impacted by molecular concentration, reflectivity and conductor imperfections. We also comment on angle-dependent lifetime measurements, which we postulate depend on the specifics of the local density-of-states involved.

  5. Green Synthesis of Red-Emitting Carbon Nanodots as a Novel "Turn-on" Nanothermometer in Living Cells.

    PubMed

    Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi

    2016-10-04

    Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. O2(a1Δ) quenching in O/O2/O3/CO2/He/Ar mixtures

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-02-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ))+O+M-->2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ)) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ)) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Ε transition. Fast quenching of O2(a1Δ)) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  7. On-off QD switch that memorizes past recovery from quenching by diazonium salts.

    PubMed

    Liras, Marta; González-Béjar, María; Scaiano, J C

    2010-09-07

    The understanding of the interaction of CdSe/ZnS semiconductor quantum dots (QD) with their chemical environment is fundamental, yet far from being fully understood. p-Methylphenyldiazonium tetrafluoroborate has been used to get some insight into the effect of diazonium salts on the spectroscopy of QD. Our study reveals that the surface of CdSe/ZnS quantum dots can be modified by diazonium salts (although not functionalized), showing and on-off fluorescence behaviour that memorizes past quenching recoveries. Facile modification of the surface confers protection against quenching by new molecules of diazonium salt and other known quenchers such as 4-amino-TEMPO. The reaction mechanism has been explored in detail by using different spectroscopic techniques. At the first time after addition of diazonium salt over QD the fluorescent is turned off with Stern-Volmer behaviour; the fluorescence recovers following irradiation. Subsequent additions of diazonium salts do not cause the same degree of quenching. We have noted that the third addition (following two cycles of addition and irradiation) is unable to quench the fluorescence. Monitoring the process using NMR techniques reveals the formation of p-difluoroborane toluene as a result of the irradiation of diazonium-treated QD; the treatment leads to the fluorination of the QD surface.

  8. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  9. Binding analysis for interaction of diacetylcurcumin with β-casein nanoparticles by using fluorescence spectroscopy and molecular docking calculations

    NASA Astrophysics Data System (ADS)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Fani, Najme; Keyhanfar, Mehrnaz

    2013-11-01

    The interaction of diacetylcurcumin (DAC), as a novel synthetic derivative of curcumin, with bovine β-casein (an abundant milk protein that is highly amphiphilic and self assembles into stable micellar nanoparticles in aqueous solution) was investigated using fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations. The fluorescence quenching measurements revealed the presence of a single binding site on β-casein for DAC with the binding constant value equals to (4.40 ± 0.03) × 104 M-1. Forster energy transfer measurements suggested that the distance between bound DAC and Trp143 residue is higher than the respective critical distance, hence, the static quenching is more likely responsible for fluorescence quenching other than the mechanism of non-radiative energy transfer. Our results from molecular docking calculations indicated that binding of DAC to β-casein predominantly occurred through hydrophobic contacts in the hydrophobic core of protein. Additionally, in vitro investigation of the cytotoxicity of free DAC and DAC-β-casein complex in human breast cancer cell line MCF7 revealed the higher cytotoxic effect of DAC-β-casein complex.

  10. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.

    PubMed

    Venkatramaiah, N; Kumar, Shiv; Patil, Satish

    2012-11-12

    Herein we report a novel fluoranthene-based fluorescent fluorophore 7,10-bis(4-bromophenyl)-8,9-bis[4-(hexyloxy)phenyl]fluoranthene (S(3)) and its remarkable properties in applications of explosive detection. The sensitivity towards the detection of nitroaromatics (NACs) was evaluated through fluorescence quenching in solution, vapor, and contact mode approaches. The contact mode approach using thin-layer silica chromatographic plates exhibited a femtogram (1.15 fg cm(-2)) detection limit for trinitrotoluene (TNT) and picric acid (PA), whereas the solution-phase quenching showed PA detection at the 2-20 ppb level. Fluorescence lifetime measurements revealed that the quenching is static in nature and the quenching process is fully reversible. Binding energies between model binding sites of the S(3) and analyte compounds reveal that analyte molecules enter into the cavity created by substituted phenyl rings of fluoranthene and are stabilized by strong intermolecular interactions with alkyl chains. It is anticipated that the sensor S(3) could be a promising material for the construction of portable optical devices for the detection of onsite explosive nitroaromatics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of gold nanoparticles on the fluorescence excitation spectrum of α-fetoprotein: Local environment dependent fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Li, Jian-jun; Chen, Yu; Wang, A.-qing; Zhu, Jian; Zhao, Jun-wu

    2011-01-01

    The effect of colloid gold nanoparticles (AuNPs) on the fluorescence excitation spectrum of α-fetoprotein (AFP) has been investigated experimentally. The excitation spectral peaks of AFP with low concentration from 0.01 ng ml -1 to 12 ng ml -1 increase monotonically with increasing of AFP concentration. When some gold colloids were added to the AFP solution, the excitation peak at 285 nm decreases distinctly. By comparing the excitation peak intensity of AFP solution with gold colloids and without gold colloids at different AFP concentrations, the quenching effect from gold nanoparticle was more effective at lower AFP concentration. So the range of concentration from 0.01 ng ml -1 to 0.09 ng ml -1 will be the potential range of applications because of the higher sensitivity. The physical origin based on local field effect was investigated to illuminate this local environment dependent fluorescence quenching. The changing extent of quenching with different AFP concentrations can be attributed to the nonlinear decreasing of the local field factor of gold nanoparticles as a function of environmental dielectric constant.

  12. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  13. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.

    PubMed Central

    Barenholz, Y; Cohen, T; Korenstein, R; Ottolenghi, M

    1991-01-01

    The dynamics of fluorescence quenching and the organization of a series of pyrene derivatives anchored in various depths in bilayers of phosphatidylcholine small unilamellar vesicles was studied and compared with their behavior in homogeneous solvent systems. The studies include characterization of the environmental polarity of the pyrene fluorophore based on its vibronic peaks, as well as the interaction with three collisional quenchers: the two membrane-soluble quenchers, diethylaniline and bromobenzene, and the water soluble quencher potassium iodide. The system of diethylaniline-pyrene derivatives in the membrane of phosphatidylcholine vesicles was characterized in detail. The diethylaniline partition coefficient between the lipid bilayers and the buffer is approximately 5,800. Up to a diethylaniline/phospholipid mole ratio of 1:3 the perturbation to membrane structure is minimal so that all photophysical studies were performed below this mole ratio. The quenching reaction, in all cases, was shown to take place in the lipid bilayer interior and the relative quenching efficiencies of the various probe molecules was used to provide information on the distribution of both fluorescent probes and quencher molecules in the lipid bilayer. The quenching efficiency by diethylaniline in the lipid bilayer was found to be essentially independent on the length of the methylene chain of the pyrene moiety. These findings suggest that the quenching process, being a diffusion controlled reaction, is determined by the mobility of the diethylaniline quencher (with an effective diffusion coefficient D approximately 10(-7) cm2 s-1) which appears to be homogeneously distributed throughout the lipid bilayer. The pulsed laser photolysis products of the charge-transfer quenching reaction were examined. No exciplex (excited-complex) formation was observed and the yield of the separated radical ions was shown to be tenfold smaller than in homogenous polar solutions. The decay of the radical ions is considerably faster than the corresponding process in homogenous solutions. Relatively high intersystem crossing yields are observed. The results are explained on the basis of the intrinsic properties of a lipid bilayer, primarily, its rigid spatial organization. It is suggested that such properties favor ion-pair formation over exciplex generation. They also enhance primary geminate recombination of initially formed (solvent-shared) ion pairs. Triplet states are generated via secondary geminate recombination of ion pairs in the membrane interior. The results bear on the general mechanism of electron transfer processes in biomembranes. PMID:1883931

  14. Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots.

    PubMed

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Yu, Han-Qing

    2017-12-19

    Dissolved organic matter (DOM) is ubiquitous in aqueous environments and plays a significant role in pollutant mitigation, transformation and organic geochemical circulation. DOM is also capable of forming carcinogenic byproducts in the disinfection treatment processes of drinking water. Thus, efficient methods for DOM quantification are highly desired. In this work, a novel sensor for rapid and selective detection of humic substances (HS), a key component of DOM, based on fluorescence quenching of nitrogen-doped carbon quantum dots was developed. The experimental results show that the HS detection range could be broadened to 100 mg/L with a detection limit of 0.2 mg/L. Moreover, the detection was effective within a wide pH range of 3.0 to 12.0, and the interferences of ions on the HS measurement were negligible. A good detection result for real surface water samples further validated the feasibility of the developed detection method. Furthermore, a nonradiation electron transfer mechanism for quenching the nitrogen-doped carbon-dots fluorescence by HS was elucidated. In addition, we prepared a test paper and proved its effectiveness. This work provides a new efficient method for the HS quantification than the frequently used modified Lowry method in terms of sensitivity and detection range.

  15. Selective and sensitive fluorescent sensor for Pd2+ using coumarin 460 for real-time and biological applications.

    PubMed

    Ashwin, Bosco Christin Maria Arputham; Sivaraman, Gandhi; Stalin, Thambusamy; Yuvakkumar, Rathinam; Muthu Mareeswaran, Paulpandian

    2018-06-01

    The efficient fluorescent property of coumarin 460 (C460) is utilized to sense the Pd 2+ selectively and sensitively. Fabrication of a sensor strip using commercial adhesive tape is achieved and the detection of Pd 2+ is attempted using a handy UV torch. The naked eye detection in solution state using UV chamber is also attempted. The calculated high binding constant values support the strong stable complex formation of Pd 2+ with C460. The detection limit up to 2.5 × 10 -7  M is achieved using fluorescence spectrometer, which is considerably low from the WHO's recommendation. The response of coumarin 460 with various cations also studied. The quenching is further studied by the lifetime measurements. The binding mechanism is clearly explained by the 1 H NMR titration. The sensing mechanism is established as ICT. C460 strip's Pd 2+ quenching detection is further confirmed by solid-state PL study. The in-vitro response of Pd 2+ in a living cell is also studied using fluorescent imaging studies by means of HeLa cell lines and this probe is very compatible with biological environments. It could be applicable to sense trace amounts of a Pd 2+ ion from various industries. Compared with previous reports, this one is very cheap, sensitive, selective and suitable for biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Micellar-mediated binding interaction between proflavine hemisulfate and salicylic acid: spectroscopic insights and its analytical application.

    PubMed

    Patil, Dhanshri T; Mokashi, Vidya V; Kolekar, Govind B; Patil, Shivajirao R

    2013-01-01

    The molecular interactions between salicylic acid (SA) and proflavin hemisulfate (PF) were investigated using fluorescence and UV-VIS absorption spectroscopy in an aqueous micellar environment. Changes in the absorption spectra of SA in the presence of PF indicate a ground state interaction between salicylate and proflavine hemisulfate ions to form a complex. The excitation bands of SA monitored at its emission wavelength reveal a red spectral shift of 8390.54 and 2037.75 cm(-1) when compared with absorption bands. The intensity of both excitation bands decreased in the presence of increasing amounts of PF. The absence of excitation bands of PF rules out the possibility of its direct excitation and suggests energy transfer from excited SA to PF, resulting in quenching of the SA fluorescence. The fluorescence quenching results were found to fit the well-known Stern-Volmer (S-V) relation. S-V plots at different temperatures were used to further evaluate thermodynamic parameters such as ∆G, ∆H and ΔS. The thermodynamic and kinetic data obtained from the quenching results were used to investigate the possible mechanism of binding, the nature of the binding force and the distance between SA and PF molecules. The linear relation between SA fluorescence quenching and PF concentration used to develop an analytical method for the determination of PF from Lorexane (a veterinary cream) using a fluorescence quenching method. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  18. Optical detection of λ-cyhalothrin by core-shell fluorescent molecularly imprinted polymers in Chinese spirits.

    PubMed

    Wang, Jixiang; Gao, Lin; Han, Donglai; Pan, Jianming; Qiu, Hao; Li, Hongji; Wei, Xiao; Dai, Jiangdong; Yang, Jinghai; Yao, Hui; Yan, Yongsheng

    2015-03-11

    In this study, fluorescent molecularly imprinted polymers (FMIPs), which were for the selective recognition and fluorescence detection of λ-cyhalothrin (LC), were synthesized via fluorescein 5(6)-isothiocyanate (FITC) and 3-aminopropyltriethoxysilane (APTS)/SiO2 particles. The SiO2@FITC-APTS@MIPs were characterized by Fourier transform infrared (FT-IR), UV-vis spectrophotometer (UV-vis), fluorescence spectrophotometer, thermogravimetric analysis (TGA), confocal laser scanning microscope (CLSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized SiO2@FITC-APTS@MIPs with an imprinted polymer film (thickness was about 100 nm) was demonstrated to be spherically shaped and had good monodispersity, high fluorescence intensity, and good selective recognition. Using fluorescence quenching as the detection tool, the largest fluorescence quenching efficiency (F0/F - 1) of SiO2@FITC-APTS@MIPs is close to 2.5 when the concentration of the LC is 1.0 μM L(-1). In addition, a linear relationship (F0/F - 1= 0.0162C + 0.0272) could be obtained covering a wide concentration range of 0-60 nM L(-1) with a correlation coefficient of 0.9968 described by the Stern-Volmer equation. Moreover, the limit of detection (LOD) of the SiO2@FITC-APTS@MIPs was 9.17 nM L(-1). The experiment results of practical detection revealed that the SiO2@FITC-APTS@MIPs as an attractive recognition element was satisfactory for the determination of LC in Chinese spirits. Therefore, this study demonstrated the potential of SiO2@FITC-APTS@MIPs for the recognition and detection of LC in food.

  19. A convenient method for determination of quizalofop-p-ethyl based on the fluorescence quenching of eosin Y in the presence of Pd(II)

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Zhao, Yanmei; Tan, Xuanping; Zeng, Xiaoqing; Guo, Yuan; Yang, Jidong

    2017-03-01

    A convenient fluorescence quenching method for determination of Quizalofop-p-ethyl(Qpe) was proposed in this paper. Eosin Y(EY) is a red dye with strong green fluorescence (λex/λem = 519/540 nm). The interaction between EY, Pd(II) and Qpe was investigated by fluorescence spectroscopy, resonance Rayleigh scattering(RRS) and UV-Vis absorption. Based on changes in spectrum, Pd(II) associated with Qpe giving a positively charged chelate firstly, then reacted with EY through electrostatic and hydrophobic interaction formed ternary chelate could be demonstrated. Under optimum conditions, the fluorescence intensity of EY could be quenched by Qpe in the presence of Pd(II) and the RRS intensity had a remarkable enhancement, which was directly proportional to the Qpe concentration within a certain concentration range, respectively. Based on the fluorescence quenching of EY-Pd(II) system by Qpe, a novel, convenient and specific method for Qpe determination was developed. To our knowledge, this is the first fluorescence method for determination of Qpe was reported. The detection limit for Qpe was 20.3 ng/mL and the quantitative determination range was 0.04-1.0 μg/mL. The method was highly sensitive and had larger detection range compared to other methods. The influence of coexisting substances was investigated with good anti-interference ability. The new analytical method has been applied to determine of Qpe in real samples with satisfactory results.

  20. Intrinsic Fluorescence as a Spectral Probe for Protein Denaturation Studies in the Presence of Honey

    NASA Astrophysics Data System (ADS)

    Wong, Y. H.; Kadir, H. A.; Tayyab, S.

    2015-11-01

    Honey was found to quench the intrinsic fluorescence of bovine serum albumin (BSA) in a concentration dependent manner, showing complete quenching in the presence of 5% (w/v) honey. Increasing the protein concentration up to 5.0 μM did not lead to the recovery of the protein fluorescence. Urea denaturation of BSA, which otherwise shows a two-step, three-state transition, using intrinsic fluorescence of the protein as the probe failed to produce any result in the presence of 5% (w/v) honey. Thus, intrinsic fluorescence cannot be used as a spectral probe for protein denaturation studies in the presence of honey.

  1. Green Tea Catechins Quench the Fluorescence of Bacteria-Conjugated Alexa Fluor Dyes

    PubMed Central

    Zhao, Lin; Li, Wei; Zhu, Shu; Tsai, Sheena; Li, Jianhua; Tracey, Kevin J.; Wang, Ping; Fan, Saijun; Sama, Andrew E.; Wang, Haichao

    2013-01-01

    Accumulating evidence suggests that Green tea polyphenolic catechins, especially the (-)-epigallocatechin gallate (EGCG), can be cross-linked to many proteins, and confer a wide range of anti-bacterial activities possibly by damaging microbial cytoplasmic lipids and proteins. At the doses that conferred protection against lethal polymicrobial infection (induced by cecal ligation and puncture), EGCG significantly reduced bacterial loads particularly in the liver and lung. To elucidate its bactericidal mechanisms, we determined whether EGCG affected the fluorescence intensities of bacteria-conjugated Alexa Fluor 488 or 594 dyes. When mixed with unconjugated Alexa Fluor 488 or 594 dyes, EGCG or analogs did not affect the fluorescence intensity of these dyes. In a sharp contrast, EGCG and some analogs (e.g., Catechin Gallate, CG), markedly reduced the fluorescence intensity of Gram-positive Staphylococcus aureus-conjugated Alexa 594 and Gram-negative Escherichia coli-conjugated Alexa 488. Interestingly, co-treatment with ethanol impaired the EGCG-mediated fluorescence quenching of the G+ S. aureus, but not of the G- E. coli-conjugated Alexa Flour dyes. In light of the notion that Alexa Fluor dyes can be quenched by aromatic amino acids, it is plausible that EGCG exerts anti-microbial activities possibly by altering microbial protein conformations and functions. This possibility can now be explored by screening other fluorescence-quenching agents for possible antimicrobial activities. PMID:24011199

  2. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine.

    PubMed

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-02-28

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen) 3 2 + -doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs.

  3. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine

    PubMed Central

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-01-01

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen)32+-doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs. PMID:28264472

  4. Non-covalent interactions between thio-caffeine derivatives and water-soluble porphyrin in ethanol-water environment

    NASA Astrophysics Data System (ADS)

    Lipke, Agnieszka; Makarska-Bialokoz, Magdalena; Sierakowska, Arleta; Jasiewicz, Beata

    2018-03-01

    To determine the binding interactions and ability to form the non-covalent systems, the association process between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP) and a series of five structurally diverse thio-caffeine analogues has been studied in ethanol and ethanol-water solutions, analyzing its absorption and steady-state fluorescence spectra. The porphyrin fluorescence lifetimes in the systems studied were established as well. During the titration with thio-caffeine compounds the slight bathochromic effect and considerable hypochromicity of the porphyrin Soret band maximum can be noted. The fluorescence quenching effect observed for interactions in H2TTMePP - thio-caffeine derivative systems, as well as the order of binding and fluorescence quenching constants (of 105-103 mol- 1) suggest the existence of the mechanism of static quenching due to the formation of non-covalent and non-fluorescent stacking complexes. In all the systems studied the phenomenon of the fractional accessibility of the fluorophore for the quencher was observed as well. Additionally, the specific binding interactions, due to the changes in reaction environment polarity, can be observed. It was found that thio-caffeine compounds can quench the porphyrin fluorescence according to the structure of thio-substituent in caffeine molecule. The obtained results can be potentially useful from scientific, therapeutic or environmental points of view.

  5. Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance.

    PubMed

    Li, Shihui; Li, Daojin

    2011-11-01

    The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC (C(BZC)/C(Lys)<9) and a combined quenching process at higher concentration of BZC (C(BZC)/C(Lys)>9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn(2+) on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane.

    PubMed

    Solanko, Lukasz M; Sullivan, David P; Sere, Yves Y; Szomek, Maria; Lunding, Anita; Solanko, Katarzyna A; Pizovic, Azra; Stanchev, Lyubomir D; Pomorski, Thomas Günther; Menon, Anant K; Wüstner, Daniel

    2018-03-01

    Transbilayer lipid asymmetry is a fundamental characteristic of the eukaryotic cell plasma membrane (PM). While PM phospholipid asymmetry is well documented, the transbilayer distribution of PM sterols such as mammalian cholesterol and yeast ergosterol is not reliably known. We now report that sterols are asymmetrically distributed across the yeast PM, with the majority (~80%) located in the cytoplasmic leaflet. By exploiting the sterol-auxotrophic hem1Δ yeast strain we obtained cells in which endogenous ergosterol was quantitatively replaced with dehydroergosterol (DHE), a closely related fluorescent sterol that functionally and accurately substitutes for ergosterol in vivo. Using fluorescence spectrophotometry and microscopy we found that <20% of DHE fluorescence was quenched when the DHE-containing cells were exposed to membrane-impermeant collisional quenchers (spin-labeled phosphatidylcholine and trinitrobenzene sulfonic acid). Efficient quenching was seen only after the cells were disrupted by glass-bead lysis or repeated freeze-thaw to allow quenchers access to the cell interior. The extent of quenching was unaffected by treatments that deplete cellular ATP levels, collapse the PM electrochemical gradient or affect the actin cytoskeleton. However, alterations in PM phospholipid asymmetry in cells lacking phospholipid flippases resulted in a more symmetric transbilayer distribution of sterol. Similarly, an increase in the quenchable pool of DHE was observed when PM sphingolipid levels were reduced by treating cells with myriocin. We deduce that sterols comprise up to ~45% of all inner leaflet lipids in the PM, a result that necessitates revision of current models of the architecture of the PM lipid bilayer. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium.

    PubMed

    Liu, Shi Gang; Luo, Dan; Li, Na; Zhang, Wei; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2016-08-24

    Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed. PEI-G PNPs were then used to develop a fluorescent probe for fast, selective, and sensitive detection of nitro-explosive picric acid (PA) in aqueous medium, because the fluorescence can be easily quenched by PA whereas other nitro-explosives and structurally similar compounds only caused negligible quenching. A wide linear range (0.05-70 μM) and a low detection limit (26 nM) were obtained. The fluorescence quenching mechanism was carefully explored, and it was due to a combined effect of electron transfer, resonance energy transfer, and inner filter effect between PA and PEI-G PNPs, which resulted in good selectivity and sensitivity for PA. Finally, the developed sensor was successfully applied to detection of PA in environmental water samples.

  8. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water.

    PubMed

    Shanmugaraju, Sankarasekaran; Dabadie, Charlyne; Byrne, Kevin; Savyasachi, Aramballi J; Umadevi, Deivasigamani; Schmitt, Wolfgang; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-02-01

    A V-Shaped 4-amino-1,8-napthalimide derived tetracarboxylic acid linker ( L ; bis-[ N -(1,3-benzenedicarboxylic acid)]-9,18-methano-1,8-naphthalimide-[ b , f ][1,5]diazocine) comprising the Tröger's base (TB) structural motif was rationally designed and synthesised to access a nitrogen-rich fluorescent supramolecular coordination polymer. By adopting the straight forward precipitation method, a new luminescent nanoscale Zn(ii) coordination polymer ( TB-Zn-CP ) was synthesized in quantitative yield using Zn(OAc) 2 ·2H 2 O and tetraacid linker L (1 : 0.5) in DMF at room temperature. The phase-purity of as-synthesised TB-Zn-CP was confirmed by X-ray powder diffraction analysis, infra-red spectroscopy, and elemental analysis. Thermogravimetric analysis suggests that TB-Zn-CP is thermally stable up to 330 °C and the morphological features of TB-Zn-CP was analysed by SEM and AFM techniques. The N 2 adsorption isotherm of thermally activated TB-Zn-CP at 77 K revealed a type-II reversible adsorption isotherm and the calculated Brunauer-Emmett-Teller (BET) surface area was found to be 72 m 2 g -1 . Furthermore, TB-Zn-CP displayed an excellent CO 2 uptake capacity of 76 mg g -1 at 273 K and good adsorption selectivity for CO 2 over N 2 and H 2 . The aqueous suspension of as-synthesized TB-Zn-CP showed strong green fluorescence ( λ max = 520 nm) characteristics due to the internal-charge transfer (ICT) transition and was used as a fluorescent sensor for the discriminative sensing of nitroaromatic explosives. The aqueous suspension of TB-Zn-CP showed the largest quenching responses with high selectivity for phenolic-nitroaromatics (4-NP, 2,4-DNP and PA) even in the concurrent presence of other potentially competing nitroaromatic analytes. The fluorescence titration studies also provide evidence that TB-Zn-CP detects picric acid as low as the parts per billion (26.3 ppb) range. Furthermore, the observed fluorescence quenching responses of TB-Zn-CP towards picric acid were highly reversible. The highly selective fluorescence quenching responses including the reversible detection efficiency make the nanoscale coordination polymer TB-Zn-CP a potential material for the discriminative fluorescent sensing of nitroaromatic explosives.

  9. Efficient fluorescence quenching in electrochemically exfoliated graphene decorated with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Hurtado-Morales, M.; Ortiz, M.; Acuña, C.; Nerl, H. C.; Nicolosi, V.; Hernández, Y.

    2016-07-01

    High surface area graphene sheets were obtained by electrochemical exfoliation of graphite in an acid medium under constant potential conditions. Filtration and centrifugation processes played an important role in order to obtain stable dispersions in water. Scanning electron microscopy and transmission electron microscopy imaging revealed highly exfoliated crystalline samples of ∼5 μm. Raman, Fourier transform infrared and x-ray photoelectron spectroscopy further confirmed the high quality of the exfoliated material. The electrochemically exfoliated graphene (EEG) was decorated with gold nanoparticles (AuNPs) using sodium cholate as a buffer layer. This approach allowed for a non-covalent functionalization without altering the desirable electronic properties of the EEG. The AuNP-EEG samples were characterized with various techniques including absorbance and fluorescence spectroscopy. These samples displayed a fluorescence signal using an excitation wavelength of 290 nm. The calculated quantum yield (Φ) for these samples was 40.04%, a high efficiency compared to previous studies using solution processable graphene.

  10. Hydroxypropyl-beta-cyclodextrin enhanced determination for the Vitamin B12 by fluorescence quenching method.

    PubMed

    Sun, Jing; Zhu, Xiashi; Wu, Ming

    2007-05-01

    A novel fluorescence quenching method for the determination of Vitamin B12(VB12) had been developed. It was based on that the fluorescence intensity of erythrosine sodium(ES) could be enhanced by Hydroxypropyl-beta-cyclodextrin(HP-beta-CD) due to the formation of inclusion complex (HP-beta-CD-ES), while the fluorescence intensity of HP-beta-CD-ES was diminished after adding VB12 into the system, and there was a linear relationship between the fluorescence quenching value of the system (DeltaF) and the concentration of VB12 (c). The mechanism of the determination of VB12 was discussed. The results showed that under the optimal conditions, the linear range of calibration curve for the determination of VB12 was 0.0 approximately 2.1 x 10(-5) mol/L, and the detection limit was 1.8 x 10(-7) mol/ L. It could be satisfactorily applied to the determination of VB12 in injections.

  11. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.

    PubMed

    Hosseini, Morteza; Mehrabi, Fatemeh; Ganjali, Mohammad Reza; Norouzi, Parviz

    2016-11-01

    A fluorescent aptasensor for detection of oxytetracycline (OTC) was presented based on fluorescence quenching of DNA aptamer-templated silver nanoclusters (AgNCs). The specific DNA scaffolds with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could produce DNA-AgNCs via a chemical reduction method, and another was the OTC aptamer fragment that could selectively bind to the OTC antibiotic. Thus, the as-prepared AgNCs could exhibit quenched fluorescence after binding to the target OTC. The fluorescence ratio of the DNA-AgNCs was quenched in a linearly proportional manner to the concentration of the target in the range of 0.5 nM to 100 nM with a detection limit of 0.1 nM. This proposed nanobiosensor was demonstrated to be sensitive, selective, and simple, introducing a viable alternative for rapid determination of toxin OTC in honey and water samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Indicators for the optical measurement of sulphur dioxide gas

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Ali, Zulfiqur; McStay, Daniel

    1992-05-01

    A number of fluorophores were investigated for their suitability to be employed as indicators in SO2 measurement. Several indicators, including PAll's, 5(and 6) carboxy-4'-5'-dimethyl fluorescein, new fuschin, hydrazine hydrochloride and chioropyridine hydrochloride, showed decrease in the fluorescence intensity with increase in SO2 concentration. Fluorescence quenching of benzopurpurin by 502 is found to be extremely efficient, with a little or no interference from the other toxic gases NH3 and H2S. These results are analyzed using Stem-Volmer relation. The fmding is considered to be of potential utility for the development of an improved fibre optic SO2 sensor/probe.

  13. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  14. Investigations on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by certain flavonoids.

    PubMed

    Anbazhagan, V; Kalaiselvan, A; Jaccob, M; Venuvanalingam, P; Renganathan, R

    2008-05-29

    The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by seven flavonoids namely flavone, flavanone, quercetin, rutin, genistein, diadzein and chrysin has been investigated in acetonitrile and dichloromethane solvents. The bimolecular quenching rate constants lie in the range of 0.09-5.75 x 10(9)M(-1)s(-1) and are explained in terms of structure of the flavonoids studied. The reactivity of flavonoids are in the order: quercetin>rutin>genistein>diadzein>chrysin>flavone>flavanone. The quenching rate constants (k(q)) increase with increase in the number of -OH groups. The endergonic thermodynamic values of DeltaG(et) reveal that electron transfer quenching mechanism can be ruled out. Bond dissociation enthalpy calculations reveal that the position of -OH is important. Further in vitro-antioxidant activities of flavonoids were evaluated with rat liver catalase by gel electrophoresis. The deuterium isotope effect thus observed in this work provides evidence for hydrogen abstraction involved in the quenching process of singlet excited DBO by flavonoids. The data suggest the involvement of direct hydrogen atom transfer (radical scavenging) in the fluorescence quenching of DBO. Bond dissociation enthalpy calculation performed at B3LYP/6-31G(p')//B3LYP/3-21G level are in excellent agreement with the above observations and further reveal that the number OH groups and position of them decide the quenching ability of the flavonoids.

  15. Photophysical Characterization of Enhanced 6-Methylisoxanthopterin Fluorescence in Duplex DNA.

    PubMed

    Moreno, Andrew; Knee, J L; Mukerji, Ishita

    2016-12-08

    The structure and dynamic motions of bases in DNA duplexes and other constructs are important for understanding mechanisms of selectivity and recognition of DNA-binding proteins. The fluorescent guanine analogue, 6-methylisoxanthopterin 6-MI, is well suited to this purpose as it exhibits an unexpected 3- to 4-fold increase in relative quantum yield upon duplex formation when incorporated into the following sequences: ATFAA, AAFTA, or ATFTA (where F represents 6-MI). To better understand some of the factors leading to the 6-MI fluorescence increase upon duplex formation, we characterized the effect of local sequence and structural perturbations on 6-MI photophysics through temperature melts, quantum yield measurements, fluorescence quenching assays, and fluorescence lifetime measurements. By examining 21 sequences we have determined that the duplex-enhanced fluorescence (DEF) depends on the composition of bases adjacent to 6-MI and the presence of adenines at locations n ± 2 from the probe. Investigation of duplex stability and local solvent accessibility measurements support a model in which the DEF arises from a constrained geometry of 6-MI in the duplex, which remains H-bonded to cytosine, stacked with adjacent bases and inaccessible to quenchers. Perturbation of DNA structure through the introduction of an unpaired base 3' to 6-MI or a mismatched basepair increases 6-MI dynamic motion leading to fluorescence quenching and a reduction in quantum yield. Molecular dynamics simulations suggest the enhanced fluorescence results from a greater degree of twist at the X-F step relative to the quenched duplexes examined. These results point to a model where adenine residues located at n ± 2 from 6-MI induce a structural geometry with greater twist in the duplex that hinders local motion reducing dynamic quenching and producing an increase in 6-MI fluorescence.

  16. Structural and photophysical properties of (2E)-3-[4-(dimethylamino) phenyl]-1-(naphthalen-1-yl) prop-2-en-1-one (DPNP) in different media.

    PubMed

    Pannipara, Mehboobali; Asiri, Abdullah M; Alamry, Khalid A; Salem, Ibrahim A; El-Daly, Samy A

    2015-01-01

    The spectral and photophysical properties of a new chalcone derivative (2E)-3-[4-(dimethylamino) phenyl]-1-(naphthalen-1-yl) prop-2-en-1-one (DPNP) containing donor-acceptor group has been synthesized and characterized on the basis of the spectral (IR, (1)HNMR & (13)C NMR) and X- ray crystallographic data. The effect of solvents on photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of DPNP have been investigated comprehensively. Significant red shift was observed in the emission spectrum of DPNP compared to the absorption spectrum upon increasing the solvent polarity, indicating a higher dipole moment in the excited state than in the ground state. The difference between the excited and ground state dipole moments (Δμ) were obtained from Lippert-Mataga and Reichardts correlations by means of solvatochromic shift method. The effects of medium acidity on the electronic absorption and emission spectra of DPNP were studied. The interaction of DPNP with colloidal silver nanoparticles (AgNPs) was also studied in ethanol and ethylene glycol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of DPNP by Ag NPs.

  17. Hydrophobic interactions in donor-disulphide-acceptor (DSSA) probes looking beyond fluorescence resonance energy transfer theory.

    PubMed

    Sanjeeva, Shilpa Kammaradi; Korrapati, Swathi; Nair, Chandrasekhar B; Rao, P V Subba; Pullela, Phani Kumar; Vijayalakshmi, U; Siva, Ramamoorthy

    2014-07-01

    Donor-linker-acceptor (DSSA) is a concept in fluorescence chemistry with acceptor being a fluorescent compound (FRET) or quencher. The DSSA probes used to measure thiol levels in vitro and in vivo. The reduction potential of these dyes are in the range of -0.60 V, much lower than the best thiol reductant reported in literature, the DTT (-0.33 V). DSSA disulphide having an unusually low reduction potential compared to the typical thiol reductants is a puzzle. Secondly, DSSA probes have a cyclized rhodamine ring as acceptor which does not have any spectral overlap with fluorescein, but quenches its absorbance and fluorescence. To understand the structural features of DSSA probes, we have synthesized DSSANa and DSSAOr. The calculated reduction potential of these dyes suggest that DSSA probes have an alternate mechanism from the FRET based quenching, namely hydrophobic interaction or dye to dye quenching. The standard reduction potential change with increasing complexity and steric hindrance of the molecule is small, suggesting that ultra- low Eo' has no contribution from the disulphide linker and is based on structural interactions between fluorescein and cyclized rhodamine. Our results help to understand the DSSA probe quenching mechanism and provide ways to design fluorescent probes.

  18. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  19. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds.

    PubMed

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-05

    The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications.

    PubMed

    Klymchenko, Andrey S

    2017-02-21

    Fluorescent environment-sensitive probes are specially designed dyes that change their fluorescence intensity (fluorogenic dyes) or color (e.g., solvatochromic dyes) in response to change in their microenvironment polarity, viscosity, and molecular order. The studies of the past decade, including those of our group, have shown that these molecules become universal tools in fluorescence sensing and imaging. In fact, any biomolecular interaction or change in biomolecular organization results in modification of the local microenvironment, which can be directly monitored by these types of probes. In this Account, the main examples of environment-sensitive probes are summarized according to their design concepts. Solvatochromic dyes constitute a large class of environment-sensitive probes which change their color in response to polarity. Generally, they are push-pull dyes undergoing intramolecular charge transfer. Emission of their highly polarized excited state shifts to the red in more polar solvents. Excited-state intramolecular proton transfer is the second key concept to design efficient solvatochromic dyes, which respond to the microenvironment by changing relative intensity of the two emissive tautomeric forms. Due to their sensitivity to polarity and hydration, solvatochromic dyes have been successfully applied to biological membranes for studying lipid domains (rafts), apoptosis and endocytosis. As fluorescent labels, solvatochromic dyes can detect practically any type of biomolecular interactions, involving proteins, nucleic acids and biomembranes, because the binding event excludes local water molecules from the interaction site. On the other hand, fluorogenic probes usually exploit intramolecular rotation (conformation change) as a design concept, with molecular rotors being main representatives. These probes were particularly efficient for imaging viscosity and lipid order in biomembranes as well as to light up biomolecular targets, such as antibodies, aptamers and receptors. The emerging concepts to achieve fluorogenic response to the microenvironment include ground-state isomerization, aggregation-caused quenching, and aggregation-induced emission. The ground-state isomerization exploits, for instance, polarity-dependent spiro-lactone formation in silica-rhodamines. The aggregation-caused quenching uses disruption of the self-quenched dimers and nanoassemblies of dyes in less polar environments of lipid membranes and biomolecules. The aggregation-induced emission couples target recognition with formation of highly fluorescent dye aggregates. Overall, solvatochromic and fluorogenic probes enable background-free bioimaging in wash-free conditions as well as quantitative analysis when combined with advanced microscopy, such as fluorescence lifetime (FLIM) and ratiometric imaging. Further development of fluorescent environment-sensitive probes should address some remaining problems: (i) improving their optical properties, especially brightness, photostability, and far-red to near-infrared operating range; (ii) minimizing nonspecific interactions of the probes in biological systems; (iii) their adaptation for advanced microscopies, notably for superresolution and in vivo imaging.

  1. [Quenched fluorescein: a reference dye for instrument response function of TCSPC].

    PubMed

    Pan, Hai-feng; Ding, Jing-xin; Liang, Rong-rong; Tao, Zhan-dong; Liu, Meng-wei; Zhang, San-jun; Xu, Jian-hua

    2014-08-01

    Measuring the instrument response function (IRF) and fitting by reconvolution algorithms are routines to improve time resolution in fluorescence lifetime measurements. Iodide ions were successfully used to quench the fluorescence of fluorescein in this study. By systematically adding saturated NaI water solution in basic fluorescein solution, the lifetimes of fluorescein were reduced from 4 ns to 24 ps. The quenched lifetime of fluorescein obtained from the analysis of Time-Correlated Single Photon Counting (TCSPC) measurement agrees well with that from femtosecond frequency up-conversion measurement. In time resolved excitation spectra measurements, the IRF should be measured at various detection wavelengths providing scattring materials are used. This study could not only reduce the complexity of IRF measurement, but also avoid the existing color effect in system. This study should have wide applications in time resolved fluorescence spectroscopy and fluorescence lifetime imaging.

  2. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.

    PubMed

    Pereira da Silva Neves, Marta Maria; González-García, María Begoña; Pérez-Junquera, Alejandro; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-05-01

    In this work, a turn-off photoluminescent sensing proof-of-concept based on blue luminescent graphene quantum dots (GQDs) as the fluorescent probe was developed. For that purpose, GQDs optical response was related with the catalytic enzymatic activity of alkaline phosphatase (ALP), in the presence of hydroquinone diphosphate (HQDP). The hydrolysis of HQDP by ALP generated hydroquinone (HQ). The oxidation of HQ, enzymatically produced, to p-benzoquinone (BQ) resulted in the quenching of GQDs fluorescence (FL). Therefore, the developed luminescent sensing mechanism allowed the FL quenching with ALP activity to be related and thus quantified the concentration of ALP down to 0.5 nM of enzyme. This innovative design principle appears as a promising tool for the development of enzymatic sensors based on ALP labeling with fluorescent detection or even for direct ALP luminescent quantification in an easy, fast and sensitive manner. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    PubMed

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  5. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge

    2016-01-01

    A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…

  6. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    PubMed

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zongchao; Wang, Fengqin, E-mail: wangfengqin@tjpu.edu.cn; Lin, Xiangyi

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significantmore » fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.« less

  8. Binding of the bioactive component Aloe dihydroisocoumarin with human serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Tang, Ya-Lin

    2008-11-01

    Aloe dihydroisocoumarin, one of new components isolated from Aloe vera, can scavenge reactive oxygen species. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydroisocoumarin with human serum albumin (HSA) has been investigated by using fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydroisocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. An isoemissive point at 414 nm is seen, indicating that the quenching of HSA fluorescence depends on the formation of Aloe dihydroisocoumarin-HSA complex, which is further confirmed by fluorescence dynamic result. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydroisocoumarin with HSA causes a conformational change of the protein, with the gain of α-helix, β-sheet and random coil stability and the loss of β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FTIR experiments along with the docking studies suggest that Aloe dihydroisocoumarin binds to residues located in subdomain IIA of HSA.

  9. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    PubMed

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  10. Mixed ligand two dimensional Cd(ii)/Ni(ii) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(ii) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media.

    PubMed

    Rachuri, Yadagiri; Parmar, Bhavesh; Bisht, Kamal Kumar; Suresh, Eringathodi

    2016-05-04

    Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence.

  11. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  12. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

    PubMed

    Pollastri, Susanna; Tsonev, Tsonko; Loreto, Francesco

    2014-04-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate.

  13. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures

    PubMed Central

    Loreto, Francesco

    2014-01-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28–37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. PMID:24676032

  14. The effect of the complexation of p-N,N-dimethylaminobenzoic acid and p-N,N-dimethylaminobenzonitrile with LaCl3 on spectral-luminescent parameters of fluorophores.

    PubMed

    Volchkov, Valery V; Ivanov, Vladimir L; Uzhinov, Boris M

    2011-03-01

    The LE band fluorescence enhancement of p-N,N-dimethylaminobenzoic acid (DMABA) and p-N,N-dimethylaminobenzonitrile (DMABN) was found in aprotic acetonitrile and butyronitrile at the addition of LaCl(3). The corresponding ICT fluorescence band remains unchanged. This enhancement is explained by the decrease of the internal conversion rate constant in a coordination complex with LaCl(3). The formation of the coordination complex between DMABA and LaCl(3) in ethanol is accompanied by the efficient fluorescence quenching in LE and ICT bands, in parallel with the enhancement of ICT/LE emission ratio. The experimental data are well described by the proposed kinetic schemes. © Springer Science+Business Media, LLC 2010

  15. Is Chemically Synthesized Graphene ‘Really’ a Unique Substrate for SERS and Fluorescence Quenching?

    NASA Astrophysics Data System (ADS)

    Sil, Sanchita; Kuhar, Nikki; Acharya, Somnath; Umapathy, Siva

    2013-11-01

    We demonstrate observation of Raman signals of different analytes adsorbed on carbonaceous materials, such as, chemically reduced graphene, graphene oxide (GO), multi-walled carbon nanotube (MWCNT), graphite and activated carbon. The analytes selected for the study were Rhodamine 6G (R6G) (in resonant conditions), Rhodamine B (RB), Nile blue (NBA), Crystal Violet (CV) and acetaminophen (paracetamol). All the analytes except paracetamol absorb and fluoresce in the visible region. In this article we provide experimental evidence of the fact that observation of Raman signals of analytes on such carbonaceous materials are more due to resonance effect, suppression of fluorescence and efficient adsorption and that this property in not unique to graphene or nanotubes but prevalent for various type of carbon materials.

  16. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  17. Spectral Fluorescence Properties of an Anionic Oxacarbocyanine Dye in Complexes with Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Pronkin, P. G.; Tatikolov, A. S.

    2015-07-01

    The spectral fluorescence properties of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine (OCC) were studied in solutions and in complexes with human serum albumin (HSA). Interaction with HSA leads to a significant increase in the fluorescence of the dye. We studied quenching of the fluorescence of OCC in a complex with HSA by ibuprofen and warfarin. Data on quenching of fluorescence by ibuprofen indicate binding of the dye to binding site II of subdomain IIIA in the HSA molecule. Synchronous fluorescence spectra of human serum albumin in the presence of OCC showed that complexation with OCC does not lead to appreciable rearrangement of the protein molecule at the binding site.

  18. Light-up fluorescent probes utilizing binding behavior of perylenediimide derivatives to a hydrophobic pocket within DNA.

    PubMed

    Takada, Tadao; Yamaguchi, Kosato; Tsukamoto, Suguru; Nakamura, Mitsunobu; Yamana, Kazushige

    2014-08-21

    Here we study the binding behavior of perylenediimide () derivatives to a hydrophobic pocket created inside DNA and their photochemical properties capable of designing a light-up fluorescent sensor for short single-stranded DNA or RNA. The perylenediimide derivative with alkoxy groups () suppressing electron transfer quenching was examined. The bound randomly to DNA showed negligible fluorescence due to the aggregation-induced quenching, whereas the bound to the pocket as a monomeric form showed more than 100-fold fluorescence enhancement. Switching the binding states of the corresponded to a change in the fluorescence response for the hybridization event, which allowed us to design a fluorescent sensor of nucleic acids with a nanomolar detection limit.

  19. Green synthesis of carbon dots from pork and application as nanosensors for uric acid detection

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxi; Jiao, Yang; Hu, Feng; Yang, Yaling

    2018-02-01

    In this work, a green, simple, economical method was developed in the synthesis of fluorescent carbon dots using pork as carbon source. The as-prepared carbon dots exhibit exceptional advantages including high fluorescent quantum yield (17.3%) and satisfactory chemical stability. The fluorescence of carbon dots based nanosensor can be selectively and efficiently quenched by uric acid. This phenomenon was used to develop a fluorescent method for facile detection of uric acid within a linear range of 0.1-100 μM and 100-500 μM, with a detection limit of 0.05 μM (S/N = 3). Finally, the proposed method was successfully applied in the determination of uric acid in human serum and urine samples with satisfactory recoveries, which suggested that the new nanosensors have great prospect toward the detection of uric acid in human fluids.

  20. G quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium ion.

    PubMed

    Nagatoishi, Satoru; Nojima, Takahiko; Galezowska, Elzbieta; Juskowiak, Bernard; Takenaka, Shigeori

    2006-11-01

    The dual-labeled oligonucleotide derivative, FAT-0, carrying 6- carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA) labels at the 5' and 3' termini of the thrombin-binding aptamer (TBA) sequence 5'-GGT TGG TGT GGT TGG-3', and its derivatives, FAT-n (n=3, 5, and 7) with a spacer at the 5'-end of a TBA sequence of T(m)A (m=2, 4, and 6) have been designed and synthesized. These fluorescent probes were developed for monitoring K(+) concentrations in living organisms. Circular dichroism, UV-visible absorption, and fluorescence studies revealed that all FAT-n probes could form intramolecular tetraplex structures after binding K(+). Fluorescence resonance energy transfer and quenching results are discussed taking into account dye-dye contact interactions. The relationship between the fluorescence behavior of the probes and the spacer length in FAT-n was studied in detail and is discussed.

  1. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo.

    PubMed

    Terekhov, S S; Smirnov, I V; Shamborant, O G; Zenkova, M A; Chernolovskaya, E L; Gladkikh, D V; Murashev, A N; Dyachenko, I A; Knorre, V D; Belogurov, A A; Ponomarenko, N A; Deyev, S M; Vlasov, V V; Gabibov, A G

    2014-10-01

    Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in living organism are possible using proteins conjugated with near-infrared dyes. In the present study we designed a highly efficient probe based on fluorescent dye self-quenching for monitoring of in vivo biodegradation of recombinant human butyrylcholinesterase. The maximum enhancement of integral fluorescence in response to degradation of an intravenously administered enzyme was observed 6 h after injection. Importantly, excessive butyrylcholinesterase labeling with fluorescent dye results in significant changes in the pharmacokinetic properties of the obtained conjugate. This fact must be taken into consideration during future pharmacokinetic studies using in vivo bioimaging.

  2. Quantum dots and ionic liquid-sensitized effect as an efficient and green catalyst for the sensitive determination of glucose.

    PubMed

    Azizi, Seyed Naser; Chaichi, Mohammad Javad; Shakeri, Parmis; Bekhradnia, Ahmadreza

    2015-07-05

    A novel fluorescence (FL) method using water-soluble CdSe quantum dots (QDs) is proposed for the fluorometric determination of hydrogen peroxide and glucose. Water-soluble CdSe QDs were synthesized by using thioglycolic acid as stabilizer in aqueous solutions. The nanoparticles were structurally and optically characterized by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy, photoluminescence (PL) emission spectroscopy and transmission electron microscope (TEM). Ionic liquid-sensitized effect in aqueous solution was then investigated. In the presence of ionic liquid as catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdSe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdSe QDs by H2O2 producer with ionic liquid catalyst, which can be used to detect glucose. Therefore, a new FL analysis system was developed for the determination of glucose. Under the optimum conditions, there is a good linear relationship between the relative PL emission intensity and the concentration of glucose in the range of 5.0×10(-7)-1.0×10(-4) M of glucose with a correlation coefficient (R(2)) of 0.9973. The limit of detection of this system was found to be 1.0×10(-7) M. This method is not only simple, sensitive and low cost, but also reliable for practical applications. Copyright © 2015. Published by Elsevier B.V.

  3. Highly selective and sensitive fluorogenic ferric probes based on aggregation-enhanced emission with - SiMe3 substituted polybenzene

    NASA Astrophysics Data System (ADS)

    Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo

    2018-01-01

    In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.

  4. Quenching Enhancement of the Singlet Excited State of Pheophorbide-a by DNA in the Presence of the Quinone Carboquone

    PubMed Central

    Díaz-Espinosa, Yisaira; Crespo-Hernández, Carlos E.; Alegría, Antonio E.; García, Carmelo; Arce, Rafael

    2011-01-01

    Changes in the emission fluorescence intensity of pheophorbide-a (PHEO) in the presence of carboquone (CARBOQ) were used to obtain the association constant, the number of CARBOQ molecules interacting with PHEO, and the fluorescence quantum yield of the complex. Excitation spectra of mixtures of PHEO and CARBOQ in ethanol (EtOH) show an unresolved doublet in the red-most excitation band of PHEO, indicating the formation of a loose ground-state complex. The 1:1 CARBOQ–PHEO complex shows a higher fluorescence quantum yield in EtOH (0.41 ± 0.02) than in buffer solution (0.089 ± 0.002), which is also higher than that of the PHEO monomer (0.28). Quenching of the PHEO fluorescence by DNA nucleosides and double-stranded oligonucleotides was also observed and the bimolecular quenching rate constants were determined. The quenching rate constant increase as the oxidation potential of the DNA nucleoside increases. Larger quenching constants were obtained in the presence of CARBOQ suggesting that CARBOQ enhances DNA photo-oxidation, presumably by inhibiting the back–electron-transfer reaction from the photoreduced PHEO to the oxidized base. Thus, the enhanced DNA-base photosensitized oxidation by PHEO in the presence of CARBOQ may be related to the large extent by which this quinone covalently binds to DNA, as previously reported. PMID:21138440

  5. A Versatile Molecular Design for High-Performance Nondoped OLEDs with ~100% Exciton Utilization and Negligible Efficiency Roll-Off.

    PubMed

    Liu, Huijun; Zeng, Jiajie; Guo, Jingjing; Nie, Han; Zhao, Zujin; Tang, Ben Zhong

    2018-06-01

    Nondoped organic light-emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton utilization are generally unsuitable for nondoped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation-induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for nondoped OLEDs. By grafting 4-(phenoxazin-10-yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Nondoped OLEDs of these AIDF luminogens exhibit excellent luminance (~100000 cd m-2), outstanding external quantum efficiencies (22.1-22.6%), negligible efficiency roll-off and improved operational stability. To the best of our knowledge, these are the most efficient nondoped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of nondoped OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Ehn, Andreas; Christensen, Moah; Aldén, Marcus; Bood, Joakim

    2014-04-01

    A method for simultaneous measurements of fluorescence lifetimes of two species along a line is described. The experimental setup is based on picosecond laser pulses from two tunable optical parametric generator/optical parametric amplifier systems together with a streak camera. With an appropriate optical time delay between the two laser pulses, whose wavelengths are tuned to excite two different species, laser-induced fluorescence can be both detected temporally and spatially resolved by the streak camera. Hence, our method enables one-dimensional imaging of fluorescence lifetimes of two species in the same streak camera recording. The concept is demonstrated for fluorescence lifetime measurements of CO and OH in a laminar methane/air flame on a Bunsen-type burner. Measurements were taken in flames with four different equivalence ratios, namely ϕ = 0.9, 1.0, 1.15, and 1.25. The measured one-dimensional lifetime profiles generally agree well with lifetimes calculated from quenching cross sections found in the literature and quencher concentrations predicted by the GRI 3.0 mechanism. For OH, there is a systematic deviation of approximately 30 % between calculated and measured lifetimes. It is found that this is mainly due to the adiabatic assumption regarding the flame and uncertainty in H2O quenching cross section. This emphasizes the strength of measuring the quenching rates rather than relying on models. The measurement concept might be useful for single-shot measurements of fluorescence lifetimes of several species pairs of vital importance in combustion processes, hence allowing fluorescence signals to be corrected for quenching and ultimately yield quantitative concentration profiles.

  7. Photoprotective Energy Dissipation in Higher Plants Involves Alteration of the Excited State Energy of the Emitting Chlorophyll(s) in the Light Harvesting Antenna II (LHCII)*

    PubMed Central

    Johnson, Matthew P.; Ruban, Alexander V.

    2009-01-01

    Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 ± 5 cm−1) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus. PMID:19567871

  8. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII).

    PubMed

    Johnson, Matthew P; Ruban, Alexander V

    2009-08-28

    Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.

  9. Variation among slash pine families in chlorophyll fluorescence traits

    Treesearch

    Anita C. Koehn; James H. Roberds; Robert L. Doudrick

    2003-01-01

    Abstract: Photochemical quenching, nonphotochemical quenching, and yield of photosystem II were measured on seedlings of full-sibling, open-, and self-pollinated slash pine (Pinus elliottii Engelm. var. elliottii) families. Our results reveal that genetic variation in photochemical quenching and yield of...

  10. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.

    PubMed

    Roszyk, Laura; Kollenda, Sebastian; Hennig, Sven

    2017-12-15

    RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.

  11. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole

    NASA Astrophysics Data System (ADS)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-01

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  12. Detection of intra-brain cytoplasmic 1 (BC1) long noncoding RNA using graphene oxide-fluorescence beacon detector.

    PubMed

    Kim, Mee Young; Hwang, Do Won; Li, Fangyuan; Choi, Yoori; Byun, Jung Woo; Kim, Dongho; Kim, Jee-Eun; Char, Kookheon; Lee, Dong Soo

    2016-03-21

    Detection of cellular expression of long noncoding RNAs (lncRNAs) was elusive due to the ambiguity of exposure of their reactive sequences associated with their secondary/tertiary structures and dynamic binding of proteins around lncRNAs. Herein, we developed graphene-based detection techniques exploiting the quenching capability of graphene oxide (GO) flakes for fluorescent dye (FAM)-labeled single-stranded siRNAs and consequent un-quenching by their detachment from GO by matching lncRNAs. A brain cytoplasmic 1 (BC1) lncRNA expression was significantly decreased by a siRNA, siBC1-1. GO quenched the FAM-labeled siBC1-1 peptide nucleic acid (PNA) probe, and this quenching was recovered by BC1. While FAM-siBC1-1-PNA-GO complex transfected spontaneously mouse or human neural stem cells, fluorescence was recovered only in mouse cells having high BC1 expression. Fluorescent dye-labeled single-stranded RNA-GO probe could detect the reactive exposed nucleic acid sequence of a cytoplasmic lncRNA expressing in the cytoplasm, which strategy can be used as a detection method of lncRNA expression.

  13. Ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine and N-acetyltryptophan in aqueous solution: proton-coupled electron transfer versus electron transfer.

    PubMed

    Zhang, Ying; Yuan, Shuwei; Lu, Rong; Yu, Anchi

    2013-06-20

    We studied the ultrafast fluorescence quenching dynamics of Atto655 in the presence of N-acetyltyrosine (AcTyr) and N-acetyltryptophan (AcTrp) in aqueous solution with femtosecond transient absorption spectroscopy. We found that the charge-transfer rate between Atto655 and AcTyr is about 240 times smaller than that between Atto655 and AcTrp. The pH value and D2O dependences of the excited-state decay kinetics of Atto655 in the presence of AcTyr and AcTrp reveal that the quenching of Atto655 fluorescence by AcTyr in aqueous solution is via a proton-coupled electron-transfer (PCET) process and that the quenching of Atto655 fluorescence by AcTrp in aqueous solution is via an electron-transfer process. With the version of the semiclassical Marcus ET theory, we derived that the electronic coupling constant for the PCET reaction between Atto655 and AcTyr in aqueous solution is 8.3 cm(-1), indicating that the PCET reaction between Atto655 and AcTyr in aqueous solution is nonadiabatic.

  14. Evaluation of anthocyanins in Aronia melanocarpa/BSA binding by spectroscopic studies.

    PubMed

    Wei, Jie; Xu, Dexin; Zhang, Xiao; Yang, Jing; Wang, Qiuyu

    2018-05-02

    The interaction between Anthocyanins in Aronia melanocarpa (AMA) and bovine serum albumin (BSA) were studied in this paper by multispectral technology, such as fluorescence quenching titration, circular dichroism (CD) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The results of the fluorescence titration revealed that AMA could strongly quench the intrinsic fluorescence of BSA by static quenching. The apparent binding constants K SV and number of binding sites n of AMA with BSA were obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated to be 18.45 kJ mol -1  > 0 and 149.72 J mol -1  K -1  > 0, respectively, which indicated that the interaction of AMA with BSA was driven mainly by hydrophobic forces. The binding process was a spontaneous process of Gibbs free energy change. Based on Förster's non-radiative energy transfer theory, the distance r between the donor (BSA) and the receptor (AMA) was calculated to be 3.88 nm. Their conformations were analyzed using infrared spectroscopy and CD. The results of multispectral technology showed that the binding of AMA to BSA induced the conformational change of BSA.

  15. Light-dependent quenching of chlorophyll fluorescence in pea chloroplasts induced by adenosine 5'-triphosphate.

    PubMed

    Horton, P; Black, M T

    1981-03-12

    Addition of ATP to chloroplasts causes a reversible 25-30% decrease in chlorophyll fluorescence. This quenching is light-dependent, uncoupler insensitive but inhibited by DCMU and electron acceptors and has a half-time of 3 minutes. Electron donors to Photosystem I can not overcome the inhibitory effect of DCMU, suggesting that light activation depends on the reduced state of plastoquinone. Fluorescence emission spectra recorded at -196 degrees C indicate that ATP treatment increases the amount of excitation energy transferred to Photosystem I. Examination of fluorescence induction curves indicate that ATP treatment decreases both the initial (F0) and variable (Fv) fluorescence such that the ratio of Fv to the maximum (Fm) yield is unchanged. The initial sigmoidal phase of induction is slowed down by ATP treatment and is quenched 3-fold more than the exponential slow phase, the rate of which is unchanged. A plot of Fv against area above the induction curve was identical plus or minus ATP. Thus ATP treatment can alter quantal distribution between Photosystems II and I without altering Photosystem II-Photosystem II interaction. The effect of ATP strongly resembles in its properties the phosphorylation of the light-harvesting complex by a light activated, ATP-dependent protein kinase found in chloroplast membranes and could be the basis of physiological mechanisms which contribute to slow fluorescence quenching in vivo and regulate excitation energy distribution between Photosystem I and II. It is suggested that the sensor for this regulation is the redox state of plastoquinone.

  16. Synthesis, characterization and electroluminescence of two highly-twisted non-doped blue light-emitting materials

    NASA Astrophysics Data System (ADS)

    Gong, Xiaojie; Pan, Yipeng; Xie, Xiang; Tong, Tong; Chen, Runfeng; Gao, Deqing

    2018-04-01

    Two pyrene derivatives, substituted with 2-methylnaphthalene units on 1,3-position and 1,6-position of pyrene backbones, were designed and synthesized. DFT calculation confirmed that the two molecules were highly twisted and the dihedral angles between pyrene backbone and naphthalene unit were over 80°, being attributed to the steric hindrance of ortho-methyl group and the substitution position of pyrene itself. As a result, the intermolecular aggregation was greatly inhibited in the solid state, being beneficial for suppressing the fluorescence quenching. By analyzing the optical and thermal properties, it was found that the π-π conjugation extension could be adjusted and a balance for high fluorescent efficiency and avoiding quenching at the same time could be reached, which may guide the molecular design in the future. The electroluminescence properties of the non-doped devices were enhanced with the double hole-transporting layers by optimizing the energy level matching. The stable blue EL emission, with the Commission Internationaled'Eclairage (CIEx,y) color coordinates of (0.15, 0.13) and (0.15, 0.11) at 7, 8, 9 and 10 V respectively, was obtained.

  17. Effects of sodium dodecyl sulfate on the conformation and hemolytic activity of St I and St II, two isotoxins purified from Stichodactyla helianthus.

    PubMed

    Lanio, M E; Alvarez, C; Pazos, F; Martinez, D; Martínez, Y; Casallanovo, F; Abuin, E; Schreier, S; Lissi, E

    2003-01-01

    The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein concentrations. In this surfactant range, the proteins show an increase in intrinsic fluorescence intensity and reduced quenching by acrylamide, with an almost total loss of its hemolytic activity. At higher surfactant concentrations the protein adducts disaggregates. This produces a decrease in fluorescence intensity, increase in quenching efficiency by acrylamide, loss of the native tertiary conformation (as reported by the near UV-CD spectra), and increase in alpha-helix content (as evidenced by the far UV-CD spectra). However, and in spite of these substantial changes, the toxins partially recover their hemolytic activity. The reasons for this recovering of the activity at high surfactant concentrations is discussed.

  18. AIEgens-Functionalized Inorganic-Organic Hybrid Materials: Fabrications and Applications.

    PubMed

    Li, Dongdong; Yu, Jihong

    2016-12-01

    Inorganic materials functionalized with organic fluorescent molecules combine advantages of them both, showing potential applications in biomedicine, chemosensors, light-emitting, and so on. However, when more traditional organic dyes are doped into the inorganic materials, the emission of resulting hybrid materials may be quenched, which is not conducive to the efficiency and sensitivity of detection. In contrast to the aggregation-caused quenching (ACQ) system, the aggregation-induced emission luminogens (AIEgens) with high solid quantum efficiency, offer new potential for developing highly efficient inorganic-organic hybrid luminescent materials. So far, many AIEgens have been incorporated into inorganic materials through either physical doping caused by aggregation induced emission (AIE) or chemical bonding (e.g., covalent bonding, ionic bonding, and coordination bonding) caused by bonding induced emission (BIE) strategy. The hybrid materials exhibit excellent photoactive properties due to the intramolecular motion of AIEgens is restricted by inorganic matrix. Recent advances in the fabrication of AIEgens-functionalized inorganic-organic hybrid materials and their applications in biomedicine, chemical sensing, and solid-state light emitting are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells.

    PubMed

    Ma, Lina; Liu, Fuyao; Lei, Zhen; Wang, Zhenxin

    2017-01-15

    Herein, a novel upconversion@polydopamine core@shell nanoparticle (termed as UCNP@PDA NP) -based aptameric biosensor has been fabricated for the quantitative analysis of cytochrome c (Cyt c) inside living cells, which comprises an UCNP@PDA NP, acting as an internal reference and fluorescence quenching agent, and Cy3 modified aptamer enabling ratiometric quantitative Cyt c measurement. After the hybridization of Cy3 labeled aptamer with amino-terminated single DNA on the UCNP@PDA NP surface (termed as UCNP@PDA@AP), the fluorescence of Cy3 can be efficiently quenched by the PDA shell. With the spontaneous cellular uptake of UCNP@PDA@AP, the Cyt c aptamer dissociates from UCNP@PDA NP surface through formation of aptamer-Cyt c complex, resulting in concomitant activation of the Cy3 fluorescence. High amount of Cyt c leads to high fluorescence emission, enabling direct visualization/measurement of the Cyt c by fluorescence microscopy/spectroscopy. The steady upconversion luminescent (UCL) signals can be employed not only for intracellular imaging, but also as an internal reference for evaluating intracellular Cyt c amount using the ratio of fluorescence intensity of Cy3 with the UCL intensity of UCNP. The UCNP@PDA@AP shows a reasonable detection limit (20nM) and large dynamic range (50nM to 10μM, which covers the literature reported values (1-10μM) for cytosolic Cyt c in apoptotic cells) for detecting Cyt c in buffer with excellent selectivity. In addition, the UCNP@PDA@AP has been successfully used to monitor etoposide induced intracellular releasing of Cyt c, providing the possibility for cell-based screening of apoptosis-inducing drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes.

    PubMed

    Kovaliov, Marina; Wachtel, Chaim; Yavin, Eylon; Fischer, Bilha

    2014-10-21

    Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucleotide sequence and in any number, and used as a quencher in different hybridization sensitive probes. Specifically, we introduced a 5-(4-((dimethylamino)phenyl)azo)benzene)-2'-deoxy-uridine (dU(DAB)) quencher. The photoisomerization and dU(DAB)'s ability to quench fluorescein emission have been investigated. We incorporated dU(DAB) into a series of oligonucleotide (ON) probes including strand displacement probes, labeled with both fluorescein (FAM) and dU(DAB), and TaqMan probes bearing one or two dU(DAB) and a FAM fluorophore. We used these probes for the detection of a DNA target in real-time PCR (RT-PCR). All probes showed amplification of targeted DNA. A dU(DAB) modified TaqMan RT-PCR probe was more efficient as compared to a DABCYL bearing probe (93% vs. 87%, respectively). Furthermore, dU(DAB) had a stabilizing effect on the duplex, causing an increase in Tm up to 11 °C. In addition we showed the photoisomerisation of the azobenzene moiety of dU(DAB) and the dU(DAB) triply-labeled oligonucleotide upon irradiation. These findings suggest that dU(DAB) modified probes are promising probes for gene quantification in real-time PCR detection and as photoswitchable devices.

  1. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    PubMed

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H 2 O 2 , substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H 2 O 2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H 2 O 2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The investigation of the interaction between NCP-EDA and bovine serum albumin by spectroscopic approaches

    NASA Astrophysics Data System (ADS)

    Yu, Xianyong; Lu, Shiyu; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-12-01

    The fluorescence and ultraviolet spectroscopies were explored to study the interaction between N-confused porphyrins-edaravone diad (NCP-EDA) and bovine serum albumin (BSA) under simulative physiological condition at different temperatures. The experimental results show that the fluorescence quenching mechanism between NCP-EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites and the corresponding thermodynamic parameters (Δ G, Δ H, and Δ S) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between NCP-EDA and BSA was calculated to be 3.63 nm. In addition, the effect of NCP-EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.

  3. A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Li; Wang, Xin-Long; Su, Zhong-Min

    2018-02-01

    A novel Zn-MOF (metal organic framework) [Zn3(NTB)2(DMA)2]·12DMA (NTB = 4,4‧,4″-nitrilotrisbenzoic acid; DMA = N,N-dimethylacetamide) (1) was obtained under solvothermal condition. The resulted MOF which is based on {Zn3} SBU displays an interesting (3,6)-connected three-dimensional net with nanosized, hexagonal channels. Additionally, 1 can be a useful fluorescent indicator for the detection of nitroaromatic explosives qualitatively and quantitatively via a strong quenching effect, especially for picric acid (PA). With increasing - NO2 groups, energy transfer from the electron-donating framework to high electron deficiency becomes more, making the effect of fluorescence quenching more obvious. The result demonstrates that the photo-induced electron transfer (PET) is responsible for the emission quenching.

  4. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria.

    PubMed

    Chen, Hui-Yuan S; Liberton, Michelle; Pakrasi, Himadri B; Niedzwiedzki, Dariusz M

    2017-03-01

    This paper presents spectroscopic investigations of IsiA, a chlorophyll a-binding membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, if associated with photosystem I, supports photosystem I in light harvesting by efficiently transferring excitation energy. However, if separated from photosystem I, IsiA exhibits considerable excitation quenching observed as a substantial reduction of protein-bound chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are involved in excitation energy dissipation and in addition play a second role in this antenna complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range inaccessible for chlorophyll a and transferring excitation to chlorophylls. However, this investigation does not support these proposed roles of carotenoids in this light harvesting protein. This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, our investigations do not support the hypothesis that carotenoids are quenchers of the excited state of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence in IsiA is maintained by pigment-protein interaction via electron transfer from an excited chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-Mathews-Olson protein from green sulfur bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-01

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200 × 10-5 mol L-1. In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar.

  6. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes. Electronic supplementary information (ESI) available: Additional experimental and crystallographic data, additional confocal microscopy and HR-TEM images and illustrations, EELS, TGA, DLS and Z-potential results. Movie M1. See DOI: 10.1039/c4nr04533e

  7. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching.

    PubMed

    Sun, Lijun; Chen, Weiqi; Meng, Yonghong; Yang, Xingbin; Yuan, Li; Guo, Yurong; Warren, Frederick J; Gidley, Michael J

    2016-10-01

    Young apple polyphenols (YAP) and nine types of phenolic compounds were investigated regarding the inhibitory activity against porcine pancreatic α-amylase (PPA) in vitro. Tannic acid, chlorogenic acid and caffeic acid in YAP showed relatively high inhibition with the IC50 values of 0.30, 1.96 and 3.69mg/mL, respectively. A detailed kinetics of inhibition study revealed that YAP and tannic acid were competitive inhibitors of PPA, whereas chlorogenic acid and caffeic acid were mixed inhibitors, exhibiting both competitive and uncompetitive characteristics. The fluorescence of PPA could be significantly quenched by YAP and the three polyphenols, and their quenching constants were determined. The results showed that for the polyphenols investigated, the order of the apparent static quenching constants (KFQ) was in agreement with that of the reciprocal competitive inhibition constants (1/Kic) (tannic acid>chlorogenic acid>caffeic acid>epicatechin); both of the parameters were contrary to the order of the IC50 values. Thus, combining detailed kinetics and fluorescence quenching studies can be applied to characterise the interactions between polyphenols in young apples and α-amylase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    NASA Astrophysics Data System (ADS)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  9. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer.

    PubMed

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-05

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S 0 ) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol) 2 smooth the pathway of surface hopping from TICT to T-S 0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol) 2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54nm compared to PD. This red-shift increases to 66nm for PD-(methanol) 2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol) 2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water† †Electronic supplementary information (ESI) available: Spectroscopic (multinuclear NMR, IR HRMS) characterizations, optimized structure, TGA, powder diffraction and fluorescence titration profiles. See DOI: 10.1039/c6sc04367d Click here for additional data file.

    PubMed Central

    Dabadie, Charlyne; Byrne, Kevin; Savyasachi, Aramballi J.; Umadevi, Deivasigamani; Schmitt, Wolfgang; Kitchen, Jonathan A.

    2017-01-01

    A V-Shaped 4-amino-1,8-napthalimide derived tetracarboxylic acid linker (L; bis-[N-(1,3-benzenedicarboxylic acid)]-9,18-methano-1,8-naphthalimide-[b,f][1,5]diazocine) comprising the Tröger's base (TB) structural motif was rationally designed and synthesised to access a nitrogen-rich fluorescent supramolecular coordination polymer. By adopting the straight forward precipitation method, a new luminescent nanoscale Zn(ii) coordination polymer (TB-Zn-CP) was synthesized in quantitative yield using Zn(OAc)2·2H2O and tetraacid linker L (1 : 0.5) in DMF at room temperature. The phase-purity of as-synthesised TB-Zn-CP was confirmed by X-ray powder diffraction analysis, infra-red spectroscopy, and elemental analysis. Thermogravimetric analysis suggests that TB-Zn-CP is thermally stable up to 330 °C and the morphological features of TB-Zn-CP was analysed by SEM and AFM techniques. The N2 adsorption isotherm of thermally activated TB-Zn-CP at 77 K revealed a type-II reversible adsorption isotherm and the calculated Brunauer–Emmett–Teller (BET) surface area was found to be 72 m2 g–1. Furthermore, TB-Zn-CP displayed an excellent CO2 uptake capacity of 76 mg g–1 at 273 K and good adsorption selectivity for CO2 over N2 and H2. The aqueous suspension of as-synthesized TB-Zn-CP showed strong green fluorescence (λ max = 520 nm) characteristics due to the internal-charge transfer (ICT) transition and was used as a fluorescent sensor for the discriminative sensing of nitroaromatic explosives. The aqueous suspension of TB-Zn-CP showed the largest quenching responses with high selectivity for phenolic-nitroaromatics (4-NP, 2,4-DNP and PA) even in the concurrent presence of other potentially competing nitroaromatic analytes. The fluorescence titration studies also provide evidence that TB-Zn-CP detects picric acid as low as the parts per billion (26.3 ppb) range. Furthermore, the observed fluorescence quenching responses of TB-Zn-CP towards picric acid were highly reversible. The highly selective fluorescence quenching responses including the reversible detection efficiency make the nanoscale coordination polymer TB-Zn-CP a potential material for the discriminative fluorescent sensing of nitroaromatic explosives. PMID:28572910

  11. Low-temperature collisional quenching of NO A{sup 2}Σ{sup +}(v′ = 0) by NO(X{sup 2}Π) and O{sub 2} between 34 and 109 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-González, R.; Eveland, W. D.; West, N. A.

    2014-08-21

    We present measurements of collisional fluorescence quenching cross sections of NO(A{sup 2}Σ{sup +}, v′ = 0) by NO(X{sup 2}Π) and O{sub 2} between 34 and 109 K using a pulsed converging-diverging nozzle gas expansion, extending the temperature range of previous measurements. The thermally averaged fluorescence quenching cross sections for both species show a monotonic increase as temperature decreases in this temperature range, consistent with earlier observations. These new measurements, however, allow discrimination between predictions obtained by extrapolating fits of previous data using different functional forms that show discrepancies exceeding 120% for NO and 160% for O{sub 2} at 34 K.more » The measured self-quenching cross section is 52.9 Å{sup 2} near 112 K and increases to 64.1 Å{sup 2} at 35 K, whereas the O{sub 2} fluorescence quenching cross section is 42.9 Å{sup 2} at 109 K and increases to 58.3 Å{sup 2} at 34 K. Global fits of the quenching cross section temperature dependence show that, when including our current measurements, the low temperature behavior of the quenching cross sections for NO and O{sub 2} is better described by a parameterization that accounts for the long-range interactions leading to the collisional deactivation via an inverse power law model.« less

  12. False HDAC Inhibition by Aurone Compound.

    PubMed

    Itoh, Yukihiro; Suzuki, Miki; Matsui, Taiji; Ota, Yosuke; Hui, Zi; Tsubaki, Kazunori; Suzuki, Takayoshi

    2016-01-01

    Fluorescence assays are useful tools for estimating enzymatic activity. Their simplicity and manageability make them suitable for screening enzyme inhibitors in drug discovery studies. However, researchers need to pay attention to compounds that show auto-fluorescence and quench fluorescence, because such compounds lower the accuracy of the fluorescence assay systems by producing false-positive or negative results. In this study, we found that aurone compound 7, which has been reported as a histone deacetylase (HDAC) inhibitor, gave false-positive results. Although compound 7 was identified by an in vitro HDAC fluorescence assay, it did not show HDAC inhibitory activity in a cell-based assay, leading us to suspect its in vitro HDAC inhibitory activity. As a result of verification experiments, we found that compound 7 interferes with the HDAC fluorescence assay by quenching the HDAC fluorescence signal. Our findings underscore the faults of fluorescence assays and call attention to careless interpretation.

  13. Studies of the interaction between FNC and human hemoglobin: a spectroscopic analysis and molecular docking.

    PubMed

    Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao

    2015-02-05

    FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing.

    PubMed

    Li, Na; Liu, Shi Gang; Fan, Yu Zhu; Ju, Yan Jun; Xiao, Na; Luo, Hong Qun; Li, Nian Bing

    2018-07-12

    The various synthetic routes of carbon dots (C-dots) feature a considerable step toward their potential use in chemical sensors and biotechnology. Herein, by coupling phosphorus and nitrogen element introduction, the adenosine-derived N/P co-doped C-dots with fluorescence enhancement were achieved. By separately employing adenosine, adenosine monophosphate, adenosine diphosphate, and adenosine-5'-triphosphate as precursors, the effect of N/P co-doping on the fluorescence emission is discussed in detail. The formed C-dots with adenosine monophosphate exhibited strong blue fluorescence with a high quantum yield of 33.81%. Then the C-dots were employed as a fluorescent probe and utilized to develop a fast, sensitive, and selective picric acid sensor. The fluorescence of C-dots can be quenched by picric acid immediately, giving rise to a picric acid determination down to 30 nM. The possible mechanism of fluorescence quenching was discussed, which was proved to be inner filter effect and static quenching. Moreover, this method has the potential to detect picric acid in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Binding of Sulpiride to Seric Albumins

    PubMed Central

    da Silva Fragoso, Viviane Muniz; de Morais Coura, Carla Patrícia; Hoppe, Luanda Yanaan; Soares, Marília Amável Gomes; Silva, Dilson; Cortez, Celia Martins

    2016-01-01

    The aim of this work was to study the interaction of sulpiride with human serum albumin (HSA) and bovine serum albumin (BSA) through the fluorescence quenching technique. As sulpiride molecules emit fluorescence, we have developed a simple mathematical model to discriminate the quencher fluorescence from the albumin fluorescence in the solution where they interact. Sulpiride is an antipsychotic used in the treatment of several psychiatric disorders. We selectively excited the fluorescence of tryptophan residues with 290 nm wavelength and observed the quenching by titrating HSA and BSA solutions with sulpiride. Stern-Volmer graphs were plotted and quenching constants were estimated. Results showed that sulpiride form complexes with both albumins. Estimated association constants for the interaction sulpiride–HSA were 2.20 (±0.08) × 104 M−1, at 37 °C, and 5.46 (±0.20) × 104 M−1, at 25 °C. Those for the interaction sulpiride-BSA are 0.44 (±0.01) × 104 M−1, at 37 °C and 2.17 (±0.04) × 104 M−1, at 25 °C. The quenching intensity of BSA, which contains two tryptophan residues in the peptide chain, was found to be higher than that of HSA, what suggests that the primary binding site for sulpiride in albumin should be located next to the sub domain IB of the protein structure. PMID:26742031

  16. Synthesizing a nano-composite of BSA-capped Au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection.

    PubMed

    Guo, Xinrong; Wu, Fangying; Ni, Yongnian; Kokot, Serge

    2016-10-26

    A strong red fluorescent nanocomposite, consisting of graphite-like carbon nitride nanosheets (g-C 3 N 4 NSs) and serum albumin-capped Au nanoclusters (AuNCs), was synthesized. Dopamine (DA) can quench the red fluorescence of the nanocomposite, based on the Forster resonance energy transfer (FRET) mechanism. In this quenching process, the energy is transferred from the fluorescent g-C 3 N 4 NSs-AuNCs to the oxidized DA quinine molecules (DA is easily oxidated to form DA quinine in air). The red fluorescence emission at 420 nm decreases dramatically and the quenching ratio (F 0 - F)/F 0 is linearly related to the concentration of DA in the range of 0.05-8.0 μmol L -1 with a detection limit of 0.018 μmol L -1  (S/N = 3). Additionally, this sensor has a potential of application to assay the DA in the real samples, such as human serum and human urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fluorescent component and complexation mechanism of extracellular polymeric substances during dye wastewater biotreatment by anaerobic granular sludge

    NASA Astrophysics Data System (ADS)

    Li, Na; Wei, Dong; Sun, Qunqun; Han, Xiao; Du, Bin; Wei, Qin

    2018-02-01

    In this study, methylene blue (MB) wastewater was biotreated by anaerobic granular sludge (AnGS), and the fluorescent components of extracellular polymeric substances (EPS) and complexation mechanism were evaluated. Based on the experimental data, the sorption of MB by both live and inactivated AnGS followed the pseudo-second-order model, and the adsorption isotherm conformed well to the Langmuir model. It was shown that the difference in the sorption of live and inactivated AnGS was not significant, indicating that the sorption is mainly a physical-chemical process and metabolically mediated diffusion is negligible. The interaction between EPS and MB was proved by three-dimensional excitation-emission matrix (3D-EEM) and synchronous fluorescence spectra. 3D-EEM indicated that protein (PN)-like substances were the main peaks of EPS, and gradually quenched with increase of MB concentrations. According to synchronous fluorescence spectra, the main fluorescence quenching was caused by PN-like and humic-like fractions, and belonged to the static type of quenching. FTIR spectra demonstrated that hydroxyl and amino groups played a major role in MB sorption.

  18. A real-time fluorescence assay for protease activity and inhibitor screening based on the aggregation-caused quenching of a perylene probe.

    PubMed

    Wang, Yan; Zhang, Zhifang; Zhang, Ya; Yu, Cong

    2018-06-01

    We have established a real-time and label-free fluorescence turn-on strategy for protease activity detection and inhibitor screening via peptide-induced aggregation-caused quenching of a perylene probe. Because of electrostatic interactions and high hydrophilicity, poly-l-glutamic acid sodium salt (PGA; a negatively charged peptide) could induce aggregation of a positively charged perylene probe (probe 1) and the monomer fluorescence of probe 1 was effectively quenched. After a protease was added, PGA was enzymatically hydrolyzed into small fragments and probe 1 disaggregated. The fluorescence recovery of probe 1 was found to be proportional to the concentration of protease in the range from 0 to 1 mU/ml. The detection limit was down to 0.1 mU/ml. In the presence of a protease inhibitor, protease activity was inhibited and fluorescence recovery reduced. Moreover, we demonstrated the potential application of our method in a complex mixture sample including 1% human serum. Our method is simple, fast and cost effective. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Quantifying exciton hopping in disordered media with quenching sites: Application to arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Miyazaki, Jun

    2013-10-01

    We present an analytical method for quantifying exciton hopping in an energetically disordered system with quenching sites. The method is subsequently used to provide a quantitative understanding of exciton hopping in a quantum dot (QD) array. Several statistical quantities that characterize the dynamics (survival probability, average number of distinct sites visited, average hopping distance, and average hopping rate in the initial stage) are obtained experimentally by measuring time-resolved fluorescence intensities at various temperatures. The time evolution of these quantities suggests in a quantitative way that at low temperature an exciton tends to be trapped at a local low-energy site, while at room temperature, exciton hopping occurs repeatedly, leading to a large hopping distance. This method will serve to facilitate highly efficient optoelectronic devices using QDs such as photovoltaic cells and light-emitting diodes, since exciton hopping is considered to strongly influence their operational parameters. The presence of a dark QD (quenching site) that exhibits fast decay is also quantified.

  20. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  1. Fluorescent LaVO4:Eu(3+) micro/nanocrystals: pH-tuned shape and phase evolution and investigation of the mechanism of detection of Fe(3+) ions.

    PubMed

    Zhu, Yaqiong; Ni, Yonghong; Sheng, Enhong

    2016-06-07

    LaVO4:Eu(3+) micro/nanocrystals with various shapes were hydrothermally synthesized by adjusting the pH of the system at 180 °C for 12 h in the presence of ethylenediaminetetraacetic acid (EDTA). The shape and phase of the final product were characterized by field emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD). Experiments showed that when the other conditions were kept unchanged, the shape of the final product changed from hollow microspheres constructed by nanorods to long nanorods, to short nanorods and finally to grains with microscale sizes with the pH increase from 4.0, 7.0, 11.0 to 13.0 in the system. Meanwhile, the t-LaVO4 phase was always obtained from the system at pH below 13.0 and the m-LaVO4 phase was formed at pH 13.0. It was found that the final product with various shapes presented different luminescence performances. LaVO4:Eu(3+) nanorods obtained from the system at pH 11.0 displayed the strongest luminescence and good fluorescence stability in water. Also, the above strong PL spectrum could be quenched by Fe(3+) ions without the interference of other ions, indicating that the present product could be used as an efficient fluorescent probe for highly selective detection of Fe(3+) ions in water systems. The fluorescence quenching mechanism was investigated simultaneously.

  2. Highly Sensitive Ratiometric Fluorescent Sensor for Trinitrotoluene Based on the Inner Filter Effect between Gold Nanoparticles and Fluorescent Nanoparticles.

    PubMed

    Lu, Hongzhi; Quan, Shuai; Xu, Shoufang

    2017-11-08

    In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.

  3. Combination of a Copper-Ion Selective Electrode and Fluorometric Titration for the Determination of Copper(II) Ion Conditional Stability Constants of Humic Substances.

    PubMed

    Chen, Juan; Chen, Hao; Zhang, Xing-wen; Lei, Kun; Kenny, Jonathan E

    2015-11-01

    A fluorescence quenching model using copper(II) ion (Cu(2+)) ion selective electrode (Cu-ISE) is developed. It uses parallel factor analysis (PARAFAC) to model fluorescence excitation-emission matrices (EEMs) of humic acid (HA) samples titrated with Cu(2+) to resolve fluorescence response of fluorescent components to Cu(2+) titration. Meanwhile, Cu-ISE is employed to monitor free Cu(2+) concentration ([Cu]) at each titration step. The fluorescence response of each component is fit individually to a nonlinear function of [Cu] to find the Cu(2+) conditional stability constant for that component. This approach differs from other fluorescence quenching models, including the most up-to-date multi-response model that has a problematic assumption on Cu(2+) speciation, i.e., an assumption that total Cu(2+) present in samples is a sum of [Cu] and those bound by fluorescent components without taking into consideration the contribution of non-fluorescent organic ligands and inorganic ligands to speciation of Cu(2+). This paper employs the new approach to investigate Cu(2+) binding by Pahokee peat HA (PPHA) at pH values of 6.0, 7.0, and 8.0 buffered by phosphate or without buffer. Two fluorescent components (C1 and C2) were identified by PARAFAC. For the new quenching model, the conditional stability constants (logK1 and logK2) of the two components all increased with increasing pH. In buffered solutions, the new quenching model reported logK1 = 7.11, 7.89, 8.04 for C1 and logK2 = 7.04, 7.64, 8.11 for C2 at pH 6.0, 7.0, and 8.0, respectively, nearly two log units higher than the results of the multi-response model. Without buffer, logK1 and logK2 decreased but were still high (>7) at pH 8.0 (logK1 = 7.54, logK2 = 7.95), and all the values were at least 0.5 log unit higher than those (4.83 ~ 5.55) of the multi-response model. These observations indicate that the new quenching model is more intrinsically sensitive than the multi-response model in revealing strong fluorescent binding sites of PPHA in different experimental conditions. The new model was validated by testing it with a mixture of two fluorescing Cu(2+) chelating organic compounds, i.e., l-tryptophan and salicylic acid mixed with one non-fluorescent binding compound oxalic acid titrated with Cu(2+) at pH 5.0.

  4. Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging.

    PubMed

    Chen, Bin; Feng, Guangxue; He, Bairong; Goh, Chiching; Xu, Shidang; Ramos-Ortiz, Gabriel; Aparicio-Ixta, Laura; Zhou, Jian; Ng, Laiguan; Zhao, Zujin; Liu, Bin; Tang, Ben Zhong

    2016-02-10

    Robust luminescent dyes with efficient two-photon fluorescence are highly desirable for biological imaging applications, but those suitable for organic dots fabrication are still rare because of aggregation-caused quenching. In this work, a red fluorescent silole, 2,5-bis[5-(dimesitylboranyl)thiophen-2-yl]-1-methyl-1,3,4-triphenylsilole ((MesB)2 DTTPS), is synthesized and characterized. (MesB)2 DTTPS exhibits enhanced fluorescence efficiency in nanoaggregates, indicative of aggregation-enhanced emission (AEE). The organic dots fabricated by encapsulating (MesB)2 DTTPS within lipid-PEG show red fluorescence peaking at 598 nm and a high fluorescence quantum yield of 32%. Upon excitation at 820 nm, the dots show a large two-photon absorption cross section of 3.43 × 10(5) GM, which yields a two-photon action cross section of 1.09 × 10(5) GM. These (MesB)2 DTTPS dots show good biocompatibility and are successfully applied to one-photon and two-photon fluorescence imaging of MCF-7 cells and two-photon in vivo visualization of the blood vascular of mouse muscle in a high-contrast and noninvasive manner. Moreover, the 3D blood vasculature located at the mouse ear skin with a depth of over 100 μm can also be visualized clearly, providing the spatiotemporal information about the whole blood vascular network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging.

    PubMed

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Shim, Jae-Jin; Kalimuthu, Senthilkumar; Ahn, Byeong-Cheol; Lee, Yong Rok

    2016-05-01

    This paper reports turn-off fluorescence sensor for Fe(3+) ion in water using fluorescent N-doped carbon dots as a probe. A simple and efficient hydrothermal carbonization of Prunus avium fruit extract for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is described. This green approach proceeds quickly and provides good quality N-CDs. The mean size of synthesized N-CDs was approximately 7nm calculated from the high-resolution transmission electron microscopic images. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed the presence of -OH, -NH2, -COOH, and -CO functional groups over the surface of CDs. The N-CDs showed excellent fluorescent properties, and emitted blue fluorescence at 411nm upon excitation at 310nm. The calculated quantum yield of the synthesized N-CDs is 13% against quinine sulfate as a reference fluorophore. The synthesized N-CDs were used as a fluorescent probe towards the selective and sensitive detection of biologically important Fe(3+) ions in water by fluorescence spectroscopy and for bio-imaging of MDA-MB-231 cells. The limit of detection (LOD) and the Stern-Volmer quenching constant for the synthesized N-CDs were 0.96μM and 2.0958×10(3)M of Fe(3+) ions. The green synthesized N-CDs are efficiently used as a promising candidate for the detection of Fe(3+) ions and bio-imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dependence on solute concentration of the efficiency of scavenging of electrons in recombining geminate ion pairs

    NASA Astrophysics Data System (ADS)

    Tweeten, David W.; Lee, Kaidee; Lipsky, Sanford

    The fluorescence from solutions of hexafluorobenzene in cyclopentane, 2,2,4-trimethylpentane, 2,2-dimethylbutane and tetramethylsilane irradiated with β-particles has been studied as a function of the hexafluorobenzene concentration from c = 10 -3-10 -1 M. The data are analyzed to permit extraction of geminate ion-pair scavenging probability p†. This is found to have a dependence on c entirely similar to what has previously been reported for p† extracted from quenching of solvent fluorescence by perfluorocarbon scavengers, i.e. p† = (α c) 0.7/[1 + (α c) 0.7]. The difference between these results and that for p† obtained via measurement of chemical product formation is discussed.

  7. Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence.

    PubMed

    Chen, Yang-Er; Mao, Hao-Tian; Ma, Jie; Wu, Nan; Zhang, Chao-Ming; Su, Yan-Qiu; Zhang, Zhong-Wei; Yuan, Ming; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2018-03-01

    We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K 2 Cr 2 O 7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. MEH-PPV film thickness influenced fluorescent quenching of tip-coated plastic optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Yusufu, A. M.; Noor, A. S. M.; Tamchek, N.; Abidin, Z. Z.

    2017-12-01

    The performance of plastic optical fiber sensors in detecting nitro aromatic explosives 1,4-dinitrobenzene (DNB) have been investigated by fluorescence spectroscopy and analyzed by using fluorescence quenching technique. The plastic optical fiber utilized is 90 degrees cut tip and dip-coated with conjugated polymer MEH-PPV poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin films for detection conjugants. The thicknesses of the MEH-PPV coating were varied to improvise the sensitivity whilst slowly reducing the fluorescence intensity. It was shown that fluorescence intensity from thinner film decreased by (82% in 40 s) in the presence of DNB signifying an improvement of 28% reduction with time 13 s less than that of the thicker film.

  9. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.

    PubMed

    Iijima, Issei; Hohsaka, Takahiro

    2009-04-17

    Position-specific incorporation of fluorescent groups is a useful method for analysis of the functions and structures of proteins. We have developed a method for the incorporation of visible-wavelength-fluorescent non-natural amino acids into proteins in a cell-free translation system. Using this technique, we introduced one or two BODIPY-linked amino acids into maltose-binding protein (MBP) to obtain MBP derivatives showing ligand-dependent changes in fluorescence intensity or intensity ratio. BODIPY-FL-aminophenylalanine was incorporated in place of 15 tyrosines, as well as the N-terminal Lys1, and the C-terminal Lys370 of MBP. Fluorescence measurements revealed that MBP containing a BODIPY-FL moiety in place of Tyr210 showed a 13-fold increase in fluorescence upon binding of maltose. Tryptophan-to-phenylalanine substitutions suggest that the increase in fluorescence was the result of a decrease in the quenching of BODIPY-FL by tryptophan located around the binding site. MBP containing a BODIPY-558 moiety also showed a maltose-dependent increase in fluorescence. BODIPY-FL was then additionally incorporated in place of Lys1 of the BODIPY-558-containing MBP as a response to the amber codon. Fluorescence measurements with excitation of BODIPY-FL showed a large change in fluorescence intensity ratio (0.13 to 1.25) upon binding of maltose; this change can be attributed to fluorescence resonance energy transfer (FRET) and maltose-dependent quenching of BODIPY-558. These results demonstrate the usefulness of the position-specific incorporation of fluorescent amino acids in the fluorescence-based detection of protein functions.

  10. Fluorescent Zn-PDC/Tb3+ Coordination Polymer Nanostructure: A Candidate for Highly Selective Detections of Cefixime Antibiotic and Acetone in Aqueous System.

    PubMed

    Pan, Hong; Wang, Sufan; Dao, Xiaoyao; Ni, Yonghong

    2018-02-05

    Tb 3+ -doped zinc-based coordination polymer nanospindle bundles (Zn-PDC/Tb 3+ , or [Zn(2,5-PDC)(H 2 O) 2 ]·H 2 O/Tb 3+ ) were synthesized by a simple solution precipitation route at room temperature, employing Zn(NO 3 ) 2 , Tb(NO 3 ) 3 , and 2,5-Na 2 PDC as the initial reactants, and a mixture of water and ethanol with the volume ratio of 10:10 as the solvent. The as-obtained nanostructures presented strong fluorescent emission under the excitation of 298 nm light, which was attributed to the characteristic emission of the Tb 3+ ion. It was found that the above-mentioned strong fluorescence of the nanostructures could be selectively quenched by cefixime (CFX) in aqueous solution. The other common antibiotics hardly interfered. Thus, as-obtained Zn-PDC/Tb 3+ nanostructures could be prepared as a highly sensitive fluorescence probe for selective detection of CFX in an aqueous system. The corresponding detection limit reached 72 ppb. The theoretic calculation and UV-vis absorption experiments confirmed that the fluorescence quenching of Zn-PDC/Tb 3+ nanostructures toward CFX should be attributed to the electron transfer and the fluorescence inner filter effect between the fluorescent matter and the analyte. In addition, the strong fluorescence of the nanostructures could also be selectively quenched by acetone in the water system.

  11. Sensitive Pb(2+) probe based on the fluorescence quenching by graphene oxide and enhancement of the leaching of gold nanoparticles.

    PubMed

    Shi, Xinhao; Gu, Wei; Peng, Weidong; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-02-26

    A novel strategy was developed for fluorescent detection of Pb(2+) in aqueous solution based on the fact that graphene oxide (GO) could quench the fluorescence of amino pyrene (AP)-grafted gold nanoparticles (AP-AuNPs) and Pb(2+) could accelerate the leaching rate of AuNPs in the presence of S2O3(2-). In this system, fluorescence reporter AP was grafted on AuNPs through the Au-N bond. In the presence of GO, the system shows fluorescence quenching because of π-π stacking between AP and GO. With the addition of Pb(2+) and S2O3(2-), the system displays fluorescence recovery, which is attributed to the fact that Pb(2+) could accelerate the leaching of the AuNPs from GO surfaces and release of AP into aqueous solution. Interestingly, the concentration of GO could control the fluorescence "turn-off" or "turn-on" for Pb(2+) detection. In addition, GO is also an excellent promoter for the acceleration of the leaching of AuNPs and shortening the analytical time to ∼15 min. Under the optimal conditions, the fluorescence Pb(2+) sensor shows a linear range from 2.0 × 10(-9) to 2.3 × 10(-7) mol/L, with a detection limit of 1.0 × 10(-10) mol/L.

  12. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    PubMed

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  15. Fluorescence of size-expanded DNA bases: reporting on DNA sequence and structure with an unnatural genetic set.

    PubMed

    Krueger, Andrew T; Kool, Eric T

    2008-03-26

    We recently described the synthesis and helix assembly properties of expanded DNA (xDNA), which contains base pairs 2.4 A larger than natural DNA pairs. This designed genetic set is under study with the goals of mimicking the functions of the natural DNA-based genetic system and of developing useful research tools. Here, we study the fluorescence properties of the four expanded bases of xDNA (xA, xC, xG, xT) and evaluate how their emission varies with changes in oligomer length, composition, and hybridization. Experiments were carried out with short oligomers of xDNA nucleosides conjugated to a DNA oligonucleotide, and we investigated the effects of hybridizing these fluorescent oligomers to short complementary DNAs with varied bases opposite the xDNA bases. As monomer nucleosides, the xDNA bases absorb light in two bands: one at approximately 260 nm (similar to DNA) and one at longer wavelength ( approximately 330 nm). All are efficient violet-blue fluorophores with emission maxima at approximately 380-410 nm and quantum yields (Phifl) of 0.30-0.52. Short homo-oligomers of the xDNA bases (length 1-4 monomers) showed moderate self-quenching except xC, which showed enhancement of Phifl with increasing length. Interestingly, multimers of xA emitted at longer wavelengths (520 nm) as an apparent excimer. Hybridization of an oligonucleotide to the DNA adjacent to the xDNA bases (with the xDNA portion overhanging) resulted in no change in fluorescence. However, addition of one, two, or more DNA bases in these duplexes opposite the xDNA portion resulted in a number of significant fluorescence responses, including wavelength shifts, enhancements, or quenching. The strongest responses were the enhancement of (xG)n emission by hybridization of one or more adenines opposite them, and the quenching of (xT)n and (xC)n emission by guanines opposite. The data suggest multiple ways in which the xDNA bases, both alone and in oligomers, may be useful as tools in biophysical analysis and biotechnological applications.

  16. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    PubMed

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of Cerium (IV) Using Rhodamine 6G Fluorescence Quenching

    NASA Astrophysics Data System (ADS)

    Zhao, Zh.; Sheng, L.; Su, B.; Tao, C.; Jing, W.

    2017-11-01

    The interaction between rhodamine 6G (Rh6G) and cerium sulfate was studied by the fluorescence quenching method. In a sulfuric acid medium, the interaction of Ce(IV) with Rh6G results in Rh6G fluorescence quenching. The maximum excitation wavelength (λex) and the maximum emission wavelength (λem) are 530 nm and 555 nm, respectively. A good linearity between the relative fl uorescence intensity (ΔF) and Ce(IV) was observed in the range 0.12-1.08 μg/mL. The detection limit was 1.4 × 10-3 μg/mL. The optimum reaction conditions, influencing factors, and effect of coexisting substances were investigated in the experiment. We found that the concentration of Rh6G was 3.2 × 10-6 mol/L, and the fl uorescence intensity was maximum.

  18. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis--assessment by chlorophyll fluorescence analysis.

    PubMed

    Lu, C M; Chau, C W; Zhang, J H

    2000-07-01

    Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.

  19. A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols

    NASA Astrophysics Data System (ADS)

    Zhang, Shuming; Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli; Shui, Lingling

    2018-04-01

    Ratiometric fluorescent probes could eliminate the influence from experimental factors and improve the detection accuracy. In this article, a ratiometric nanoprobe was constructed based on silver nanoclusters (AgNCs) with nitrogen-doped carbon dots (NCDs) and used for the detection of biothiols. The fluorescence peak of AgNCs was observed at 650 nm with excitation wavelength at 370 nm. In order to construct the ratiometric fluorescent probe, NCDs with the excitation and emission wavelengths at 370 nm and 450 nm were selected. After adding AgNCs, the fluorescence of NCDs was quenched. The mechanism of the fluorescence quenching was studied by fluorescence, UV-Vis absorption and the fluorescence lifetime spectra. The results indicated that the quenching could be ascribed to the inner filter effect (IFE). With the addition of biothiols, the fluorescence of AgNCs at 650 nm decreased due to the breakdown of AgNCs, and the fluorescence of NCDs at 450 nm recovered accordingly. Thus, the relationship between the ratio of the fluorescence intensities (I450/I650) and biothiol concentration was used to establish the determination method for biothiols. Cysteine (Cys) was taken as the model of biothiols, and the working curve for Cys was I450/I650 = 0.60CCys - 1.86 (CCys: μmol/L) with the detection limit of 0.14 μmol/L (S/N = 3). Then, the method was used for the detection of Cys in human urine and serum samples with satisfactory accuracy and recovery ratios. Furthermore, the probe could be applied for the visual semi-quantitative determination of Cys by naked eyes.

  20. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  1. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

    PubMed

    Sylak-Glassman, Emily J; Malnoë, Alizée; De Re, Eleonora; Brooks, Matthew D; Fischer, Alexandra Lee; Niyogi, Krishna K; Fleming, Graham R

    2014-12-09

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.

  2. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylak-Glassman, Emily J.; Malnoë, Alizée; De Re, Eleonora

    2014-11-24

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well asmore » whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.« less

  3. Fluorescence-quenching of a Liposomal-encapsulated Near-infrared Fluorophore as a Tool for In Vivo Optical Imaging

    PubMed Central

    Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Hilger, Ingrid

    2015-01-01

    Optical imaging offers a wide range of diagnostic modalities and has attracted a lot of interest as a tool for biomedical imaging. Despite the enormous number of imaging techniques currently available and the progress in instrumentation, there is still a need for highly sensitive probes that are suitable for in vivo imaging. One typical problem of available preclinical fluorescent probes is their rapid clearance in vivo, which reduces their imaging sensitivity. To circumvent rapid clearance, increase number of dye molecules at the target site, and thereby reduce background autofluorescence, encapsulation of the near-infrared fluorescent dye, DY-676-COOH in liposomes and verification of its potential for in vivo imaging of inflammation was done. DY-676 is known for its ability to self-quench at high concentrations. We first determined the concentration suitable for self-quenching, and then encapsulated this quenching concentration into the aqueous interior of PEGylated liposomes. To substantiate the quenching and activation potential of the liposomes we use a harsh freezing method which leads to damage of liposomal membranes without affecting the encapsulated dye. The liposomes characterized by a high level of fluorescence quenching were termed Lip-Q. We show by experiments with different cell lines that uptake of Lip-Q is predominantly by phagocytosis which in turn enabled the characterization of its potential as a tool for in vivo imaging of inflammation in mice models. Furthermore, we use a zymosan-induced edema model in mice to substantiate the potential of Lip-Q in optical imaging of inflammation in vivo. Considering possible uptake due to inflammation-induced enhanced permeability and retention (EPR) effect, an always-on liposome formulation with low, non-quenched concentration of DY-676-COOH (termed Lip-dQ) and the free DY-676-COOH were compared with Lip-Q in animal trials. PMID:25591069

  4. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.

    PubMed

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-15

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Spectral dependence of irreversible light-induced fluorescence quenching: Chlorophyll forms with maximal emission at 700-702 and 705-710nm as spectroscopic markers of conformational changes in the core complex.

    PubMed

    Nematov, Sherzod; Casazza, Anna Paola; Remelli, William; Khuvondikov, Vakhobjon; Santabarbara, Stefano

    2017-07-01

    The spectral dependence of the irreversible non-photochemical fluorescence quenching associated with photoinhibition in vitro has been comparatively investigated in thylakoid membranes, PSII enriched particles and PSII core complexes isolated from spinach. The analysis of the fluorescence emission spectra of dark-adapted and quenched samples as a function of the detection temperature in the 280-80K interval, indicates that Chlorophyll spectral forms having maximal emission in the 700-702nm and 705-710nm ranges gain relative intensity in concomitance with the establishment of irreversible light-induced quenching, acting thereby as spectroscopic markers. The relative enhancement of the 700-702nm and 705-710nm forms emission could be due either to an increase of their stoichiometric abundance or to their intrinsically low fluorescence quantum yields. These two factors, that can also coexist, need to be promoted by light-induced alterations in chromophore-protein as well as chromophore-chromophore interactions. The bands centred at about 701 and 706nm are also observed in the PSII core complex, suggesting their, at least partial, localisation in proximity to the reaction centre, and the occurrence of light-induced conformational changes in the core subunits. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system.

    PubMed

    Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang

    2012-03-21

    In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method.

  7. Study of protein-probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid.

    PubMed

    Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2009-03-01

    We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

  8. Fluorescent cooling of objects exposed to sunlight – The ruby example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdahl, Paul; Chen, Sharon S.; Destaillats, Hugo

    Various pigments are used to formulate desirable non-white colors that stay cooler in the sun than alternatives, which is particularly useful for hot climate areas. These cool pigments provide a high near-infrared (NIR) reflectance in the solar infrared range of 700-2500 nm, and also a color specified by a reflectance spectrum in the 400-700 nm visible range. Still cooler materials can be formulated by also utilizing the phenomenon of fluorescence (photoluminescence). Ruby, Al 2O 3 :Cr, is a prime example, with efficient emission in the deep red (~694 nm) and near infrared (700-800 nm). A layer of synthetic ruby crystalsmore » on a white surface having an attractive red color can remain cooler in the sun than conventional red materials. Ruby particles can also be used as a red/pink pigment. Increasing the Cr:Al ratio produces a stronger (darker) pigment but doping above ~3 wt% Cr 2O 3 causes concentration quenching of the fluorescence. The system quantum efficiency for lightly doped ruby-pigmented coatings over white is high, 0.83 ± 0.10.« less

  9. A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots.

    PubMed

    Zhu, Jiali; Sun, Shan; Jiang, Kai; Wang, Yuhui; Liu, Wenqing; Lin, Hengwei

    2017-11-15

    Herein, a highly sensitive and selective fluorimetric nanoprobe for peroxynitrite (ONOO - ) detection based on photoinduced electron transfer (PET) from ferrocene (Fc) to carbon dots (CDs) is reported. The nanoprobe (named CDs-Fc) can be facilely constructed through covalently conjugating CDs and ferrocenecarboxylic acid. Further studies reveal that the energy level of highest occupied molecular orbital (HOMO) of the CDs is lowered with the addition of ONOO - due to its oxidation and nitration capabilities. Thus, an efficient electron transfer from Fc to the excited states of CDs could occur, leading to obvious fluorescence quenching. The fluorescence quenching of the nanoprobe was determined to be peroxynitrite concentrations dependence with a linear range between 4nM to 0.12μM. Thanks to the excellent optical properties of the CDs and efficient electron transfer efficiency from Fc to the excited CDs, the nanoprobe exhibits very high sensitivity to ONOO - with a limit of detection (LOD) of 2.9nM. To the best of our knowledge, this LOD is the highest reported value till today for the detection of peroxynitrite. Besides, the nanoprobe also shows excellent selectivity to ONOO - among a broad range of substances, even including other reactive oxygen/nitrogen species (ROS/RNS). Finally, the nanoprobe was verified to be very low cytotoxicity, and was successfully applied for intracellular ONOO - detection. This work would provide a promising tool for the research of ONOO - in cytobiology and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement

    PubMed Central

    2011-01-01

    Background When a fluorophore is placed in the vicinity of a metal nanoparticle possessing a strong plasmon field, its fluorescence emission may change extensively. Our study is to better understand this phenomenon and predict the extent of quenching and/or enhancement of fluorescence, to beneficially utilize it in molecular sensing/imaging. Results Plasmon field intensities on/around gold nanoparticles (GNPs) with various diameters were theoretically computed with respect to the distance from the GNP surface. The field intensity decreased rapidly with the distance from the surface and the rate of decrease was greater for the particle with a smaller diameter. Using the plasmon field strength obtained, the level of fluorescence alternation by the field was theoretically estimated. For experimental studies, 10 nm GNPs were coated with polymer layer(s) of known thicknesses. Cypate, a near infrared fluorophore, was placed on the outermost layer of the polymer coated GNPs, artificially separated from the GNP at known distances, and its fluorescence levels were observed. The fluorescence of Cypate on the particle surface was quenched almost completely and, at approximately 5 nm from the surface, it was enhanced ~17 times. The level decreased thereafter. Theoretically computed fluorescence levels of the Cypate placed at various distances from a 10 nm GNP were compared with the experimental data. The trend of the resulting fluorescence was similar. The experimental results, however, showed greater enhancement than the theoretical estimates, in general. The distance from the GNP surface that showed the maximum enhancement in the experiment was greater than the one theoretically predicted, probably due to the difference in the two systems. Conclusions Factors affecting the fluorescence of a fluorophore placed near a GNP are the GNP size, coating material on GNP, wavelengths of the incident light and emitted light and intrinsic quantum yield of the fluorophore. Experimentally, we were able to quench and enhance the fluorescence of Cypate, by changing the distance between the fluorophore and GNP. This ability of artificially controlling fluorescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. PMID:21569249

  11. A "turn-on" fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme.

    PubMed

    Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie

    2011-06-15

    A novel and promising "turn-on" fluorescent Cu(2+) biosensor is designed based on graphene-DNAzyme catalytic beacon. Due to the essential surface and quenching properties of two-dimensional graphene, it can function as both "scaffold" and "quencher" of the Cu(2+)-dependent DNAzyme, facilitating the formation of self-assembled graphene-quenched DNAzyme complex. However, Cu(2+)-induced catalytic reaction disturbs the graphene-DNAzyme conformation, which will produce internal DNA cleavage-dependent effect. In this case, the quenched fluorescence in graphene-DNAzyme is quickly recovered to a large extent in 15 min. Compared with common DNAzyme-based sensors, the presented graphene-based catalytic beacon greatly improves the signal-to-background ratio, hence increasing the sensitivity (LOD=0.365 nM). Furthermore, the controllable DNA cleavage reaction provides an original and alternative internal method to regulate the interaction between graphene and DNA relative to the previous external sequence-specific hybridization-dependent regulation, which will open new opportunities for nucleic studies and sensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Spectroscopic study of binding of chlorogenic acid with the surface of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2017-09-01

    Understanding the interaction properties of biological materials with ZnO NPs is fundamental interest in the field of biotechnological applications as well as in the formation of optoelectronic devices. In this research, the binding of ZnO NPs and chlorogenic acid (CGA) were investigated using fluorescence quenching, UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Raman spectroscopy, scanning electron microscopy (TEM), and dynamic light scattering (DLS) techniques. The study results indicated the fluorescence quenching between ZnO NPs and CGA rationalized in terms of static quenching mechanism or the formation of nonfluorescent CGA-ZnO. From fluorescence quenching spectral analysis the binding constant ( K a ), number of binding sites ( n), and thermodynamic properties, were determined. The quenching constants ( K sv) and binding constant ( K a ), decrease with increasing the temperature and their binding sites n are 2. The thermodynamic parameters determined using Van't Hoff equation indicated binding occurs spontaneously involving the hydrogen bond and van der Walls forces played the major role in the reaction of ZnO NPs with CGA. The Raman, SEM, DLS, and Zeta potential measurements were also indicated the differences in the structure, morphology and sizes of CGA, ZnO NPs, and their corresponding CGA-ZnO due to adsorption of CGA on the surface of ZnO NPs

  13. Micro-scale temperature measurement method using fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Tatsumi, K.; Hsu, C.-H.; Suzuki, A.; Nakabe, K.

    2016-09-01

    A novel method that can measure the fluid temperature in microscopic scale by measuring the fluorescence polarization is described in this paper. The measurement technique is not influenced by the quenching effects which appears in conventional LIF methods and is believed to show a higher reliability in temperature measurements. Experiment was performed using a microchannel flow and fluorescent molecule probes, and the effects of the fluid temperature, fluid viscosity, measurement time, and pH of the solution on the measured fluorescence polarization degree are discussed to understand the basic characteristics of the present method. The results showed that fluorescence polarization is considerably less sensible to these quenching factors. A good correlation with the fluid temperature, on the other hand, was obtained and agreed well with the theoretical values confirming the feasibility of the method.

  14. Template-directed synthesis of silica nanotubes for explosive detection.

    PubMed

    Yildirim, Adem; Acar, Handan; Erkal, Turan S; Bayindir, Mehmet; Guler, Mustafa O

    2011-10-01

    Fluorescent porous organic-inorganic thin films are of interest of explosive detection because of their vapor phase fluorescence quenching property. In this work, we synthesized fluorescent silica nanotubes using a biomineralization process through self-assembled peptidic nanostructures. We designed and synthesized an amyloid-like peptide self-assembling into nanofibers to be used as a template for silica nanotube formation. The amine groups on the peptide nanofibrous system were used for nucleation of silica nanostructures. Silica nanotubes were used to prepare highly porous surfaces, and they were doped with a fluorescent dye by physical adsorption for explosive sensing. These porous surfaces exhibited fast, sensitive, and highly selective fluorescence quenching against nitro-explosive vapors. The materials developed in this work have vast potential in sensing applications due to enhanced surface area. © 2011 American Chemical Society

  15. Fluorimetric Studies of a Trans-Membrane Protein and Its Interactions with Differently Functionalized Silver Nanoparticles.

    PubMed

    Gambucci, Marta; Tarpani, Luigi; Zampini, Giulia; Massaro, Giuseppina; Nocchetti, Morena; Sassi, Paola; Latterini, Loredana

    2018-06-18

    Trans-membrane proteins play important roles in the inter-cellular signaling to regulate the interactions among adjacent cells and influence cell fate. The study of the interactions between membrane proteins and nanomaterials is paramount for the design of nanomaterial-based therapies. In the present work, the fluorescence properties of the trans-membrane receptor Notch2 have been investigated. In particular, steady state and time resolved fluorescence methods have been used to characterize the emission of tryptophan residues of Notch2 and then this emission is used to monitor the impact of silver colloids on protein behavior. To this aim, silver colloids are prepared with two different methods to make sure they bear hydrophilic (citrate ions, C-AgNPs) or hydrophobic (dodecanethiol molecules D-AgNPs) capping agents; the preparation procedures are tightly controlled in order to obtain metal cores with similar size distributions (7.4 ± 2.5 and 5.0 ± 0.8 nm, respectively), thus making easier the comparison of the results. The occurrence of strong interactions between Notch2 and D-AgNPs is suggested by the efficient and statistically relevant quenching of the stationary protein emission already at low nanoparticle concentrations (ca. 12% quenching with [D-AgNPs] = 0.6nM). The quenching becomes even more pronounced (ca. 60%) when [D-AgNPs] is raised to 8.72nM. On the other hand, the addition of increasing concentrations of C-AgNPs to Notch2 does not affect the protein fluorescence (intensity variations below 5%) indicating that negligible interactions are taking place. The fluorescence data, recorded in the presence of increasing concentrations of silver nanoparticles, are then analyzed through the Stern-Volmer equation and the sphere of action model to discuss the nature of the interactions. The effect of D-AgNPs on the fluorescence decay times of Notch2 is also investigated and a decrease of the average decay time is observed (from 4.64 to 3.42 ns). The observed variations of the stationary and time-resolved fluorescence behavior of the protein are discussed in terms of static and collisional interactions. These results document that the capping shell is able to drive the protein-particle interactions, which have likely a hydrophobic nature.

  16. Photophysical properties and fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene in zeolites

    NASA Astrophysics Data System (ADS)

    Pischel, Uwe; Galletero, Maria S.; García, Hermenegildo; Miranda, Miguel A.; Nau, Werner M.

    2002-06-01

    2,3-Diazabicyclo[2.2.2]oct-2-ene (DBO) was used as a long-lived fluorescent probe in zeolites (NaY, Na-mordenite, Na-ZSM-5, H-ZSM-5) and related oxide materials (all silica MCM-41, silica, silica-alumina, γ-alumina). The photophysical properties are dominated by a hydroxylic environment, caused by the inorganic framework and co-adsorbed water. The quenching of DBO by oxygen was strongly dependent on the type of zeolite. In ZSM-5 zeolites, the fluorescence decays were not monoexponential in the presence of oxygen (air).

  17. Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes.

    PubMed

    Roland, Felicia M; Peck, Evan M; Rice, Douglas R; Smith, Bradley D

    2017-04-19

    A new self-assembly process known as Synthavidin (synthetic avidin) technology was used to prepare targeted probes for near-infrared fluorescence imaging of anionic membranes and cell surfaces, a hallmark of many different types of disease. The probes were preassembled by threading a tetralactam macrocycle with six appended zinc-dipicolylamine (ZnDPA) targeting units onto a linear scaffold with one or two squaraine docking stations to produce hexavalent or dodecavalent fluorescent probes. A series of liposome titration experiments showed that multivalency promoted stronger membrane binding by the dodecavalent probe. In addition, the dodecavalent probe exhibited turn-on fluorescence due to probe unfolding during fluorescence microscopy at the membrane surface. However, the dodecavalent probe also had a higher tendency to self-aggregate after membrane binding, leading to probe self-quenching under certain conditions. This self-quenching effect was apparent during fluorescence microscopy experiments that recorded low fluorescence intensity from anionic dead and dying mammalian cells that were saturated with the dodecavalent probe. Conversely, probe self-quenching was not a factor with anionic microbial surfaces, where there was intense fluorescence staining by the dodecavalent probe. A successful set of rat tumor imaging experiments confirmed that the preassembled probes have sufficient mechanical stability for effective in vivo imaging. The results demonstrate the feasibility of this general class of preassembled fluorescent probes for multivalent targeting, but fluorescence imaging performance depends on the specific physical attributes of the biomarker target, such as the spatial distance between different copies of the biomarker and the propensity of the probe-biomarker complex to self-aggregate.

  18. Effects of iron on optical properties of dissolved organic matter.

    PubMed

    Poulin, Brett A; Ryan, Joseph N; Aiken, George R

    2014-09-02

    Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV-vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV-vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV-vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation-emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.

  19. Effects of iron on optical properties of dissolved organic matter

    USGS Publications Warehouse

    Poulin, Brett; Ryan, Joseph N.; Aiken, George R.

    2014-01-01

    Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron(II) and iron(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron(III). Correction factors were derived using iron(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E2:E3) and spectral slope ratios (SR) of DOM samples. Both iron(II) and iron(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.

  20. Specific detection of Vibrio parahaemolyticus by fluorescence quenching immunoassay based on quantum dots.

    PubMed

    Wang, Ling; Zhang, Junxian; Bai, Haili; Li, Xuan; Lv, Pintian; Guo, Ailing

    2014-07-01

    In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43%. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC · HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764%. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.

  1. Photophysical behavior of new acridine(1,8)dione dyes.

    PubMed

    Cabanzo Hernández, Rafael; David Gara, Pedro M; Velasco, Daniel Molina; Erra-Balsells, Rosa; Bilmes, Gabriel M

    2013-11-01

    The photophysical behavior of five acridine(1,8)dione dyes of biological interest was studied by absorption and fluorescence spectroscopy, photoacoustics and time resolved phosphorescence techniques. The results obtained in ethanol and acetonitrile solutions show that the main spectroscopic and photophysical parameters of these compounds depend strongly on both the solvent and oxygen concentrations. Oxygen completely quenched the triplet state of all dyes. In nitrogen-saturated solutions, quantum efficiencies of triplet formation in ethanol were lower than those in acetonitrile.

  2. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids.

    PubMed

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-06-04

    Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  3. Effective binding of perhalogenated closo-borates to serum albumins revealed by spectroscopic and ITC studies

    NASA Astrophysics Data System (ADS)

    Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.

    2017-08-01

    The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.

  4. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Highly Fluorescent Metal-Organic-Framework Nanocomposites for Photonic Applications.

    PubMed

    Monguzzi, A; Ballabio, M; Yanai, N; Kimizuka, N; Fazzi, D; Campione, M; Meinardi, F

    2018-01-10

    Metal-organic frameworks (MOFs) are porous hybrid materials built up from organic ligands coordinated to metal ions or clusters by means of self-assembly strategies. The peculiarity of these materials is the possibility, according to specific synthetic routes, to manipulate both the composition and ligands arrangement in order to control their optical and energy-transport properties. Therefore, optimized MOFs nanocrystals (nano-MOFs) can potentially represent the next generation of luminescent materials with features similar to those of their inorganic predecessors, that is, the colloidal semiconductor quantum dots. The luminescence of fluorescent nano-MOFs is generated through the radiative recombination of ligand molecular excitons. The uniqueness of these nanocrystals is the possibility to pack the ligand chromophores close enough to allow a fast exciton diffusion but sufficiently far from each other preventing the aggregation-induced effects of the organic crystals. In particular, the formation of strongly coupled dimers or excimers is avoided, thus preserving the optical features of the isolated molecule. However, nano-MOFs have a very small fluorescence quantum yield (QY). In order to overcome this limitation and achieve highly emitting systems, we analyzed the fluorescence process in blue emitting nano-MOFs and modeled the diffusion and quenching mechanism of photogenerated singlet excitons. Our results demonstrate that the excitons quenching in nano-MOFs is mainly due to the presence of surface-located, nonradiative recombination centers. In analogy with their inorganic counterparts, we found that the passivation of the nano-MOF surfaces is a straightforward method to enhance the emission efficiency. By embedding the nanocrystals in an inert polymeric host, we observed a +200% increment of the fluorescence QY, thus recovering the emission properties of the isolated ligand in solution.

  6. Fluorescence studies on binding of pyrene and its derivatives to humic acid

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Maki, M.; Ishikawa, F.; Yoshikawa, T.; Gong, Y.-K.; Miyajima, T.

    2007-07-01

    Binding of pyrene (PyH) and its derivatives to humic acid (HA) has been studied by fluorescence spectroscopy. The nature of the interaction between HA and pyrene derivatives are extensively investigated by employing three derivatives ranging from anionic to cationic compounds: 1-pyrenebutylic acid (PyA), 1-pyrenemethanol (PyM), and 1-pyrenebutyltrimethylammonium bromide (PyB). Binding constants between HA and PyX (X = H, A, M, B) are obtained by steady-state fluorescence quenching techniques, and it is found that PyB has a markedly large binding constant among the pyrene family. This is attributed to a strong electrostatic interaction between cationic PyB and anionic HA. The result suggests that an electrostatic interaction plays a dominant role in binding of pyrenes to humic acid. The importance of electrostatic interaction was also confirmed by a salt effect on the binding constant. Influence of collisional quenching on the binding constant, which causes overestimation of the binding constant, was examined by time-resolved fluorescence spectroscopy as well as temperature effect in steady-state fluorescence measurements. It is elucidated that collisional quenching does not much bring overestimation into the binding constants.

  7. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    PubMed

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  8. Synthesis of a novel fluorescent probe based on 7-nitrobenzo-2-oxa-1,3-diazole skeleton for the rapid determination of vitamin B12 in pharmaceuticals.

    PubMed

    Shang, Zhuo Bin; Wen, Ya Juan; Yan, Xiao Qing; Sun, Huan He; Wang, Yu; Jin, Wei Jun

    2014-09-01

    A new fluorescent probe, 4-N,N-di(2-hydroxyethyl)imino-7-nitrobenzo-2-oxa-1,3-diazole (HINBD) was synthesized in a single step with reasonably good yield. The water-soluble HINBD emits strongly in the visible region (λex  = 479 nm, λem  = 545 nm) and is stable over a wide range of pH values. It was found that vitamin B12 (VB12 ) had the ability to quench the fluorescence of HINBD, and the quenched fluorescence intensity was proportional to the concentration of VB12 . A method for VB12 determination based on the quenching fluorescence of HINBD was thus established. Interference effects of various substances, including sugars, vitamins, amino acids, inorganic cations and some organic substances have been studied. Under optimal conditions, the linear range is 0.0-2.4 × 10(-5)  mol/L. The determination limit is 8.3 × 10(-8)  mol/L. The method was applied to measure VB12 in pharmaceutical preparations with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Measuring the Quenching of no Fluorescence Produced from the Excitation of Photo-Fragmented Nitrobenzene Using a Picosecond Laser.

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Tanjaroon, Chakree; Johnson, J. Bruce; Reeve, Scott W.; Allen, Susan D.

    2013-06-01

    The military is interested in using spectroscopic methods to detect nitroaromatic compounds related to explosives. Upon absorption of a UV photon, nitrobenzene can dissociate into C_6H_5O and NO. Wynn, et al. have shown that looking at NO fluorescence from the photodissociated nitrobenzene could be a possible detection method. However, the fluorescence can easily be quenched by molecular oxygen and other constituents in air. We have measured fluorescence lifetimes of the nascent NO resulting from photo-fragmented nitrobenzene using a pulsed picosecond tunable laser (pulse width ≈15 ps) by means of a two-color process. In the two-color process, photons of a particular energy dissociated the nitrobenzene while photons of a different energy probed the A^2Σ^+← X^2Π_{(1/2,3/2)} NO band system between 225-260 nm. We have performed the measurements with different background pressures of He, N_2, and air. We present the results of these measurements which indicate considerable quenching of the NO fluorescence due to oxygen. Wynn, C. M.; Palmacci, S.; Kunz, R. R.; and Rothschild, M.Opt. Express, OSA, 2010, 18, 5399-5406

  10. Enantioselective binding of L, D-phenylalanine to ct DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng

    2009-10-01

    The enantioselective binding of L, D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of L, D-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.

  11. Enantioselective binding of L,D-phenylalanine to ct DNA.

    PubMed

    Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng

    2009-10-15

    The enantioselective binding of L,D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of l,d-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.

  12. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-09-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives--everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively--fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  13. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films.

    PubMed

    Geng, Yan; Ali, Mohammad A; Clulow, Andrew J; Fan, Shengqiang; Burn, Paul L; Gentle, Ian R; Meredith, Paul; Shaw, Paul E

    2015-09-15

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  14. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    PubMed Central

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-01-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy. PMID:26370931

  15. Exciplex formation accompanied with excitation quenching.

    PubMed

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  16. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium

    NASA Astrophysics Data System (ADS)

    Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar

    2017-06-01

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.

  17. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium.

    PubMed

    Kaur, Manjot; Mehta, Surinder K; Kansal, Sushil Kumar

    2017-06-05

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16μM with detection limit (LOD) of 0.92μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain.

    PubMed

    Sahoo, Harekrushna; Roccatano, Danilo; Zacharias, Martin; Nau, Werner M

    2006-06-28

    Fluorescence resonance energy transfer (FRET) between tryptophan (Trp) as donor and 2,3-diazabicyclo[2.2.2]oct-2-ene (Dbo) as acceptor was studied by steady-state and time-resolved fluorescence spectroscopy. The unique feature of this FRET pair is its exceptionally short Förster radius (10 A), which allows one to recover distance distributions in very short structureless peptides. The technique was applied to Trp-(GlySer)n-Dbo-NH2 peptides with n = 0-10, for which the average probe/quencher distance ranged between 8.7 and 13.7 A experimentally (in propylene glycol, analysis according to wormlike chain model) and 8.6-10.2 A theoretically (for n = 0-6, GROMOS96 molecular dynamics simulations). The larger FRET efficiency in steady-state compared to time-resolved fluorescence experiments was attributed to a static quenching component, suggesting that a small but significant part (ca. 10%) of the conformations are already in van der Waals contact when excitation occurs.

  19. Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs.

    PubMed

    Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng

    2015-06-16

    A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Two-photon oxygen nanosensors based on a conjugated fluorescent polymer doped with platinum porphyrins.

    PubMed

    Wang, Xiao-Hui; Peng, Hong-Shang; Cheng, Kun; Liu, Xiao-Ming; Liu, Yuan-An; Yang, Wei

    2018-04-27

    Ratiometric fluorescent nanoparticles (NPs) under two-photon excitation are successfully developed for sensing dissolved oxygen. The NPs comprise the oxygen probe Pt(II)-porphyrins (PtTFPP) and fluorescent organic semiconducting polymer (PFO). PFO polymer acts as both a two-photon antenna and a reference dye, while PtTFPP absorbs the photonic energy transferred by the PFO under two-photon excitation at 740 nm to sense oxygen. The red fluorescence of PtTFPP is sensitive to oxygen with a quenching response of 88% from nitrogen saturation to oxygen saturation, and PFO gives oxygen-insensitive referenced blue fluorescence. The fluorescence quenching of the NPs against oxygen at two-photon excitation follows a linear Stern-Volmer behavior. The nanosensors exhibit low cytotoxic effects as well as effortless cellular uptake. When incorporated into cells, the ratio of the signals increases up to about 500% from oxygen-saturated to oxygen-free environment.

  1. Use of induced fluorescence measurements to assess aluminum-organic interactions in acidified lakes

    NASA Technical Reports Server (NTRS)

    Vodacek, A.; Philpot, W. D.

    1985-01-01

    The application of laser fluorosensing to the tracing of metals in acid lakes is proposed. The effects of the metals on the dissolving organic carbon (DOC) fluorescence is studied using laboratory mixed water samples and natural water samples from Hamilton and Big Moose Lakes in New York. The operation of the laser fluorosensing system employed in the experiment is described. The DOC fluorescence was quenched by Al, Cu, and Fe, and the relation between pH and the quenching rate is examined. The humic substances fluorescence spectra are analyzed to estimate the concentrations of DOC in water and the relative concentration of Al. The interference problems caused by chemical competition between metal ions and ligands, and changes in the background DOC fluorescence are discussed. It is noted that an airborne laser fluorescence is useful for detecting elevated concentrations of metals.

  2. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

    PubMed Central

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-01-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566

  3. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP.

    PubMed

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-07-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain.

  4. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants.

    PubMed

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-25

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200×10(-5) mol L(-1). In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.

    PubMed

    Lepetit, Bernard; Gélin, Gautier; Lepetit, Mariana; Sturm, Sabine; Vugrinec, Sascha; Rogato, Alessandra; Kroth, Peter G; Falciatore, Angela; Lavaud, Johann

    2017-04-01

    Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    PubMed

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    PubMed

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Optical gain characteristics of C 460 and C 450.

    PubMed

    Sharma, Vijay K; Sahare, P D; Pandey, A; Mohan, D

    2003-03-15

    Dye concentration dependent gain spectra for Coumarin 460 (C 460) and Coumarin 450 (C 450) in ethanol have been studied using Amplified Spontaneous Emission (ASE) technique under Nitrogen laser (337.1 nm) excitation in the concentration range 10(-2)-10(-5) m/l. The dependence of lasing wavelength and peak gain on concentration have been understood in terms of variation of fluorescence lifetime, which is due to photo-physical processes such as radiation trapping and concentration-quenching. Pump intensity dependence of efficiency is also explained in terms of fluorescence lifetime. A comparison of the stability of the two dyes has also been made on the basis of the functional groups at different positions of the basic coumarin. Copyright 2002 Elsevier Science B.V.

  9. The effect of concentration of guanidine hydrochloride on the sulfasalazine serum albumin complex

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Równicka, J.; Pożycka, J.; Bojko, B.; Sułkowski, W. W.

    2005-06-01

    A detailed study of the effect of Gu·HCl concentration is presented in this work. Destabilization of the tertiary structure of BSA was observed by using fluorescence measurements of excitation wavelength of 280 and 295 nm. We ascertained that in terms of the effect on the fluorescence emission spectrum of BSA, Gu·HCl concentration falls into three regions: I, 0.1-1.6 M; II, 1.6-3 M and III, 3-6 M. The intermediate state of BSA denaturation for 1.6-1.7 M Gu·HCl was noticed. Quenching of the native BSA fluorescence by sulfasalazine (SSZ), a drug used in inflammatory bowel disease, was shown. In the presence of Gu·HCl, BSA fluorescence rises or decreases depending on the concentration region I or II, respectively. A similar effect of Gu·HCl on the fluorescence spectrum of BSA, quenched by sulfasalazine, can be found. However, Gu·HCl concentration-dependent reduction of the quenching effect of the SSZ points to the gradual loss of the binding properties. Binding and quenching constants for the SSZ-BSA complexes were calculated in the absence and presence of the denaturant. Since Gu·HCl at concentration 0.1-1.6 M increases and at concentration 1.6-3 M decreases the BSA fluorescence, the mechanism of the destabilization of the native structure of serum albumin differs for these two ranges of Gu·HCl concentration. The small concentration of the denaturant causes a disorder in the hydration layer of the albumin and the higher one causes the binding of the denaturant molecule close to the Trp 135 in the IB subdomain.

  10. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Binding of naproxen enantiomers to human serum albumin studied by fluorescence and room-temperature phosphorescence

    NASA Astrophysics Data System (ADS)

    Lammers, Ivonne; Lhiaubet-Vallet, Virginie; Ariese, Freek; Miranda, Miguel A.; Gooijer, Cees

    2013-03-01

    The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) × 105 M-1 for (S)-NPX and (3.9 ± 0.6) × 105 M-1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern-Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern-Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 × 105 M-1 for both enantiomers.

  12. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  13. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.

    PubMed

    Guo, Linjuan; Zu, Baiyi; Yang, Zheng; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2014-01-01

    For the first time, flexible PVP/pyrene/APTS/rGO fluorescent nanonets were designed and synthesized via a one-step electrospinning method to detect representative subsaturated nitroaromatic explosive vapor. The functional fluorescent nanonets, which were highly stable in air, showed an 81% quenching efficiency towards TNT vapor (∼10 ppb) with an exposure time of 540 s at room temperature. The nice performance of the nanonets was ascribed to the synergistic effects induced by the specific adsorption properties of APTS, the fast charge transfer properties and the effective π-π interaction with pyrene and TNT of rGO. Compared to the analogues of TNT, the PVP/pyrene/APTS/rGO nanonets showed notable selectivity towards TNT and DNT vapors. The explored functionalization method opens up brand new insight into sensitive and selective detection of vapor phase nitroaromatic explosives.

  14. Use of microgravity to improve the efficiency and power output of Nd-doped laser glasses

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.

    1992-01-01

    The objectives of this research are to: (1) obtain further evidence and understand the science for the reported improvement in chemical homogeneity in glasses prepared in microgravity; and (2) study the feasibility of improving the optical and fluorescence properties, particularly, the limit for Nd(+3) concentration quenching and threshold energy for laser action for laser glasses prepared in microgravity. Attention was directed to ground based investigation whose primary purpose was to determine the suitability and conditions for processing these laser glasses in space. This report describes that the scientific and technical information required for planning flight experiments for these glasses have been obtained, and the preparation for handling and analyzing post flight samples have also been taken. Instruments required for measuring the fluorescence properties of interest have been constructed. The optical and fluorescence properties for the glasses have been measured and made available for comparative property analysis.

  15. Selective recognition of 6-mercaptopurine based on luminescent metal-organic frameworks Fe-MIL-88NH₂.

    PubMed

    Sun, Zhengjuan; Liu, Yali; Li, Yuanfang

    2015-03-15

    A novel and rapid spectrofluorometry method for the recognition of 6-mercaptopurine (6-MP) has been developed based on luminescent metal-organic frameworks Fe-MIL-88NH2 as fluorescent probe. The strong fluorescence of Fe-MIL-88NH2 at 430 nm could be quenched by 6-MP directly, and the Fe-MIL-88NH2 shows high selectivity for 6-MP compared to other thiol-containing amino acids such as homocysteine (Hcy), cysteine (Cys), glutathione (GSH), etc. Under optimal conditions, the relative fluorescence intensity was linearly proportional to the concentration of 6-MP in the range of 5-600 μM with the detection limit at 1.17 μM (S/N=3). Furthermore, the present approach has been successfully applied to the determination of 6-MP in human serum samples. The possible fluorescence quenching mechanism has also been investigated, where it is revealed that the quenching was attributed to competition of absorption of the light source energy as well as electron transfer between Fe-MIL-88NH2 and 6-MP. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetra­carboxylic acid: sensing of solvent polarity and explosive nitroaromatics

    PubMed Central

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-01-01

    An Mn metal–organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt’s solvent polarity parameter (E T N). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF. PMID:26306197

  18. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    PubMed

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  19. A fluorescent paramagnetic Mn metal-organic framework based on semi-rigid pyrene tetra-carboxylic acid: sensing of solvent polarity and explosive nitroaromatics.

    PubMed

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-09-01

    An Mn metal-organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt's solvent polarity parameter (E T (N)). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF.

  20. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabagiu, Sorina, E-mail: sgarabagiu@itim-cj.ro

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The interaction was studied using UV-vis and fluorescence spectroscopy. Black-Right-Pointing-Pointer Gold nanoparticles quench the fluorescence emission of hemoglobin solution. Black-Right-Pointing-Pointer The binding and thermodynamic constants were calculated. Black-Right-Pointing-Pointer Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV-vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longermore » wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern-Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.« less

  1. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  2. A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO42-, and Cr2O72- ions

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Xiaolei; Gao, Peng; Hu, Ming

    2018-02-01

    A europium coordination polymer constructed by the 4‧-(4-carboxyphenyl)- 2,2‧:6‧,2″-terpyridine ligand (HL), namely, [EuL(CH3COO)Cl]n (1), has been prepared by the solvothermal method. Compound 1 was structurally characterized by the elemental analysis, FT-IR, powder X-ray diffractions (PXRD), thermogravimetric (TG) analysis, and single-crystal X-ray diffraction. Complex 1 displays a novel linear chain structure, which further extends to the 3D supramolecular structure via π···π and hydrogen bonds interactions. The luminescent properties of 1 were investigated in detail, which exhibit the fluorescent sensing for detecting Fe3+, CrO42-, and Cr2O72- ions in aqueous solution, respectively. In addition, 1 shows high sensitive and selective sensing for CrO42- and Cr2O72- anions with the great quenching efficiency. Furthermore, the luminescent sensing mechanisms of differentiating analytes are explored in detail. It is worth noting that there exists the weak interaction between Fe3+ ions and carboxylate oxygen atoms of CH3COO- groups through XPS characterization, resulting in the high quenching effect of 1.

  3. Interaction mechanism between berberine and the enzyme lysozyme

    NASA Astrophysics Data System (ADS)

    Cheng, Ling-Li; Wang, Mei; Wu, Ming-Hong; Yao, Si-De; Jiao, Zheng; Wang, Shi-Long

    2012-11-01

    In the present paper, the interaction between model protein lysozyme (Lys) and antitumorigenic berberine (BBR) was investigated by spectroscopic methods, for finding an efficient and safe photosensitizer with highly active transient products using in photodynamic therapy study. The fluorescence data shows that the binding of BBR could change the environment of the tryptophan (Trp) residues of Lys, and form a new complex. Static quenching is the main fluorescence quenching mechanism between Lys and BBR, and there is one binding site in Lys for BBR and the type of binding force between them was determined to be hydrophobic interaction. Furthermore, the possible interaction mechanism between BBR and Lys under the photoexcitation was studied by laser flash photolysis method, the results demonstrated that BBR neutral radicals (BBR(-H)•) react with Trp (K = 3.4 × 109 M-1 s-1) via electron transfer to give the radical cation (Trp/NH•+) and neutral radical of Trp (TrpN•). Additionally BBR selectively oxidize the Trp residues of Lys was also observed by comparing the transient absorption spectra of their reaction products. Through thermodynamic calculation, the reaction mechanisms between 3BBR∗ and Trp or Lys were determined to be electron transfer process.

  4. A highly sensitive and selective fluorescent sensor for detection of sulfide anion based on the steric hindrance effect

    NASA Astrophysics Data System (ADS)

    Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin

    2018-01-01

    Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.

  5. Characterization of the organic ligand shell of semiconductor quantum dots by fluorescence quenching experiments.

    PubMed

    Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst

    2011-10-25

    We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.

  6. Pyrrolo-dC modified duplex DNA as a novel probe for the sensitive assay of base excision repair enzyme activity.

    PubMed

    Lee, Chang Yeol; Park, Ki Soo; Park, Hyun Gyu

    2017-12-15

    We develop a novel approach to determine formamidopyrimidine DNA glycosylase (Fpg) activity by taking advantage of the unique fluorescence property of pyrrolo-dC (PdC) positioned opposite to 8-oxoguanine (8-oxoG) in duplex DNA. In its initial state, PdC in duplex DNA undergoes the efficient stacking and collisional quenching interactions, showing the low fluorescence signal. In contrast, the presence of Fpg, which specifically removes 8-oxoG and incises resulting apurinic (AP) site, transforms duplex DNA into single-stranded (ss) DNAs. As a result, the intrinsic fluorescence signal of PdC in ssDNA is recovered to exhibit the significantly enhanced fluorescence signal. Based on this Fpg-dependent fluorescence response of PdC, we could reliably determine Fpg activity down to 1.25U/ml with a linear response from 0 to 50U/ml. In addition, the diagnostic capability of this strategy was successfully demonstrated by reliably assaying Fpg activity in human blood serum, showing its great potential in the practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of the photocatalytic activity of Ln3+-TiO2 nanomaterial using fluorescence technique for real wastewater treatment.

    PubMed

    Saif, M; Aboul-Fotouh, S M K; El-Molla, S A; Ibrahim, M M; Ismail, L F M

    2014-07-15

    Evaluation the photocatalytic activity of different Ln(3+) modified TiO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, xmol Ln(3+) modified TiO2 nanomaterials (Ln = Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+) and Er(3+) ions; x = 0.005, 0.008, 0.01, 0.02 and 0.03) were synthesized by sol-gel method and characterized using different advanced techniques. The photocatalytic efficiency of the modified TiO2 expressed in the charge carrier separation and OH radicals formation were assigned using TiO2 fluorescence quenching and fluorescence probe methods, respectively. The obtained fluorescence measurements confirm that doping treatment significantly decreases the electron-hole recombination probability in the obtained Ln(3+)/TiO2. Moreover, the rate of OH radicals formation is increased by doping. The highly active nanoparticles (0.02Gd(3+)/TiO2 and 0.01Eu(3+)/TiO2) were applied for industrial wastewater treatment using solar radiation as a renewable energy source. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    NASA Astrophysics Data System (ADS)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  9. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE PAGES

    Zhao, Fangchao; Wei, Ying; Xu, Hui; ...

    2017-05-17

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  10. Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fangchao; Wei, Ying; Xu, Hui

    Due to the poor operational lifetime of blue phosphorescent dopants and blue thermally activated delayed fluorescent (TADF) materials, hybrid white organic light-emitting diodes (WOLEDs) with conventional blue fluorescent emitters are still preferred for commercial applications in general lighting. However, the improvement in the overall efficiency of hybrid WOLEDs has been limited due to energy losses during the energy transfer process and exciton quenching after the spatial separation of the singlet and triplet excitons. Here we demonstrate the development of a Spatial Exciton Allocation Strategy (SEAS) to achieve close to 100% internal quantum efficiency (IQE) in blue-yellow complementary color hybrid WOLEDs.more » The employed blue fluorophore not only has a resonant triplet level with the yellow phosphor to reduce energy loss during energy transfer processes and triplet–triplet annihilation (TTA), but also has a resonant singlet level with the electron transport layer to extend singlet exciton distribution and enhance both singlet and triplet exciton utilization. Thus, the resulting hybrid WOLEDs exhibited 104 lm W -1 efficacy at 100 cd m -2 and 74 lm W -1 at 1000 cd m -2 with CIE coordinates of (0.42, 0.44) which is warm white and suitable for indoor lighting.« less

  11. Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.

  12. Fluorescence quenching near small metal nanoparticles.

    PubMed

    Pustovit, V N; Shahbazyan, T V

    2012-05-28

    We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.

  13. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification.

    PubMed

    Xiao, Kunyi; Liu, Juan; Chen, Hui; Zhang, Song; Kong, Jilie

    2017-05-15

    A label-free and high-efficient graphene oxide (GO)-based aptasensor was developed for the detection of low quantity cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and dye-labeled linker DNAs stably coexisted in solution, and the fluorescence was quenched by the GO-based FÖrster resonance energy transfer (FRET) process. In the presence of target cells, the specific binding of HAPs with the target cells triggered a conformational alternation, which resulted in linker DNA complementary pairing and cleavage by nicking endonuclease-strand scission cycles. Consequently, more cleaved fragments of linker DNAs with more the terminal labeled dyes could show the enhanced fluorescence because these cleaved DNA fragments hardly combine with GOs and prevent the FRET process. Fluorescence analysis demonstrated that this GO-based aptasensor exhibited selective and sensitive response to the presence of target CCRF-CEM cells in the concentration range from 50 to 10 5 cells. The detection limit of this method was 25 cells, which was approximately 20 times lower than the detection limit of normal fluorescence aptasensors without amplification. With high sensitivity and specificity, it provided a simple and cost-effective approach for early cancer diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    PubMed

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CdTe/ZnS quantum dots as fluorescent probes for ammonium determination.

    PubMed

    Yi, Kui-Yu

    2016-06-01

    Novel CdTe/ZnS quantum dot (QD) probes based on the quenching effect were proposed for the simple, rapid, and specific determination of ammonium in aqueous solutions. The QDs were modified using 3-mercaptopropionic acid, and the fluorescence responses of the CdTe/ZnS QD probes to ammonium were detected through regularity quenching. The quenching levels of the CdTe/ZnS QDs and ammonium concentration showed a good linear relationship between 4.0 × 10(-6) and 5.0 × 10(-4) mol/L; the detection limit was 3.0 × 10(-7) mol/L. Ammonium contents in synthetic explosion soil samples were measured to determine the practical applications of the QD probes and a probable quenching mechanism was described. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. [Studies on the action features between cefuroxime axetil and bovine serum albumin].

    PubMed

    Wu, Gang-ke; Yan, Cheng-nong; Liu, Yi

    2008-09-01

    Under different temperatures and physiological conditions, with cefuroxime axetil concentrations in the range of 1.959 X 10(-6) to 13.71 X 10(-6) mol x L(-1), and bovine serum albumin (BSA) concentrations at 2.0 X 10(-6) mol x L(-1), the interaction between cefuroxime axetil and BSA was studied by fluorescence spectroscopy, three-dimensional fluorescence spectrum, synchronous fluorescence spectrum and UV-Vis absorption spectroscopy. After analyzing and processing the fluorescence quenching data at different temperatures according to Sterm-Volmer equation, Lineweaver-Burk equation and thermodynamic equation, the average value of the apparent binding constant (K(LB): 3.907 X 10(6) L x mol(-1)), and thermodynamics parameters (enthalpy change delta H: -13.43 kJ x mol(-1), entropy change delta S: 81.90 J x K(-1) and standard Gibbs free energy change delta G0: -38.34 kJ x mol(-1)) were calculated, and the amounts of binding sites (n: 1.042)were measured. The fluorescence quenching mechanism of BSA after cefuroxime axetil was added was discussed. BSA was bound with cefuroxime axetil and formed a new compound. The quenching belonged to static fluorescence quenching. The thermodynamic parameters agree with delta H approximately 0, delta S > 0 and delta G0 < 0, and the binding reaction is mainly entropy-driven and electro-static interaction force plays a major role in the reaction. The maximum emission wavelength of Tyr and Trp had an obvious red shift in the synchronous fluorescence spectra, the fluorescence emission wavelength of two peaks had a blue shift in the three-dimensional fluorescence spectrum of BSA in the presence of cefuroxime axetil and the maximum absorbtion wavelenghs of three systems in the UV-Vis absorption spectra were obviously different. These showed that the changes in the micro-environment of Tyr and Trp and demonstrated that the conformation of BSA changed as cefuroxime axetil had been added. This provides important information for discussing the configuration modification of BSA because of the added cefuroxime axetil, and for elucidating the pharmacological effects of cefuroxime axetil and biological effects in the organism.

  17. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Song, Daqian; Kan, Yuhe; Xu, Dong; Tian, Yuan; Zhou, Xin; Zhang, Hanqi

    2005-11-01

    The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 °C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the Föster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.

  18. Evidence of bovine serum albumin-viologen herbicide binding interaction and associated structural modifications

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Saxena, Shailendra K.; Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh

    2017-07-01

    The binding ability of viologen herbicide with bovine serum albumin (BSA) has been investigated to understand viologen associated hazards by investigating ethyl viologen's (EV) binding using various spectroscopies and in-silico molecular docking approaches. Apparent association constant (1.3 × 104 L/mol), calculated using UV-Vis spectra indicating a moderate complex formation between BSA and EV. A static mode of fluorescence quenching has been observed as evident from inverse temperature dependence of Stern-Volmer quenching constant which also confirms an EV-BSA complex formation. Emission and time resolved fluorescence studies reveal that the emission quenching of BSA with EV is initiated by static quenching mechanism. A moderately strong binding affinity between EV and BSA has been observed (binding constant value of 7.58 × 104 L/Mol) using fluorescence quenching titration, obtained at 298 K. Quantitative measurements of thermodynamic parameters like enthalpy and entropy changes clearly indicates hydrophobic force responsible for EV-BSA complex formation. The binding distance between EV and BSA was found to be 4.48 nm are involved in non-radiative energy transfer process. Furthermore, from the circular dichroism spectra it was observed that addition of EV is also found to change the secondary structure of BSA which leads to decrease in α-helix. Above mentioned results are found to be in consonance with molecular docking simulations and supports the EV-BSA binding.

  19. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.

    PubMed

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M

    2018-04-26

    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  20. A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution

    USDA-ARS?s Scientific Manuscript database

    Nanoparticles (NP) can modify fluorophore fluorescence in solution through multiple pathways that include fluorescence inner filter effect (IFE), dynamic and static quenching, surface enhancement, and fluorophore quantum yield variation associated with structural and conformational modifications ind...

Top