Sample records for efficient forest products

  1. Below-cost timber sales and the political marketplace

    NASA Astrophysics Data System (ADS)

    Cortner, Hanna J.; Schweitzer, Dennis L.

    1993-01-01

    Political pressures exist to increase the economic efficiency of timber management and production on the national forests managed by the USDA Forest Service. There is growing belief both outside and within the Forest Service that current levels of timber production, and most particularly uneconomic timber production, should be reduced. Many argue that eliminating uneconomic timber management programs will both save money and reduce environmental degradation. This article traces the political evolution of the focus on economic efficiency in timber production and explores the political-institutional factors that are shaping the current policy debate. The below-cost issue is less about economic efficiency than it is about political advantage and alternative political visions of the societal role of the nation's national forests now and in the future.

  2. National workshop on forest productivity & technology: cooperative research to support a sustainable & competitive future - progress and strategy

    Treesearch

    Eric D. Vance

    2010-01-01

    The Agenda 2020 Program is a partnership among government agencies, the forest products industry, and academia to develop technology capable of enhancing forest productivity, sustaining environmental values, increasing energy efficiency, and improving the economic competitiveness of the United States forest sector. In November 2006, the USDA Forest Service, in...

  3. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  4. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  5. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Treesearch

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  6. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  7. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure. Schematic diagram of complete modelled forest system including ecological and technological components, showing major flows of carbon.

  8. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    PubMed

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  9. Effect of Forest Management of Picea abies and Fagus sylvatica with Different Types of Felling on Carbon and Economic Balances in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Plch, Radek; Pulkrab, Karel; Bukáček, Jan; Sloup, Roman; Cudlín, Pavel

    2016-10-01

    The selection of the most sustainable forest management under given site conditions needs suitable criteria and indicators. For this purpose, carbon and economic balance assessment, completed with environmental impact computation using the Life Cycle Assessment (LCA) were used. The aim of this study was to compare forestry operations and wood production of selected forest stands with different i) tree species composition (Norway spruce - Picea abies and European beech - Fagus sylvatica) and ii) type of felling (chainsaw and harvester). Carbon and economic balance methods consist in the comparison of quantified inputs (fossil fuels, electricity, used machinery, fertilizers, etc., converted into emission units of carbon in Mg of C- CO2-eq. or EUR) with quantified outputs (biomass production in Mg of carbon or EUR). In this contribution, similar forest stands (“forest site complexes”) in the 4th forest vegetation zone (in the Czech Republic approximately 400-700 m above sea-level) were selected. Forestry operations were divided into 5 main stages: i) seedling production, ii) stand establishment and pruning, iii) thinning and final cutting, iv) skidding, and v) secondary timber transport and modelled for one rotation period of timber production (ca. 100 years). The differences between Norway spruce and European beech forest stands in the carbon efficiency were relatively small while higher differences were achieved in the economic efficiency (forest stands with Norway spruce had a higher economic efficiency). Concerning the comparison of different types of felling in Norway spruce forest stands, the harvester use proved to induce significantly higher environmental impacts (emission of carbon) and lower economic costs. The comparison of forestry operation stages showed that the main part of carbon emissions, originating from fuel production and combustion, is connected with a thinning and final cutting, skidding and secondary timber transport in relations to different types of felling.

  10. Near Infrared Spectroscopy in the Forest Products Industry, Forest Products Journal

    Treesearch

    Chi-Leung So; Brian K. Via; Leslie H. Groom; Laurence R. Schimleck; Todd F. Shupe; Stephen S. Kelley; Timothy G. Rials

    2004-01-01

    Improving manufacturing efficiency and increasing product worth requires the right combination of actions throughout the manufacturing process. Many innovations have been developed over the last several decades to achieve these goals. Innovations typically work their way backwards in the manufacturing process, with an increasing level of monitoring occurring at the...

  11. Efficient silvicultural practices for eastern hardwood management

    Treesearch

    Gary W. Miller; John E. Baumgras

    1994-01-01

    Eastern hardwood forests are now managed to meet a wide range of objectives, resulting in the need for silvicultural alternatives that provide timber, wildlife, aesthetics, recreation, and other benefits. However, forest management practices must continue to be efficient in terms of profiting from current harvests, protecting the environment, and sustaining production...

  12. Detecting and monitoring deforestation and forest degradation: Issues and obstacles for Southeast Asia

    Treesearch

    Douglas Muchoney; Sharon Hamann

    2013-01-01

    Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...

  13. Characteristics of Comminuted Forest Biomass

    Treesearch

    Jacob Sprinkle; Dana Mitchell

    2013-01-01

    Transpirational drying and in-woods production of microchips potentially improve the economic efficiency of energy production from forest-derived feedstocks, but yield materials with moisture contents, bulk densities, and particle size distributions that differ from more conventional feedstocks. Ongoing research suggests that transpirational drying reduces the moisture...

  14. Acid deposition and water use efficiency in Appalachian forests

    NASA Astrophysics Data System (ADS)

    Malcomb, J.

    2017-12-01

    Multiple studies have reported increases in forest water use efficiency in recent decades, but the drivers of these trends remain uncertain. While acid deposition has profoundly altered the biogeochemistry of Appalachian forests in the past century, its impacts on forest water use efficiency have been largely overlooked. Plant ecophysiology literature suggests that plants up-regulate transpiration in response to soil nutrient limitation in order to maintain sufficient mass flow of nutrients. To test the impacts of acid deposition on forest eco-hydrology in central Appalachia, we integrated dendrochronological techniques, including tree ring δ13C analysis, with catchment water balance data from the Fernow Experimental Forest in West Virginia. Tree cores from four species were collected in Fernow Watershed 3, which has received experimental ammonium sulfate additions since 1989, and Watershed 7, an adjacent control catchment. Initial results suggest that acidification treatments have not significantly influenced tree productivity compared to a control watershed, but the effect varies by species, with tulip poplar showing greatest sensitivity to acidification. Climatic water balance, defined as the difference between growing season precipitation and evapotranspiration, is significantly related to annual tree ring growth, suggesting that climate may be driving tree growth trends in chronically acidified Appalachian forests. Tree ring 13C analysis from Fernow cores is underway and these data will be integrated with catchment hydrology data from five other sites in central Appalachia and the U.S. Northeast, representing a range of forest types, soil base saturations, and acid deposition histories. This work will advance understanding of how climate and acid deposition interact to influence forest productivity and water use efficiency, and improve our ability to model carbon and water cycling in forested ecosystems impacted by acid deposition.

  15. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  16. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed Central

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  17. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-03-16

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  18. Automation for Primary Processing of Hardwoods

    Treesearch

    Daniel L. Schmoldt

    1992-01-01

    Hardwood sawmills critically need to incorporate automation and computer technology into their operations. Social constraints, forest biology constraints, forest product market changes, and financial necessity are forcing primary processors to boost their productivity and efficiency to higher levels. The locations, extent, and types of defects found in logs and on...

  19. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data

    Treesearch

    Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; David E. Hall; Michael J. Falkowski

    2008-01-01

    Meaningful relationships between forest structure attributes measured in representative field plots on the ground and remotely sensed data measured comprehensively across the same forested landscape facilitate the production of maps of forest attributes such as basal area (BA) and tree density (TD). Because imputation methods can efficiently predict multiple response...

  20. Remote sensing support for national forest inventories

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo

    2007-01-01

    National forest inventory programs are tasked to produce timely and accurate estimates for a wide range of forest resource variables for a variety of users and applications. Time, cost, and precision constraints cause these programs to seek technological innovations that contribute to measurement and estimation efficiencies and that facilitate the production and...

  1. Thinking about efficiency of resource use in forests

    Treesearch

    Dan Binkley; Jose Luiz Stape; Michael G. Ryan

    2004-01-01

    The growth of forests can be described as a function of the supply of resources, the proportion of resources captured by trees, and the efficiency with which trees use resources to fix carbon dioxide. This function can be modified to explain wood production by subtracting the allocation of biomass to other tissues and to respiration. At the scale of leaves and seconds...

  2. SOLVE II: A Technique to Improve Efficiency and Solve Problems in Hardwood Sawmills

    Treesearch

    Edward L. Adams; Daniel E. Dunmire

    1977-01-01

    The squeeze between rising costs and product values is getting tighter for sawmill managers. So, they are taking a closer took at the efficiency of their sawmills by making a complete analysis of their milling situation. Such an analysis requires considerable time and expense. To aid the manager with this task, the USDA Forest Service's Northeastern Forest...

  3. An exergy based assessment of the production and conversion of switchgrass, equine waste and forest residue to bio-oil using fast pyrolysis

    USDA-ARS?s Scientific Manuscript database

    The resource efficiency of biofuel production via biomass pyrolysis is evaluated using exergy as an assessment metric. Three feedstocks, important to various sectors of US agriculture, switchgrass, forest residue and equine waste are considered for conversion to bio-oil (pyrolysis oil) via fast pyro...

  4. Decision support models for economically efficient integrated forest management

    Treesearch

    Hans R. Zuuring; Judy M. Troutwine; Greg J. Jones; Janet Sullivan

    2005-01-01

    Forest managers are challenged to fulfill conflicting social, biological, and commodity production objectives. To wisely use available, scarce resources for management activities, it is not enough to consider short term costs and effects of management (fuel reduction, planting, or other forest treatments). Long term tactical, spatial and temporal planning is needed to...

  5. Wastewater and Sludge Nutrient Utilization in Forest Ecosystems

    Treesearch

    D.G. Brockway; D.H. Urie; P.V. Nguyen; J.B. Hart

    1986-01-01

    Although forest ecosystems have evolved efficient mechanisms to assimilate and retain modest levels of annual geochemical input, their productivity is frequently limited by low levels of available nutrients. A review of research studies conducted in the major U.S. forest regions indicates that the nutrients and organic matter in wastewater and sludge representa...

  6. Enhanced light use efficiency as a mechanism for forest carbon storage resilience following disturbance

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Hardiman, B. S.; Bohrer, G.; Maurer, K.; Nave, L. E.; Vogel, C. S.; Curtis, P.; University of Michigan Biological Station Forest Ecosystem STudy (FEST) Team

    2011-12-01

    Disturbances to forests such as those caused by herbivory, wind, pathogens, and age-related mortality may subtly alter canopy structure, with variable consequences for carbon (C) cycling. Forest C storage resilience following disturbance in which only a fraction of the canopy is defoliated may depend upon canopy structural shifts that compensate for lost leaf area by improving the efficiency of light-use by the altered canopy. In a forest at the University of Michigan Biological Station that is regionally representative of the northern Great Lakes, we initiated an experiment that examines forest C storage following subtle canopy disturbance. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is investigating how C storage changes as Great Lakes forests broadly undergo a transition in which early successional canopy trees die and give way to an assemblage of later successional canopy dominants. The experiment employs a suite of paired C cycling measurements within separate treatment and control meteorological flux tower footprints. Forest carbon storage, quantified as annual net ecosystem production (NEP) and net primary production (NPP), was resilient to partial canopy defoliation, with rapid structural changes improving canopy light-use efficiency (LUE). Declining aspen and birch leaf area was offset by new foliar growth from later successional species already present in the canopy; however, the distribution of foliage within the canopy became more heterogeneous following disturbance as patchy aspen and birch mortality produced gaps and the vertical structure of the forest diversified. These canopy structural alterations prompted by small-scale patchy disturbance may have permitted deeper light penetration into the canopy, decreasing the fraction of absorbed photosynthetically active radiation (PAR) while increasing the efficiency in which absorbed light was used to drive canopy C uptake. The result was little change in forest C storage in the first several years following disturbance. We conclude that forest C storage resilience depends not only on replacement of lost leaf area, but also on shifts in forest structure that permit greater efficiency of light-use to drive C storage. These findings suggest that structural changes in the canopy should be considered in addition to trajectories of leaf area recovery when predicting the extent and duration of disturbance-related shifts in forest C storage.

  7. A multi-scale assessment of forest primary production across the eastern USA using Forest Inventory and Analysis (FIA) and MODIS data

    NASA Astrophysics Data System (ADS)

    Kwon, Youngsang

    As evidence of global warming continues to increase, being able to predict the relationship between forest growth rate and climate factors will be vital to maintain the sustainability and productivity of forests. Comprehensive analyses of forest primary production across the eastern US were conducted using remotely sensed MODIS and field-based FIA datasets. This dissertation primarily explored spatial patterns of gross and net carbon uptake in the eastern USA, and addressed three objectives. 1) Examine the use of pixel- and plot-scale screening variables to validate MODIS GPP predictions with Forest Inventory and Analysis (FIA) NPP measures. 2) Assess the net primary production (NPP) from MODIS and FIA at increasing levels of spatial aggregation using a hexagonal tiling system. 3) Assess the carbon use efficiency (CUE) calculated using a direct ratio of MODIS NPP to MODIS GPP and a standardized ratio of FIA NPP to MODIS GPP. The first objective was analyzed using total of 54,969 MODIS pixels and co-located FIA plots to validate MODIS GPP estimates. Eight SVs were used to test six hypotheses about the conditions under which MODIS GPP would be most strongly validated. SVs were assessed in terms of the tradeoff between improved relations and reduced number of samples. MODIS seasonal variation and FIA tree density were the two most efficient SVs followed by basic quality checks for each data set. The sequential application of SVs provided an efficient dataset of 17,090 co-located MODIS pixels and FIA plots, that raised the Pearson's correlation coefficient from 0.01 for the complete dataset of 54,969 plots to 0.48 for this screened subset of 17,090 plots. The second objective was addressed by aggregating data over increasing spatial extents so as to not lose plot- and pixel-level information. These data were then analyzed to determine the optimal scale with which to represent the spatial pattern of NPP. The results suggested an optimal scale of 390 km2. At that scale MODIS and FIA were most strongly correlated while maximizing the number of observation. The maps conveyed both local-scale spatial structure from FIA and broad-scale climatic trends from MODIS. The third objective examined whether carbon use efficiency (CUE) was constant or variable in relation to forest types, and to geographic and climatic variables. The results indicated that while CUEs exhibited unclear patterns by forest types, CUEs are variable to other environmental variables. CUEs are most strongly related to the climatic factors of precipitation followed by temperature. More complex and weaker relationships were found for the geographic factors of latitude and altitude, as they reflected a combination of phenomenological driving forces. The results of the three objectives will help us to identify factors that control carbon cycles and to quantify forest productivity. This will help improve our knowledge about how forest primary productivity may change in relation to ongoing climate change.

  8. Soil Disturbance Monitoring in the USDA Forest Service, Pacific Northwest Region

    Treesearch

    Steven W. Howes

    2006-01-01

    In order to make reasoned decisions, USDA Forest Service managers must understand how changes in specific indicators of soil quality resulting from project implementation affect long-term forest productivity and watershed health. They must also be able to efficiently and economically assess the degree and extent of such changes across specified areas and adjust...

  9. Fuel Treatment Effects on Water Use Efficiency in Western Pine Forests Under Fire Suppression Evaluated Using Tree Ring Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Taylor, A. H.; Belmecheri, S.; Harris, L. B.

    2016-12-01

    We identified variation on water use efficiency interpreted from carbon 13 in tree ring cellulose in dense ponderosa pines forests in Washington and Arizona. Historically, these forests burned every decade until fires were suppressed beginning in the early twentieth century. The reduction in fire caused large increases in forest density and forest biomass and potential for intense fire. Forests with hazardous fuels are common in the western United States and these types of forests are treated with mechanical thinning and mechanical thinning and burning to reduce hazardous fuels and fire intensity. At each site we extracted tree ring samples from five trees in each treatment type and a control to identify the effects of fuel treatment of concentration of carbon 13 in tree ring cellulose. Water use efficiency as measured by carbon 13 increased after fuel treatments. Treatment effects were larger for the mechanical plus burn treatment than for the mechanical treatment in each study area compared to the control stands Our results suggest that fuel treatments reduce sensitivity of tree growth to climate and increase water use efficiency. Since tree ring carbon 13 is related to plant productivity, carbon 13 in tree rings can be used as a metric of change in ecosystem function for evaluating fuel treatments.

  10. Financial returns under uncertainty for conventional and reduced-impact logging in permanent production forests of the Brazilian Amazon

    Treesearch

    Frederick Boltz; Douglas R. Carter; Thomas P. Holmes; Rodrigo Pereira

    2001-01-01

    Reduced-impact logging (RIL) techniques are designed to improve the efficiency of timber harvesting while mitigating its adverse effects on the forest ecosystem. Research on RIL in select tropical forest regions has demonstrated clear ecological benefits relative to conventional logging (CL) practices while the financial competitiveness of RIL is less conclusive. We...

  11. Tree Size Inequality Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light Competition Model.

    PubMed

    Bourdier, Thomas; Cordonnier, Thomas; Kunstler, Georges; Piedallu, Christian; Lagarrigues, Guillaume; Courbaud, Benoit

    2016-01-01

    Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the effect of structural diversity on ecosystem productivity, tree size inequality is a major facet that should be taken into account.

  12. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    NASA Astrophysics Data System (ADS)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  13. Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.

    PubMed

    Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc

    2018-01-10

    European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.

  14. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport

    Treesearch

    D.R. Woodruff; F.C. Meinzer; B. Lachenbruch

    2008-01-01

    Growth and aboveground biomass accumulation follow a common pattern as tree size increases, with productivity peaking when leaf area reaches its maximum and then declining as tree age and size increase. Age- and size-related declines in forest productivity are major considerations in setting the rotational age of commercial forests, and relate to issues of carbon...

  15. Ecophysiology of a Mangrove Forest in Jobos Bay, Puerto Rico

    Treesearch

    ARIEL E. LUGO; ERNESTO MEDINA; ELVIRA CUEVAs; CINTR& #211; GILBERTO N; EDDIE N. LABOY NIEVES; SCH& #196; YARA EFFER NOVELLI

    2007-01-01

    We studied gas exchange, leaf dimensions, litter production, leaf and litterfall chemistry, nutrient flux to the forest floor, retranslocation rates, and nutrient use efficiency of mangroves in Jobos Bay, Puerto Rico. The fringe forest had a salinity gradient from the ocean (35‰) to a salt flat (100‰) and a basin (about 80‰). Red (Rhizophora mangle), white (...

  16. Adventitious Root Formation of Forest Trees and Horticultural Plants - From Genes to Applications

    USDA-ARS?s Scientific Manuscript database

    Adventitious root formation is a key step in the clonal propagation of forest trees and horticultural crops. Difficulties in forming adventitious roots (ARs) on stem cuttings and plants produced in vitro hinders the propagation of elite trees and efficient production of many horticultural plant spec...

  17. [Evaluation of economic forest ecosystem services in China].

    PubMed

    Wang, Bing; Lu, Shao-Wei

    2009-02-01

    This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests.

  18. Canopy structural complexity as a continental predictor of primary production: Using NEON to transform understanding of forest structure-function

    NASA Astrophysics Data System (ADS)

    Atkins, J. W.; Fahey, R. T.; Gough, C. M.; Hardiman, B. S.

    2016-12-01

    Ecosystem structure-function relationships represent a long-standing research area for ecosystem science. Relationships between canopy structural complexity (CSC) and net primary productivity (NPP), have been characterized for a limited number of sites, yet whether these relationships are conserved across eco-climatic boundaries remains unknown. We hypothesize an underlying mechanistic basis for global NPP-CSC linkages to include improved resource-use efficiency as CSC increases, examined here by correlating CSC with measures of light-use efficiency and nitrogen-use efficiency. Here we present a broad, continental scale analysis of CSC-NPP linkages. We are using multiple NEON sites coupled with other sites across a diverse array of temperate forest types spanning six eco-climatic domains of the continental United States to examine CSC-NPP relationships. Portable canopy LiDAR (PCL) data were used to calculate a suite of CSC metrics at the plot-level within each site. Ongoing work compares CSC to co-located measurements of wood net primary production estimated from the incremental change in woody biomass calculated using tree allometries. Results to date show CSC is highly variable across forest sites and may provide additional explanatory power for predicting NPP that is independent of other commonly used forest structural attributes such as leaf area index. CSC metrics such as rugosity vary widely across sites—ranging from high values (30 - 35) in complex canopies such as the Great Smoky Mountains to low values in open, savanna systems like North-Central Florida (< 0.5 - 2). NPP, and light- and nitrogen-use calculations are underway and will be paired with site-level CSC, with the expectation that CSC, resource-use efficiency, and NPP are positively correlated. Advancing understanding of how and why CSC affects forest NPP across a broad spatial dimension could transform mechanistic understanding of ecosystem structure-carbon cycling relationships, and greatly improve carbon cycling models and remote sensing applications, while providing a crucial linkage between the two.

  19. You'd better walk alone: Changes in forest composition affect pollination efficiency and pre-dispersal cone damage in Iberian Juniperus thurifera forests.

    PubMed

    Rodríguez-García, E; Mezquida, E T; Olano, J M

    2017-11-01

    Changes in land-use patterns are a major driver of global environmental change. Cessation of traditional land-use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind-pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators. We assessed the relative importance of forest composition on cone production, seed development and pre-dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre-dispersal arthropods were tested using mixed models. Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non-host plants reduces damage rates. However, the response of each arthropod to forest composition was species-specific and the relative rates of cone damage varied depending on individual tree crops. Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  20. Utilization and cost for animal logging operations

    Treesearch

    Suraj P. Shrestha; Bobby L. Lanford

    2001-01-01

    Forest harvesting with animals is a labor-intensive operation. Due to the development of efficient machines and high volume demands from the forest products industry, mechanization of logging developed very fast, leaving behind the traditional horse and mule logging. It is expensive to use machines on smaller woodlots, which require frequent moves if mechanically...

  1. Reform and efficiency of state-owned forest enterprises in Northeast China as “social firms”

    Treesearch

    Han Xue; Gregory E. Frey; Geng Yude; Frederick W. Cubbage; Zhang Zhaohui

    2018-01-01

    State-owned forest enterprises (SOFEs) in northeast China have experienced past economic loss andenvironmental degradation, causing government to seek reforms. Measurement of technical efficiencyallows us to evaluate overall trends and how reforms affect production of social and environmental goods.Previous assessments have used small samples, short time...

  2. The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands

    NASA Astrophysics Data System (ADS)

    Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner

    2017-04-01

    One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.

  3. Assessing management effects on Oak forests in Austria

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.; Hasenauer, Hubert

    2010-05-01

    Historic land use as well as silvicultural management practices have changed the structures and species composition of central European forests. Such changes have effects on the growth of forests and contribute to global warming. As insufficient information on historic forest management is available it is hard to explain the effect of management on forests growth and its possible consequences to the environment. In this situation, the BIOME-BGC model, which integrates the main physical, biological and physiological processes based on current understanding of ecophysiology is an option for assessing the management effects through tracking the cycling of energy, water, carbon and nutrients within a given ecosystems. Such models are increasingly employed to simulate current and future forest dynamics. This study first compares observed standing tree volume, carbon and nitrogen content in soil in the high forests and coppice with standards stands of Oak forests in Austria. Biome BGC is then used to assess the effects of management on forest growth and to explain the differences with measured parameters. Close positive correlations and unbiased results and statistically insignificant differences between predicted and observed volumes indicates the application of the model as a diagnostic tool to assess management effects in oak forests. The observed data in 2006 and 2009 was further compared with the results of respective model runs. Further analysis on simulated data shows that thinning leads to an increase in growth efficiency (GE), nitrogen use efficiency (NUE) and water use efficiency (WUE), and to a decrease in the radiation use efficiency (RUE) in both forests. Among all studied growth parameters, only the difference in the NUE was statistically significant. This indicates that the difference in the yield of forests is mainly governed by the NUE difference in stands due to thinning. The coppice with standards system produces an equal amount of net primary production while consuming significantly less nitrogen compared to the high forests.

  4. A conspiracy of optimism: Sustained yield, multiple use, and intensive management on the national forests, 1945-1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirt, P.W.

    1991-01-01

    This study focuses on two core national forest management policies; sustained yield and multiple use. Public and elected officials attempt to apply principles of sustainable development to publicly-owned forest lands to ensure that a wide variety of both market and nonmarket forest values are preserved for the benefit of present and future generations. Interest groups, the Forest Service, and policy makers have conceived of sustained yield and multiple use in different and evolving ways over the years. This study explores how these principles have been variously defined and either implemented or thwarted. After World War Two, with escalating demands onmore » national forest resources, the US Forest Service turned to intensive management as a technological method of enhancing natural forest productivity and mitigating the environmental effects of increased use. But the agency's optimistic vision of efficient, sustained production of forest commodities through technical mastery over nature has met overwhelming fiscal, environmental, technical, and political obstacles. Changing public values since the 1960s and popularization of ecology have initiated a growing skepticism toward the premises of intensive management.« less

  5. Snowmelt-Driven Trade-Offs Between Early and Late Season Productivity Negatively Impact Forest Carbon Uptake During Drought

    NASA Astrophysics Data System (ADS)

    Knowles, John F.; Molotch, Noah P.; Trujillo, Ernesto; Litvak, Marcy E.

    2018-04-01

    Future projections of declining snowpack and increasing potential evaporation are predicted to advance the timing of snowmelt in mountain ecosystems globally with unknown implications for snowmelt-driven forest productivity. Accordingly, this study combined satellite- and tower-based observations to investigate the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the Southern Rocky Mountain ecoregion, United States. Our results show that early and late season productivity were significantly and inversely related and that future shifts toward earlier and/or reduced snowmelt could decrease snowmelt water use efficiency and thus restrict productivity despite a longer growing season. This was explained by increasing snow aridity, which incorporated evaporative demand and snow water supply, and was modified by summer precipitation to determine total annual productivity. The combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34 year minimum ecosystem productivity that could be indicative of future conditions.

  6. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.

  7. Efficient utilization of short rotation tree biomass for cooking in India

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Chauhan, S. K.

    2012-04-01

    The human as well as livestock population increase is phenomenal in developing world including India. The survival of this huge population certainly depends on the carrying capacity of the natural systems, which is essentially determined by the nature itself. Present state of the forests can satisfy the needs of certain population and the demand for wood has rapidly outstripped the sustainability of forests. The fuelwood requirements in the developing world is approximately 80 per cent of total wood requirements and is the major cause of forest degradation. Therefore, there is need to maximize the productivity on one hand and protection/extention of the area on another hand. Wood substitution is an option including shifting from fuelwood for cooking to fossil fuels but in the changing climatic situation, this option is short term alternative. There is need to produce more and use the same efficiently to reduce the demands. Millions of households across the country are using crude cooking stoves for their daily needs which are not only energy inefficient but detrimental to women health also. It has been the policy of Government to encourage trees outside forests to minimize the pressure from forests through meeting requirements outside forests, which is possible through intensively managed short rotation forestry and also some initiatives have been taken to increase the fuelwood efficiency through improved cooking stove, which are working successfully. Woodfuel remained the most important source of household energy in India but regular attempts have not been made to improve the efficiency in its use. This paper will focus on potential of short rotation forestry plantations for energy consumption and its efficient use at domestic scale. This has three fold interrelated economic, environmental and social impact. Key words: Short Rotation Forestry, trees outside forests, wood energy, cooking stove

  8. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate.

    PubMed

    Marchi, Enrico; Chung, Woodam; Visser, Rien; Abbas, Dalia; Nordfjell, Tomas; Mederski, Piotr S; McEwan, Andrew; Brink, Michal; Laschi, Andrea

    2018-09-01

    The effective implementation of sustainable forest management depends largely on carrying out forest operations in a sustainable manner. Climate change, as well as the increasing demand for forest products, requires a re-thinking of forest operations in terms of sustainability. In this context, it is important to understand the major driving factors for the future development of forest operations that promote economic, environmental and social well-being. The main objective of this paper is to identify important issues concerning forest operations and to propose a new paradigm towards sustainability in a changing climate, work and environmental conditions. Previously developed concepts of forest operations are reviewed, and a newly developed concept - Sustainable Forest Operations (SFO), is presented. Five key performance areas to ensure the sustainability of forest operations include: (i) environment; (ii) ergonomics; (iii) economics; (iv) quality optimization of products and production; and (v) people and society. Practical field examples are presented to demonstrate how these five interconnected principles are relevant to achieving sustainability, namely profit and wood quality maximization, ecological benefits, climate change mitigation, carbon sequestration, and forest workers' health and safety. The new concept of SFO provides integrated perspectives and approaches to effectively address ongoing and foreseeable challenges the global forest communities face, while balancing forest operations performance across economic, environmental and social sustainability. In this new concept, we emphasize the role of wood as a renewable and environmentally friendly material, and forest workers' safety and utilization efficiency and waste management as additional key elements of sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew T. Hudak; Lee A. Vierling; Veraldo Liesenberg; Samuel P. C. e Carvalho; Luiz C. E. Rodriguez

    2016-01-01

    Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection...

  10. The Greek National Observatory of Forest Fires (NOFFi)

    NASA Astrophysics Data System (ADS)

    Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.

    2016-08-01

    Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS (PPGIS) tool.

  11. Physiological Ecology and Ecohydrology of Coastal Forested Wetlands

    USGS Publications Warehouse

    Krauss, Ken W.

    2007-01-01

    The form, function, and productivity of wetland communities are influenced strongly by the hydrologic regime of an area. Wetland ecosystems persist by depending upon surpluses of rainfall, evapotranspiration, soil moisture, and frequency and amplitude of water-level fluctuations. Yet, wetland vegetation can also influence ecosystem water economy through conservative water- and carbon-use strategies at several organizational scales. Scientists have described leaf-level water-use efficiency in coastal mangrove forests as being among the highest of any ecosystem. These forested wetlands occur in intertidal areas and often persist under flooded saline conditions. Are these same strategies used by other types of coastal forested wetlands? Do conservative water-use strategies reflect a consequence of salt balance more than efficiency in water use per se? At what organizational scales do these strategies manifest? These are just a few of the questions being answered by physiological and landscape ecologists at the U.S. Geological Survey National Wetlands Research Center (NWRC).

  12. An Evolutionary History of Oriented Strandboard (OSB)

    Treesearch

    John I. Zerbe; Zhiyong Cai; George B. Harpole

    2015-01-01

    To improve wood utilization efficiency, oriented strandboard (OSB) was developed; 80% of the wood removed from the forest can now be processed into marketable products. This manuscript describes the history of developing this most profitable wood product, OSB, and the early FPL contribution in development.

  13. Stakeholder engagement in scenario development process - bioenergy production and biodiversity conservation in eastern Finland.

    PubMed

    Haatanen, Anniina; den Herder, Michael; Leskinen, Pekka; Lindner, Marcus; Kurttila, Mikko; Salminen, Olli

    2014-03-15

    In this study participatory approaches were used to develop alternative forest resource management scenarios with particular respect to the effects on increased use of forest bioenergy and its effect on biodiversity in Eastern Finland. As technical planning tools, we utilized a forest management planning system (MELA) and the Tool for Sustainability Impact Assessment (ToSIA) to visualize the impacts of the scenarios. We organized a stakeholder workshop where group discussions were used as a participatory method to get the stakeholder preferences and insights concerning forest resource use in the year 2030. Feedback from the workshop was then complemented with a questionnaire. Based on the results of the workshop and a questionnaire we developed three alternative forest resource scenarios: (1) bioenergy 2030 - in which energy production is more centralized and efficient; (2) biodiversity 2030 - in which harvesting methods are more nature friendly and protected forests make up 10% of the total forest area; and (3) mixed bioenergy + biodiversity 2030 scenario - in which wood production, recreation and nature protection are assigned to the most suitable areas. The study showed that stakeholder engagement combined with the MELA and ToSIA tools can be a useful approach in scenario development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Application of GIS and integrated mathematic models on estimating forest land wood productiveness and solar energy use efficiency].

    PubMed

    Xing, Shihe; Lin, Dexi; Shen, Jinquan; Cao, Rongbin

    2005-10-01

    Based on the meteorological elements observation and mountain soil survey in Fujian Province, this paper approached the application of geographic information system (GIS) and integrated mathematic models on estimating the grid wood productiveness and solar energy use efficiency (SEUE) of regional forest land. The results showed that there was a significant quadratic correlation of annual mean temperature, precipitation and total solar radiation energy(TSRE) with longitude, latitude and altitude, and their multiple correlation coefficients ranged from 0.692 to 0.981. The regional annual mean TSRE, temperature and precipitation could be well estimated by GIS and integrated models of quadratic tendency curve, and linear, quadratic and quartic inverse distance weighted interpolation. These annual means estimated by the models did not differ greatly from observed data, and the t test values were 1.29, 0.12 and 0.06, respectively. The grid wood productiveness and SEUE of regional forest land in Fujian could also be well estimated with the aid of GIS and integrated models, which ranged from 2.32 m3 x hm(-2) yr(-1) to 18.61 m3 x hm(-2) yr(-1) and from 0.11% to 0.91%, respectively.

  15. Global land use change, economic globalization, and the looming land scarcity.

    PubMed

    Lambin, Eric F; Meyfroidt, Patrick

    2011-03-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms-the displacement, rebound, cascade, and remittance effects-that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors.

  16. Global land use change, economic globalization, and the looming land scarcity

    PubMed Central

    Lambin, Eric F.; Meyfroidt, Patrick

    2011-01-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms—the displacement, rebound, cascade, and remittance effects—that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors. PMID:21321211

  17. Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment

    NASA Astrophysics Data System (ADS)

    Rinawati, Dyah Ika; Sriyanto; Sari, Diana Puspita; Prayodha, Andana Cantya

    2018-02-01

    Furniture is one of Indonesia's main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.

  18. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE PAGES

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  19. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  20. Economies of scale and trends in the size of southern forest industries

    Treesearch

    James E. Granskog

    1978-01-01

    In each of the major southern forest industries, the trend has been toward achieving economies of scale, that is, to build larger production units to reduce unit costs. Current minimum efficient plant size estimated by survivor analysis is 1,000 tons per day capacity for sulfate pulping, 100 million square feet (3/8- inch basis) annual capacity for softwood plywood,...

  1. Comparing Life-Cycle Carbon and Energy Impacts for Biofuel, Wood Product, and Forest Management

    Treesearch

    Bruce Lippke; Richard Gustafson; Richard Venditti; Philip Steele; Timothy A. Volk; Elaine Oneil; Leonard Johnson; Maureen E. Puettmann; Kenneth Skog

    2012-01-01

    The different uses of wood result in a hierarchy of carbon and energy impacts that can be characterized by their efficiency in displacing carbon emissions and/or in displacing fossil energy imports, both being current national objectives. When waste wood is used for biofuels (forest or mill residuals and thinnings) fossil fuels and their emissions are reduced without...

  2. Production, allocation, and stemwood growth efficiency of Pinus taeda L. stands in response to 6 years of intensive management

    Treesearch

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes

    2004-01-01

    Loblolly pine (Pinus taeda L.) is a highly plastic species with respect to growth responses to forest management. Loblolly pine is the most planted species across the southern United States, a region with the most expansive and intensively managed forest plantations in the world. Management intensity, using tools such as site preparation and...

  3. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    PubMed

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  4. The importance of forest structure for carbon fluxes of the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rödig, Edna; Cuntz, Matthias; Rammig, Anja; Fischer, Rico; Taubert, Franziska; Huth, Andreas

    2018-05-01

    Precise descriptions of forest productivity, biomass, and structure are essential for understanding ecosystem responses to climatic and anthropogenic changes. However, relations between these components are complex, in particular for tropical forests. We developed an approach to simulate carbon dynamics in the Amazon rainforest including around 410 billion individual trees within 7.8 million km2. We integrated canopy height observations from space-borne LIDAR in order to quantify spatial variations in forest state and structure reflecting small-scale to large-scale natural and anthropogenic disturbances. Under current conditions, we identified the Amazon rainforest as a carbon sink, gaining 0.56 GtC per year. This carbon sink is driven by an estimated mean gross primary productivity (GPP) of 25.1 tC ha‑1 a‑1, and a mean woody aboveground net primary productivity (wANPP) of 4.2 tC ha‑1 a‑1. We found that successional states play an important role for the relations between productivity and biomass. Forests in early to intermediate successional states are the most productive, and woody above-ground carbon use efficiencies are non-linear. Simulated values can be compared to observed carbon fluxes at various spatial resolutions (>40 m). Notably, we found that our GPP corresponds to the values derived from MODIS. For NPP, spatial differences can be observed due to the consideration of forest successional states in our approach. We conclude that forest structure has a substantial impact on productivity and biomass. It is an essential factor that should be taken into account when estimating current carbon budgets or analyzing climate change scenarios for the Amazon rainforest.

  5. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.

    1999-11-01

    The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.

  6. New Approach for forest inventory estimation and timber harvesting planning in mountain areas: the SLOPE project

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Magliocchetti, D.; Poveda, A.; De Amicis, R.; Andreolli, M.; Devigili, F.

    2016-06-01

    Forests represent an important economic resource for mountainous areas being for a few region and mountain communities the main form of income. However, wood chain management in these contexts differs from the traditional schemes due to the limits imposed by terrain morphology, both for the operation planning aspects and the hardware requirements. In fact, forest organizational and technical problems require a wider strategic and detailed level of planning to reach the level of productivity of forest operation techniques applied on flatlands. In particular, a perfect knowledge of forest inventories improves long-term management sustainability and efficiency allowing a better understanding of forest ecosystems. However, this knowledge is usually based on historical parcel information with only few cases of remote sensing information from satellite imageries. This is not enough to fully exploit the benefit of the mountain areas forest stocks where the economic and ecological value of each single parcel depends on singletree characteristics. The work presented in this paper, based on the results of the SLOPE (Integrated proceSsing and controL systems fOr sustainable forest Production in mountain arEas) project, investigates the capability to generate, manage and visualize detailed virtual forest models using geospatial information, combining data acquired from traditional on-the-field laser scanning surveys technologies with new aerial survey through UAV systems. These models are then combined with interactive 3D virtual globes for continuous assessment of resource characteristics, harvesting planning and real-time monitoring of the whole production.

  7. Conservation strategies for orangutans: reintroduction versus habitat preservation and the benefits of sustainably logged forest.

    PubMed

    Wilson, Howard B; Meijaard, Erik; Venter, Oscar; Ancrenaz, Marc; Possingham, Hugh P

    2014-01-01

    The Sumatran orangutan is currently listed by the IUCN as critically endangered and the Bornean species as endangered. Unless effective conservation measures are enacted quickly, most orangutan populations without adequate protection face a dire future. Two main strategies are being pursued to conserve orangutans: (i) rehabilitation and reintroduction of ex-captive or displaced individuals; and (ii) protection of their forest habitat to abate threats like deforestation and hunting. These strategies are often mirrored in similar programs to save other valued and endangered mega-fauna. Through GIS analysis, collating data from across the literature, and combining this information within a modelling and decision analysis framework, we analysed which strategy or combination of strategies is the most cost-effective at maintaining wild orangutan populations, and under what conditions. We discovered that neither strategy was optimal under all circumstances but was dependent on the relative cost per orangutan, the timescale of management concern, and the rate of deforestation. Reintroduction, which costs twelve times as much per animal as compared to protection of forest, was only a cost-effective strategy at very short timescales. For time scales longer than 10-20 years, forest protection is the more cost-efficient strategy for maintaining wild orangutan populations. Our analyses showed that a third, rarely utilised strategy is intermediate: introducing sustainable logging practices and protection from hunting in timber production forest. Maximum long-term cost-efficiency is achieved by working in conservation forest. However, habitat protection involves addressing complex conservation issues and conflicting needs at the landscape level. We find a potential resolution in that well-managed production forests could achieve intermediate conservation outcomes. This has broad implications for sustaining biodiversity more generally within an economically productive landscape. Insights from this analysis should provide a better framework to prioritize financial investments, and facilitate improved integration between the organizations that implement these strategies.

  8. Conservation Strategies for Orangutans: Reintroduction versus Habitat Preservation and the Benefits of Sustainably Logged Forest

    PubMed Central

    Wilson, Howard B.; Meijaard, Erik; Venter, Oscar; Ancrenaz, Marc; Possingham, Hugh P.

    2014-01-01

    The Sumatran orangutan is currently listed by the IUCN as critically endangered and the Bornean species as endangered. Unless effective conservation measures are enacted quickly, most orangutan populations without adequate protection face a dire future. Two main strategies are being pursued to conserve orangutans: (i) rehabilitation and reintroduction of ex-captive or displaced individuals; and (ii) protection of their forest habitat to abate threats like deforestation and hunting. These strategies are often mirrored in similar programs to save other valued and endangered mega-fauna. Through GIS analysis, collating data from across the literature, and combining this information within a modelling and decision analysis framework, we analysed which strategy or combination of strategies is the most cost-effective at maintaining wild orangutan populations, and under what conditions. We discovered that neither strategy was optimal under all circumstances but was dependent on the relative cost per orangutan, the timescale of management concern, and the rate of deforestation. Reintroduction, which costs twelve times as much per animal as compared to protection of forest, was only a cost-effective strategy at very short timescales. For time scales longer than 10–20 years, forest protection is the more cost-efficient strategy for maintaining wild orangutan populations. Our analyses showed that a third, rarely utilised strategy is intermediate: introducing sustainable logging practices and protection from hunting in timber production forest. Maximum long-term cost-efficiency is achieved by working in conservation forest. However, habitat protection involves addressing complex conservation issues and conflicting needs at the landscape level. We find a potential resolution in that well-managed production forests could achieve intermediate conservation outcomes. This has broad implications for sustaining biodiversity more generally within an economically productive landscape. Insights from this analysis should provide a better framework to prioritize financial investments, and facilitate improved integration between the organizations that implement these strategies. PMID:25025134

  9. Contrasting effects of invasive insects and fire on ecosystem water use efficiency

    Treesearch

    K.L. Clark; N.S. Skowronski; M.R. Gallagher; H. Renninger; K.V.R. Schäfer

    2014-01-01

    We used eddy covariance and meteorological measurements to estimate net ecosystem exchange of CO2 (NEE), gross ecosystem production (GEP), evapotranspiration (Et), and ecosystem water use efficiency (WUEe; calculated as GEP / Et during dry canopy conditions) in three upland forests in the New Jersey Pinelands, USA, that were defoliated by gypsy...

  10. Partnerships panel: the use of contractors and partnerships in public forest recreation: some considerations

    Treesearch

    Ben W. Twight

    1995-01-01

    This paper argues that short term competitive contracting and "partnerships" with low bidders cannot produce the quality or efficiency that highly socialized normatively guided career organizations, both public and private, can produce. High quality maximum efficiency production requires highly socialized primary group types of organizations, guided by a...

  11. Near infared spectroscopy in the forest products industry

    Treesearch

    Chi-Leung So; Brian K. Via; Leslie H. Groom; Lawrence R. Schimleck; Todd F. Shupe; Stephen S. Kelley; Timothy G. Rials

    2004-01-01

    Improving manufacturing efficiency and increasing product worth requires the right combination of actions throughout the manufacturing process. Many innovations have been developed over the last several decades to achieve these goals. Innovations typically work their way backwards in the manufacturing process, with an increasing level of monitoring occurring at the end...

  12. Mature oil palm plantations are thirstier than tropical forests

    NASA Astrophysics Data System (ADS)

    Manoli, G.; Meijide, A.; Huth, N.; Knohl, A.; Kosugi, Y.; Burlando, P.; Ghazoul, J.; Fatichi, S.

    2017-12-01

    Oil Palm (OP) is the highest yielding cash-crop in the world but, being the driver of significant tropical forest losses, it is also considered the "world's most hated crop". Despite substantial research on the impact of OP on ecosystem degradation, biodiversity losses, and carbon emissions, little is known on the ecohydrological impacts of forest conversion to OP. Here we employ numerical simulations constrained by field observations to quantify changes in ecosystem evapotranspiration (ET), infiltration/runoff, gross primary productivity (GPP) and surface temperature (Ts) due to OP establishment. Compared to pristine forests, young OP plantations decrease ET, causing an increase in Ts, but the changes become less pronounced as plantations grow. Mature plantations have a very high GPP to sustain the oil palm yield and, given relatively similar water use efficiency, they transpire more water that the forests they have replaced. Hence, the high fruit productivity of OP comes at the expense of water consumption. Our mechanistic modeling results corroborate anecdotal evidence of water scarcity issues in OP-dominated landscapes.

  13. Forest Stewardship Council (FSC) pesticide policy and integrated pest management in certified tropical plantations.

    PubMed

    Lemes, Pedro Guilherme; Zanuncio, José Cola; Serrão, José Eduardo; Lawson, Simon A

    2017-01-01

    The Forest Stewardship Council (FSC) was the first non-governmental organization composed of multi-stakeholders to ensure the social, environmental, and economic sustainability of forest resources. FSC prohibits certain chemicals and active ingredients in certified forest plantations. A company seeking certification must discontinue use of products so listed and many face problems to comply with these constraints. The aim of this study was to assess the impacts of certification on pest management from the perspective of Brazilian private forestry sector. Ninety-three percent of Brazilian FSC-certified forest companies rated leaf-cutting ants as "very important" pests. Chemical control was the most important management technique used and considered very important by 82 % of respondents. The main chemical used to control leaf-cutting ants, sulfluramid, is in the derogation process and was classified as very important by 96.5 % of the certified companies. Certified companies were generally satisfied in relation to FSC certification and the integrated management of forest pests, but 27.6 % agreed that the prohibitions of pesticides for leaf-cutting ant and termite control could be considered as a non-tariff barrier on high-productivity Brazilian forest plantations. FSC forest certification has encouraged the implementation of more sustainable techniques and decisions in pest management in forest plantations in Brazil. The prohibition on pesticides like sulfluramid and the use of alternatives without the same efficiency will result in pest mismanagement, production losses, and higher costs. This work has shown that the application of global rules for sustainable forest management needs to adapt to each local reality.

  14. Impacts of Diffuse Radiation on Light Use Efficiency across Terrestrial Ecosystems Based on Eddy Covariance Observation in China

    PubMed Central

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629

  15. Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on Eddy covariance observation in China.

    PubMed

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24 ≤ R(2) ≤ 0.85), especially at the Changbaishan temperate forest ecosystem (R(2) = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction.

  16. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    PubMed

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  17. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem

    PubMed Central

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Eighteen papers arising from the conference are presented: legal requirements for economic analysis (Row, C.); The role of economics in national forest planning (Palmer, C; Row, C; Randal, R.M.); The framework for examining silvicultural options in forest planning (Ortman, T.); Integrating forest planning with regional planning and management (Merzenich, J.P.); Genetic gains realizable in rust resistance programs - what are we buying. (Manning, G.; Howe, G.); How should we consider other resources in silvicultural planning (McDivitt, J.; Hansen, C.); Interrelationships among biological, financial and silvicultural decisions in forestry (Fey, W.R.; Robinson, V.L.); Searching the response surface of stand simulators undermore » different objectives and constraints. DFSIM (Douglas fir simulator) as a case study (Sleavin, K.E.; Johnson, K.N.); What good are efficient timber prescriptions. (Fight, R.D.); Handheld programmable computers (Stanger, L.O.); Economic efficiency in the forest service planning process: a critique of the definition of economic efficiency (Medema, L.); An evaluation of federal silvicultural investments made through the 1979 forestry incentives program (Risbrudt, C.D.); Analysing bids for silvicultural contracts promotes efficient allocation of funds (Guldin, R.W.); Some economic aspects of R-8 planning (Greenhalgh, R.); A practical application of economic analysis to vegetation management treatments (Skinner, M.); Stratifying sites by productivity and treatment constrains for reforestation (Fiske, J.); Causes of variation in the direct cost of silvicultural treatments on national forest land (Mills, T.J.); and Problem solving and decision analysis in silviculture (Beuter, J.H.).« less

  19. Rate of convergence of k-step Newton estimators to efficient likelihood estimators

    Treesearch

    Steve Verrill

    2007-01-01

    We make use of Cramer conditions together with the well-known local quadratic convergence of Newton?s method to establish the asymptotic closeness of k-step Newton estimators to efficient likelihood estimators. In Verrill and Johnson [2007. Confidence bounds and hypothesis tests for normal distribution coefficients of variation. USDA Forest Products Laboratory Research...

  20. Comparison of the adhesive performances of soy meal, water washed meal fractions, and protein isolates

    USDA-ARS?s Scientific Manuscript database

    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing timber and other lignocellulosic resources. In this work, we obtained five soy meal products through commercial sources or in-house preparations. The protein content was 49...

  1. Managing structural and compositional diversity with silviculture.

    Treesearch

    S.S. Hummel

    2003-01-01

    Ecology, economy, and demography interact to affect forest management objectives. In the temperate rainforests of northwestern North America (Franklin and Halpern 1988), the outcome of this interaction for most of the 20th century was a management emphasis on wood production (Curtis et al. 1998, Haynes et al. 2003). Because of production efficiencies, even-aged,...

  2. Western hardwoods : value-added research and demonstration program

    Treesearch

    D. W. Green; W. W. Von Segen; S. A. Willits

    1995-01-01

    Research results from the value-added research and demonstration program for western hardwoods are summarized in this report. The intent of the program was to enhance the economy of the Pacific Northwest by helping local communities and forest industries produce wood products more efficiently. Emphasis was given to value-added products and barriers to increased...

  3. Alternative trailer configurations for maximizing payloads

    Treesearch

    Jason D. Thompson; Dana Mitchell; John Klepac

    2017-01-01

    In order for harvesting contractors to stay ahead of increasing costs, it is imperative that they employ all options to maximize productivity and efficiency. Transportation can account for half the cost to deliver wood to a mill. Contractors seek to maximize truck payload to increase productivity. The Forest Operations Research Unit, Southern Research Station, USDA...

  4. Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Yao, L.; Tang, X.; Ma, M.

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes.These findings will provide important implications for forest management strategies to mitigate global climate change.

  5. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective.

    PubMed

    Malhi, Yadvinder; Girardin, Cécile A J; Goldsmith, Gregory R; Doughty, Christopher E; Salinas, Norma; Metcalfe, Daniel B; Huaraca Huasco, Walter; Silva-Espejo, Javier E; Del Aguilla-Pasquell, Jhon; Farfán Amézquita, Filio; Aragão, Luiz E O C; Guerrieri, Rossella; Ishida, Françoise Yoko; Bahar, Nur H A; Farfan-Rios, William; Phillips, Oliver L; Meir, Patrick; Silman, Miles

    2017-05-01

    Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Forest growth along a rainfall gradient in Hawaii: Acacia koa stand structure, productivity, foliar nutrients, and water- and nutrient-use efficiencies

    Treesearch

    Robin A. Harrington; James H. Fownes; Frederick C. Meinzer; Paul G. Scowcroft

    1995-01-01

    We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to...

  7. The Search for Efficiency in Arboreal Ray Tracing Applications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, M.; Disney, M.; Chen, J. M.; Gomez-Dans, J.; Kelbe, D.; van Aardt, J. A.; Lewis, P.

    2016-12-01

    Forest structure significantly impacts a range of abiotic conditions, including humidity and the radiation regime, all of which affect the rate of net and gross primary productivity. Current forest productivity models typically consider abstract media to represent the transfer of radiation within the canopy. Examples include the representation forest structure via a layered canopy model, where leaf area and inclination angles are stratified with canopy depth, or as turbid media where leaves are randomly distributed within space or within confined geometric solids such as blocks, spheres or cones. While these abstract models are known to produce accurate estimates of primary productivity at the stand level, their limited geometric resolution restricts applicability at fine spatial scales, such as the cell, leaf or shoot levels, thereby not addressing the full potential of assimilation of data from laboratory and field measurements with that of remote sensing technology. Recent research efforts have explored the use of laser scanning to capture detailed tree morphology at millimeter accuracy. These data can subsequently be used to combine ray tracing with primary productivity models, providing an ability to explore trade-offs among different morphological traits or assimilate data from spatial scales, spanning the leaf- to the stand level. Ray tracing has a major advantage of allowing the most accurate structural description of the canopy, and can directly exploit new 3D structural measurements, e.g., from laser scanning. However, the biggest limitation of ray tracing models is their high computational cost, which currently limits their use for large-scale applications. In this talk, we explore ways to more efficiently exploit ray tracing simulations and capture this information in a readily computable form for future evaluation, thus potentially enabling large-scale first-principles forest growth modelling applications.

  8. Evaluating the relationship between the photochemical reflectance index and the light use efficiency in a mangrove forest with Spartina alterniflora invasion

    NASA Astrophysics Data System (ADS)

    Shi, C.; Wang, L.; Yang, S.

    2017-12-01

    Mangrove forest is an important component of wetland ecosystems, which has high productivity, strong carbon sequestration capacity and great ecological values. The light use efficiency (LUE) of photosynthesis is a major parameter for estimating plant productivity. Recent studies have shown that the photochemical reflectance index (PRI) has a strong relationship with LUE and the relationship is significantly influenced by plant species and environmental factors. In this paper, we evaluated the relationship between PRI and LUE for different mangrove species (Avicennia marina and Aegiceras corniculatum) and the effects of Spartina alterniflora invasion on the PRI-LUE relationship. The results showed that the LUE of mangroves had a good correlation with PRI, and the correlation of Avicennia marina was stronger than that of Aegiceras corniculatum. In addition, the invasion of Spartina alterniflora impaired the PRI-LUE relationship for both mangrove species.

  9. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  10. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in Uttarakhand) due to the subtle water stress condition with lesser soil moisture content into the ground. Among the 13 districts, the maximum net emissions of carbon and nitrogen compounds have been observed in 7 districts (accounting for high biomass and forest cover loss by the 2016 forest fire), whereas, the rest of the 6 districts acts as the sequester of greenhouse compounds. This new approach having the potentiality of quantifying the losses of ecosystem productivity due to forest fires and could be used in broader aspects if more accurate field based observation can be obtained in the near future.

  11. FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaCourt, Donna M.; Miller, Raymond O.; Shonnard, David R.

    A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Developmore » a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems for biofuels by a broad range of stakeholders. The goal and objectives of this research and development project were fulfilled with key model deliverables including: 1) The Forest Biomass Inventory System (Sub-task A1) of feedstock inventory and availability and, 2) The Supply Chain Model (Sub-task B2). Both models are vital to Michigan’s forest biomass industry and support forecasting delivered cost, as well as carbon and energy balance. All of these elements are important to facilitate investor, operational and policy decisions. All other sub-tasks supported the development of these two tools either directly or by building out supporting information in the forest biomass supply chain. Outreach efforts have, and are continuing to get these user friendly models and information to decision makers to support biomass feedstock supply chain decisions across the areas of biomass inventory and availability, procurement, harvest, forwarding, transportation and processing. Outreach will continue on the project website at http://www.michiganforestbiofuels.org/ and http://www.michiganwoodbiofuels.org/« less

  12. Ethanol production from woody biomass: Silvicultural opportunities for suppressed western conifers

    Treesearch

    Andrew Youngblood; Junyong Zhu; C. Tim Scott

    2010-01-01

    The 2007 Energy Security and Independence Act (ESIA) requires 16 billion gallons of ethanol to be produced from lignocellulose biomass by 2022 in the United States. Forests can be a key source of renewable lignocellulose for ethanol production if cost and conversion efficiency barriers can be overcome. We explored opportunities for using woody biomass from thinning...

  13. Loading productivity of untrimmed and trimmed pulpwood

    Treesearch

    Jason Thompson; John Klepac; Dana Mitchell

    2015-01-01

    The increase in biomass usage for fuels and energy has required a re-examination of harvesting and transportation systems to efficiently deliver these products to market. Some biomass markets accept forest residues or whole trees (including stem wood, bark and needles) as a feedstock. Therefore, there is less need to remove limbs and tops or deconstruct the tree other...

  14. Hardwood lumber distribution yards: Output, demands, and perceptions of their role

    Treesearch

    Urs Buehlmann; Omar Espinoza; Robert Smith; Matthew Bumgardner

    2011-01-01

    Efficient and effective supply chains strengthen the entire forest products industry value chain. As the secondary wood products industry has been transformed by the decline of large manufacturers in some industry segments, the industry's supply chain has responded to these new realities. Remaining and new customers tend to be smaller and have unique needs and...

  15. Using Remote Sensing Technologies to Quantify the Effects of Beech Bark Disease on the Structure, Composition, and Function of a Late-Successional Forest

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; Ricart, R. D.; Fahey, R. T.; Fotis, A. T.; Gough, C. M.

    2016-12-01

    Ecological theory maintains that as forests age, the rate at which carbon (C) is stored declines because C released through organic matter decomposition offsets declining C sequestration in new vegetative growth. Recent observational studies are challenging this long-held hypothesis, with limited evidence suggesting higher-than-expected rates in late-successional forests could be, counterintuitively, tied to canopy structural changes associated with low intensity tree mortality. As forests age, canopy structural complexity may increase when old trees die and form upper canopy gaps that release subcanopy vegetation. This provides one explanation for observations of sustained high production in old forests. Recent studies have found that this increased structural complexity and resource-use efficiency maintain C storage in mid-successional deciduous forests; whether a similar mechanism extends to late-successional forests is unknown. We will present how a slow, moderate disturbance affects the structure and C sequestration of late-successional forests. Our study site is a forest recently infected by Beech Bark Disease (BBD), which will result in the eventual mortality of American beech trees in this late successional forest in Northern Michigan, at the University of Michigan Biological Station. American Beech, Hemlock, Sugar Maple, and White Pine dominate the landscape, with American Beech making up 30% of the canopy trees on average. At the plot scale American Beech is distributed heterogeneously, comprising 1% to 60% of total plot basal area, making it possible to examine the interplay between disturbance severity, canopy structural change, and primary production resilience in this forest. Within each of the 13 plots, species and stem diameter were collected in 1992, 1994, 2014, and 2016, with future remeasurements planned. We will discuss how ground-based lidar coupled with airborne spectral (IR and RGB) imagery are being used to track canopy BBD-related structural changes over time and space, and to link structural changes with late-successional primary production. Our hypothesis is that, up to a presently unknown disturbance threshold, moderate disturbance from BBD sustains primary production in this late successional forest by partially, but not fully, rewinding ecological succession.

  16. Do forests best mitigate CO2 emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    PubMed

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modelling the impact of mulching the soil with plant remains on water regime formation, crop yield and energy costs in agricultural ecosystems

    NASA Astrophysics Data System (ADS)

    Gusev, Yeugeniy M.; Dzhogan, Larisa Y.; Nasonova, Olga N.

    2018-02-01

    The model MULCH, developed by authors previously for simulating the formation of water regime in an agricultural field covered by straw mulch layer, has been used for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of Russia and Ukraine. It simulates the dynamics of water budget components in a soil rooting zone at daily time step from the beginning of spring snowmelt to the beginning of the period with stable negative air temperatures. The model was designed for estimation of mulching efficiency in terms of increase in plant water supply and crop yield under climatic and soil conditions of the steppe and forest-steppe zones. It is used for studying the mulching effect on some characteristics of water regime and yield of winter wheat growing at specific sites located in semi-arid and arid regions of the steppe and forest-steppe zones of the eastern and southern parts of the East-European (Russian) plain. In addition, a previously developed technique for estimating the energetic efficiency of various agricultural technologies with accounting for their impact on changes in soil energy is applied for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of the steppe and forest-steppe zones of the European Russia: (1) moldboard tillage of soil without irrigation, (2) moldboard tillage of soil with irrigation, (3) subsurface cultivation, and (4) subsurface cultivation with mulching the soil with plant remains.

  18. Water-use efficiency of a poplar plantation in Northern China

    Treesearch

    Jie Zhou; Zhiqiang Zhang; Ge sun; Xianrui Fang; Tonggang Zha; Jiquan Chen; Asko Noormets; Junting Guo; Steve McNulty

    2014-01-01

    The water-use efficiency (WUE) of an ecosystem—defined as the gross ecosystem production (GEP) divided by the evapotranspiration (ET)—is an important index for understanding the coupling of water and carbon and quantifying water–carbon trade-offs in forests. An open-path eddy covariance technique and a microclimate measurement system were deployed to investigate the...

  19. Trends in the US hardwood lumber distribution industry: changing products, customers, and services

    Treesearch

    Urs Buehlmann; Omar Espinoza; Matthew Bumgardner; Bob Smith

    2010-01-01

    Efficient and effective supply chains are the backbone of any industry, including the forest products industry. As the US secondary hardwood industry has undergone a profound transformation and large parts of the industry have moved offshore, the supply chain is adapting to these new realities. Remaining and new customers of US hardwood lumber distributors tend to be...

  20. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    PubMed

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  1. Bio-based wood adhesives--preparation, characterization, and testing

    USDA-ARS?s Scientific Manuscript database

    Adhesive bonding plays an increasing role in the forest product industry and is a key factor for efficiently utilizing timber and other lignocellulosic resources. As synthetic wood adhesives are mostly derived from depleting petrochemical resources and have resulted in increasing environmental conce...

  2. Information system of forest growth and productivity by site quality type and elements of forest

    NASA Astrophysics Data System (ADS)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to simulate forest parameters and their dynamics. The system can substitute traditional processing of forest inventory field data and provide users with detailed information on the current state of forest and give a prediction. Implementation of the proposed system in combination with high resolution remote sensing is able to increase significantly the quality of forest inventory and at the same time reduce the costs. The system is a contribution to site oriented forest management. The System is registered in the Russian State Register of Computer Programs 12.07.2011, No 2011615418.

  3. Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9 year eddy flux time series

    NASA Astrophysics Data System (ADS)

    Tan, Zheng-Hong; Zhang, Yi-Ping; Deng, Xiao-Bao; Song, Qing-Hai; Liu, Wen-Jie; Deng, Yun; Tang, Jian-Wei; Liao, Zhi-Yong; Zhao, Jun-Fu; Song, Liang; Yang, Lian-Yan

    2015-01-01

    used a continuous 9 year (2003-2011) eddy flux time series with 30 min resolution to examine water use efficiency in a tropical rainforest and determine its environmental controls. The multiyear mean water use efficiency (Wue) of this rainforest was 3.16 ± 0.33 gC per kg H2O, which is close to that of boreal forests, but higher than subtropical forests, and lower than temperate forests. The water vapor deficit (VPD) had a strong impact on instantaneous Wue, in the manner predicted by stomatal optimization theory. At the seasonal scale, temperature was the dominant controller of Wue. The negative correlation between temperature and Wue was probably caused by high continuous photosynthesis during low-temperature periods. The VPD did not correlate with Wue at the interannual scale. No interannual trend was detected in Wue or inherent water use efficiency (Wei), either annually or seasonally. The fact that no increasing trend of Wei was found in the studied tropical rainforest, along with other evidence of CO2 stimulation in tropical rainforests, requires special attention and data validation. There was no significant difference between Wue during a drought and the 9 year mean values in the forest we studied, but we found that dry season transpiration (Tr) was consistently lower during the drought compared to the mean values. Finally, whether Wue increases or decreases during a drought is determined by the drought sensitivity of gross primary production (GPP).

  4. Negative emissions from stopping deforestation and forest degradation, globally.

    PubMed

    Houghton, Richard A; Nassikas, Alexander A

    2018-01-01

    Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change. © 2017 John Wiley & Sons Ltd.

  5. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.

    PubMed

    Correia, David Laginha Pinto; Raulier, Frédéric; Bouchard, Mathieu; Filotas, Élise

    2018-04-19

    The development of efficient ecosystem resilience indicators was identified as one of the key research priorities in the improvement of existing sustainable forest management frameworks. Two indicators of tree diversity associated with ecosystem functioning have recently received particular attention in the literature: functional redundancy (FR) and response diversity (RD). We examined how these indicators could be used to predict post-logging productivity in forests of Québec, Canada. We analysed the relationships between pre-logging FR and RD, as measured with sample plots, and post-logging productivity, measured as seasonal variation in enhanced vegetation index obtained from MODIS satellite imagery. The effects of the deciduous and coniferous tree components in our pre-disturbance diversity assessments were isolated in order to examine the hypothesis that they have different impacts on post-disturbance productivity. We also examined the role of tree species richness and species identity effects. Our analysis revealed the complementary nature of traditional biodiversity indicators and trait-based approaches in the study of biodiversity-ecosystem-functioning relationships in dynamic ecosystems. We report a significant and positive relationship between pre-disturbance deciduous RD and post-disturbance productivity, as well as an unexpected significant negative effect of coniferous RD on productivity. This negative relationship with post-logging productivity likely results from slower coniferous regeneration speeds and from the relatively short temporal scale examined. Negative black-spruce-mediated identity effects were likely associated with increased stand vulnerability to paludification and invasion by ericaceous shrubs that slow down forest regeneration. Response diversity outperformed functional redundancy as a measure of post-disturbance productivity most likely due to the stand-replacing nature of the disturbance considered. To the best of our knowledge, this is among the first studies to report a negative significant relationship between a component of RD and ecosystem functioning, namely coniferous RD and forest ecosystem productivity after a stand-replacing disturbance. © 2018 by the Ecological Society of America.

  6. Modeling of Carbon Sequestration on Eucalyptus Plantation in Brazililian Cerrado Region for Better Characterization of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Echeverri, J. D.; Siqueira, M. B.

    2013-05-01

    Managed Forests have important roles in climate change due to their contribution to CO2 sequestration stored in their biomass, soils and products therefrom. Terrestrial net primary production (NPP, kgC/m2), equal to gross primary production minus autotrophic respiration, represents the carbon available for plant allocation to leaves, stems, roots, defensive compounds, and reproduction and is the basic measure of biological productivity. Tree growth, food production, fossil fuel production, and atmospheric CO2 levels are all strongly controlled by NPP. Accurate quantification of NPP at local to global scales is therefore central topic for carbon cycle researchers, foresters, land and resource managers, and politicians. For recent or current NPP estimates, satellite remote sensing can be used but for future climate scenarios, simulation models are required. There is an increasing trend to displace natural Brazilian Cerrado to Eucalyptus for paper mills and energy conversion from biomass. The objective of this research exercise is to characterize NPP from managed Eucalyptus plantation in the Brazilian Cerrado. The models selected for this study were the 3-PG and Biome-BGC. The selection of these models aims to cover a range of complexity that allow the evaluation of the processes modeled as to its relevance to a best estimate of productivity in eucalyptus forests. 3-PG model is the simplest of the models chosen for this exercise. Its main purpose is to estimate productivity of forests in timber production. The model uses the relationship of quantum efficiency in the transformation of light energy into biomass for vegetative growth calculations in steps in time of one month. Adverse weather conditions are treated with reduction factors applied in the top efficiency. The second model is the Biome-BGC that uses biology and geochemistry principles to estimate leaf-level photosynthesis based on limiting factors such as availability of light and nutrient constraints. The model does not consider any vertical structure, and the extrapolation of leaf scale is the scale of the ecosystem, which is accomplished by using leaf area index to variable on a temporal resolution of a day. Carbon allocation is computed by complex interactions between multiples carbon pools. Therefore the results obtained in modeling, it was possible to verify the applicability of the two models 3PG and Biome-BGC in estimate of NPP to eucalyptus energy forest in a Brazilian cerrado region, having a strong correlation to the sixth year of forest growth between the two models. The study also revealed that have input parameters in models that need to be measured with a good accuracy, because in function of these parameters, the NPP variation is very large. Finally the study revealed the importance of confronting the data obtained by 3PG and Biome-BGC with experimental data to improve performance modeled-based estimation.

  7. Using price data to consider risk in the evaluation of forest management investments.

    Treesearch

    David C. Baumgartner; Carol A. Hyldahl

    1991-01-01

    Shows how existing information on the historic prices of various timber species and products can be used to provide a measure of the market risk, return, and efficient portfolios of alternative forestry investments using examples from three Midwestern states.

  8. Ethanol production from SPORL-pretreated lodgepole pine : preliminary evaluation of mass balance and process energy efficiency

    Treesearch

    Junyong Zhu; Wenyuan Zhu; Patricia OBryan; Bruce S. Dien; Shen Tian; Roland Gleisner; X.J. Pan

    2010-01-01

    Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-...

  9. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    NASA Astrophysics Data System (ADS)

    Park, Juhan; Kim, Taekyu; Moon, Minkyu; Cho, Sungsik; Ryu, Daun; Kim, Hyun Seok

    2015-04-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for two years. Forest thinning, which removes some fraction of trees from stand, is widely conducted for reducing competition between remaining trees, improving tree productivity, reducing the risk of natural fire, and thus maintaining healthy forest. Forest thinning alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related productivity. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning (20%), and Heavy-thinning (40% of tree density)). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites. The climatic conditions showed little differences between two years. During the first growing season after thinning, stand transpiration was ca. 20% and 42% lower on light-thinning and heavy-thinning stand, respectively, even though sap flux density were higher in thinned stand. The difference in stand transpiration among treatments showed seasonal trends, so it was larger on summer when soil moisture was abundant due to monsoon, but was diminished on spring and autumn when soil moisture was limited. Tree-level productivity increased ca. 8% and 21% on light-thinning and heavy thinning stand, respectively. However, stand net primary production was ca. 20% lower on light-thinning stand, and ca. 31% on heavy-thinning stand. As a result, water use efficiency increased only in heavy-thinning stand. During the second growing season after thinning, stand transpiration was ca. 19% lower on light-thinning stand, and ca. 37% lower on heavy-thinning stand. The reduction of stand transpiration difference in heavy-thinning stand was caused mainly by increase in sap flux density. Trees in thinned stand showed higher productivity, but the magnitude was ca. 4% on light-thinning stand, and ca. 27% on heavy-thinning stand. Stand net primary production was ca. 23% lower on light-thinning stand, and ca. 28% on heavy-thinning stand. As a result, heavy-thinning stand showed highest water use efficiency. These results indicate that there are differences in biological reactions with thinning intensities.

  10. How do disturbances and climate effects on carbon and water fluxes differ between multi-aged and even-aged coniferous forests?

    PubMed

    Tang, Xuguang; Li, Hengpeng; Ma, Mingguo; Yao, Li; Peichl, Matthias; Arain, Altaf; Xu, Xibao; Goulden, Michael

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for >60years because of technical measurement constraints. Here we evaluated 62site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (R e ) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO 2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions. We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes. Typical weather events such as temperature anomalies or drying-wetting cycles severely affected forest functions. Particularly, a summer drought in the boreal forest resulted in an increased NEP owing to a considerable decrease in R e , but at the cost of greater water loss from deeper groundwater resources. These findings will provide important implications for forest management strategies to mitigate global climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reconciling Eddy Flux and Tree Ring Estimates of Forest Water-Use Efficiency

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; Belmecheri, S.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Saleska, S. R.

    2016-12-01

    Eddy flux measurements of ecosystem-atmosphere CO2 and water vapor exchange suggest that rising atmospheric CO2 levels have caused plant endogenous water-use efficiency (WUE) to increase strongly over the last 20 years at sites including the Harvard Forest.1 On the other hand, tree ring 13C isotope measurements at the Harvard Forest seem to suggest that endogenous WUE has not increased.2 Several potential reasons for this discrepancy have been proposed,2,3 including: (1) the definitional difference between the "inherent WUE" calculated from eddy fluxes and the "intrinsic WUE" calculated from tree rings, (2) neglect of factors that affect the isotopic composition of tree ring carbon (e.g. mesophyll conductance, photorespiration, post-photosynthetic fractionation), and (3) temporal mismatch between the instantaneous CO2 flux and seasonally-integrated tree ring carbon. Here we test those proposed explanations by combining tree-ring 13C measurements, 13CO2 eddy flux measurements, and recently developed estimates of transpiration, photosynthesis, and canopy stomatal conductance. We first compute both inherent and intrinsic WUE from eddy flux data and show that their definitional difference does not explain the discrepancy between eddy flux and tree ring estimates of WUE. We further investigate the impact of mesophyll conductance, photorespiration, and mitochondrial respiration on the seasonal isotopic composition of assimilated carbon to elucidate the mismatch between eddy flux- and tree ring-derived water use efficiencies. 1. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324-327 (2013). 2. Belmecheri, S. et al. Tree-ring δ13C tracks flux tower ecosystem productivity estimates in a NE temperate forest. Environ. Res. Lett. 9, 074011 (2014). 3. Seibt, U. et al. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155, 441-454 (2008).

  12. Water for wood products versus nature, food or feed

    NASA Astrophysics Data System (ADS)

    Schyns, Joep; Booij, Martijn; Hoekstra, Arjen

    2017-04-01

    Forests play a central interlinked role in the 2030 Agenda on Sustainable Development. The Agenda aims at an increased share of renewable energy in the global energy mix (target 7.2) and restoration and sustainable management of forests (targets 6.6, 15.1 & 15.2). Forests also play a key role in the hydrological cycle accounting for the largest water flux from land to atmosphere. However, we do not know which part of this is used for the production of wood products such as lumber, pulp and paper, firewood or biofuel. SDG target 6.4 calls for increased water-use efficiency across all sectors and requires understanding the competing demands for water and the potential conflicts between wood production and other purposes like food (SDG 2). To reach the SDGs we need to understand the interlinkages between the SDGs and know how much water is used in the forestry sector. We provide the first estimate of global water use in the forestry sector, using the water footprint (WF) as indicator and distinguishing between consumption of green water (precipitation) and blue water (groundwater through capillary rise). We estimate forest evaporation at a high spatial resolution level and attribute total water consumption to the various forest products, including ecosystem services. Global water consumption for wood production increased by 34% over 50 years to 290x109 m3/y in 2001-2010. Wood has a higher economic water productivity (EWP, US/m3) than common food or feed crops like wheat, maize and sugar beet, and bio-ethanol from wood has a small WF per unit of energy compared to first-generation bio-ethanol from these three crops. Counterintuitively, extensive wood production has a smaller WF and hence a higher EWP than intensive wood production. The reason is that extensively exploited forests host relatively more value next to wood production in the form of other ecosystem services. Recycling of wood products could effectively reduce the WF of the forestry sector, thereby leaving more water available for the generation of other ecosystem services. Our findings contribute to a more complete picture of the human appropriation of water and the understanding of the interlinkages between the SDGs, thus feeding the debate on water for wood products versus nature, food or feed.

  13. 76 FR 56145 - Clearwater National Forest; ID; Upper Lochsa Land Exchange EIS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... for timber production. For the most part these lands currently meet State Best Management Practices... River drainage to provide more efficient and effective resource management. This purpose can be achieved... years, differing management practices on the private lands has influenced resource management decision...

  14. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.

  15. Assessing the effects of management on forest growth across France: insights from a new functional-structural model.

    PubMed

    Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric

    2014-09-01

    The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.

  16. 36 CFR 223.215 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special... Public Law 108-108, special forest products that are also forest botanical products shall be sold, or... forest botanical pilot program. A commercial sale of special forest products shall be governed by a...

  17. 36 CFR 223.215 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special... Public Law 108-108, special forest products that are also forest botanical products shall be sold, or... forest botanical pilot program. A commercial sale of special forest products shall be governed by a...

  18. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited)

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.

    2013-12-01

    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and the relative importance of the combined boundary and aerodynamic resistances in the total resistance to leaf-atmosphere water transport.

  19. A dynamic ecosystem growth model for forests at high complexity structure

    NASA Astrophysics Data System (ADS)

    Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.

    2012-04-01

    Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.

  20. 36 CFR 223.215 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special Forest Products § 223.215 Applicability. The regulations contained in this subpart govern the disposal of... Public Law 108-108, special forest products that are also forest botanical products shall be sold, or...

  1. 36 CFR 223.279 - Personal use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.279 Personal use. (a) Personal use. A person may harvest forest botanical products... specific forest botanical products, which shall be equal to the amount or quantity authorized for free use...

  2. 36 CFR 223.279 - Personal use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.279 Personal use. (a) Personal use. A person may harvest forest botanical products... specific forest botanical products, which shall be equal to the amount or quantity authorized for free use...

  3. 36 CFR 223.279 - Personal use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.279 Personal use. (a) Personal use. A person may harvest forest botanical products... specific forest botanical products, which shall be equal to the amount or quantity authorized for free use...

  4. 36 CFR 223.279 - Personal use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.279 Personal use. (a) Personal use. A person may harvest forest botanical products... specific forest botanical products, which shall be equal to the amount or quantity authorized for free use...

  5. Evaluating the ecosystem water use efficiency and gross primary productivity in boreal forest based on tree ring data

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhuang, Q.

    2016-12-01

    Climatic change affects the plant physiological and biogeochemistry processes, and therefore on the ecosystem water use efficiency (WUE). Therefore, a comprehensive understanding of WUE would help us understand the adaptability of ecosystem to variable climate conditions. Tree ring data have great potential in addressing the forest response to climatic changes compared with mechanistic model simulations, eddy flux measurement and manipulative experiments. Here, we collected the tree ring isotopic carbon data in 12 boreal forest sites to develop a multiple linear regression model, and the model was extrapolated to the whole boreal region to obtain the WUE spatial and temporal variation from 1948 to 2010. Two algorithms were also used to estimate the inter-annual gross primary productivity (GPP) based on our derived WUE. Our results demonstrated that most of boreal regions showed significant increasing WUE trend during the period except parts of Alaska. The spatial averaged annual mean WUE was predicted to increase by 13%, from 2.3±0.4 g C kg-1 H2O at 1948 to 2.6±0.7 g C kg-1 H2O at 2012, which was much higher than other land surface models. Our predicted GPP by the WUE definition algorithm was comparable with site observation, while for the revised light use efficiency algorithm, GPP estimation was higher than site observation as well as than land surface models. In addition, the increasing GPP trends by two algorithms were similar with land surface model simulations. This is the first study to evaluate regional WUE and GPP in forest ecosystem based on tree ring data and future work should consider other variables (elevation, nitrogen deposition) that influence tree ring isotopic signals and the dual-isotope approach may help improve predicting the inter-annual WUE variation.

  6. Dynamic Forest: An Efficient Index Structure for NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Yang, Chul-Woong; Yong Lee, Ki; Ho Kim, Myoung; Lee, Yoon-Joon

    In this paper, we present an efficient index structure for NAND flash memory, called the Dynamic Forest (D-Forest). Since write operations incur high overhead on NAND flash memory, D-Forest is designed to minimize write operations for index updates. The experimental results show that D-Forest significantly reduces write operations compared to the conventional B+-tree.

  7. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  8. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    PubMed

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-04

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  9. A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies

    Treesearch

    Samuel V. Glass

    2010-01-01

    Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.

  10. Adhesives with wood materials : bond formation and performance

    Treesearch

    Charles R. Frihart; Christopher G. Hunt

    2010-01-01

    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...

  11. Robust Spatial Autoregressive Modeling for Hardwood Log Inspection

    Treesearch

    Dongping Zhu; A.A. Beex

    1994-01-01

    We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...

  12. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  13. Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view

    NASA Astrophysics Data System (ADS)

    Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.

    2018-02-01

    The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.

  14. A case for technofix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, W.

    If this decade is indeed the critical one for deciding how to save the earth, we need to chose appropriate responses. The call for a simpler life style is a typically human reaction of trying to atone for imperfection by worshipping an impossible ideal. Technology has answers and there is a rising tide of consumer morality regarding environmental issues. From the prospective of forest and the wood industry, three types of response are taking place. First, more efficient production, making more things with less material, is taking place: more efficient equipment, use of scrap wood for fuel, replanted forests. Second,more » new products are being substituted for old e.g. wood substitutes for many things; new types of biodegradable packing materials, etc. New, kinder, gentler technologies are being invented and used: recycling technologies; environment clean-up technologies for everything from oil spills to herbicides and chlorinated organic chemicals. No perfect solutions exist; consumer demand can overcome business self-interest and greed, but only if the capacity of business to respond to demand is not limited by regulations and crippling taxes.« less

  15. Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubrey, Doug, P.; Coyle, David, R. Coleman, Mark, D.

    2011-08-26

    Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources. We constructed N budgets by measuring N concentration ([N]) and N content (N{sub C}) of above- and belowground perennial and ephemeral tissues, determined N uptake (N{submore » UP}), and calculated N use efficiency (NUE). Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N{sub C} and N{sub UP} increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N{sub UP}. Inclusion of above- and belowground ephemeral tissue turnover in N{sub UP} calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200 kg N ha{sup -1} year{sup -1} while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent. Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.« less

  16. Seasonality of a boreal forest: a remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan

    2016-04-01

    Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.

  17. The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam.

    PubMed

    van Kuijk, Marijke; Anten, N P R; Oomen, R J; van Bentum, D W; Werger, M J A

    2008-08-01

    It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.

  18. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    PubMed

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Seasonal and Topographic Variation in Net Primary Productivity and Water Use Efficiency in a Southwest Sky Island Fores

    NASA Astrophysics Data System (ADS)

    Murphy, P.; Minor, R. L.; Sanchez-Canete, E. P.; Potts, D. L.; Barron-Gafford, G.

    2016-12-01

    Western North American Forests represent an uncertain sink for atmospheric carbon. While understanding of the physical drivers of productivity in these forests has grown in the last decade, the relative influence of topographic position in the complex terrain of montane systems remains understudied. The high-latitude mixed conifer forest ecosystems of the southern Arizona Madrean Sky Islands are characterized by low precipitation, high annual variation in temperature, and heterogeneous topography. Eddy covariance measurements these forests show distinct seasonal trends due to temperature and bi-modal precipitation patterns, but these measurements are unable to resolve potential differences in physiological function on opposing north and south aspects within the footprint of the tower. Most of the year, north aspects receive less energy input due to the oblique angle of incoming solar radiation, leading to a divergence in soil moistures and temperatures. However, overall movement of energy and material is much higher on these north aspects on an annual basis. The implications of these differences for net primary productivity (NPP) and water use efficiency (WUE) are poorly addressed in the literature. We evaluated the relative control that topography has on the physical environment (soil moisture and temperature) and how these factors affect water stress, NPP, and WUE. We combined leaf-level measurements of photosynthesis and transpiration with other physiological and meteorological measurements to determine how the dominant vegetation functions as a result of microclimatic conditions. Initial results from the spring and summer measurement periods suggest topographical differences in microclimate, resulting in differences in NPP in the spring, but not the summer. Also, each of the three species on the same aspect responded differently to the same microclimatic conditions, underscoring interspecific variation at the site. How might these patterns change throughout an annual cycle of sun angles that differentially influence the soil surface? A more complete picture of seasonal behavior will be developed with the addition of fall and winter measurements. These conclusions should provide a more complete picture of ecosystem function to the benefit of foresters and modelers.

  20. 36 CFR 223.276 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.276 Applicability. This subpart applies to the sale and free use of forest botanical products, as defined in § 223.277, from National Forest System lands, until September 30, 2009...

  1. 36 CFR 223.276 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.276 Applicability. This subpart applies to the sale and free use of forest botanical products, as defined in § 223.277, from National Forest System lands, until September 30, 2009...

  2. 36 CFR 223.276 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.276 Applicability. This subpart applies to the sale and free use of forest botanical products, as defined in § 223.277, from National Forest System lands, until September 30, 2009...

  3. 36 CFR 223.276 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.276 Applicability. This subpart applies to the sale and free use of forest botanical products, as defined in § 223.277, from National Forest System lands, until September 30, 2009...

  4. Forest products research in IUFRO history and potential

    Treesearch

    Robert L. Youngs; John A. Youngquist

    1999-01-01

    When silviculture researchers in central Europe were gathering together to form IUFRO in 1892, forest products researchers were occupied with making useful forest products and conserving the forest resource through wise use. Forest products researchers did not become an active part of IUFRO until 50 years later. Research in forest products was stimulated by World War I...

  5. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  6. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  7. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  8. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  9. How to estimate the 3D power spectrum of the Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    2018-01-01

    We derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fourier transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.

  10. How to estimate the 3D power spectrum of the Lyman-α forest

    DOE PAGES

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    2018-01-02

    Here, we derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fouriermore » transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.« less

  11. How to estimate the 3D power spectrum of the Lyman-α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    Here, we derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fouriermore » transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.« less

  12. The Impact of Atmospheric Aerosols on the Fraction of absorbed Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank

    2010-05-01

    Aerosol pollution attracts a growing interest from atmospheric scientists with regard to their impact on health, the global climate and vegetation stress. A hypothesis, less investigated, is whether atmospheric aerosol interactions in the solar radiation field affect the amount of radiation absorbed by vegetation canopies and hence terrestrial vegetation productivity. Typically, aerosols affect vegetation canopy radiation absorption efficiency by altering the physical characteristics of solar radiation incoming on for example a forest canopy. It has been illustrated, that increasing mixing ratio's of atmospheric particulate matter lead to a higher fraction of diffuse sunlight as opposed to direct sunlight. It can be demonstrated, based on the application of atmospheric (MODTRAN) and leaf/canopy radiative transfer (LIBERTY/SPRINT) models, that radiation absorption efficiency in the PAR band of Picea like forests increases with increasing levels of diffuse radiation. It can be documented - on a theoretical basis - as well, that increasing aerosol loads in the atmosphere, induce and increased canopy PAR absorption efficiency. In this paper it is suggested, that atmospheric aerosols have to be taken into account when estimating vegetation gross primary productivity (GPP). The results suggest that Northern hemisphere vegetation CO2 uptake magnitude may increase with increasing atmospheric aerosol loads. Many climate impact scenario's related to vegetation productivity estimates, do not take this phenomenon into account. Boldly speaking, the results suggest a larger sink function for terrestrial vegetation than generally accepted. Keywords: Aerosols, vegetation, fAPAR, CO2 uptake, diffuse radiation.

  13. 36 CFR 223.275 - Establishment of a pilot program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...

  14. 36 CFR 223.275 - Establishment of a pilot program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...

  15. 36 CFR 223.275 - Establishment of a pilot program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...

  16. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data - A case study in complex temperate forest stands

    NASA Astrophysics Data System (ADS)

    Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans

    2017-05-01

    Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.

  17. Physiology-phenology interactions in a productive semi-arid pine forest.

    PubMed

    Maseyk, Kadmiel S; Lin, Tongbao; Rotenberg, Eyal; Grünzweig, José M; Schwartz, Amnon; Yakir, Dan

    2008-01-01

    This study explored possible advantages conferred by the phase shift between leaf phenology and photosynthesis seasonality in a semi-arid Pinus halepensis forest system, not seen in temperate sites. Leaf-scale measurements of gas exchange, nitrogen and phenology were used on daily, seasonal and annual time-scales. Peak photosynthesis was in late winter, when high soil moisture, mild temperatures and low leaf vapour pressure deficit (D(L)) allowed high rates associated with high water- and nitrogen-use efficiencies. Self-sustained new needle growth through the dry and hot summer maximized photosynthesis in the following wet season, without straining carbon storage. Low rates of water loss were associated with increasing sensitivity of stomatal conductance (g(s)) to soil moisture below a relative extractable water (REW) of 0.4, and decreased g(s )sensitivity to D(L) below REW of approx. 0.2. This response was captured by the modified Ball-Berry (Leuning) model. While most physiological parameters and responses measured were typical of temperate pines, the photosynthesis-phenological phasing contributed to high productivity under warm-dry conditions. This contrasts with reported effects of short-term periodical droughts and could lead to different predictions of the effect of warming and drying climate on pine forest productivity.

  18. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.

    PubMed

    Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A

    2010-04-01

    Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.

  19. Management of tropical forests for products and energy

    Treesearch

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  20. 36 CFR 223.280 - Waiver of fees and/or fair market value.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.280 Waiver of fees and/or fair market value. The Forest Service...) For all federally-recognized Tribes seeking to harvest forest botanical products for cultural...

  1. 36 CFR 223.280 - Waiver of fees and/or fair market value.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.280 Waiver of fees and/or fair market value. The Forest Service...) For all federally-recognized Tribes seeking to harvest forest botanical products for cultural...

  2. 36 CFR 223.280 - Waiver of fees and/or fair market value.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.280 Waiver of fees and/or fair market value. The Forest Service...) For all federally-recognized Tribes seeking to harvest forest botanical products for cultural...

  3. 36 CFR 223.280 - Waiver of fees and/or fair market value.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.280 Waiver of fees and/or fair market value. The Forest Service...) For all federally-recognized Tribes seeking to harvest forest botanical products for cultural...

  4. Spatial and temporal trends in water-use efficiency across U.S. forests: integrating tree ring stable C and O isotopes with eddy covariance data

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Guerrieri, R.; Belmecheri, S.; Martin, M.; Lepine, L. C.; Jennings, K.; Xiao, J.; Ollinger, S. V.

    2016-12-01

    Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Water use efficiency (WUE), the carbon (C) gain per unit of water (H2O) loss through transpiration, is the key physiological trait linking C and H2O cycling in forests, and allowing to monitor ecosystem productivity in response to climate change. Stable C isotope composition (δ13C) in tree rings has been extensively used to assess the changes in the tree-level intrinsic WUE (i.e., iWUE - photosynthesis, A/stomatal conductance, gs) in response to climate and anthropogenic forcing (e.g., increase in atmospheric CO2 and nitrogen deposition) over the last century for several forest ecosystems worldwide. At the forest ecosystem level, WUE (WUEe) is obtained as ratio between Gross Primary Productivity (GPP) and evapotranspiration (ET), derived from the eddy covariance measurements. Very few studies compared the two approaches, most of them to date have focused on within-site comparisons. Moreover, most studies examining the influence of climatic factors on tree-WUE have focused on water-limited ecosystems in the Southwest, while much less is known about the dynamics of WUE for mesic forests in the Eastern US. In this study, we compared the two methods across a range of eight to eleven forested Ameriflux sites and climate in the U.S. Furthermore, we examined whether species-specific physiological mechanisms facilitated a better understanding of the ecosystem fluxes. We will present 30-year δ13C (and derived iWUE) and δ18O tree-ring chronologies and foliar isotopes obtained from two dominant species at each site. Spatial (across sites) and temporal trend of tree WUE will then be compared to ecosystem WUE as obtained from eddy covariance data. Relationships between δ13C and δ18O will be explored to elucidate the species-specific physiological mechanisms underlying variation in iWUE. Moreover, drivers of the changes in WUE at the two scales (i.e., tree and ecosystem) will be evaluated and discussed in relations to findings from previous studies. Finally, we will explore the relationship between patterns of leaf internal CO2 (ci)-regulation in response to rising atmospheric CO2, which is one of the major causes of disagreement between the tree and ecosystem level approaches.

  5. Nutrition of mangroves.

    PubMed

    Reef, Ruth; Feller, Ilka C; Lovelock, Catherine E

    2010-09-01

    Mangrove forests dominate the world's tropical and subtropical coastlines. Similar to other plant communities, nutrient availability is one of the major factors influencing mangrove forest structure and productivity. Many mangrove soils have extremely low nutrient availability, although nutrient availability can vary greatly among and within mangrove forests. Nutrient-conserving processes in mangroves are well developed and include evergreeness, resorption of nutrients prior to leaf fall, the immobilization of nutrients in leaf litter during decomposition, high root/shoot ratios and the repeated use of old root channels. Both nitrogen-use efficiency and nutrient resorption efficiencies in mangroves are amongst the highest recorded for angiosperms. A complex range of interacting abiotic and biotic factors controls the availability of nutrients to mangrove trees, and mangroves are characteristically plastic in their ability to opportunistically utilize nutrients when these become available. Nitrogen and phosphorus have been implicated as the nutrients most likely to limit growth in mangroves. Ammonium is the primary form of nitrogen in mangrove soils, in part as a result of anoxic soil conditions, and tree growth is supported mainly by ammonium uptake. Nutrient enrichment is a major threat to marine ecosystems. Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.

  6. A New Approach to Extract Forest Water Use Efficiency from Eddy Covariance Data

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Sulman, B. N.

    2016-12-01

    Determination of forest water use efficiency (WUE) from eddy covariance data typically involves the following steps: (a) estimating gross primary productivity (GPP) from direct measurements of net ecosystem exchange (NEE) by extrapolating nighttime ecosystem respiration (ER) to daytime conditions, and (b) assuming direct evaporation (E) is minimal several days after rainfall, meaning that direct measurements of evapotranspiration (ET) are identical to transpiration (T). Both of these steps could lead to errors in the estimation of forest WUE. Here, we present a theoretical approach for estimating WUE through the analysis of standard eddy covariance data, which circumvents these steps. Only five statistics are needed from the high-frequency time series to extract WUE: CO2 flux, water vapor flux, standard deviation in CO2 concentration, standard deviation in water vapor concentration, and the correlation coefficient between CO2 and water vapor concentration for each half-hour period. The approach is based on the assumption that stomatal fluxes (i.e. photosynthesis and transpiration) lead to perfectly negative correlations and non-stomatal fluxes (i.e. ecosystem respiration and direct evaporation) lead to perfectly positive correlations within the CO2 and water vapor high frequency time series measured above forest canopies. A mathematical framework is presented, followed by a proof of concept using eddy covariance data and leaf-level measurements of WUE.

  7. Forest Productivity, Leaf Area, and Terrain in Southern Appalachian Deciduous Forests

    Treesearch

    Paul V. Bolstad; James M. Vose; Steven G. McNulty

    2000-01-01

    Leaf area index (LAI) is an important structural characteristic of forest ecosystems which has been shown to be strongly related to forest mass and energy cycles and forest productivity. LAI is more easily measured than forest productivity, and so a strong relationship between LAI and productivity would be a valuable tool in forest management. While a linear...

  8. The importance of forest structure to biodiversity–productivity relationships

    PubMed Central

    Huth, Andreas

    2017-01-01

    While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity–productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called ‘forest factory’, which generates various forest stands and calculates their annual productivity (above-ground wood increment). Analysing approximately 300 000 forest stands, we find that mean forest productivity does not increase with species diversity. Instead forest structure emerges as the key variable. Similar patterns can be observed by analysing 5054 forest plots of the German National Forest Inventory. Furthermore, we group the forest stands into nine forest structure classes, in which we find increasing, decreasing, invariant and even bell-shaped relationships between productivity and diversity. In addition, we introduce a new index, called optimal species distribution, which describes the ratio of realized to the maximal possible productivity (by shuffling species identities). The optimal species distribution and forest structure indices explain the obtained productivity values quite well (R2 between 0.7 and 0.95), whereby the influence of these attributes varies within the nine forest structure classes. PMID:28280550

  9. Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Chirici, Gherardo; Chiesi, Marta; Corona, Piermaria; Salvati, Riccardo; Papale, Dario; Fibbi, Luca; Sirca, Costantino; Spano, Donatella; Duce, Pierpaolo; Marras, Serena; Matteucci, Giorgio; Cescatti, Alessandro; Maselli, Fabio

    2016-02-01

    Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).

  10. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  11. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession

    USGS Publications Warehouse

    Goulden, M.L.; Mcmillan, A.M.S.; Winston, G.C.; Rocha, A.V.; Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.

    2011-01-01

    We combined year-round eddy covariance with biometry and biomass harvests along a chronosequence of boreal forest stands that were 1, 6, 15, 23, 40, 74, and 154 years old to understand how ecosystem production and carbon stocks change during recovery from stand-replacing crown fire. Live biomass (Clive) was low in the 1 and 6 year old stands, and increased following a logistic pattern to high levels in the 74 and 154year old stands. Carbon stocks in the forest floor (Cforest floor) and coarse woody debris (CCWD) were comparatively high in the 1year old stand, reduced in the 6 through 40year old stands, and highest in the 74 and 154year old stands. Total net primary production (TNPP) was reduced in the 1 and 6year old stands, highest in the 23 through 74year old stands and somewhat reduced in the 154year old stand. The NPP decline at the 154year old stand was related to increased autotrophic respiration rather than decreased gross primary production (GPP). Net ecosystem production (NEP), calculated by integrated eddy covariance, indicated the 1 and 6 year old stands were losing carbon, the 15year old stand was gaining a small amount of carbon, the 23 and 74year old stands were gaining considerable carbon, and the 40 and 154year old stands were gaining modest amounts of carbon. The recovery from fire was rapid; a linear fit through the NEP observations at the 6 and 15year old stands indicated the transition from carbon source to sink occurred within 11-12 years. The NEP decline at the 154year old stand appears related to increased losses from Clive by tree mortality and possibly from Cforest floor by decomposition. Our findings support the idea that NPP, carbon production efficiency (NPP/GPP), NEP, and carbon storage efficiency (NEP/TNPP) all decrease in old boreal stands. ?? 2010 Blackwell Publishing Ltd.

  12. Energy efficiency in U.S. Forest Service facilities: a multiregion review

    Treesearch

    Rachelle S. Meyer; David L. Nicholls; Trista M. Patterson; Rachel E. White

    2013-01-01

    We reviewed energy efficiency measures in facilities across the U.S. Department of Agriculture Forest Service, examining opportunities and obstacles, and identifying factors of project success. The adoption of energy efficiency measures at Forest Service sites was seen to be most likely when decision control was local to the site and when budget timing and structures...

  13. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem carbon use efficiency. Improved measurements of roots and their distribution throughout the soil profile will advance our understanding of water and nutrient acquisition by trees and provide important benchmarks for models of biogeochemical cycling in tropical ecosystems and their responses to elevated atmospheric CO2.

  14. Biodiversity influences plant productivity through niche-efficiency.

    PubMed

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  15. Biodiversity influences plant productivity through niche–efficiency

    PubMed Central

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty. PMID:25901325

  16. Biodiversity influences plant productivity through niche–efficiency

    USGS Publications Warehouse

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  17. Adhesive bonding of wood materials

    Treesearch

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  18. Crop tree release options for young hardwood stands in North Carolina

    Treesearch

    Jamie L. Schuler; Daniel J. Robison

    2006-01-01

    Harvesting southern hardwood forests using even-aged reproduction methods commonly regenerate new stands with 20,000 to 50,000 stems per acre. Overstocking and an overabundance of non-commercial tree species are considered major constraints to growing productive and valuable hardwoods. Crop tree release practices have been promoted as an efficient way of thinning young...

  19. Impact of rewilding, species introductions and climate change on the structure and function of the Yukon boreal forest ecosystem.

    PubMed

    Boonstra, Rudy; Boutin, Stan; Jung, Thomas S; Krebs, Charles J; Taylor, Shawn

    2018-03-01

    Community and ecosystem changes are happening in the pristine boreal forest ecosystem of the Yukon for 2 reasons. First, climate change is affecting the abiotic environment (temperature, rainfall and growing season) and driving changes in plant productivity and predator-prey interactions. Second, simultaneously change is occurring because of mammal species reintroductions and rewilding. The key ecological question is the impact these faunal changes will have on trophic dynamics. Primary productivity in the boreal forest is increasing because of climatic warming, but plant species composition is unlikely to change significantly during the next 50-100 years. The 9-10-year population cycle of snowshoe hares will persist but could be reduced in amplitude if winter weather increases predator hunting efficiency. Small rodents have increased in abundance because of increased vegetation growth. Arctic ground squirrels have disappeared from the forest because of increased predator hunting efficiency associated with shrub growth. Reintroductions have occurred for 2 reasons: human reintroductions of large ungulates and natural recolonization of mammals and birds extending their geographic ranges. The deliberate rewilding of wood bison (Bison bison) and elk (Cervus canadensis) has changed the trophic structure of this boreal ecosystem very little. The natural range expansion of mountain lions (Puma concolor), mule deer (Odocoileus hemionus) and American marten (Martes americana) should have few ecosystem effects. Understanding potential changes will require long-term monitoring studies and experiments on a scale we rarely deem possible. Ecosystems affected by climate change, species reintroductions and human alteration of habitats cannot remain stable and changes will be critically dependent on food web interactions. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning

    NASA Astrophysics Data System (ADS)

    Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay

    2000-01-01

    Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.

  1. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    NASA Astrophysics Data System (ADS)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruits, the limited root-apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.

  2. Efficiency of playback for assessing the occurrence of five bird species in Brazilian Atlantic Forest fragments.

    PubMed

    Boscolo, Danilo; Metzger, Jean Paul; Vielliard, Jacques M E

    2006-12-01

    Playback of bird songs is a useful technique for species detection; however, this method is usually not standardized. We tested playback efficiency for five Atlantic Forest birds (White-browed Warbler Basileuterus leucoblepharus, Giant Antshrike Batara cinerea, Swallow-tailed Manakin Chiroxiphia caudata, Whiteshouldered Fire-eye Pyriglena leucoptera and Surucua Trogon Trogon surrucura) for different time of the day, season of the year and species abundance at the Morro Grande Forest Reserve (South-eastern Brazil) and at thirteen forest fragments in a nearby landscape. Vocalizations were broadcasted monthly at sunrise, noon and sunset, during one year. For B. leucoblepharus, C. caudata and T. surrucura, sunrise and noon were more efficient than sunset. Batara cinerea presented higher efficiency from July to October. Playback expanded the favourable period for avifaunal surveys in tropical forest, usually restricted to early morning in the breeding season. The playback was efficient in detecting the presence of all species when the abundance was not too low. But only B. leucoblepharus and T. surrucura showed abundance values significantly related to this efficiency. The present study provided a precise indication of the best daily and seasonal periods and a confidence interval to maximize the efficiency of playback to detect the occurrence of these forest species.

  3. An eco-efficient and economical optimum evaluation technique for the forest road networks: the case of the mountainous forest of Metsovo, Greece.

    PubMed

    Tampekis, Stergios; Samara, Fani; Sakellariou, Stavros; Sfougaris, Athanassios; Christopoulou, Olga

    2018-02-12

    The sustainable forest management can be achieved only through environmentally sound and economically efficient and feasible forest road networks and transportation systems that can potentially improve the multi-functional use of forest resources. However, road network planning and construction suggest long-term finance that require a capital investment (cash outflow), which would be equal to the value of the total revenue flow (cash inflow) over the whole lifecycle project. This paper emphasizes in an eco-efficient and economical optimum evaluation method for the forest road networks in the mountainous forest of Metsovo, Greece. More specifically, with the use of this technique, we evaluated the forest roads' (a) total construction costs, (b) annual maintenance cost, and (c) log skidding cost. In addition, we estimated the total economic value of forest goods and services that are lost from the forest roads' construction. Finally, we assessed the optimum eco-efficient and economical forest roads densities based on linear equations that stem from the internal rate of return method (IRR) and have been presented graphically. Data analysis and its presentation are achieved with the contribution of geographic information systems (GIS). The technique which is described in this study can be for the decision makers an attractive and useful implement in order to select the most eco-friendly and economical optimum solution to plan forest road network or to evaluate the existing forest transportation systems. Hence, with the use of this method, we can combine not only the multi-objective utilization of natural resources but also the environmental protection of forest ecosystems.

  4. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer.

    PubMed

    Equiza, M Alejandra; Day, Michael E; Jagels, Richard

    2006-03-01

    Polar regions were covered with extensive forests during the Cretaceous and early Tertiary, and supported trees comparable in size and productivity to those of present-day temperate forests. With a winter of total or near darkness and a summer of continuous, low-angle illumination, these temperate, high-latitude forests were characterized by a light regime without a contemporary counterpart. Although maximum irradiances were much lower than at mid-latitudes, the 24-h photoperiod provided similar integrated light flux. Taxodium, Larix and Metasequoia, three genera of deciduous conifers that occurred in paleoarctic wet forests, have extant, closely related descendents. However, the contemporary relative abundance of these genera differs greatly from that in the paleoarctic. To provide insight into attributes that favor competitive success in a continuous-light environment, we subjected saplings of these genera to a natural photoperiod or a 24-h photoperiod and measured gas exchange, chlorophyll fluorescence, non-structural carbohydrate concentrations, biomass production and carbon allocation. Exposure to continuous light significantly decreased photosynthetic capacity and quantum efficiency of photosystem II in Taxodium and Larix, but had minimal influence in Metasequoia. In midsummer, foliar starch concentration substantially increased in both Taxodium and Larix saplings grown in continuous light, which may have contributed to end-product down-regulation of photosynthetic capacity. In contrast, Metasequoia allocated photosynthate to continuous production of new foliar biomass. This difference in carbon allocation may have provided Metasequoia with a two fold advantage in the paleoarctic by minimizing depression of photosynthetic capacity and increasing photosynthetic surface.

  5. Carbon exchange and quantum efficiency of ecosystem carbon storage in mature deciduous and old-growth coniferous forest in central New England in 2001

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Urbanski, S. P.

    2002-12-01

    Carbon storage in forests of the northeastern U.S. and adjacent Canada may be a significant carbon sink, as forests and soils in this region have recovered after agricultural abandonment in the 19th century. Data collected during the 1990's showed that an area of 70 to 100 year old deciduous forest on abandoned farmland in central Massachusetts stored an average of 2.0 Mg C/ha/yr in trees and soil. During 2001 we measured carbon exchange and environmental parameters (above-canopy air temperature, atmospheric humidity, photosynthetically active radiation (PAR) and soil temperature) in both the 70-100 year old deciduous forest and in a nearby eastern hemlock (Tsuga canadensis L.)-dominated forest with trees up to 220 years old that was never cleared for agricultural use. The deciduous forest stored more than 4 Mg C/ ha in 2001, far higher than in any previous year since measurements started in 1991. Highest monthly deciduous forest carbon storage (1.8 - 1.9 Mg ha-1 month-1) occurred in July and August. The hemlock forest stored about 3 Mg C/ha, with peak storage in April and May (0.8 - 0.9Mg C ha-1 month-1), and little or no C storage during August. The differences in carbon storage between the two forests were related to differences in quantum use efficiency. Quantum efficiency of ecosystem carbon storage in the foliated deciduous forest averaged about 0.16 g C /mol PAR and was insensitive to temperature after leaf maturation. In contrast, the average hemlock forest quantum efficiency declined from about 0.10 g C /mol PAR at daily average above-canopy air temperature (T{a}{v}{g}) = 5 oC to zero quantum efficiency (no net carbon storage) at T{a}{v}{g} = 23 oC. Optimum temperatures for carbon storage in the hemlock forest occurred in April. Differences between the two forests are likely due primarily to a higher maximum photosynthetic rate and a more positive temperature response of leaf-level photosynthesis in red oak (the dominant deciduous species) as compared with eastern hemlock. Maintenance of high soil respiration in the hemlock forest during warm dry summer weather may also contribute to declining quantum efficiency of carbon storage in the hemlock forest during the summer.

  6. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products § 223...

  7. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Terms and conditions for payment of forest products under lump sum (predetermined volume) sales shall be... Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of volume determination for forest products sold shall be the Scribner Decimal C log rules, cubic volume, lineal...

  8. 36 CFR 223.282 - Deposit and expenditure of collected fees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.282 Deposit and expenditure of collected fees. (a) Funds collected under the pilot program for the harvest and sale of forest botanical products shall be deposited into a...

  9. 36 CFR 223.282 - Deposit and expenditure of collected fees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.282 Deposit and expenditure of collected fees. (a) Funds collected under the pilot program for the harvest and sale of forest botanical products shall be deposited into a...

  10. 36 CFR 223.282 - Deposit and expenditure of collected fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.282 Deposit and expenditure of collected fees. (a) Funds collected under the pilot program for the harvest and sale of forest botanical products shall be deposited into a...

  11. 36 CFR 223.282 - Deposit and expenditure of collected fees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.282 Deposit and expenditure of collected fees. (a) Funds collected under the pilot program for the harvest and sale of forest botanical products shall be deposited into a...

  12. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The homeworker may also harvest “other forest products” for use in making wreaths. The term other forest products...

  13. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.

  14. Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.

    NASA Astrophysics Data System (ADS)

    Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny

    2015-04-01

    Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.

  15. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  16. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  17. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  18. Potential for forest products in interior Alaska.

    Treesearch

    George R. Sampson; Willem W.S. van Hees; Theodore S. Setzer; Richard C. Smith

    1988-01-01

    Future opportunities for producing Alaska forest products were examined from the perspective of timber supply as reported in timber inventory reports and past studies of forest products industry potential. The best prospects for increasing industrial production of forest products in interior Alaska are for softwood lumber. Current softwood lumber production in the...

  19. Recommendations for sustainable development of non-timber forest products

    Treesearch

    Gina H. Mohammed

    2001-01-01

    Non-timber forest products--or NTFPs--are considered here to be botanical products harvested or originating from forest-based species, but excluding primary timber products, industrial boards and composites, and paper products. A recent study of non-timber forest products in Ontario, Canada, identified at least 50 types of NTFPs and hundreds of specific products used...

  20. Soil nitrogen biogeochemical cycles in karst ecosystems, southwest China

    NASA Astrophysics Data System (ADS)

    Li, Dejun; Chen, Hao; Xiao, Kongcao; Wang, Kelin

    2017-04-01

    Soil nitrogen (N) status are crucial for ecosystem development and carbon sequestration. Although most terrestrial ecosystems are proposed to be limited by N, some tropical low-land forests have been found to be N saturated. Nevertheless, soil N status in the karst ecosystems of southwest China have not been well assessed so far. In the present study, N status in the karst ecosystems were evaluated based on several lines of evidence. Bulk N content increased rapidly along a post-agricultural succession sequence including cropland, grassland, shrubland, secondary forest and primary forest. Across the sequence, soil N accumulated with an average rate of 12.4 g N m-2 yr-1. Soil N stock recovered to the primary forest level in about 67 years following agricultural abandonment. Nitrate concentrations increased while ammonium concentrations decreased with years following agricultural abandonment. N release from bedrock weathering was likely a potential N source in addition to atmospheric N deposition and biological N fixation. Both gross N mineralization and nitrification (GN) rates decreased initially and then increased greatly following agricultural abandonment. The rate of dissimilatory nitrate reduction to ammonium (DNRA) was highest in the shrubland while lowest in the cropland and forest. Across the vegetation types, DNRA was lowest among the gross rates. Gross ammonium immobilization (GAI) tended to decrease while there was no clear variation pattern for gross nitrate immobilization during the post-agricultural succession. DNRA and nitrate assimilation combined only accounted for 22% to 57% of gross nitrification across the vegetation types. Due to the high nitrate production while low nitrate consumption, net nitrate production was found to vary following the pattern of gross nitrification and explained 69% of soil nitrate variance. Comparison of gross N transformations between a secondary karst forest and an adjacent non-karst forest showed that the gross rates of N mineralization, nitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation were significantly greater in the karst forest. Ammonium assimilation was comparable to gross N mineralization, so that ammonium could be efficiently conserved in the non-karst forest. Meanwhile, the produced nitrate was almost completely retained via DNRA and nitrate assimilation. This resulted in a negligible net nitrate production in the non-karst forest. In contrast, ammonium assimilation rate only accounted for half of gross N mineralization rate in the karst forest. DNRA and nitrate assimilation accounted for 21% and 51% of gross nitrification, respectively. Due to relatively low nitrate retention capacity, nitrate was accumulated in the karst forest. Our results indicate that 1) N would not be the limiting nutrient for secondary succession and ecological restoration in the karst region, 2) the decoupling of nitrate consumption with production results in the increase of soil nitrate level and hence nitrate leaching risk during post-agricultural succession in the karst region, and 3) the non-karst forest with red soil holds a very conservative N cycle, but the N cycle in the karst forest is leaky.

  1. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest product harvesting permits. 163.26 Section 163.26... Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided in §§ 163.13 and 163.27 of this part, removal of forest products that are not under formal contract...

  2. Managing forest products for community benefit

    Treesearch

    Susan Charnley; Jonathan W. Long

    2014-01-01

    Forest products harvesting and use from national forest lands remain important to local residents and communities in some parts of the Sierra Nevada science synthesis area. Managing national forests for the sustainable production of timber, biomass, nontimber forest products, and forage for livestock can help support forestbased livelihoods in parts of the region where...

  3. Vegetation canopy and physiological control of GPP decline during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xiao, X.; Zhou, S.; McCarthy, H. R.; Ciais, P.; Luo, Y.

    2015-12-01

    Different vegetation indices derived from satellites were often used as a proxy of vegetation activity to monitor and evaluate the impacts of drought and heat wave on ecosystem carbon fluxes (gross primary production, respiration) through the production efficiency models (PEMs). However, photosynthesis is also regulated by a series of physiological processes which cannot be directly observed through satellites. In this study, we analyzed the response of drought and heat wave induced GPP and climate anomaly from 15 Euroflux sites and the corresponding vegetation indices from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Correlation analysis suggests that the vegetation indices are more responsive to GPP variation in grasslands and open shrublands, but less responsive in forest ecosystems. Physiology control can be up to 20% of the total GPP during the drought period without changing the canopy structure. At temporal scale for each site, VPD and vegetation indices can be used to track the GPP for forest and non-forest, respectively. However, different stand characteristics should be taken into consideration for forest ecosystems. Based on the above findings, a conceptual model is built to illuminate the physiological and canopy control on the GPP during the drought period. Improvement for future PEMs should incorporate better indicators to deal with drought conditions for different ecosystems.

  4. Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches.

    PubMed

    Schmucki, Reto; de Blois, Sylvie

    2009-07-01

    Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant-pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant-pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions.

  5. The Charcoal Trap: Miombo Woddlands and the Energy Demands of People

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Merbold, L.; Mukelabai, M. M.

    2012-04-01

    Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.

  6. Will savannas survive outside the parks? A lesson from Zambia

    NASA Astrophysics Data System (ADS)

    Kutsch, W.; Merbold, L.; Scholes, B.; Mukelabai, M.

    2012-04-01

    Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.

  7. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Graham, William; Smoot, James

    2009-01-01

    This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was useful as a complement to Landsat data. Elevation data helped to define areas in which targeted forest types occur, such as live oak forests on natural levees. MODIS Normalized Difference Vegetation Index time series data aided visual assessments of coastal forest damage and recovery from hurricanes. Landsat change detection products enabled change to be identified at the stand level and at 10- year intervals with the earliest date preceding available change detection products from the National Oceanic and Atmospheric Administration and from the U.S. Geological Survey. Additional work is being done in collaboration with State and Federal agency partners in a follow-on NASA ROSES project to refine and validate these new, promising products. The products from the ROSES project will be available for aiding NGOM coastal forest restoration and conservation.

  8. Effects of Natural and Experimental Drought on Growth and Water Use Efficiency in Amazon trees

    NASA Astrophysics Data System (ADS)

    Vadeboncoeur, M. A.; Brum, M., Jr.; Oliveira, R. S.; Moutinho, V. H. P.; Flores, C. F.; Llerena, C. A.; Palace, M. W.; Asbjornsen, H.

    2016-12-01

    Severe regional droughts in the Amazon basin, mostly associated with El Nino events, have attracted considerable attention over the past decade, especially with regard to their effects on tree mortality, vulnerability to fire, and changes in the terrestrial budgets of carbon, water, and energy. Understanding the complex responses of forest ecosystems to such droughts is key to predicting how these globally critical forest ecosystems will respond to a changing climate with higher temperatures and greater precipitation variability. Though tree rings are not formed by all tropical tree species, they offer a unique retrospective approach for investigating patterns of climatic responses in both carbon cycling (primary production inferred from diameter growth) and water cycling (water use efficiency calculated from stable C isotope ratios). We sampled increment cores from 40 tree species at the Tapajos National Forest in Brazil, as well as the Cocha Cashu Biological Station in Peru, for an isotopic dendrochronological investigation into the effects of past droughts on the growth and water-use efficiency of canopy and mid-story tree species. We found that many but not all trees responded to drought years with periods of reduced growth lasting 2-3 years. Forthcoming data on carbon isotope ratios will allow us to compare the sensitivity of species and sites in terms of water use under drought conditions.

  9. Knots as an incongruent product feature: a demonstration of the potential for character-marked hardwood furniture

    Treesearch

    M.S. Bumgardner; R.J. Bush; C.D. West; C.D. West

    2001-01-01

    Increased use of character-marks, or naturally occurring features of wood such as knots, in wood household furniture has received attention recently as a means for U.S. furniture manufacturers to make more efficient use of forest resources. However, little information exists concerning furniture retailers' perceptions of character-marked wood. Propositions that...

  10. Social network media in the forest products industry: A look at a new way of marketing

    Treesearch

    Iris B. Montague

    2011-01-01

    The current economic conditions have far reaching financial implications for both consumers and businesses. While consumers devise plans to save money and stretch their dollars, companies are devising plans to stay afloat during economic uncertainty. To be competitive, businesses must find new and innovative ways to conduct everyday business functions and efficiently...

  11. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without advertisement. (a) Sales of forest products may be made without...

  12. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Contracts for the sale of forest products. 163.19 Section... REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In sales of forest products with an appraised stumpage value exceeding $15,000, the contract forms approved by...

  13. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  14. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    NASA Astrophysics Data System (ADS)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests, forest management, and climate change. These efforts will enable our stakeholders to enhance the productivity of southern pine forests, while maintaining social, economic, and ecological sustainability.

  15. Single-edition quadrangle maps

    USGS Publications Warehouse

    ,

    1998-01-01

    In August 1993, the U.S. Geological Survey's (USGS) National Mapping Division and the U.S. Department of Agriculture's Forest Service signed an Interagency Agreement to begin a single-edition joint mapping program. This agreement established the coordination for producing and maintaining single-edition primary series topographic maps for quadrangles containing National Forest System lands. The joint mapping program saves money by eliminating duplication of effort by the agencies and results in a more frequent revision cycle for quadrangles containing national forests. Maps are revised on the basis of jointly developed standards and contain normal features mapped by the USGS, as well as additional features required for efficient management of National Forest System lands. Single-edition maps look slightly different but meet the content, accuracy, and quality criteria of other USGS products. The Forest Service is responsible for the land management of more than 191 million acres of land throughout the continental United States, Alaska, and Puerto Rico, including 155 national forests and 20 national grasslands. These areas make up the National Forest System lands and comprise more than 10,600 of the 56,000 primary series 7.5-minute quadrangle maps (15-minute in Alaska) covering the United States. The Forest Service has assumed responsibility for maintaining these maps, and the USGS remains responsible for printing and distributing them. Before the agreement, both agencies published similar maps of the same areas. The maps were used for different purposes, but had comparable types of features that were revised at different times. Now, the two products have been combined into one so that the revision cycle is stabilized and only one agency revises the maps, thus increasing the number of current maps available for National Forest System lands. This agreement has improved service to the public by requiring that the agencies share the same maps and that the maps meet a common standard, as well as by significantly reducing duplication of effort.

  16. Non-timber forest products: alternative multiple-uses for sustainable forest management

    Treesearch

    James L. Chamberlain; Mary Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered for non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  17. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  18. Atmospheric oxidation capacity sustained by a tropical forest.

    PubMed

    Lelieveld, J; Butler, T M; Crowley, J N; Dillon, T J; Fischer, H; Ganzeveld, L; Harder, H; Lawrence, M G; Martinez, M; Taraborrelli, D; Williams, J

    2008-04-10

    Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere, which are removed by oxidation reactions and deposition of reaction products. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily formed through the photodissociation of ozone. Previously it was thought that, in unpolluted air, biogenic VOCs deplete OH and reduce the atmospheric oxidation capacity. Conversely, in polluted air VOC oxidation leads to noxious oxidant build-up by the catalytic action of nitrogen oxides (NO(x) = NO + NO2). Here we report aircraft measurements of atmospheric trace gases performed over the pristine Amazon forest. Our data reveal unexpectedly high OH concentrations. We propose that natural VOC oxidation, notably of isoprene, recycles OH efficiently in low-NO(x) air through reactions of organic peroxy radicals. Computations with an atmospheric chemistry model and the results of laboratory experiments suggest that an OH recycling efficiency of 40-80 per cent in isoprene oxidation may be able to explain the high OH levels we observed in the field. Although further laboratory studies are necessary to explore the chemical mechanism responsible for OH recycling in more detail, our results demonstrate that the biosphere maintains a remarkable balance with the atmospheric environment.

  19. Species-specific intrinsic water use efficiency and its mediation of carbon assimilation during the drought

    NASA Astrophysics Data System (ADS)

    Yi, K.; Wenzel, M. K.; Maxwell, J. T.; Novick, K. A.; Gray, A.; Roman, D. T.

    2015-12-01

    Drought is expected to occur more frequently and intensely in the future, and many studies have suggested frequent and intense droughts can significantly alter carbon and water cycling in forest ecosystems, consequently decreasing the ability of forests to assimilate carbon. Predicting the impact of drought on forest ecosystem processes requires an understanding of species-specific responses to drought, especially in eastern US where species composition is highly dynamic. An emerging approach for describing species-specific drought response is to classify the plant water use strategy into isohydric and anisohydric behaviors. Trees utilizing isohydric behavior regulate water potential by closing stomata to reduce water loss during drought conditions, while anisohydric trees allow water potential to drop by sustaining stomatal conductance, but with the risk of hydraulic failure caused by cavitation of xylem tissues. Since catastrophic cavitation occurs infrequently in the relatively wet eastern U.S., we hypothesize that 1) tree growth of isohydric trees will be more limited during the drought than the anisohydric trees due to decreased stomatal conductance, but 2) variation in intrinsic water use efficient (iWUE) during drought in isohydric trees will mediate the effects of drought on carbon assimilation. We will test these hypotheses by 1) analyzing tree-ring chronologies and dendrometer data on productivity, and 2) estimating intrinsic water use efficiency (iWUE) at multiple scales by analyzing gas exchange data for the leaf-level, inter-annual variability of d13C in tree stem cores for the tree-level, and eddy covariance technique for the stand-level. Our study site is the Morgan-Monroe State Forest (Indiana, USA). A 46 m flux tower has been continuously recording the carbon, water and energy fluxes, and tree diameter has been measured every 2 weeks using dendrometers, since 1998. Additional research, including gas exchange measurements performed during the growing seasons of 2011-2013 and tree-ring chronologies collected in 2014 and 2015, enable us to assess the long-term impact of climate on the ecosystem processes at multiple scales. Finally, the severe drought experienced in this region in 2012 will help us evaluate how productivity and iWUE respond to an especially severe drought event.

  20. Criterion 2: Maintenance of productive capacity of forest ecosystems

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    People rely on forests, directly and indirectly, for a wide range of goods and services. Measures of forest productive capacity are indicators of the ability of forests to sustainably supply goods and services over time. An ongoing emphasis on maintaining productive capacity of forests can help ensure that utilization of forest resources does not impair long term...

  1. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by this study considers these effects. Evaluation at 20 independent flux tower sites using the MOD15 LAI product finds that the DTEC model explains 71% of the variability observed in monthly flux GPP. Evaluation at two Amazonian tropical forest sites (KM67 and KM83) indicates this model's potential to capture the unique seasonality in GPP, e.g., higher GPP in diffuse radiation-dominated wet season, while the two-leaf LUE GPP model (He et al., 2013) cannot due to using constant LUE for sunlit and shaded leaf. The DTEC model initially simulated the linear relationship between canopy LUE and Df found at Amazon KM67 and KM83 forest sites. It shows a positive response of forest GPP to the atmosphere diffuse radiation in Amazon. Diffuse radiation was more limiting than global radiation and water for Amazon forest GPP on a seasonal scale. This differs from results of recent studies in which light-controlled leaf phenology plays the dominant role in seasonal variation of GPP in Amazonian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A44D..02J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A44D..02J"><span>Total OH reactivity as a constraint of model calculated peroxy radical production, and the catalytic efficiency of NOx in O3 production in a boreal forest environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javed, M. U.; Hens, K.; Martinez, M.; Kubistin, D.; Novelli, A.; Beygi, Z. H.; Axinte, R.; Nölscher, A. C.; Sinha, V.; Song, W.; Johnson, A. M.; Auld, J.; Bohn, B.; Sander, R.; Taraborrelli, D.; Williams, J.; Fischer, H.; Lelieveld, J.; Harder, H.</p> <p>2016-12-01</p> <p>Peroxy radicals play a key role in ozone (O3) production and hydroxyl (OH) recycling influencing the self-cleansing capacity and air quality. Organic peroxy radical (RO2) concentrations are estimated by three different approaches for a boreal forest, based on the field campaign HUMPPA-COPEC 2010 in Southern Finland. RO2 concentrations were simulated by a box model constrained by the comprehensive dataset from the campaign and cross-checked against the photostationary state (PSS) of NOx [= nitric oxide (NO) + nitrogen dioxide (NO2)] calculations. The model simulated RO2 concentrations appear too low to explain the measured PSS of NOx. As the atmospheric RO2 production is proportional to OH loss, the total OH loss rate frequency (total OH reactivity) in the model is underestimated compared to the measurements. The total OH reactivity of the model is tuned to match the observed total OH reactivity by increasing the biogenic volatile organic compound (BVOCs) concentrations for the model simulations. The new-found simulated RO2 concentrations based on the tuned OH reactivity explain the measured PSS of NOx reasonably well. Furthermore, the sensitivity of the NOx lifetime and the catalytic efficiency of NOx (CE) in O3 production, in the context of organic alkyl nitrate (RONO2) formation, was also investigated. Based on the campaign data, it was found that the lifetime of NOx and the CE are reduced and are sensitive to the RONO2 formation under low-NOx conditions, which matches a previous model-based study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9161','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9161"><span>National measures of forest productivity for timber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Peter J. Ince; H. Edward Dickerhoof; H. Fred Kaiser</p> <p>1989-01-01</p> <p>This report presents national measures of forest productivity for timber. These measures reveal trends in the relationship between quantity of timber produced by forests and the quantity of forest resources employed in timber production. Timber production is measured by net annual growth of timber and annual timber removals. Measures of timber productivity include...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26436916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26436916"><span>Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan</p> <p>2015-01-01</p> <p>Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4593608','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4593608"><span>Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan</p> <p>2015-01-01</p> <p>Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits. PMID:26436916</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/6240','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/6240"><span>Non-timber forest products enterprises in the south: perceived distribution and implications for sustainable forest management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J.L. Chamberlain; M. Predny</p> <p>2003-01-01</p> <p>Forests of the southern United States are the source of a great diversity of flora, much of which is gathered to produce non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B13D0542G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B13D0542G"><span>Disturbance severity and net primary production resilience of a Great Lakes forest ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodrich-Stuart, E. J.; Fahey, R.; De La Cruz, A.; Gough, C. M.</p> <p>2013-12-01</p> <p>As many Eastern deciduous forests of North America transition from early to mid-succession, the future of regional terrestrial carbon (C) storage is uncertain. The gradual, patchy senescence of early-successional trees accompanying this transition is comparable in severity to moderate disturbances such as silvicultural thinnings or insect outbreaks. While stand-replacing disturbance causes forests to temporarily become C sources, more moderate disturbances may inflict little to no decline in C sequestration. Identifying the disturbance severity at which net primary production (NPP) declines and the underlying mechanisms that drive forest C storage resistance to disturbance is increasingly important as moderate disturbances increase in frequency and extent across the region. The Forest Accelerated Succession ExperimenT (FASET) at the University of Michigan Biological Station subjected 39 ha of forest to moderate disturbance in 2008 by advancing age-related tree mortality through the stem girdling of early successional aspen and birch. Stand-scale disturbance severity, expressed as relative basal area of girdled aspen and birch, was 39% but plot-scale severity varied substantially within the experimental area (9 to 66% in 0.1 ha plots) because of the heterogeneous distribution of aspen and birch. We used this disturbance severity gradient to examine: 1) the relationship between NPP resilience and disturbance severity; 2) the disturbance severity at which NPP resilience prompts a shift in dominance from canopy to subcanopy vegetation; 3) how NPP resilience relates to disturbance-driven changes in resource-use efficiency, and 4) how disturbance severity shapes emerging forest communities We found that NPP is highly resilient to low to moderate levels of disturbance, but that production declines once a higher disturbance threshold is exceeded. Several complementary mechanisms, including canopy structural reorganization and the reallocation of growth-limiting light and nitrogen resources, appear to maintain NPP up to the disturbance severity threshold. Our results suggest that both canopy and subcanopy trees reacted rapidly to compensate for canopy tree mortality, but at higher disturbance severities, subcanopy trees provided an important buffer in support of NPP resilience. Our data also suggests a larger increase in the growth rate of red maples (Acer rubrum) following disturbance than subcanopy red oak (Quercus rubra) and white pine (Pinus strobus), as well as a greater contribution to overall plot-level production in more severely disturbed plots. These findings demonstrate that some forests can tolerate substantial disturbance without a reduction in NPP, suggesting that the relationship between disturbance severity and declining production may be non-linear. This result has important implications for the region's C cycle, suggesting that moderate disturbances may not cause a decline in forest C sequestration but may actually stimulate new growth to maintain NPP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-224.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-224.pdf"><span>36 CFR 223.224 - Performance bonds and security.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Performance bonds and... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special Forest Products Contract and Permit Conditions and Provisions § 223.224 Performance bonds...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268292','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3268292"><span>Decoupling of deforestation and soy production in the southern Amazon during the late 2000s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Macedo, Marcia N.; DeFries, Ruth S.; Morton, Douglas C.; Stickler, Claudia M.; Galford, Gillian L.; Shimabukuro, Yosio E.</p> <p>2012-01-01</p> <p>From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996–2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion. PMID:22232692</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22232692','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22232692"><span>Decoupling of deforestation and soy production in the southern Amazon during the late 2000s.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Macedo, Marcia N; DeFries, Ruth S; Morton, Douglas C; Stickler, Claudia M; Galford, Gillian L; Shimabukuro, Yosio E</p> <p>2012-01-24</p> <p>From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29666233','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29666233"><span>Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maxwell, Toby M; Silva, Lucas C R; Horwath, William R</p> <p>2018-05-01</p> <p>This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO 2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region. Copyright © 2018 the Author(s). Published by PNAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B41F..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B41F..01S"><span>Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spruce, J.; Hargrove, W. W.; Gasser, J.; Norman, S. P.</p> <p>2013-12-01</p> <p>Forest threats across the US have become increasingly evident in recent years. These include regionally extensive disturbances (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and result in extensive forest mortality. In addition, forests can be subject to ephemeral, sometimes yearly defoliation from various insects and types of storm damage. After prolonged severe disturbance, signs of forest recovery can vary in terms of satellite-based Normalized Difference Vegetation Index (NDVI) values. The increased extent and threat of forest disturbances in part led to the enactment of the 2003 Healthy Forest Restoration Act, which mandated that a national forest threat Early Warning System (EWS) be deployed. In response, the US Forest Service collaborated with NASA, DOE Oak Ridge National Laboratory, and the USGS Eros Data Center to build the near real time ForWarn forest threat EWS for monitoring regionally evident forest disturbances, starting on-line operations in 2010. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines used with current NDVI to derive a suite of six nationwide 'weekly' forest change products. ForWarn uses daily 232 meter MODIS Aqua and Terra satellite NDVI data, including MOD13 products for deriving historical baseline NDVIs and eMODIS products for compiling current NDVI. Separately pre-processing the current and historical NDVIs, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally reduce noise, fuse, and aggregate MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of forest change products per year. The 24 day compositing interval typically enables new disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. ForWarn's three standard forest change products compare current NDVI to that from the previous year, previous 3 years, and all previous years since 2000. Other forest change products added in 2013 include one for quicker disturbance detection and two others that adjust for seasonal fluctuations in normal vegetation phenology. This product suite and ForWarn's geospatial data viewer allow end users to view and assess disturbance dynamics for many regionally evident biotic and abiotic forest disturbances throughout a given current year. ForWarn's change products are also being used for forest change trend analysis and for developing regional forest overstory mortality products. They are used to alert forest health specialists about new regional forest disturbances. Such alerts also typically consider available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances for multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn provides forest change products that could be combined with other geospatial data on forest biomass to help assess forest disturbance carbon impacts within the conterminous US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=395919','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=395919"><span>Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David</p> <p>2004-01-01</p> <p>Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BGeo...12.6837Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BGeo...12.6837Y"><span>Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamanoi, K.; Mizoguchi, Y.; Utsugi, H.</p> <p>2015-12-01</p> <p>Forests play an important role in the terrestrial carbon balance, with most being in a carbon sequestration stage. The net carbon releases that occur result from forest disturbance, and windthrow is a typical disturbance event affecting the forest carbon balance in eastern Asia. The CO2 flux has been measured using the eddy covariance method in a deciduous broadleaf forest (Japanese white birch, Japanese oak, and castor aralia) in Hokkaido, where incidental damage by the strong Typhoon Songda in 2004 occurred. We also used the biometrical method to demonstrate the CO2 flux within the forest in detail. Damaged trees amounted to 40 % of all trees, and they remained on site where they were not extracted by forest management. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production were 1350, 975, and 375 g C m-2 yr-1 before the disturbance and 1262, 1359, and -97 g C m-2 yr-1 2 years after the disturbance, respectively. Before the disturbance, the forest was an evident carbon sink, and it subsequently transformed into a net carbon source. Because of increased light intensity at the forest floor, the leaf area index and biomass of the undergrowth (Sasa kurilensis and S. senanensis) increased by factors of 2.4 and 1.7, respectively, in 3 years subsequent to the disturbance. The photosynthesis of Sasa increased rapidly and contributed to the total GPP after the disturbance. The annual GPP only decreased by 6 % just after the disturbance. On the other hand, the annual Re increased by 39 % mainly because of the decomposition of residual coarse-wood debris. The carbon balance after the disturbance was controlled by the new growth and the decomposition of residues. The forest management, which resulted in the dead trees remaining at the study site, strongly affected the carbon balance over the years. When comparing the carbon uptake efficiency at the study site with that at others, including those with various kinds of disturbances, we emphasized the importance of forest management as well as disturbance type in the carbon balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003642','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003642"><span>Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel</p> <p>2012-01-01</p> <p>Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age and stand type raster data, also provided by MIFI, were used along with the forest disturbance/recovery products to create forest damage stratification products integrating 3 stand type classes, 6 stand age classes, and 6 forest disturbance intensity classes. This stratification product will be used to aid MIFI timber inventory planning and to prepare for damage assessments due to future hurricane events. Validation of MODIS percent NDVI change products was performed by comparing the MODIS percent NDVI change products to those from Landsat data for the same time and MIFI inventory district area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-10-23/pdf/2013-24990.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-10-23/pdf/2013-24990.pdf"><span>78 FR 62957 - National Forest Products Week, 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-10-23</p> <p>... National Forest Products Week, 2013 By the President of the United States of America A Proclamation Our.... During National Forest Products Week, we celebrate the sustainable uses of America's forests and the... forests will be vital to our progress in the years ahead. This week, we recommit to collaborating across...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033324','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033324"><span>Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Hargrove, William; Gasser, J.; Smoot, J.; Kuper, P.</p> <p>2010-01-01</p> <p>This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009,. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were detected across the nation, including damage from ice storms, tornadoes, caterpillars, bark beetles, and wildfires. This effort enabled improved NRT forest disturbance monitoring capabilities for this nation-wide forest threat EWS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMIN31A1257S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMIN31A1257S"><span>Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.</p> <p>2010-12-01</p> <p>This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were detected across the nation, including damage from ice storms, tornados, caterpillars, bark beetles, and wildfires. This effort enabled improved NRT forest disturbance monitoring capabilities for this nation-wide forest threat EWS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11l5010H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11l5010H"><span>Why do forest products become less available?A pan-tropical comparison of drivers of forest-resource degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hermans-Neumann, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven</p> <p>2016-12-01</p> <p>Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global dataset, we studied recently perceived trends of forest product availability considering firewood, charcoal, timber, food, medicine, forage and other forest products. We looked at a pan-tropical sample of 233 villages with forest access. Our results show that 90% of the villages experienced declining availability of forest resources over the last five years according to the informants. Timber and fuelwood together with forest foods were featured as the most strongly affected, though with marked differences across continents. In contrast, availability of at least one main forest product was perceived to increase in only 39% of the villages. Furthermore, the growing local use of forest resources is seen as the main culprit for the decline. In villages with both growing forest resource use and immigration—vividly illustrating demographic pressures—the strongest forest resources degradation was observed. Conversely, villages with little or no population growth and a decreased use of forest resources were most likely to see significant forest-resource increases. Further, villages are less likely to perceive resource declines when local communities own a significant share of forest area. Our results thus suggest that perceived resource declines have only exceptionally triggered adaptations in local resource-use and management patterns that would effectively deal with scarcity. Hence, at the margin this supports neo-Malthusian over neo-Boserupian explanations of local resource-use dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-225.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-225.pdf"><span>36 CFR 223.225 - Term.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Term. 223.225 Section 223.225 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special Forest...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35187','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35187"><span>Recent Trends in the Asian Forest Products Trade and Their Impact on Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joseph A. Roos; Daisuke Sasatani; Allen M Brackley; Valerie Barber</p> <p>2010-01-01</p> <p>This paper analyzes patterns of forest products trade between Asia and Alaska. Secondary data were collected and analyzed to identify Alaska forest product trading partners and the species used. Some of the many trends occurring in the Asian forest products industry include the shift from solid wood products to engineered wood products, the evolution of China as “the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/20205','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/20205"><span>Sustainable production of wood and non-wood forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ellen M. Donoghue; Gary L. Benson; James L. Chamberlain</p> <p>2003-01-01</p> <p>The International Union of Forest Research Organizations (IUFRO) All Divisions 5 Conference in Rotorua, New Zealand, March 11-15, 2003, focused on issues surrounding sustainable foest management and forest products research. As the conference title "Forest Products Research: Providing for Sustainable Choices" suggests, the purpose of the conference was to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351750','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351750"><span>Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, Jin; Guan, Kaiyu; Hayek, Matthew</p> <p></p> <p>Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1351750-partitioning-controls-amazon-forest-photosynthesis-between-environmental-biotic-factors-hourly-interannual-timescales','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1351750-partitioning-controls-amazon-forest-photosynthesis-between-environmental-biotic-factors-hourly-interannual-timescales"><span>Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wu, Jin; Guan, Kaiyu; Hayek, Matthew; ...</p> <p>2016-09-19</p> <p>Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model wasmore » able to explain most of the variability in GEP at hourly (R 2 = 0.77) to interannual (R 2 = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). Lastly, this work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27644012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27644012"><span>Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Jin; Guan, Kaiyu; Hayek, Matthew; Restrepo-Coupe, Natalia; Wiedemann, Kenia T; Xu, Xiangtao; Wehr, Richard; Christoffersen, Bradley O; Miao, Guofang; da Silva, Rodrigo; de Araujo, Alessandro C; Oliviera, Raimundo C; Camargo, Plinio B; Monson, Russell K; Huete, Alfredo R; Saleska, Scott R</p> <p>2017-03-01</p> <p>Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance-derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light-use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R 2  = 0.77) to interannual (R 2  = 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light-use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light-use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12698352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12698352"><span>Does tree diversity increase wood production in pine forests?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vilà, Montserrat; Vayreda, Jordi; Gracia, Carles; Ibáñez, Joan Josep</p> <p>2003-04-01</p> <p>Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrCh....6..128K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrCh....6..128K"><span>Fine-tuned enzymatic hydrolysis of organosolv pretreated forest materials for the efficient production of cellobiose</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karnaouri, Anthi; Topakas, Evangelos; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul</p> <p>2018-04-01</p> <p>Non-digestible oligosaccharides (NDOs) are likely prebiotic candidates that have been related to the prevention of intestinal infections and other disorders for both humans and animals. Lignocellulosic biomass is the largest carbon source in the biosphere, therefore cello-oligosacharides (COS), especially cellobiose, are potentially the most widely available choice of NDOs. Production of COS and cellobiose with enzymes offers numerous benefits over acid-catalyzed processes, as it is milder, environmentally friendly and produces fewer by-products. Cellobiohydrolases (CBHs) and a class of endoglucanases (EGs), namely processive EGs, are key enzymes for the production of COS, as they have higher preference toward glycosidic bonds near the end of cellulose chains and are able to release soluble products. In this work, we describe the heterologous expression and characterization of two CBHs from the filamentous fungus Thermothelomyces thermophila, as well as their synergism with proccessive EGs for cellobiose release from organosolv pretreated spruce and birch. The properties, inhibition kinetics and substrate specific activities for each enzyme are described in detail. The results show that a combination of EGs belonging to Glycosyl hydrolase families 5, 6 and 9, with a CBHI and CBHII in appropriate proportions, can enhance the production of COS from forest materials, underpinning the potential of these biocatalysts in the production of NDOs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/1976','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/1976"><span>Managing national forests of the eastern United States for non-timber forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Chamberlain; Robert J. Bush; A.L. Hammett; Philip A. Araman</p> <p>2000-01-01</p> <p>Over the last decade, there has been a growing interest in the economic and ecological potential of non-timber forest products. In the United States, much of this increased interest stems from drastic changes in forest practices and policies in the Pacific Northwest region, a region that produces many non-timber forest products. The forests of the eastern United States...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9430','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9430"><span>The mangement of national forests of eastern United States for non-timber forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Chamberlain</p> <p>2000-01-01</p> <p>Many products are harvested fiom the forests of the United States in addition to timber. These non-timber forest products (NTFPs) are plants, parts of plants, or fungi that are harvested from within and on the edges of natural, disturbed or managed forests. Often, NTFPs are harvested from public forests for the socio-economic benefit they provide to rural collectors....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39750','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39750"><span>U.S. forest products module : a technical document supporting the Forest Service 2010 RPA Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Peter J. Ince; Andrew D. Kramp; Kenneth E. Skog; Henry N. Spelter; David N. Wear</p> <p>2011-01-01</p> <p>The U.S. Forest Products Module (USFPM) is a partial market equilibrium model of the U.S. forest sector that operates within the Global Forest Products Model (GFPM) to provide long-range timber market projections in relation to global economic scenarios. USFPM was designed specifically for the 2010 RPA forest assessment, but it is being used also in other applications...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23405','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23405"><span>Development of growth and yield models for southern hardwoods: site index determinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John Paul McTague; Daniel J. Robison; David O' Loughlin; Joseph Roise; Robert Kellison</p> <p>2006-01-01</p> <p>Growth and yield data from across 13 southern States, collected from 1967 to 2004 from fully-stocked even-aged southern hardwood forests on a variety of site types, was used to calculate site index curves. These derived curves provide an efficient means to evaluate the productivity-age relation which varies across many sites. These curves were derived for mixed-species...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/6003','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/6003"><span>Dowel-nut connection in Douglas-fir peeler cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Ronald W. Wolfe; John R. King; Agron Gjinolli</p> <p></p> <p>As part of an effort to encourage more efficient use of small-diameter timber, the Forest Products Laboratory cooperated with Geiger Engineers in a study of the structural properties of Douglas-fir peeler cores and the efficacy of a bdowel-nutc connection detail for application in the design of a space frame roof system. A 44.5-mm- (1.75-in.-) diameter dowel-nut...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/17327','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/17327"><span>Prefield methods: streamlining forest or nonforest determinations to increase inventory efficiency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Sara Goeking; Gretchen Moisen; Kevin Megown; Jason Toombs</p> <p>2009-01-01</p> <p>Interior West Forest Inventory and Analysis has developed prefield protocols to distinguish forested plots that require field visits from nonforested plots that do not require field visits. Recent innovations have increased the efficiency of the prefield process. First, the incorporation of periodic inventory data into a prefield database increased the amount of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002214"><span>Potential for Expanding the Near Real Time ForWarn Regional Forest Monitoring System to Include Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.</p> <p>2014-01-01</p> <p>The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9232','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9232"><span>Mississippi's forest products industry: performance and contribution to the State's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Con H Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond</p> <p>1988-01-01</p> <p>The forest products industry is one of Mississippi's basic industries, and in 1980, it accounted for about one of six basic jobs. Mississippi was one of the majority of Southern States in which the forest products industry improved its competitive position during the 1970's. Between 1972 and 1977, growth in productivity of Mississippi's forest products...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/20635','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/20635"><span>Productivity of Western forests: a forest products focus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Constance A. Harrington; Stephen H. Schoenholtz</p> <p>2005-01-01</p> <p>In August 20-23, 2004, a conference was held in Kamilche, WA, with the title “Productivity of Western Forests: A Forest Products Focus.” The meeting brought together researchers and practitioners interested in discussing the economic and biological factors influencing wood production and value. One of the underlying assumptions of the meeting organizers was that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008214"><span>Use of Multi-Year MODIS Phenological Data Products to Detect and Monitor Forest Disturbances at Regional and National Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph; Hargrove, William W.; Gasser, Jerry; Smoot, James; Ross, Kenton</p> <p>2010-01-01</p> <p>This presentation discusses an effort to use select MODIS phenological products for forest disturbance monitoring at the regional and CONUS scales. Forests occur on 1/3 of the U.S. land base and include regionally prevalent forest disturbances that can threaten forest sustainability. Regional and CONUS forest disturbance monitoring is needed for a national forest threat early warning system being developed by the USDA Forest Service with help from NASA, ORNL, and USGS. MODIS NDVI phenology products are being used to develop forest disturbance monitoring capabilities of this EWS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021236"><span>Monitoring 2009 Forest Disturbance Across the Conterminous United States, Based on Near-Real Time and Historical MODIS 250 Meter NDVI Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, J.; Hargrove, W. W.; Gasser, G.; Smoot, J. C.; Kuper, P.</p> <p>2009-01-01</p> <p>This case study shows the promise of computing current season forest disturbance detection products at regional to CONUS scales. Use of the eMODIS expedited product enabled a NRT CONUS forest disturbance detection product, a requirement for an eventual, operational forest threat EWS. The 2009 classification product from this study can be used to quantify the areal extent of forest disturbance across CONUS, although a quantitative accuracy assessment still needs to be completed. However, the results would not include disturbances that occurred after July 27, such as the Station Fire. While not shown here, the project also produced maximum NDVI products for the June 10-July 27 period of each year of the 2000-2009 time frame. These products could be applied to compute forest change products on an annual basis. GIS could then be used to assess disturbance persistence. Such follow-on work could lead to attribution of year in which a disturbance occurred. These products (e.g., Figures 6 and 7) may also be useful for assessing forest change associated with climate change, such as carbon losses from bark beetle-induced forest mortality in the Western United States. Other MODIS phenological products are being assessed for aiding forest monitoring needs of the EWS, including cumulative NDVI products (Figure 10).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919461J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919461J"><span>Tree species' responses to throughfall removal experiments superimposed on a natural drought event in two contrasting humid temperate forests in New Hampshire, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jennings, Katie; McIntire, Cameron; Coble, Adam; Vandeboncoeur, Matthew; Rustad, Lindsay; Templer, Pamela; Absbjornsen, Heidi</p> <p>2017-04-01</p> <p>Climate change is likely to affect Northeastern U.S. forests through the increased frequency and severity of drought events. However, our understanding of how these humid temperate forests will respond to moderate to extreme droughts is limited. Given the important role that these forests play in providing ecosystem services and in supplying forest products, enhancing our knowledge about the impacts of drought is critical to guiding forest management and climate change adaptation efforts. We conducted 50% throughfall removal experiments at two contrasting sites in the Northeastern US (Hubbard Brook Experimental Forest and Thompson Farm, NH, USA), which were superimposed on the severe natural drought occurring in August-September 2016. Preliminary analysis suggests that the two sites respond differently to simulated drought. Pinus strobus trees at Thompson Farm reduced their transpiration rates in response to both the natural and experimental drought, particularly evident during a 5-day period at the height of the drought were transpiration nearly ceased. Both P. strobus and Quercus rubra trees increased their water use efficiency in response to reduced soil water availability, with Q. rubra allowing its midday water potential to reach more negative values, consistent with its more drought tolerant strategy compared to P. strobus. In contrast, we did not detect any significant differences in tree transpiration rates or growth in the dominant tree species, Acer rubrum, in response to the experimental drought treatment at Hubbard Brook. However, both soil respiration and fine root biomass production were lower in the drought treatment plots relative to the control plots at Hubbard Brook. We plan to continue these throughfall removal experiments for at least two more years to better understand the implications of future drought in these humid temperate forests and identify differences in species' physiological adaptations and threshold responses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8738','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8738"><span>Proceedings of the Alaska forest soil productivity workshop.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C.W. Slaughter; T. Gasbarro</p> <p>1988-01-01</p> <p>The Alaska Forest Soil Productivity Workshop addressed (1) the role of soil information for forest management in Alaska; (2) assessment, monitoring, and enhancement of soil productivity; and (3) Alaska research projects involved in studies of productivity of forests and soils. This proceedings includes 27 papers in five categories: agency objectives in monitoring and...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-20/pdf/2010-26578.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-20/pdf/2010-26578.pdf"><span>75 FR 64617 - National Forest Products Week, 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-20</p> <p>... National Forest Products Week, 2010 By the President of the United States of America A Proclamation Since... settings for contemplation. As we mark the 50th anniversary of National Forest Products Week, we recognize... our daily lives, from the houses we live in to the paper we write on. National Forest Products Week...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-131.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-131.pdf"><span>36 CFR 223.131 - Applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Applicability. 223.131 Section 223.131 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-136.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-136.pdf"><span>36 CFR 223.136 - Debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Debarment. 223.136 Section 223.136 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-131.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-131.pdf"><span>36 CFR 223.131 - Applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Applicability. 223.131 Section 223.131 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-116.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-116.pdf"><span>36 CFR 223.116 - Cancellation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Cancellation. 223.116 Section 223.116 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-163.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-163.pdf"><span>36 CFR 223.163 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false [Reserved] 223.163 Section 223.163 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-141.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-141.pdf"><span>36 CFR 223.141 - Suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Suspension. 223.141 Section 223.141 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-116.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-116.pdf"><span>36 CFR 223.116 - Cancellation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Cancellation. 223.116 Section 223.116 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-161.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-161.pdf"><span>36 CFR 223.161 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false [Reserved] 223.161 Section 223.161 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-13.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-13.pdf"><span>36 CFR 223.13 - Compliance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Compliance. 223.13 Section 223.13 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS General...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-136.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-136.pdf"><span>36 CFR 223.136 - Debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Debarment. 223.136 Section 223.136 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-163.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-163.pdf"><span>36 CFR 223.163 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false [Reserved] 223.163 Section 223.163 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-136.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-136.pdf"><span>36 CFR 223.136 - Debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Debarment. 223.136 Section 223.136 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-161.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-161.pdf"><span>36 CFR 223.161 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false [Reserved] 223.161 Section 223.161 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-141.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-141.pdf"><span>36 CFR 223.141 - Suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Suspension. 223.141 Section 223.141 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-163.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-163.pdf"><span>36 CFR 223.163 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false [Reserved] 223.163 Section 223.163 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-136.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-136.pdf"><span>36 CFR 223.136 - Debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Debarment. 223.136 Section 223.136 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-13.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-13.pdf"><span>36 CFR 223.13 - Compliance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Compliance. 223.13 Section 223.13 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS General...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-133.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-133.pdf"><span>36 CFR 223.133 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Definitions. 223.133 Section 223.133 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-131.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-131.pdf"><span>36 CFR 223.131 - Applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Applicability. 223.131 Section 223.131 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-163.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-163.pdf"><span>36 CFR 223.163 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false [Reserved] 223.163 Section 223.163 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-161.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-161.pdf"><span>36 CFR 223.161 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false [Reserved] 223.161 Section 223.161 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-116.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-116.pdf"><span>36 CFR 223.116 - Cancellation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Cancellation. 223.116 Section 223.116 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-13.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-13.pdf"><span>36 CFR 223.13 - Compliance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Compliance. 223.13 Section 223.13 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS General...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-141.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-141.pdf"><span>36 CFR 223.141 - Suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Suspension. 223.141 Section 223.141 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-160.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-160.pdf"><span>36 CFR 223.160 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Definitions. 223.160 Section 223.160 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-160.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-160.pdf"><span>36 CFR 223.160 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Definitions. 223.160 Section 223.160 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-160.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-160.pdf"><span>36 CFR 223.160 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Definitions. 223.160 Section 223.160 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-160.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-160.pdf"><span>36 CFR 223.160 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Definitions. 223.160 Section 223.160 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120004209','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120004209"><span>An Effort to Map and Monitor Baldcypress Forest Areas in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Sader, Steve; Smoot, James</p> <p>2012-01-01</p> <p>This presentation discusses a collaborative project to develop, test, and demonstrate baldcypress forest mapping and monitoring products for aiding forest conservation and restoration in coastal Louisiana. Low lying coastal forests in the region are being negatively impacted by multiple factors, including subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, annual insect-induced forest defoliation, timber harvesting, and conversion to urban land uses. Coastal baldcypress forests provide invaluable ecological services in terms of wildlife habitat, forest products, storm buffers, and water quality benefits. Before this project, current maps of baldcypress forest concentrations and change did not exist or were out of date. In response, this project was initiated to produce: 1) current maps showing the extent and location of baldcypress dominated forests; and 2) wetland forest change maps showing temporary and persistent disturbance and loss since the early 1970s. Project products are being developed collaboratively with multiple state and federal agencies. Products are being validated using available reference data from aerial, satellite, and field survey data. Results include Landsat TM- based classifications of baldcypress in terms of cover type and percent canopy cover. Landsat MSS data was employed to compute a circa 1972 classification of swamp and bottomland hardwood forest types. Landsat data for 1972-2010 was used to compute wetland forest change products. MODIS-based change products were applied to view and assess insect-induced swamp forest defoliation. MODIS, Landsat, and ASTER satellite data products were used to help assess hurricane and flood impacts to coastal wetland forests in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24463852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24463852"><span>Spatially dynamic forest management to sustain biodiversity and economic returns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mönkkönen, Mikko; Juutinen, Artti; Mazziotta, Adriano; Miettinen, Kaisa; Podkopaev, Dmitry; Reunanen, Pasi; Salminen, Hannu; Tikkanen, Olli-Pekka</p> <p>2014-02-15</p> <p>Production of marketed commodities and protection of biodiversity in natural systems often conflict and thus the continuously expanding human needs for more goods and benefits from global ecosystems urgently calls for strategies to resolve this conflict. In this paper, we addressed what is the potential of a forest landscape to simultaneously produce habitats for species and economic returns, and how the conflict between habitat availability and timber production varies among taxa. Secondly, we aimed at revealing an optimal combination of management regimes that maximizes habitat availability for given levels of economic returns. We used multi-objective optimization tools to analyze data from a boreal forest landscape consisting of about 30,000 forest stands simulated 50 years into future. We included seven alternative management regimes, spanning from the recommended intensive forest management regime to complete set-aside of stands (protection), and ten different taxa representing a wide variety of habitat associations and social values. Our results demonstrate it is possible to achieve large improvements in habitat availability with little loss in economic returns. In general, providing dead-wood associated species with more habitats tended to be more expensive than providing requirements for other species. No management regime alone maximized habitat availability for the species, and systematic use of any single management regime resulted in considerable reductions in economic returns. Compared with an optimal combination of management regimes, a consistent application of the recommended management regime would result in 5% reduction in economic returns and up to 270% reduction in habitat availability. Thus, for all taxa a combination of management regimes was required to achieve the optimum. Refraining from silvicultural thinnings on a proportion of stands should be considered as a cost-effective management in commercial forests to reconcile the conflict between economic returns and habitat required by species associated with dead-wood. In general, a viable strategy to maintain biodiversity in production landscapes would be to diversify management regimes. Our results emphasize the importance of careful landscape level forest management planning because optimal combinations of management regimes were taxon-specific. For cost-efficiency, the results call for balanced and correctly targeted strategies among habitat types. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/36059','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/36059"><span>Does nitrogen and sulfur deposition affect forest productivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks</p> <p>2010-01-01</p> <p>We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B31D0497S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B31D0497S"><span>Adapting an IPCC-Compliant Full Forest Carbon Accounting Model to Determine the Effects of Different Forest Management Strategies in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starrs, C.; Stewart, W.; Potts, M. D.</p> <p>2016-12-01</p> <p>As California experiences increasing rates of disturbance events such as wildfire, drought, and insect outbreaks, understanding how different management strategies affect long-term forest carbon stock changes in the forest and in harvested wood products used by society will be key to determining strategies to best maximize forest-related carbon sequestration in the future. California's forest area is roughly evenly split across three ownership types: private timberlands, National Forest timberlands, and reserved forests. Forest management strategies in California generally vary by these ownerships; management in reserved lands sequesters carbon within the forest (i.e. leaves wood in the forest), while on private and National Forest timberlands a significant amount of wood is removed from the forest and converted to harvested wood products. The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) is an IPCC-compliant full forest carbon accounting model developed for use in Canada that has been adapted for use in other countries. Changes in natural disturbances in the forest and technological innovation in the use of harvested wood products could substantially alter future carbon trajectories of forests under different management regimes. A key advantage of the CBM-CFS3 model is that in addition to tracking live tree, dead tree, and dead organic matter (DOM) carbon pools in the forest, it also tracks carbon stock changes in harvested wood products. We calibrated the CBM-CFS3 model with US Forest Service Forest Inventory and Analysis (FIA) data for seven forest types across three ownership types to predict carbon stock changes under different natural disturbance and harvested wood product utilization futures. Our results illustrate the importance of using a tractable model that can integrate future changes in forest carbon cycling to keep pace with our changing climate and usage of wood products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8828','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8828"><span>Productivity of forests of the United States and its relation to soil and site factors and management practices: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C.C. Grier; K.M. Lee; N.M. [and others] Nadkarni</p> <p>1989-01-01</p> <p>Data on net primary biological productivity of United States forests are summarized by geographic region. Site factors influencing productivity are reviewed. This paper is a review of existing literature in the productivity of various forest regions of the United States, the influence of site factors on forest productivity, and the impact of various...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44680','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44680"><span>Who, what, and why: the products, their use, and issues about management of non-timber forest products in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Susan J. Alexander</p> <p>2001-01-01</p> <p>Non-timber forest products in the United States include floral greens, Christmas ornamentals, wild edibles, medicinals, crafts, and transplants. Non-timber forest products are important to many people for many reasons. People harvest products from forests for personal use, cultural practices, and sale. The tremendous variety of species harvested for the many markets...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH52A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH52A..07S"><span>Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.</p> <p>2011-12-01</p> <p>This presentation discusses an effort to compute and post weekly MODIS forest change products for the conterminous US (CONUS), as part of a web-based national forest threat early warning system (EWS) known as the U.S. Forest Change Assessment Viewer (FCAV). The US Forest Service, NASA, USGS, and ORNL are working collaboratively to contribute weekly change products to this EWS. Large acreages of the nation's forests are being disturbed by a growing multitude of biotic and abiotic threats that can act either singularly or in combination. When common at regional scales, such disturbances can pose hazards and threats to floral and faunal bio-diversity, ecosystem sustainability, ecosystem services, and human settlements across the conterminous US. Regionally evident forest disturbances range from ephemeral periodic canopy defoliation to stand replacement mortality events due to insects, disease, fire, hurricanes, tornadoes, ice, hail, and drought. Mandated by the Healthy Forest Restoration Act of 2003, this forest threat EWS has been actively developed since 2006 and on-line since 2010. The FCAV system employs 250-meter MODIS NDVI-based forest change products as a key element of the system, providing regional and CONUS scale products in near real time every 8 days. Each of our forest change products in FCAV is based on current versus historical 24 day composites of NDVI data gridded at 231.66 meter resolution. Current NDVI is derived from USGS eMODIS expedited products. MOD13 NDVI is used for constructing historical baselines. CONUS change products are computed for all forests as % change in the current versus historical NDVI for a given 24 day period. Change products are computed according to previous year, previous 3 year and previous 8 year historical baselines. The use of multiple baselines enables apparent forest disturbance anomalies to be more fully assessed. CONUS forest change products are posted each week on the FCAV, a web mapping service constructed and maintained by the National Environmental Modeling and Analysis Center. The FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to view and monitor forest hazards at regional scales throughout the year and across the nation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-130.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-130.pdf"><span>36 CFR 223.130 - Scope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Scope. 223.130 Section 223.130 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-115.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-115.pdf"><span>36 CFR 223.115 - Contract extensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Contract extensions. 223.115 Section 223.115 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-35.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-35.pdf"><span>36 CFR 223.35 - Performance bond.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Performance bond. 223.35 Section 223.35 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-34.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-34.pdf"><span>36 CFR 223.34 - Advance payment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Advance payment. 223.34 Section 223.34 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-39.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-39.pdf"><span>36 CFR 223.39 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false [Reserved] 223.39 Section 223.39 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-51.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-51.pdf"><span>36 CFR 223.51 - Bid monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Bid monitoring. 223.51 Section 223.51 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-130.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-130.pdf"><span>36 CFR 223.130 - Scope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Scope. 223.130 Section 223.130 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-115.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-115.pdf"><span>36 CFR 223.115 - Contract extensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Contract extensions. 223.115 Section 223.115 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-51.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-51.pdf"><span>36 CFR 223.51 - Bid monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Bid monitoring. 223.51 Section 223.51 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-51.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-51.pdf"><span>36 CFR 223.51 - Bid monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Bid monitoring. 223.51 Section 223.51 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-66.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-66.pdf"><span>36 CFR 223.66 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false [Reserved] 223.66 Section 223.66 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-34.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-34.pdf"><span>36 CFR 223.34 - Advance payment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Advance payment. 223.34 Section 223.34 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-39.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-39.pdf"><span>36 CFR 223.39 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false [Reserved] 223.39 Section 223.39 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-66.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-66.pdf"><span>36 CFR 223.66 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false [Reserved] 223.66 Section 223.66 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-223.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-223.pdf"><span>36 CFR 223.223 - Advance payment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Advance payment. 223.223 Section 223.223 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-132.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-132.pdf"><span>36 CFR 223.132 - Policy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Policy. 223.132 Section 223.132 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-115.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-115.pdf"><span>36 CFR 223.115 - Contract extensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Contract extensions. 223.115 Section 223.115 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-227.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-227.pdf"><span>36 CFR 223.227 - Sale advertisement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Sale advertisement. 223.227 Section 223.227 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-130.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-130.pdf"><span>36 CFR 223.130 - Scope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Scope. 223.130 Section 223.130 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-51.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-51.pdf"><span>36 CFR 223.51 - Bid monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Bid monitoring. 223.51 Section 223.51 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-34.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-34.pdf"><span>36 CFR 223.34 - Advance payment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Advance payment. 223.34 Section 223.34 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-66.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-66.pdf"><span>36 CFR 223.66 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false [Reserved] 223.66 Section 223.66 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-130.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-130.pdf"><span>36 CFR 223.130 - Scope.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Scope. 223.130 Section 223.130 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-39.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-39.pdf"><span>36 CFR 223.39 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false [Reserved] 223.39 Section 223.39 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-115.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-115.pdf"><span>36 CFR 223.115 - Contract extensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Contract extensions. 223.115 Section 223.115 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-39.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-39.pdf"><span>36 CFR 223.39 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false [Reserved] 223.39 Section 223.39 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-132.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-132.pdf"><span>36 CFR 223.132 - Policy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Policy. 223.132 Section 223.132 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-34.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-34.pdf"><span>36 CFR 223.34 - Advance payment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Advance payment. 223.34 Section 223.34 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-66.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-66.pdf"><span>36 CFR 223.66 - [Reserved</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false [Reserved] 223.66 Section 223.66 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-50.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-50.pdf"><span>36 CFR 223.50 - Periodic payments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Periodic payments. 223.50 Section 223.50 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-49.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-49.pdf"><span>36 CFR 223.49 - Downpayments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Downpayments. 223.49 Section 223.49 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-50.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-50.pdf"><span>36 CFR 223.50 - Periodic payments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Periodic payments. 223.50 Section 223.50 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-49.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-49.pdf"><span>36 CFR 223.49 - Downpayments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Downpayments. 223.49 Section 223.49 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-49.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-49.pdf"><span>36 CFR 223.49 - Downpayments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Downpayments. 223.49 Section 223.49 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-50.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-50.pdf"><span>36 CFR 223.50 - Periodic payments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Periodic payments. 223.50 Section 223.50 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-50.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-50.pdf"><span>36 CFR 223.50 - Periodic payments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Periodic payments. 223.50 Section 223.50 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13b4011H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13b4011H"><span>Large-scale bioenergy production: how to resolve sustainability trade-offs?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag</p> <p>2018-02-01</p> <p>Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the SDG agenda. Based on this, we argue that the development of policies for regulating externalities of large-scale bioenergy production should rely on broad sustainability assessments to discover potential trade-offs with the SDG agenda before implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.evergladeshub.com/lit/pdf10/Barr'10JGeophysRes-70-CO2mangroves.pdf','USGSPUBS'); return false;" href="http://www.evergladeshub.com/lit/pdf10/Barr'10JGeophysRes-70-CO2mangroves.pdf"><span>Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barr, Jordan G.; Engel, Vic; Fuentes, Jose D.; Zieman, Joseph C.; O'Halloran, Thomas L.; Smith, Thomas J.; Anderson, Gordon H.</p> <p>2010-01-01</p> <p>We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from -20 to -25 μmol (CO2) m-2 s-1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 μmol (CO2) m-2 s-1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (>34 parts per thousand (ppt)) compared to low (d by ~0.9 μmol (CO2) m-2 s-1 and nighttime Rd by ~0.5 μmol (CO2) m-2 s-1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m-2 during 2004. This unusually high NEP was attributed to year-round productivity and low ecosystem respiration which reached a maximum of only 3 g C m-2 d-1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3616530','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3616530"><span>Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Airenne, Kari J; Hu, Yu-Chen; Kost, Thomas A; Smith, Richard H; Kotin, Robert M; Ono, Chikako; Matsuura, Yoshiharu; Wang, Shu; Ylä-Herttuala, Seppo</p> <p>2013-01-01</p> <p>Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered. PMID:23439502</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.3089Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.3089Z"><span>Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.</p> <p>2013-05-01</p> <p>Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruit, the limited root apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44688','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44688"><span>Forecasting long-term acorn production with and without oak decline using forest inventory data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Cathryn H. Greenberg; Chad E. Keyser; Leah C. Rathburn; Anita K. Rose; Todd M. Fearer; Henry W. McNab</p> <p>2013-01-01</p> <p>Acorns are important as wildlife food and for oak regeneration, but production is highly variable, posing a challenge to forest managers targeting acorn production levels. Forest managers need tools to predict acorn production capability tailored to individual landscapes and forest management scenarios, adjusting for oak mortality and stand development over time. We...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/3218','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/3218"><span>Non-timber forest products: alternatives for landowners</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Chamberlain; A.L. Hammett</p> <p>2002-01-01</p> <p>Recently a great deal of attention has been given to forest products that are plant-based but do not come from timber. These "alternative" products are found growing under the forest canopy as herbs, shrubs, vines, moss and even lichen. Although they have been gathered for generations, non-timber forest products have had less attention than "more...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/59','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/59"><span>Techniques in Experimental Mechanics Applicable to Forest Products Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Leslie H. Groom; Audrey G. Zink</p> <p>1994-01-01</p> <p>The title of this publication-Techniques in Experimental Mechanics Applicable to Forest Products Research-is the theme of this plenary session from the 1994 Annual Meeting of the Forest Products Society (FPS). Although this session focused on experimental techniques that can be of assistance to researchers in the field of forest products, it is hoped that the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA118901','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA118901"><span>Forest Management Guidance Package: How to Conduct Forest Product Sales and Handle Forest Management Service Contracts,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-03-01</p> <p>state the conditions under which forest products will be sold. They describe the products for sale and the location of the sales area , as well as the...price. Forest products are sold (1) by species or groups of species, ") by designated logging area or areas , or (3) by product, i.e. sawtimber, poles...Lump Sum Sale (Appendix J). Designated trees or entire sale areas may be sold with this method. Individual trees are marked for sale in some manner</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020050567&hterms=rooting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drooting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020050567&hterms=rooting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drooting"><span>Regional Application of an Ecosystem Production Model for Studies of Biogeochemistry in the...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Potter, C. S.; Klooster, S.; Brooks, V.; Peterson, David L. (Technical Monitor)</p> <p>1997-01-01</p> <p>The degree to which primary production, soil carbon, and trace gas fluxes in tropical forests of the Amazon are limited by moisture availability and other environmental factors was examined using an ecosystem modeling application for the country of Brazil. A regional geographic information system (GIS) serves as the data source of climate drivers, satellite images, land cover, and soil properties for input to the NASA Ames-CASA (Carnegie-Ames-Stanford Approach) model over a 8-km grid resolution. Simulation results supports the hypothesis that net primary production (NPP) is limited by cloud interception of solar radiation over the humid northwestern portion of the region. Peak annual rates for NPP of nearly 1.4 kg C m-2yr -1are localized in the seasonally dry eastern Amazon in areas that we assume are primarily deep-rooted evergreen forest cover. Regional effects of forest conversion on NPP and soil carbon content are indicated in the model results, especially in seasonally dry areas. Comparison of model flux predictions along selected eco-climatic transects reveal moisture, soil, and land use controls on gradients of ecosystem production and soil trace gas emissions (CO2, N2O, and NO). These results are used to formulate a series of research hypotheses for testing in the next phase of regional modeling, which includes recalibration of the light-use efficiency term in CASA using field measurements of NPP, and refinements of vegetation index and soil property (texture and potential rooting depth) maps for the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...739857L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...739857L"><span>Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun</p> <p>2017-01-01</p> <p>Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5206676','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5206676"><span>Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun</p> <p>2017-01-01</p> <p>Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28045111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28045111"><span>Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun</p> <p>2017-01-03</p> <p>Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO 2 (GWP bio ). In this study we calculated the GWP bio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWP bio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWP bio . Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO 2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWP bio and energy conversion efficiency. By considering the GWP bio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWP bio .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002212','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002212"><span>Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve</p> <p>2013-01-01</p> <p>U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-137.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-137.pdf"><span>36 CFR 223.137 - Causes for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Causes for debarment. 223.137 Section 223.137 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-139.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-139.pdf"><span>36 CFR 223.139 - Period of debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Period of debarment. 223.139 Section 223.139 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-135.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-135.pdf"><span>36 CFR 223.135 - Effect of listing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-138.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-138.pdf"><span>36 CFR 223.138 - Procedures for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Procedures for debarment. 223.138 Section 223.138 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-140.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-140.pdf"><span>36 CFR 223.140 - Scope of debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Scope of debarment. 223.140 Section 223.140 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-142.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-142.pdf"><span>36 CFR 223.142 - Causes for suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Causes for suspension. 223.142 Section 223.142 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-140.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-140.pdf"><span>36 CFR 223.140 - Scope of debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Scope of debarment. 223.140 Section 223.140 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-31.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-31.pdf"><span>36 CFR 223.31 - Duration of contracts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Duration of contracts. 223.31 Section 223.31 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-159.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-159.pdf"><span>36 CFR 223.159 - Scope and applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Scope and applicability. 223.159 Section 223.159 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-83.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-83.pdf"><span>36 CFR 223.83 - Contents of prospectus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Contents of prospectus. 223.83 Section 223.83 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-145.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-145.pdf"><span>36 CFR 223.145 - Scope of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Scope of suspension. 223.145 Section 223.145 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-135.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-135.pdf"><span>36 CFR 223.135 - Effect of listing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-159.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-159.pdf"><span>36 CFR 223.159 - Scope and applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Scope and applicability. 223.159 Section 223.159 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-145.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-145.pdf"><span>36 CFR 223.145 - Scope of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Scope of suspension. 223.145 Section 223.145 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-140.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-140.pdf"><span>36 CFR 223.140 - Scope of debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Scope of debarment. 223.140 Section 223.140 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-83.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-83.pdf"><span>36 CFR 223.83 - Contents of prospectus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Contents of prospectus. 223.83 Section 223.83 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-138.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-138.pdf"><span>36 CFR 223.138 - Procedures for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Procedures for debarment. 223.138 Section 223.138 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-145.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-145.pdf"><span>36 CFR 223.145 - Scope of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Scope of suspension. 223.145 Section 223.145 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-139.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-139.pdf"><span>36 CFR 223.139 - Period of debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Period of debarment. 223.139 Section 223.139 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-83.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-83.pdf"><span>36 CFR 223.83 - Contents of prospectus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Contents of prospectus. 223.83 Section 223.83 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-142.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-142.pdf"><span>36 CFR 223.142 - Causes for suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Causes for suspension. 223.142 Section 223.142 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-137.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-137.pdf"><span>36 CFR 223.137 - Causes for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Causes for debarment. 223.137 Section 223.137 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-159.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-159.pdf"><span>36 CFR 223.159 - Scope and applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Scope and applicability. 223.159 Section 223.159 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-137.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-137.pdf"><span>36 CFR 223.137 - Causes for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Causes for debarment. 223.137 Section 223.137 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-31.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-31.pdf"><span>36 CFR 223.31 - Duration of contracts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Duration of contracts. 223.31 Section 223.31 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-142.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-142.pdf"><span>36 CFR 223.142 - Causes for suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Causes for suspension. 223.142 Section 223.142 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-145.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-145.pdf"><span>36 CFR 223.145 - Scope of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Scope of suspension. 223.145 Section 223.145 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-138.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-138.pdf"><span>36 CFR 223.138 - Procedures for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Procedures for debarment. 223.138 Section 223.138 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-144.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-144.pdf"><span>36 CFR 223.144 - Period of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Period of suspension. 223.144 Section 223.144 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-31.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-31.pdf"><span>36 CFR 223.31 - Duration of contracts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Duration of contracts. 223.31 Section 223.31 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-142.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-142.pdf"><span>36 CFR 223.142 - Causes for suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Causes for suspension. 223.142 Section 223.142 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-138.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-138.pdf"><span>36 CFR 223.138 - Procedures for debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Procedures for debarment. 223.138 Section 223.138 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-159.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-159.pdf"><span>36 CFR 223.159 - Scope and applicability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Scope and applicability. 223.159 Section 223.159 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-135.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-135.pdf"><span>36 CFR 223.135 - Effect of listing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-135.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-135.pdf"><span>36 CFR 223.135 - Effect of listing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-144.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-144.pdf"><span>36 CFR 223.144 - Period of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Period of suspension. 223.144 Section 223.144 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-144.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-144.pdf"><span>36 CFR 223.144 - Period of suspension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Period of suspension. 223.144 Section 223.144 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-31.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-31.pdf"><span>36 CFR 223.31 - Duration of contracts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Duration of contracts. 223.31 Section 223.31 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-139.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-139.pdf"><span>36 CFR 223.139 - Period of debarment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Period of debarment. 223.139 Section 223.139 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-229.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-229.pdf"><span>36 CFR 223.229 - Contents of prospectus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Contents of prospectus. 223.229 Section 223.229 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-132.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-132.pdf"><span>36 CFR 223.132 - Policy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Suspension and... suspension by the Forest Service are discretionary actions that, taken in accordance with these regulations...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50519','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50519"><span>Non-timber forest products and forest stewardship plans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Becky Barlow; Tanner Filyaw; Sarah W. Workman</p> <p>2015-01-01</p> <p>To many woodland owners “harvesting” typically means the removal of timber from forests. In recent years many landowners have become aware of the role non-timber forest products (NTFPs) can play in supplemental management strategies to produce income while preserving other forest qualities. NTFPs are a diverse group of craft, culinary, and medicinal products that have...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1375421-climate-seasonality-limits-leaf-carbon-assimilation-wood-productivity-tropical-forests','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1375421-climate-seasonality-limits-leaf-carbon-assimilation-wood-productivity-tropical-forests"><span>Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; ...</p> <p>2016-04-28</p> <p>Here, the seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positivelymore » to precipitation when rainfall is < 2000 mm yr -1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr -1.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1375421','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1375421"><span>Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien</p> <p></p> <p>Here, the seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positivelymore » to precipitation when rainfall is < 2000 mm yr -1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr -1.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title25-vol1/pdf/CFR-2010-title25-vol1-sec163-32.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title25-vol1/pdf/CFR-2010-title25-vol1-sec163-32.pdf"><span>25 CFR 163.32 - Forest development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... activities undertaken to improve the sustainable productivity of commercial Indian forest land. The program... productivity of commercial forest land with emphasis on accomplishing on-the-ground projects. Forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014349','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014349"><span>Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Hargrove, William; Glasser, Jerry; Kuper, Philip D.</p> <p>2011-01-01</p> <p>This presentation discusses an effort to compute and post weekly MODIS forest change products for the conterminous US (CONUS), as part of national forest threat early warning system (EWS) known as the U.S. Forest Change Assessment Viewer (FCAV). The US Forest Service, NASA, USGS, and ORNL are working collaboratively to contribute weekly change products to this EWS. Large acreages of the nation's forests are being disturbed by a growing multitude of biotic and abiotic threats that can act either singularly or in combination. When common at regional scales, such disturbances can pose hazards and threats to floral and faunal bio-diversity, ecosystem sustainability, ecosystem services, and human settlements across the conterminous US. Regionally evident forest disturbances range from ephemeral periodic canopy defoliation to stand replacement mortality events due to insects, disease, fire, hurricanes, tornadoes, ice, hail, and drought. Mandated by the Healthy Forest Restoration Act of 2003, this forest threat EWS has been actively developed since 2006 and on-line since 2010. This FCAV system employs 250-meter MODIS NDVI-based forest change products as a key element of the system, providing regional and CONUS scale products in near real time every 8 days. Each forest change product in FCAV is based on current versus historical 24 day composite NDVI data gridded at 231.66 meter resolution. Current NDVI is derived from USGS eMODIS expedited products. MOD13 NDVI is used for constructing historical baselines. CONUS change products are computed for all forests as % change in the current versus historical NDVI. Change products are computed according to previous year, previous 3 years and previous 8 year historical baselines. The use of multiple baselines enables disturbance anomaly phenology to be more fully assessed. CONUS forest change products are posted each week on the FCAV, a web mapping service maintained by the National Environmental Modeling and Analysis Center. The FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to monitor forest hazards at regional scales throughout the year and across the nation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13367','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13367"><span>Increasing the efficiency of airphoto forest surveys by better definition of classes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C. Allen Bickford</p> <p>1953-01-01</p> <p>Aerial photographs are now commonly used in forest-inventory work. In the forest-survey work of the Northeastern Forest Experiment Station we are interested most in using them to estimate total volume of a forested area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44059','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44059"><span>The influence of trade associations and group certification programs on the hardwood certification movement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Iris B. Montague</p> <p>2013-01-01</p> <p>Forest certification has gained momentum around the world over the past two decades. Although there are advantages to being certified, many forest landowners and forest products manufacturers consider forest certification of U.S. forest and forest products unnecessary. Many believe that U.S. forests are already sustainably managed, the current certification systems are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-100.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-100.pdf"><span>36 CFR 223.100 - Award to highest bidder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Award to highest bidder. 223.100 Section 223.100 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-100.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-100.pdf"><span>36 CFR 223.100 - Award to highest bidder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Award to highest bidder. 223.100 Section 223.100 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-100.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-100.pdf"><span>36 CFR 223.100 - Award to highest bidder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Award to highest bidder. 223.100 Section 223.100 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9205','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9205"><span>Factors influencing sediment plume development from forest roads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Johnny M. Grace</p> <p>2005-01-01</p> <p>Southern forests, which rely on intensive management practices, are some of the most productive forests in the United States. Intensive forest management utilizes forest operations, such as site preparation, fertilization, thinning, and harvesting, to increase site productivity and reduce rotation time. These forest operations are essential to meet the ever-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-3.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-3.pdf"><span>36 CFR 223.3 - Sale of seized material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Sale of seized material. 223.3 Section 223.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-14.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-14.pdf"><span>36 CFR 223.14 - Where timber may be cut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Where timber may be cut. 223.14 Section 223.14 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-14.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-14.pdf"><span>36 CFR 223.14 - Where timber may be cut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Where timber may be cut. 223.14 Section 223.14 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-3.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-3.pdf"><span>36 CFR 223.3 - Sale of seized material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Sale of seized material. 223.3 Section 223.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-14.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-14.pdf"><span>36 CFR 223.14 - Where timber may be cut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Where timber may be cut. 223.14 Section 223.14 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-14.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-14.pdf"><span>36 CFR 223.14 - Where timber may be cut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Where timber may be cut. 223.14 Section 223.14 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-3.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-3.pdf"><span>36 CFR 223.3 - Sale of seized material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Sale of seized material. 223.3 Section 223.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-3.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-3.pdf"><span>36 CFR 223.3 - Sale of seized material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Sale of seized material. 223.3 Section 223.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-100.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-100.pdf"><span>36 CFR 223.100 - Award to highest bidder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Award to highest bidder. 223.100 Section 223.100 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-239.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-239.pdf"><span>36 CFR 223.239 - Free use by individuals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Free use by individuals. 223.239 Section 223.239 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8979','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8979"><span>Alabama's forest products industry: performance and contribution to the State's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond</p> <p>1986-01-01</p> <p>Employment and earnings in Alabama's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base. in 1980 than in 1970. Of the 13 Southern States, only 5 had more forest products industry employment than Alabama. Moreover, during...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25246','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25246"><span>North Carolina's forest products industry: performance and contribution to the state's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Con H. Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond</p> <p>1985-01-01</p> <p>Employment and earnings in North Carolina's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base in 1980 than in 1970. North Carolina had more forest products industry employment than any other State in the South. Moreover...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25235','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25235"><span>Georgia's forest products industry: performance and contribution to the state's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wilbur R. Maki; Con H. Schallau; Bennett B. Foster; Clair H. Redmond</p> <p>1985-01-01</p> <p>Employment and earnings in Georgia's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for nearly the same share of the State's economic base in 1980 as in 1970. Moreover, during this period, the State increased its share of the Nation's forest products industry...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25291','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25291"><span>South Carolina's forest products industry: performance and contribution to the state's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wilbur R. Maki; Con H. Schallau; Bennett B. Foster; Clair H. Redmond</p> <p>1986-01-01</p> <p>Employment and earnings in South Carolina's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base in 1980 than in 1970. Moreover, during this period, the State increased its share of the Nation's forest products...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/1240','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/1240"><span>Medicinal and dietary supplements: specialty forest products with a long tradition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Chamberlain; A.L. Hammett</p> <p>1999-01-01</p> <p>Over the last five years forest products other than timber-based products have received a great deal of attention. The markets for medicinal plants that are collected from the forests are growing rapidly. Some reports suggest this segment of the non-timber forest products industry is expanding faster than the timber-based industry. Plants used for their therapeutic...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-16/pdf/2011-20717.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-16/pdf/2011-20717.pdf"><span>76 FR 50715 - Information Collection; Forest Products Removal Permits and Contracts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-16</p> <p>... Bureau of Land Management (for form FS-2400- 1) oversee the approval and use of forest products by the... complete one of the following: FS-2400-1, Forest Products Removal Permit and Cash Receipt, is used to sell... Management identifies as BLM-5450-24 (43 U.S.C. 1201, 43 CFR 5420). FS-2400-4, Forest Products Contract and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2836','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2836"><span>Non-timber forest products in sustainable forest management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Chamberlain; A.L. Hammett; Philip A. Araman</p> <p>2001-01-01</p> <p>The forests of Southern United States are the source of many non-timber forest products (NTFPs). The collection, trade and use of these products have been important to rural economies since Europeans settled in this country. At the same time the plants from which these products originate are crucial to healthy ecosystems. Over the last decade, the market demand and the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9225','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9225"><span>Texas' forest products industry: performance and contribution to the State's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Con H Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond</p> <p>1987-01-01</p> <p>Even though Texas consumes more forest products than it produces, its forest products industry has a conspicuous record. Between 1970 and 1980, employment in the forest products industry increased by 12,000. Only one Southern State, North Carolina, showed a larger absolute gain. Texas was also second to North Carolina in improving its comparative advantage during the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120007429','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120007429"><span>A Project to Map and Monitor Baldcypress Forests in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph; Sader, Steven; Smoot, James</p> <p>2012-01-01</p> <p>Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27755743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27755743"><span>Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C</p> <p>2016-10-01</p> <p>Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen. Our analysis suggests that joint production possibilities under forest management regimes currently typical on industrial forest lands (e.g., 40- to 80-yr rotations with some tree retention for wildlife) represent but a small fraction of joint production outcomes possible in the region. Although the theoretical boundaries of the production possibilities sets we developed are probably unachievable in the current management environment, they arguably define the long-term potential of managing forests to produce multiple ecosystem services within and across multiple forest ownerships. © 2016 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26633851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26633851"><span>Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Zhi; Hu, Xueqian; Wu, Shihua</p> <p>2016-02-01</p> <p>In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27033166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27033166"><span>Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ager, Alan A; Day, Michelle A; Vogler, Kevin</p> <p>2016-07-01</p> <p>We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53F2000M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53F2000M"><span>Less than 50% nitrogen retention 1-year after high N additions to Pacific Northwest Douglas-fir forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michelsen-Correa, S.; Harrison, R. B.</p> <p>2017-12-01</p> <p>In Pacific Northwest forests, N is known to be a limiting nutrient particularly in Douglas-fir (Pseudotsuga menziesii) ecosystems. Fertilizers are commonly applied to increase productivity in commercially managed forests. Despite known N limitations, Douglas-fir uptake of applied fertilizers is typically low and highly variable depending on environmental site conditions of a particular forest. We measured N recovery within a 1-year time frame at five sites using a fertilizer enriched in 15N as a tracer. Comparisons were also made between Enhanced Efficiency Fertilizers (EEFs) and an unformulated urea fertilizer to determine if N recovery is improved with fertilizers designed to limit volatile losses of ammonia. Retention was low across all sites and fertilizer types with a mean of 39.0% recovered after 1-year. The largest fertilizer pool was the top 20cm of mineral soil. The use of EFFs as a management tool to improve N use efficiency at the five sites in our study is not supported by our results as no significant differences in total 1-year N recovery or tree uptake of N were observed between treatments. The low N recovery after 1-year but simultaneous increases in above ground biomass support a model of N loss where the ecosystem can continue to accumulate biomass with simultaneous leaching and gaseous losses of N. This conclusion contrasts with the commonly held assumption that fertilization of N limited Douglas-fir forests, should yield negligible losses of N and high recovery of the applied fertilizer. Additionally, we conclude that management decisions regarding fertilizer use efficiency and the benefits of fertilization need to be site specific due to the variable N recovery rates based on site factors as opposed to fertilizer treatment type. Finally, despite differences in the size of available soil N pools the amount of N recovered in the above group pools (i.e. bole wood and foliage) were not significantly different between sites. N uptake by the plants pools may have been at its maximum, thus additional N in the soil pools would not make a difference in terms of productivity over just one year. It remains to be seen what the longer-term impacts of the fertilizer treatments are, as the sites with a larger reservoir of plant available N are expected to maintain their growth rates for longer than the sites with lower N recovery.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001837','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001837"><span>Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip</p> <p>2011-01-01</p> <p>U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B53F0628M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B53F0628M"><span>The impact of forest structure and light utilization on carbon cycling in tropical forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.</p> <p>2015-12-01</p> <p>Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419162','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419162"><span>Energy Efficiency, Water Efficiency, and Renewable Energy Site Assessment: San Juan National Forest - Dolores Ranger District, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kandt, Alicen J.; Kiatreungwattana, Kosol</p> <p></p> <p>This report summarizes the results from an energy efficiency, water efficiency, and renewable energy site assessment of the Dolores Ranger District in the San Juan National Forest in Colorado. A team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the assessment with United States Forest Service (USFS) personnel on August 16-17, 2016, as part of ongoing efforts by USFS to reduce energy and water use and implement renewable energy technologies. The assessment is approximately an American Society of Heating, Refrigerating, and Air-Conditioning Engineers Level 2 audit and meets Energy Independence and Security Act requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24198936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24198936"><span>Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin</p> <p>2013-10-01</p> <p>Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol2/pdf/CFR-2010-title36-vol2-sec261-6.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol2/pdf/CFR-2010-title36-vol2-sec261-6.pdf"><span>36 CFR 261.6 - Timber and other forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title29-vol3/pdf/CFR-2012-title29-vol3-sec780-115.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title29-vol3/pdf/CFR-2012-title29-vol3-sec780-115.pdf"><span>29 CFR 780.115 - Forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or... 29 Labor 3 2012-07-01 2012-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol3/pdf/CFR-2014-title29-vol3-sec780-115.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol3/pdf/CFR-2014-title29-vol3-sec780-115.pdf"><span>29 CFR 780.115 - Forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or... 29 Labor 3 2014-07-01 2014-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol3/pdf/CFR-2013-title29-vol3-sec780-115.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title29-vol3/pdf/CFR-2013-title29-vol3-sec780-115.pdf"><span>29 CFR 780.115 - Forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or... 29 Labor 3 2013-07-01 2013-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec261-6.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec261-6.pdf"><span>36 CFR 261.6 - Timber and other forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec261-6.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec261-6.pdf"><span>36 CFR 261.6 - Timber and other forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec261-6.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec261-6.pdf"><span>36 CFR 261.6 - Timber and other forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec261-6.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec261-6.pdf"><span>36 CFR 261.6 - Timber and other forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/3077','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/3077"><span>Proceedings: linking healthy forests and communities through Alaska value-added forest products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Theodore L. Laufenberg; Bridget K. Brady</p> <p>2000-01-01</p> <p>The Alaska forest products industry is experiencing significant changes in its structure due to economic, ecological, and social pressures. Papers presented at this workshop brought together technical specialists and exhibitors from forest products industry, associations, universities, and private, state, and federal land management agencies. Topics included: policy...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-275.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-275.pdf"><span>36 CFR 223.275 - Establishment of a pilot program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Establishment of a pilot... PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B43B0583W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B43B0583W"><span>Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, C. Y.; Arain, M. A.; Ensminger, I.</p> <p>2016-12-01</p> <p>Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B24B..01Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B24B..01Y"><span>Long-term nitrogen regulation of forest carbon sequestration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Y.; Luo, Y.</p> <p>2009-12-01</p> <p>It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/393933-risk-assessment-remedial-policy-evaluation-using-predictive-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/393933-risk-assessment-remedial-policy-evaluation-using-predictive-modeling"><span>Risk assessment and remedial policy evaluation using predictive modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Linkov, L.; Schell, W.R.</p> <p>1996-06-01</p> <p>As a result of nuclear industry operation and accidents, large areas of natural ecosystems have been contaminated by radionuclides and toxic metals. Extensive societal pressure has been exerted to decrease the radiation dose to the population and to the environment. Thus, in making abatement and remediation policy decisions, not only economic costs but also human and environmental risk assessments are desired. This paper introduces a general framework for risk assessment and remedial policy evaluation using predictive modeling. Ecological risk assessment requires evaluation of the radionuclide distribution in ecosystems. The FORESTPATH model is used for predicting the radionuclide fate in forestmore » compartments after deposition as well as for evaluating the efficiency of remedial policies. Time of intervention and radionuclide deposition profile was predicted as being crucial for the remediation efficiency. Risk assessment conducted for a critical group of forest users in Belarus shows that consumption of forest products (berries and mushrooms) leads to about 0.004% risk of a fatal cancer annually. Cost-benefit analysis for forest cleanup suggests that complete removal of organic layer is too expensive for application in Belarus and a better methodology is required. In conclusion, FORESTPATH modeling framework could have wide applications in environmental remediation of radionuclides and toxic metals as well as in dose reconstruction and, risk-assessment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29339267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29339267"><span>Effects of exotic plantation forests on soil edaphon and organic matter fractions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Gang; Liu, Yao; Long, Zhijian; Hu, Shanglian; Zhang, Yuanbin; Jiang, Hao</p> <p>2018-06-01</p> <p>There is uncertainty and limited knowledge regarding soil microbial properties and organic matter fractions of natural secondary forest accompanying chemical environmental changes of replacement by pure alien plantation forests in a hilly area of southwest of Sichuan province China. The aim of this study was to evaluate the impact of natural secondary forest (NSF) to pure Cryptomeria fortunei forest (CFF) and Cunninghamia lanceolata forest (CLF) on soil organic fractions and microbial communities. The results showed that the soil total phospholipid fatty acids (PLFAs), total bacteria and fungi, microbial carbon pool, organic recalcitrant carbon (C) and (N) fractions, soil microbial quotient and labile and recalcitrant C use efficiencies in each pure plantation were significantly decreased, but their microbial N pool, labile C and N pools, soil carbon dioxide efflux, soil respiratory quotient and recalcitrant N use efficiency were increased. An RDA analysis revealed that soil total PLFAs, total bacteria and fungi and total Gram-positive and Gram-negative bacteria were significantly associated with exchangeable Al 3+ , exchangeable acid, Al 3+ , available P and Mg 2+ and pH, which resulted into microbial functional changes of soil labile and recalcitrant substrate use efficiencies. Modified microbial C- and N-use efficiency due to forest conversion ultimately meets those of rapidly growing trees in plantation forests. Enlarged soil labile fractions and soil respiratory quotients in plantation forests would be a potential positive effect for C source in the future forest management. Altogether, pure plantation practices could provoke regulatory networks and functions of soil microbes and enzyme activities, consequently leading to differentiated utilization of soil organic matter fractions accompanying the change in environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6783024','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6783024"><span>Method of determining forest production from remotely sensed forest parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Corey, J.C.; Mackey, H.E. Jr.</p> <p>1987-08-31</p> <p>A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1047...50T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1047...50T"><span>Lidar Technique for Early Forest Fire Detection : Design and Development Aspects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Traïche, M.; Bourai, K.; Moussaoui, N.; Beggar, R.; Almabouada, F.; Louhibi, D.</p> <p>2008-09-01</p> <p>Many countries suffer from forest fires every summer, a phenomenon which wreaks havoc on both local and global environment. As well, it causes enormous damage to public health especially for people living in surrounding areas. For fighting against forest fires, ocular surveillance, in spite of its wide use, is not efficient owing to the costly mobilization of a great number of forest agents and to the fact that most of forest regions are not accessible. Other passive techniques such as infrared camera remote sensing are neither efficient under unfavorable weather conditions. An efficient way to early detect forest fires even under worse environmental conditions and in inaccessible mountainous regions uses the backscattering Lidar technique. This consists of the emission of monowavelength laser pulses spanning azimuthally the entire region subject to surveillance and the detection of the backscattered signal. The detection parameter is the signal to noise ration SNR. In this contribution, we will deal with approach and design aspects inherent to the development task of such a Lidar.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/56173','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/56173"><span>Deception Creek Experimental Forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Theresa B. Jain; Russell T. Graham</p> <p>1996-01-01</p> <p>Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-38.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-38.pdf"><span>36 CFR 223.38 - Standards for road design and construction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Standards for road design and construction. 223.38 Section 223.38 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale Contracts...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/18778','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/18778"><span>Timber products production in West Virginia 1965</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Neal P. Kingsley; David R. Dickson</p> <p>1968-01-01</p> <p>This study was funded through the Appalachian Regional Development Act of 1965 and was conducted by the Forest Survey Project of the Northeastern Forest Experiment Station with the assistance of the State Forester and the Extension Forester of West Virginia, and the Monongahela Power Company. The State Forester's office and the Extension Forester provided lists of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10308','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10308"><span>Primary forest products industry and timber use, Iowa, 1972.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James E. Blyth; William A. Farris</p> <p>1975-01-01</p> <p>Discusses recent Iowa forest industry trends, and production of saw logs, veneer logs, pulpwood, and other roundwood products. Comments on outlook for Iowa forest industry and production and use of roundwood and primary wood-using plant wood and bark residue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-281.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol2/pdf/CFR-2014-title36-vol2-sec223-281.pdf"><span>36 CFR 223.281 - Monitoring and revising sustainable harvest levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.281 Monitoring and revising sustainable harvest levels. The Forest Service shall monitor and revise sustainable harvest levels for forest botanical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-281.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol2/pdf/CFR-2013-title36-vol2-sec223-281.pdf"><span>36 CFR 223.281 - Monitoring and revising sustainable harvest levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.281 Monitoring and revising sustainable harvest levels. The Forest Service shall monitor and revise sustainable harvest levels for forest botanical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-281.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-281.pdf"><span>36 CFR 223.281 - Monitoring and revising sustainable harvest levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.281 Monitoring and revising sustainable harvest levels. The Forest Service shall monitor and revise sustainable harvest levels for forest botanical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-281.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol2/pdf/CFR-2012-title36-vol2-sec223-281.pdf"><span>36 CFR 223.281 - Monitoring and revising sustainable harvest levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.281 Monitoring and revising sustainable harvest levels. The Forest Service shall monitor and revise sustainable harvest levels for forest botanical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48030','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48030"><span>Calibrating and Updating the Global Forest Products Model (GFPM version 2014 with BPMPD)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joseph Buongiorno; Shushuai Zhu</p> <p>2014-01-01</p> <p>The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2014 has data and parameters to simulate changes of the forest sector from 2010 to 2030. Buongiorno and Zhu (2014) describe how to use the model for simulation....</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52267','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52267"><span>Calibrating and updating the Global Forest Products Model (GFPM version 2016 with BPMPD)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joseph Buongiorno; Shushuai  Zhu</p> <p>2016-01-01</p> <p>The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2016 has data and parameters to simulate changes of the forest sector from 2013 to 2030. Buongiorno and Zhu (2015) describe how to use the model for...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49762','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49762"><span>California's forest products industry and timber harvest, 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Chelsea P. McIver; Joshua P. Meek; Micah G. Scudder; Colin B. Sorenson; Todd A. Morgan; Glenn A. Christensen</p> <p>2015-01-01</p> <p>This report traces the flow of California's 2012 timber harvest through the primary wood products industry and provides a description of the structure, condition, and economic impacts of California's forest products sector. Historical forest products industry changes are discussed, as well as trends in harvest, production, mill residue, and sales. Also...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174152','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174152"><span>Linking state-and-transition simulation and timber supply models for forest biomass production scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime</p> <p>2015-01-01</p> <p>We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032214','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032214"><span>Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhou, G.; Guan, L.; Wei, X.; Zhang, Dongxiao; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z.; Kong, G.; Mo, J.; Yu, Q.</p> <p>2007-01-01</p> <p>Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982-2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m-2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m-2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study. ?? 2006 Springer Science+Business Media B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJAEO..18..305L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJAEO..18..305L"><span>Integration of carbon conservation into sustainable forest management using high resolution satellite imagery: A case study in Sabah, Malaysian Borneo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langner, Andreas; Samejima, Hiromitsu; Ong, Robert C.; Titin, Jupiri; Kitayama, Kanehiro</p> <p>2012-08-01</p> <p>Conservation of tropical forests is of outstanding importance for mitigation of climate change effects and preserving biodiversity. In Borneo most of the forests are classified as permanent forest estates and are selectively logged using conventional logging techniques causing high damage to the forest ecosystems. Incorporation of sustainable forest management into climate change mitigation measures such as Reducing Emissions from Deforestation and Forest Degradation (REDD+) can help to avert further forest degradation by synergizing sustainable timber production with the conservation of biodiversity. In order to evaluate the efficiency of such initiatives, monitoring methods for forest degradation and above-ground biomass in tropical forests are urgently needed. In this study we developed an index using Landsat satellite data to describe the crown cover condition of lowland mixed dipterocarp forests. We showed that this index combined with field data can be used to estimate above-ground biomass using a regression model in two permanent forest estates in Sabah, Malaysian Borneo. Tangkulap represented a conventionally logged forest estate while Deramakot has been managed in accordance with sustainable forestry principles. The results revealed that conventional logging techniques used in Tangkulap during 1991 and 2000 decreased the above-ground biomass by an annual amount of average -6.0 t C/ha (-5.2 to -7.0 t C/ha, 95% confidential interval) whereas the biomass in Deramakot increased by 6.1 t C/ha per year (5.3-7.2 t C/ha, 95% confidential interval) between 2000 and 2007 while under sustainable forest management. This indicates that sustainable forest management with reduced-impact logging helps to protect above-ground biomass. In absolute terms, a conservative amount of 10.5 t C/ha per year, as documented using the methodology developed in this study, can be attributed to the different management systems, which will be of interest when implementing REDD+ that rewards the enhancement of carbon stocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112049P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112049P"><span>Assessing the protection function of Alpine forest ecosystems using BGC modelling theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.</p> <p>2009-04-01</p> <p>The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (≤20yr). The WUE was also found directly proportional to the elevation. A positive correlation between annual outflow and the WUE could be shown. Yearly outflow predictions for the whole catchment for the years 1981-2005 showed no significant difference from the measurements. Key words: protection forests, outflow, flux dynamics, BGC-Modelling</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-242.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-242.pdf"><span>36 CFR 223.242 - Supplemental guidance, Memorandum of Agreements and Memorandums of Understanding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special Forest Products Award of Contracts, Permits... collaboration, issue resolution, and local implementation of these regulations. Existing Memorandums of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50608','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50608"><span>Collection of nontimber forest products from state forests in the US south</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Gregory E. Frey; James Chamberlain</p> <p>2016-01-01</p> <p>Little is known about the harvest of nontimber forest products (NTFPs) in state forests of the US South. We asked the state forestry agencies in all 13 southern states about the products harvested and the policies regulating harvest, as well as evidence of illegal harvest and the effects of  harvest on biodiversity. Of the 12 southern states that have state forests, 7...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B13G..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B13G..04S"><span>Role of MODIS Vegetation Phenology Products in the ForWarn System for Monitoring of Forest Disturbances in the Conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spruce, J.; Hargrove, W. W.; Norman, S.; Gasser, J.; Smoot, J.; Kuper, P.</p> <p>2012-12-01</p> <p>This presentation discusses MODIS vegetation phenology products used in the ForWarn Early Warning System (EWS) tool for near real time regional forest disturbance detection and surveillance at regional to national scales. The ForWarn EWS is being developed by the USDA Forest Service NASA, ORNL, and USGS to aid federal and state forest health management activities. ForWarn employs multiple historical land surface phenology products that are derived from MODIS MOD13 Normalized Difference Vegetation Index (NDVI) data. The latter is temporally processed into phenology products with the Time Series Product Tool (TSPT) and the Phenological Parameter Estimation Tool (PPET) software produced at NASA Stennis Space Center. TSPT is used to effectively noise reduce, fuse, and void interpolate MODIS NDVI data. PPET employs TSPT-processed NDVI time series data as an input, outputting multiple vegetation phenology products at a 232 meter resolution for 2000 to 2011, including NDVI magnitude and day of year products for seven key points along the growing season (peak of growing season and the minima, 20%, and 80% of the peak NDVI for both the left and right side of growing season), cumulative NDVI integral products for the most active part of the growing season and sequentially across the growing season at 8 day intervals, and maximum value NDVI products composited at 24 day intervals in which each product date has 8 days of overlap between the previous and following product dates. MODIS NDVI phenology products are also used to compute nationwide near real time forest change products every 8 days. These include percent change in forest NDVI products that compare the current NDVI from USGS eMODIS products to historical MODIS MOD13 NDVI. For each date, three forest change products are produced using three different maximum value NDVI baselines (from the previous year, three previous years, and all previous years). All change products are output with a rainbow color table in which forests with the most severe NDVI decreases are assigned hot colors (yellow to red) and forests with prominent NDVI increases are assigned cold colors (blue tones). All mentioned products have been integrated as data layers into ForWarn's geospatial data viewer known as the U.S. Forest Change Assessment Viewer (FCAV). The latter is used to view and assess the context of the mentioned forest change products with respect to ancillary data layers, such as land cover, elevation, hydrologic features, climatic data, storm data, aerial disturbance surveys, fire data, and land ownership. The FCAV also includes a temporal NDVI profiler for viewing phenological change in multi-year NDVI associated with known or suspected regionally apparent forest disturbances (e.g., from fire and insects). ForWarn forest change products have been used to detect, track, and assess several biotic and abiotic regional forest disturbance events across the country, including ephemeral and longer lasting damage from storms, drought, and insects. Such change products are most effective for viewing severe disturbance patches of multiple pixels. MODIS vegetation phenology products contribute vital current information on forest conditions to the ForWarn system and this role is expected to grow as these products are refined and derivative products are added.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013471','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013471"><span>Role of MODIS Vegetation Phenology Products in the ForWarn System for Monitoring of Forest Disturbances in the Conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Hargrove, William; Norman, Steve; Gasser, Jerry; Smoot, James; Kuper, Philip D,</p> <p>2012-01-01</p> <p>This presentation discusses MODIS vegetation phenology products used in the ForWarn Early Warning System (EWS) tool for near real time regional forest disturbance detection and surveillance at regional to national scales. The ForWarn EWS is being developed by the USDA Forest Service NASA, ORNL, and USGS to aid federal and state forest health management activities. ForWarn employs multiple historical land surface phenology products that are derived from MODIS MOD13 Normalized Difference Vegetation Index (NDVI) data. The latter is temporally processed into phenology products with the Time Series Product Tool (TSPT) and the Phenological Parameter Estimation Tool (PPET) software produced at NASA Stennis Space Center. TSPT is used to effectively noise reduce, fuse, and void interpolate MODIS NDVI data. PPET employs TSPT-processed NDVI time series data as an input, outputting multiple vegetation phenology products at a 232 meter resolution for 2000 to 2011, including NDVI magnitude and day of year products for seven key points along the growing season (peak of growing season and the minima, 20%, and 80% of the peak NDVI for both the left and right side of growing season), cumulative NDVI integral products for the most active part of the growing season and sequentially across the growing season at 8 day intervals, and maximum value NDVI products composited at 24 day intervals in which each product date has 8 days of overlap between the previous and following product dates. MODIS NDVI phenology products are also used to compute nationwide NRT forest change products refreshed every 8 days. These include percent change in forest NDVI products that compare the current NDVI from USGS eMODIS products to historical MODIS MOD13 NDVI. For each date, three forest change products are produced using three different maximum value NDVI baselines (from the previous year, three previous years, and all previous years). All change products are output with a rainbow color table in which forests with the most severe NDVI decreases are assigned hot colors (yellow to red) and forests with prominent NDVI increases are assigned cold colors (blue tones). All mentioned products have been integrated as data layers into ForWarn s geospatial data viewer known as the U.S. Forest Change Assessment Viewer (FCAV). The latter is used to view and assess the context of the mentioned forest change products with respect to ancillary data layers, such as land cover, elevation, hydrologic features, climatic data, storm data, aerial disturbance surveys, fire data, and land ownership. The FCAV also includes a temporal NDVI profiler for viewing phenological change in multi-year NDVI associated with known or suspected regionally apparent forest disturbances (e.g., from fire and insects). ForWarn forest change products have been used to detect, track, and assess several biotic and abiotic regional forest disturbance events across the country, including ephemeral and longer lasting damage from storms, drought, and insects. Such change products are most effective for viewing severe disturbances affecting multiple MODIS pixels. MODIS vegetation phenology products contribute vital current information on forest conditions to the ForWarn system and this role is expected to grow as these products are refined and derivative products are added.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-49.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol2/pdf/CFR-2011-title36-vol2-sec223-49.pdf"><span>36 CFR 223.49 - Downpayments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 223.49 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Timber Sale... purchaser bids for timber offered. (3) Lump sum timber sales are premeasured sales where the entire value of...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55541','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55541"><span>Forest ecosystem services: Provisioning of non-timber forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes</p> <p>2017-01-01</p> <p>The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25644','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25644"><span>Forest products issue.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thornton T. Munger</p> <p>1935-01-01</p> <p>This issue of Forest Research Notes is devoted to abstracts of projects under way or recently completed by the Section of Forest Products. This section conducts research designed to contribute to better and more economic utilization of the products of the forest. As shown by the variety of subjects presented in these notes, the projects range from the statistics of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/25566','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/25566"><span>Minor forest products of the Pacific Northwest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Elmer W. Shaw</p> <p>1949-01-01</p> <p>The evergreen forests of Washington and Oregon are the source of an interesting variety of so-called "minor products," Many of these forest sidelines are not well known. They are generally underestimated and quite often misunderstood. This is partly because the value and significance of these smaller, incidental products of the forest have long been...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34936','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34936"><span>Mapping and imputing potential productivity of Pacific Northwest forests using climate variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Gregory Latta; Hailemariam Temesgen; Tara Barrett</p> <p>2009-01-01</p> <p>Regional estimation of potential forest productivity is important to diverse applications, including biofuels supply, carbon sequestration, and projections of forest growth. Using PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate and productivity data measured on a grid of 3356 Forest Inventory and Analysis plots in Oregon and Washington, we...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49778','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49778"><span>Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese</p> <p>2015-01-01</p> <p>Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001010"><span>Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald</p> <p>2013-01-01</p> <p>Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are computed versus the previous 1, previous 3, and all previous years in the MODIS record for a given 24 day interval. Other "weekly" forest change products include one computed using an adaptive length compositing method for quicker detection of disturbances, two others that adjust for seasonal fluctuations in normal vegetation phenology (e.g., early versus late springs). This overall approach enables forest disturbance dynamics from a variety of regionally evident biotic and abiotic forest disturbances to be viewed and assessed through the calendar year. The change products are also being utilized for forest change trend analysis and for developing regional forest overstory mortality products. ForWarn's forest change products are used to alert forest health specialists about new forest disturbances. Such alerts are also typically based on available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances to multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn offers products that could be combined with other geospatial data on forest biomass to assess forest disturbance carbon impacts within the conterminous US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/21091','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/21091"><span>Nontimber forest products management on national forests in the United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Rebecca J. McLain; Eric T. Jones</p> <p>2005-01-01</p> <p>This study provides an overview of nontimber forest products (NTFP) programs on national forests in the United States. We conducted an email survey in 2003 to obtain data on NTFP management activities on national forests across the country. Program characteristics examined in the study included important NTFPs managed on national forests, presence of NTFP coordinators...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54367','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54367"><span>From deficit to surplus: An econometric analysis of US trade balance in forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Daowei Zhang; Ying Lin; Jeffrey P. Prestemon</p> <p>2017-01-01</p> <p>Although the US trade deficit has persisted since 1975, the country changed in 2009 from a net importer to a net exporter of forest products, emerging as the world's largest exporter of forest products. Drawing on recent data, we model the real dollar value of US exports, imports, and the trade balance in forest products to identify factors likely to explain this...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38493','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38493"><span>Trends in global shipping and the impact on Alaska’s forest products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joseph A. Roos; Allen M. Brackley; Daisuke Sasatani</p> <p>2011-01-01</p> <p>Traditionally, there has been a strong forest products trade between Alaska and Asia. This trade relationship has developed owing to Alaska’s proximity to Asia and, in the past, an abundance of high-quality timber. Although forest products markets in North America remain soft, markets in Asia are growing. However, to benefit from Asia’s growing forest products market,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045486','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045486"><span>Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barr, J.G.; Engel, V.; Fuentes, J.D.; Fuller, D.O.; Kwon, H.</p> <p>2013-01-01</p> <p>Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3508Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3508Z"><span>Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas</p> <p>2018-04-01</p> <p>Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EnMan..48.1086Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EnMan..48.1086Z"><span>Current Status and Problems in Certification of Sustainable Forest Management in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing</p> <p>2011-12-01</p> <p>Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US0.66-86.63 million while the economic benefits for the forestry business sector could exceed US150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21327561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21327561"><span>Current status and problems in certification of sustainable forest management in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing</p> <p>2011-12-01</p> <p>Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US$0.66-86.63 million while the economic benefits for the forestry business sector could exceed US$150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13A1751L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13A1751L"><span>Generation of large-scale forest height and disturbance maps through the fusion of NISAR and GEDI along with TanDEM-X/L</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Y.; Treuhaft, R. N.; Siqueira, P.; Torbick, N.; Lucas, R.; Keller, M. M.; Schmidt, M.; Ducey, M. J.; Salas, W.</p> <p>2017-12-01</p> <p>Large-scale products of forest height and disturbance are essential for understanding the global carbon distribution as well as its changes in response to natural events and human activities. Regarding this scientific need, both NASA's GEDI and NASA-ISRO's NISAR are going to be launched in the 2018-2021 timeframe in parallel with DLR's current TanDEM-X and/or the proposed TanDEM-L, which provides a lot of potential for global ecosystem mapping. A new simple and efficient method of forest height mapping has been developed for combining spaceborne repeat-pass InSAR and lidar missions (e.g. NISAR and GEDI) which estimates temporal decorrelation parameters of repeat-pass InSAR and uses the lidar data as training samples. An open-access Python-based software has been developed for automated processing. As a result, a mosaic of forest height was generated for US states of Maine and New Hampshire (11.6 million ha) using JAXA's ALOS-1 and ALOS-2 HV-pol InSAR data and a small piece of lidar training samples (44,000 ha) with the height estimates validated against airborne lidar and field inventory data over both flat and mountainous areas. In addition, through estimating and correcting for the temporal decorrelation effects in the spaceborne repeat-pass InSAR coherence data and also utilizing the spaceborne single-pass InSAR phase data, forest disturbance such as selective logging is not only detected but also quantified in subtropical forests of Australia using ALOS-1 HH-pol InSAR data (validated against NASA's Landsat), as well as in tropics of Brazil using TanDEM-X and ALOS-2 HH-pol InSAR data (validated against field inventory data). The operational simplicity and efficiency make these methods a potential observing/processing prototype for the fusion of NISAR, GEDI and TanDEM-X/L.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec5400-0-3.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec5400-0-3.pdf"><span>43 CFR 5400.0-3 - Authority.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... administered by the Secretary of Agriculture for national forest purposes or for purposes of title III of the..., DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SALES OF FOREST PRODUCTS; GENERAL Sales of Forest... Grant Lands and directs that such lands shall be managed for permanent forest production and the timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec5400-0-3.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec5400-0-3.pdf"><span>43 CFR 5400.0-3 - Authority.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... administered by the Secretary of Agriculture for national forest purposes or for purposes of title III of the..., DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SALES OF FOREST PRODUCTS; GENERAL Sales of Forest... Grant Lands and directs that such lands shall be managed for permanent forest production and the timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title43-vol2/pdf/CFR-2011-title43-vol2-sec5400-0-3.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title43-vol2/pdf/CFR-2011-title43-vol2-sec5400-0-3.pdf"><span>43 CFR 5400.0-3 - Authority.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... administered by the Secretary of Agriculture for national forest purposes or for purposes of title III of the..., DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SALES OF FOREST PRODUCTS; GENERAL Sales of Forest... Grant Lands and directs that such lands shall be managed for permanent forest production and the timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec5400-0-3.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec5400-0-3.pdf"><span>43 CFR 5400.0-3 - Authority.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... administered by the Secretary of Agriculture for national forest purposes or for purposes of title III of the..., DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SALES OF FOREST PRODUCTS; GENERAL Sales of Forest... Grant Lands and directs that such lands shall be managed for permanent forest production and the timber...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47484','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47484"><span>Forest production dynamics along a wood density spectrum in eastern US forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi</p> <p>2015-01-01</p> <p>Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10339','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10339"><span>The extent and characteristics of low productivity aspen areas in Minnesota.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Gerhard K. Raile; Jerold T. Hahn</p> <p>1982-01-01</p> <p>Plot data from 1977 Minnesota forest inventory were used to evaluate the productivity of Minnesota's aspen forest. Computer simulation was used to develop equations for evaluating the current and potential productivity of aspen forest stands. The analysis showed that 49% of the state's aspen forest type was producing less than half of potential volume yields...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8380','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8380"><span>Biology and Management of Insect Pests in North American Intensively Managed Hardwood Forest Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David R. Coyle; T. Evan Nebeker; Elwood R. Hart; William J. Mattson</p> <p>2005-01-01</p> <p>Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23572','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23572"><span>Forest product trade impacts of an invasive species: modeling structure and intervention trade-offs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jeffrey Prestemon; Shushuai Zhu; James A. Turner; Joseph Buongiorno; Ruhong Li</p> <p>2006-01-01</p> <p>Asian gypsy and nun moth introductions into the United States, possibly arriving on imported Siberian coniferous logs, threaten domestic forests and product markers and could have global market consequences. We simulate, using the Global Forest Products Model (a spatial equilibrium model of the world forest sector), the consequences under current policies of a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55657','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55657"><span>Nontimber forest products in the United States: an analysis for the 2015 National Sustainable Forest Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James Chamberlain; Aaron Teets; Steve Kruger</p> <p>2018-01-01</p> <p>Worldwide, forest plants and fungi that are harvested for their nontimber products are critical for the health of the ecosystems and the well-being of people who benefit from the harvest. This document provides an analysis of the volumes and values of nontimber forest products in the United States. It presents...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38676','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38676"><span>Forests and biofuels: an opportunity for public-private partnering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Theodore Wegner</p> <p>2011-01-01</p> <p>In 2010, the Forest Products Laboratory (FPL) celebrated its 100th anniversary — a significant milestone in its history. Throughout its century of public service, the FPL has conducted wood and fiber utilization research that contributes to the conservation and productivity of forest resources and to sustainably meeting the needs of people for forest products. Located...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/22671','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/22671"><span>Oklahoma forest industries, 1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Dennis M. May</p> <p>1986-01-01</p> <p>This publication reports the findings of a 100 percent canvass of Oklahoma's forest industries in 1984. The production and receipts of industrial roundwood are reported by product, species group, and county. The production and disposition of mill residues generated hy Oklahoma's forest industries are also reported. Roundwood and residue production changes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48712','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48712"><span>Forest Carbon Accounting Considerations in US Bioenergy Policy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Reid A. Miner; Robert C. Abt; Jim L. Bowyer; Marilyn A. Buford; Robert W. Malmsheimer; Jay O' Laughlin; Elaine E. Oneil; Roger A. Sedjo; Kenneth E. Skog</p> <p>2014-01-01</p> <p>Four research-based insights are essential to understanding forest bioenergy and “carbon debts.” (1) As long as wood-producing land remains in forest, long-lived wood products and forest bioenergy reduce fossil fuel use and long-term carbon emission impacts. (2) Increased demand for wood can trigger investments that increase forest area and forest productivity and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2764','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2764"><span>Assessing socioeconomic impacts of climate change on U.S. forests, wood-product markets, and forest recreation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Lloyd C. Irland; Darius Adams; Ralph Alig; Carter J. Betz; Chi-Chung Chen; Mark Hutchins; Bruce A. McCarl; Ken Skog; Brent L. Sohngen</p> <p>2001-01-01</p> <p>In this paper we discuss the problems of projecting social and economic changes affecting forests and review recent efforts to assess the wood-market impacts of possible climate changes. To illustrate the range of conditions encountered in projecting socioeconomic change linked to forests, we consider two markedly different uses: forest products markets and forest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13046','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13046"><span>Tissue culture of woody plants and its relevance to molecular biology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>R. Minocha; S.M. Jain</p> <p>2000-01-01</p> <p>The ever increasing demand for forest products and the progressive deterioration of natural forests means that the forest industry cannot continue to rely on the exploitation of natural forests ( Jain, 1997; Tzfira et al., 1998). To meet the increasing demand for forest products while more forest land is needed for non-timber uses, the replacement of natural...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B53E0441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B53E0441S"><span>Monitoring 2009 Forest Disturbance across the Conterminous United States, Based on Near-Real Time and Historical MODIS 250 Meter NDVI Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spruce, J.; Hargrove, W. W.; Gasser, G.; Smoot, J. C.; Kuper, P.</p> <p>2009-12-01</p> <p>This presentation discusses a study on the use of MODIS NDVI data for viewing regional patterns of forest disturbance across the conterminous United States. This capability is a part of a national forest threat early warning system (EWS) being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. The viewing capability of the EWS was recently demonstrated for 2009, using near-real time (NRT) MODIS NDVI data from the USGS eMODIS Web site and historical NDVI data from standard MOD13 products. For this study, a historical maximum NDVI baseline for CONUS was computed from fused Aqua and Terra MOD13 data for June 10-July 27 of each year during 2000-2006. Comparable 2009 MODIS NDVI imagery was computed from fusion and re-compositing of eMODIS NRT Aqua and Terra 7-day products. For the historical data, time series data processing software was used to remove poor quality data and to mitigate data gaps mainly due to clouds. Although the NRT component was not as rigorously processed to mitigate noise, the processing still yielded largely cloud-free clean, coherent CONUS NDVI imagery initially with only 21-days of compositing. The principal end product of the study was a forest disturbance visualization product based on an NDVI RGB image that combines data from 2 dates (i.e. time frames). For this RGB, the historical maximum NDVI for the observed temporal window was assigned to the red color gun and the 2009 NRT product for the same time frame was assigned to the blue and green guns. The resulting image was masked with a USFS FIA 250-m type map to include only forested areas. The forest disturbance areas on the forest-masked 2-date NDVI RGB are shown in red tones with non-disturbed closed canopy forest generally shown in medium to bright gray tones. This product highlighted several broad-scaled forest canopy disturbances for the observed time in 2009, including damage from caterpillars, bark beetles, ice storms, hail and wind storms, and wildfire. The MODIS forest disturbance products compared well with reference data (e.g., Landsat, aerial sketch maps, and news accounts). These products have been useful in aiding development of the forest threat EWS. Information on location and extent of regional forest disturbance is important to Federal, State, and private sector forest managers. The 2-date RGB product for 2009 was also processed into a classification of forest disturbance for the Colorado Front Range. Validation of this classification is underway. Regional forest disturbance classifications in conjunction with available CONUS forest biomass products could be useful for assessing carbon impacts from biotic threats such as mountain pine beetle and from abiotic threats related to climate change. The latency of the NRT eMODIS products addresses an important need of the USFS EWS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3577818','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3577818"><span>Disentangling Biodiversity and Climatic Determinants of Wood Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vilà, Montserrat; Carrillo-Gavilán, Amparo; Vayreda, Jordi; Bugmann, Harald; Fridman, Jonas; Grodzki, Wojciech; Haase, Josephine; Kunstler, Georges; Schelhaas, MartJan; Trasobares, Antoni</p> <p>2013-01-01</p> <p>Background Despite empirical support for an increase in ecosystem productivity with species diversity in synthetic systems, there is ample evidence that this relationship is dependent on environmental characteristics, especially in structurally more complex natural systems. Empirical support for this relationship in forests is urgently needed, as these ecosystems play an important role in carbon sequestration. Methodology/Principal Findings We tested whether tree wood production is positively related to tree species richness while controlling for climatic factors, by analyzing 55265 forest inventory plots in 11 forest types across five European countries. On average, wood production was 24% higher in mixed than in monospecific forests. Taken alone, wood production was enhanced with increasing tree species richness in almost all forest types. In some forests, wood production was also greater with increasing numbers of tree types. Structural Equation Modeling indicated that the increase in wood production with tree species richness was largely mediated by a positive association between stand basal area and tree species richness. Mean annual temperature and mean annual precipitation affected wood production and species richness directly. However, the direction and magnitude of the influence of climatic variables on wood production and species richness was not consistent, and vary dependent on forest type. Conclusions Our analysis is the first to find a local scale positive relationship between tree species richness and tree wood production occurring across a continent. Our results strongly support incorporating the role of biodiversity in management and policy plans for forest carbon sequestration. PMID:23437038</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8989','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8989"><span>Louisiana's forest products industry: performance and contribution to the State's economy, 1970 to 1980.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond</p> <p>1986-01-01</p> <p>Employment in Louisiana's forest products industry, unlike employment in the other 12 Southern States, decreased significantly between 1970 and 1980. Despite this decrease, the value added by the industry increased. The productivity of Louisiana's forest products industry ranked second among the 13 States in the South. In 1980, lumber and wood products...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41547','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41547"><span>Linking climate, gross primary productivity, and site index across forests of the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke</p> <p>2011-01-01</p> <p>Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7039','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7039"><span>U.S. forest products annual market review and prospects, 2001-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James L. Howard</p> <p>2004-01-01</p> <p>This report provides general and statistical information on forests products markets in terms of production, trade, consumption, and prices. The state of the United States economy is described as of the second quarter of 2003. Market developments are described for timber products, paper and paperboard, fuelwood, and forest products prices. Policy initiatives that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15169','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15169"><span>North American long-term soil productivity research program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix, Jr. Ponder; Douglas M. Stone</p> <p>1997-01-01</p> <p>The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses in soil productivity on National Forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to Forests as collected. National...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/17','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/17"><span>North American long-term soil productivity research program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix Ponder; Douglas M. Stone</p> <p>1997-01-01</p> <p>The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses n soil productivity on national forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to forests as collected. National...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28464423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28464423"><span>Annual climate variation modifies nitrogen induced carbon accumulation of Pinus sylvestris forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lim, Hyungwoo; Oren, Ram; Linder, Sune; From, Fredrik; Nordin, Annika; Fahlvik, Nils; Lundmark, Tomas; Näsholm, Torgny</p> <p>2017-09-01</p> <p>We report results from long-term simulated external nitrogen (N) input experiments in three northern Pinus sylvestris forests, two of moderately high and one of moderately low productivity, assessing effects on annual net primary production (NPP) of woody mass and its interannual variation in response to variability in weather conditions. A sigmoidal response of wood NPP to external N inputs was observed in the both higher and lower productivity stands, reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating at an external N input of 4-5 g N·m -2 ·yr -1 . The rate of increase in wood NPP and the N response efficiency (RE N , increase in wood NPP per external N input) were maximized at an external N input of ~3 g N·m -2 ·yr -1 , regardless of site productivity. The maximum RE N was greater in the higher productivity than the lower productivity stand (~20 vs. ~14 g C/g N). The N-induced enhancement of wood NPP and its RE N were, however, markedly contingent on climatic variables. In both of the higher and lower productivity stands, wood NPP increased with growing season precipitation (P), but only up to ~400 mm. The sensitivity of the response to P increased with increasing external N inputs. Increasing growing season temperature (T) somewhat increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These responses of wood NPP infused a large temporal variation to RE N , making the use of a fixed value unadvisable. Based on these results, we suggest that regional climate conditions and future climate scenarios should be considered when modeling carbon sequestration in response to N deposition in boreal P. sylvestris, and possibly other forests. © 2017 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25494880','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25494880"><span>Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D</p> <p>2015-03-01</p> <p>Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25187788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25187788"><span>Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C</p> <p>2014-01-01</p> <p>Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29482149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29482149"><span>Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Zuoqiang; Ali, Arshad; Wang, Shaopeng; Gazol, Antonio; Freckleton, Robert; Wang, Xugao; Lin, Fei; Ye, Ji; Zhou, Li; Hao, Zhanqing; Loreau, Michel</p> <p>2018-07-15</p> <p>Forests play an important role in regulating the global carbon cycle. Yet, how abiotic (i.e. soil nutrients) and biotic (i.e. tree diversity, stand structure and initial biomass) factors simultaneously contribute to aboveground biomass (coarse woody) productivity, and how the relative importance of these factors changes over succession remain poorly studied. Coarse woody productivity (CWP) was estimated as the annual aboveground biomass gain of stems using 10-year census data in old growth and secondary forests (25-ha and 4.8-ha, respectively) in northeast China. Boosted regression tree (BRT) model was used to evaluate the relative contribution of multiple metrics of tree diversity (taxonomic, functional and phylogenetic diversity and trait composition as well as stand structure attributes), stand initial biomass and soil nutrients on productivity in the studied forests. Our results showed that community-weighted mean of leaf phosphorus content, initial stand biomass and soil nutrients were the three most important individual predictors for CWP in secondary forest. Instead, initial stand biomass, rather than diversity and functional trait composition (vegetation quality) was the most parsimonious predictor of CWP in old growth forest. By comparing the results from secondary and old growth forest, the summed relative contribution of trait composition and soil nutrients on productivity decreased as those of diversity indices and initial biomass increased, suggesting the stronger effect of diversity and vegetation quantity over time. Vegetation quantity, rather than diversity and soil nutrients, is the main driver of forest productivity in temperate mixed forest. Our results imply that diversity effect for productivity in natural forests may not be so important as often suggested, at least not during the later stage of forest succession. This finding suggests that as a change of the importance of different divers of productivity, the environmentally driven filtering decreases and competitively driven niche differentiation increases with forest succession. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20643935','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20643935"><span>Policies for reduced deforestation and their impact on agricultural production.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Angelsen, Arild</p> <p>2010-11-16</p> <p>Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and--more importantly--create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win-lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3-3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>